
HAL Id: hal-01800763
https://hal.science/hal-01800763

Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Execution Time and Code Size Optimization using
Multidimensional Retiming and Loop Striping

Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui

To cite this version:
Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui. Execution Time and Code Size Optimization
using Multidimensional Retiming and Loop Striping. EUROMICRO Conference on Digital System
Design, Sep 2013, Santander, Spain. �hal-01800763�

https://hal.science/hal-01800763
https://hal.archives-ouvertes.fr

Execution Time and Code Size Optimization using

Multidimensional Retiming and Loop Striping

Yaroub Elloumi
1,2

, Mohamed Akil
1
Université Paris-Est, ESIEE Paris

Laboratoire d’Informatique Gaspard Monge, Equipe A3SI

93162 Noisy-le-Grand, France

Emails: {elloumya, akilm}@esiee.fr

Mohamed Hedi Bedoui
2
University of Monastir, Faculty of Medicine of Monastir

Laboratory of Biophysics, TIM Team

5019, Monastir, Tunisia

Email: medhedi.bedoui@fmm.rnu.tn

Abstract— Nested loops present the most critical sections in

several embedded real-time applications. To achieve a higher

performance, the design process employs an optimization

technique in order to increase parallelism. However, the nested

loop codes rise greatly in terms of parallelism level. Due to tight

execution time constraints, each optimization technique produces

implementations with an important code size. This criterion

presents a limiting factor to implement the provided results in

embedded real-time systems.

In this paper, we propose a novel optimization approach that

combines the delayed multidimensional retiming and loop

striping techniques. It explores the solution space, which is

composed by all parallelism cases proposed by both techniques,

in order to provide the implementation that achieves the

execution time constraint while uses a lower code size. In this

context, we present the theory of combining both techniques.

Then, we propose efficient algorithms that ensure selecting a set

of parallelism transformations, based on their execution time and

code size evolutions. The experimental results show that our

optimization approach provides optimal solutions compared to

those provided by applying only one technique. It achieves

average improvements on the code size of 35.21% compared to

the delayed multidimensional retiming and 16.38% compared to

the loop striping.

Keywords— design space exploration, optimization, nested

loops, parallelism.

I. INTRODUCTION

A large group of embedded real-time applications integrate

loop bodies. Their algorithmic structure implies a higher

growth in the execution time. To provide an implementation

that respects the timing constraints, the design process always

consists of employing approaches which present a graph

transformation flow. It ensures modeling applications through

a data flow graph [3, 4, 12], and then modifying the initial

graph to a one respecting the targeted constraints. The

transformation steps are based on applying an optimization

technique such as unrolling [15], extended retiming [14], etc.

Several design methodologies combine optimization

techniques [1, 2, 3, 4] which allow exploring a larger solution

space and hence providing an optimal one compared to those

provided by a single technique. The actual embedded real-time

applications integrate increasingly the iterative and recursive

processing such as 4D reconstruction, high-definition

television, medical imaging, and remote sensing. In fact, the

data flow graph mentioned above does not allow modeling

both the iterative and recursive aspect of the loop bodies. They

are always limited to model a single loop [3, 4], or are disable

to model recursive data dependencies [12]. Thus, the

enhancement of the previous approaches is very limited in the

case of nested loops.

Within this framework, the acyclic data flow graph is

extended to a Multidimensional Data Flow Graph (MDFG)

that ensures an adequate representation of the nested iterative

and recursive aspects [7]. Therefore, many optimization

techniques are proposed in order to explore the MDFG

potentialities. These techniques can be divided into two types:

The first one ensures parallelizing iteration executions such as

the loop striping [5, 6]. It requires duplicate instructions as

well as the iterations are striped. The second type ensures

parallelizing the execution of instructions belonging to the

same iteration, whose all techniques are based on the

multidimensional retiming principles [7, 8, 10, 11, 18]. Its

optimization process implies adding instructions on both sides

of the loop structures. We specify that the delayed

multidimensional retiming technique [11, 13] allows providing

optimal solutions in terms of execution time and code size

then those provided by the previous techniques [7, 8, 18].

The loop striping and delayed multidimensional retiming

techniques proceed to raise the parallelism level in order to

decrease the execution time. Each technique aims at reducing

one parameter of the execution time, where the delayed

multidimensional retiming reduces the cycle period, while the

loop striping minimizes the cycle number. Consequently, each

technique is forced to increase parallelism level in order to

decrease its aimed parameter. However, the more the

parallelism level is high, the more the code size grows

dramatically. Moreover, admitting that the application

complexity keeps rising, the parallelism transformation

implies a high code rise in the nested loops, due to data

overlapping. As a result, even through the execution time

constraint is achieved, each technique provides

implementations with an important code size.

In this paper, we present a novel optimization approach

that allows using both the delayed multidimensional retiming

and the loop striping, in order to achieve the execution time

constraint of the MDFG while using a lower code size. It

DA

C

B

e1

e2

e4

e5

e3

(0,0)

(0,0)

(1,-1)

(1,1)

(0,0)

0: For i=0 to m Do

1: For j=0 to n Do

2: D(i , j) = B(i-1 , j+1)×C(i-1 , j-1)

3: A(i , j) = D(i , j)×5

4: B(i , j) = A(i , j)+1

5: C(i , j) = A(i , j)+2

6: End for

7: End for

(a) (b)
Fig. 1. (a) The MDFG; (b) the algorithm of the wave digital filter

i

j

0 1 2 3 4 5

0

1

2

3

4

5

T
im

e

D

A

…….

Iteration

(0,0)

Iteration

(0,1)

Iteration

(0,2)

C B

(a) (b)

D

A

C B

D

A

C B

Fig. 2. (a) The cell dependency graph; (b) the static schedule of the wave

digital filter

ensures exploring a large solution space by combining the

optimization processes of both techniques. This work consists

in predicting the execution time and the code size evolution in

terms of each optimization transformation. The optimization

approach explores the predicted values in order to select the

set of transformations that ensure respecting the execution

time while using a lower code size.
The rest of the paper is organized as follows. In section 2,

we present the MDFG and we describe the delayed
multidimensional retiming and the loop striping formalisms. In
section 3, we present the principles and the basic concepts of
our approach. The experimental results are presented in section
4, followed by the concluding remarks in section 5.

II. BASIC CONCEPTS

A. Multidimensional Data Flow Graph

The MDFG is a graphical representation allowing

modeling nested loops whose number is called the graph

dimension. It is formulated as , where

represents the set of computation nodes, represents

the set of edges, is a function representing a

multidimensional delay between two nodes, and is the

computation time of the node . An iteration corresponds to

running all nodes in the MDFG once. An edge delay is

modeled by a vector with an index such as
 . For , the index presents the

difference between the iteration executing and the iteration

executing of the loop . As an example, the wave digital

filter algorithm in Fig. 1(b), composed by two nested loops, is

modeled as the two-dimensional Data Flow Graph (2DFG) in

Fig. 1(a). Each edge is assigned by a

 delay, where the and terms are in

relation with the outermost loop and the innermost one,

respectively. Taking as an example the instruction number 4

of the algorithm shown in Fig. 1(b), the and

values are computed in the same iteration whether for the

innermost or the outermost loop. For this purpose, the

 edge is labeled by the delay . The

 means that if B is executed in the

iteration of the outermost loop, then D is executed in the

iteration . Similarly to the innermost loop, D is executed

in the previous iteration of the B execution.

All iterations of the algorithm in Fig. 1(b) are modeled into

an acyclic graph, called the Cell Dependency Graph (CDG)

shown in Fig. 2 (a). It is a cartesian space, whose the

horizontal and the vertical axes show respectively the

outermost and the innermost iteration indexes. Each iteration

is modeled as a circle that is ranged in terms of its index

values. Due to the space constraint, we are restricted to present

only (6*6) iterations. The CDG illustrates explicitly the data

dependencies between the iterations; e.i., The discontinuous

arrows present the occurrences of the edge of the MDFG in

Fig 1.(a), while the continuous ones present those of the

edge. The CDG is used to identify an execution order of

iterations, called the schedule vector that verifies
 for each [7]. An MDFG is called

realizable if there exists a schedule vector s with respect to ,

and no cycle exists in its CDG. For instance, the iterations of

the CDG in Fig. 2 (a) can be executed following the schedule

vector .

A path represents a node succession from to , noted as

 . The delay vector of a path is equal to

 . Accordingly, the computation time is

equal to

 . A is defined as critical path if

it has the maximal computation time among paths having zero

delays . An MDFG scheduling

requires defining the critical path for the reason that its

computation time presents the MDFG cycle period . In

the case of the MDFG in Fig. 1(b), and assuming that
 and , we identify two critical paths

that are and . Thus, the cycle

period is equal to . Fig. 2(b) shows the static

scheduling of the algorithm in Fig. 1(a). Those nodes

belonging to the same iteration, which are executed in a single

cycle period, are modeled by the same pattern. In the case

where and , the wave digital filter requires

441 cycle periods and thus 1764 time units to be executed.

B. Delayed Multidimensional Retiming

The multidimensional retiming approach aims at reducing

the cycle period. It proceeds to reduce the critical path size by

redistributing the nodes in iteration, while preserving the loop

structures of the original MDFG. As a result, it implies

growing the parallelism in the nested loops. Several

multidimensional retiming techniques [7, 8, 18] proceed to

apply successively the multidimensional retiming

i

j

0 1 2 3 4 5

0

1

2

3

4

5

T
im

e

Iteration

(0,0)

Iteration

(0,1)

Iteration

(0,2)

D

A

C

…….

D

A
B

D

A

D

A

(a) (b)

CB

CB

Fig. 4. (a) The cell dependency graph; (b) the static schedule of the wave

digital filter after multidimensional retiming

DA

C

B

e1

e2

e4

e5

e3

(0,1)

(0,1)

(1,-2)

(1,0)

(0,0)

For i=0 to m Do

D(i,0) = B(i-1 , 1) × C(i-1 , -1)

A(i,0) = D(i,0) × 5

For j=0 to n-1 Do

D(i,j+1) = B(i-1 , j+2) × C(i-1 , j)

A(i,j+1) = D(i,j+1) × 5

B(i,j) = A(i,j) + 1

C(i,j) = A(i,j) + 2

End for

B(i,n) = A(i,n) + 1

C(i,n) = A(i,n) + 2

End for

(a) (b)

p
ro

lo
g

u
e

ep
il

o
g

u
e

Fig. 3. (a) The MDFG; (b) the algorithm of the wave digital filter after

multidimensional retiming

transformation until achieving a full parallelism. They provide

an MDFG without any zero delay edge. However, the full

parallelized MDFG implementation is characterized by an

important code size. The work in [11,13] describes a technique

called the “delayed multidimensional retiming” which allows

achieving the minimal cycle period without achieving the full

parallelism. It proceeds to retime the whole paths instead of

retiming each node in the MDFG. Therefore, it provides

implementations with the minimal execution time and code

size compared to those provided by previous techniques.

The delayed multidimensional retiming technique applies a

graphical transformation modeled as
 , where is a zero delay path
 and is the loop dimension. It consists in subtracting

the delay from all the incoming edges and adding

them to all outcoming ones. Each path is moved from its

original iteration as follows: For each index, such as

 , the execution of the path in the iteration is

moved to the iteration . We show in Fig. 3(a) the MDFG

after applying the multidimensional retiming
 . It consists in modifying the MDFG in Fig. 1(a) by

subtracting delay from and , hence adding it to

and . It implies that the path is executed one iteration

before its originally one. In this context, the first occurrence of

the path should be executed before the first iteration. It

involves adding to the retimed algorithm the instructions

upstream the innermost loop which is called the prologue.

Likewise, the complementary instructions should be added

downstream the same loop, which is called the epilogue. The

code provided after the retiming is as shown in Fig. 3(b).

The inter-iteration data-dependencies of the retimed

MDFG are showed in the CDG in Fig. 4(a), where the and

 edge are modeled by dotted arrows, and the and edges

preserve the same patterns of the CDG in Fig. 2(a). This

multidimensional retiming transformation provides a

realizable MDFG whose the CDG can be executed following

the scheduling vector . Based on the algorithm in

Fig. 3(b), there is not any data dependency between the

nodes and the other ones belonging to the same iteration.

Consequently, it allows executing the path in parallel with

the B and C nodes, as shown in the static scheduling in Fig.

4(b). Thus, it allows reducing the cycle period from 4

to 2 time units. In the case where and , the

delayed multidimensional retiming allows reducing the

execution time from 1764 to 924 time units, despite increasing

the code size by 4 instructions.

C. Loop Striping

The loop striping aims at reducing the cycle number

necessary to execute the nested loop. It proceeds to execute in

parallel several iterations of the MDFG without modifying the

original data dependency. This transformation requires that the

striped iterations have not any data dependencies between

them. The loop striping modifies the MDFG with respect to

both parameters which are the factor and the offset . The

first one presents the number of iterations that will be placed

in the same strip. The second one defines the direction of the

striping iteration; i.e., the iteration and iteration

are placed in the same strip if is equal to 2. The choice of the

offset is done in a way that there is not any data dependency

between the striped iterations [6]. This criterion is the major

difference between the unrolling and the loop striping. Taking

the MDFG in Fig. 1(a) as an example, the loop striping

technique allows striping the iterations such that and

 , called , whose strips are modeled by

fat eclipses in the CDG of Fig. 5(a).

This technique implies collecting the striped iteration

instructions in the innermost loop. The index evolution of the

outermost loop is incremented by a step equal to the factor.

Moreover, in the case of a non-zero offset value, the

iteration, where , does not belong to any strip.

Nevertheless, they must be executed before running the striped

iterations. For this purpose, a loop structure is added to the

algorithm upstream the innermost loop, which is called the

prologue. Similarly, a second loop is added in upstream,

which is called the epilogue. For example, the
 loop striping applied to the wave digital filter provides the

algorithm shown in Fig. 6(b). The innermost loop instructions

are duplicated compared to the original algorithm. The

and iterations in the original algorithm are executed in

the prologue, while the and ones are

executed in the epilogue.

Due to the duplication of instructions in each iteration unit,

the provided MDFG integrates two occurrences of each node

belonging to the original MDFG in Fig. 1(a), which is shown

in Fig. 6(a). The loop striping preserves the data dependency

i

j

0 1 2 3 4 5

0

1

2

3

4

5

T
im

e

…….

Iteration

(0,0)

Iteration

(0,1)

D

A

B

(a) (b)

C

A

B C

D

A

B C

D

A

B C

D

A

B C

D

A

B C

D

Fig. 5. (a) The cell dependency graph; (b) the static schedule of the wave

digital filter after loop striping

D

A

C

B

(0,1)

(0,3)

(a) (b)

D

A

C

B

(1,-1)

(1,-3)

For i=0 to m step by 2 do

 For j=0 to g-1 do

 D(i , j) = B(i-1 , j+1)×C(i-1 , j-1)

 A(i , j) = D(i , j)×5

 B(i , j) = A(i , j)+1

 C(i , j) = A(i , j)+2

 End for

 For j=g to n do

 D(i , j) = B(i-1 , j+1)×C(i-1 , j-1)

 A(i , j) = D(i , j)×5

 B(i , j) = A(i , j)+1

 C(i , j) = A(i , j)+2

 D(i+1 , j-2) = B(i , j-1)×C(i , j-3)

 A(i+1 , j-2) = D(i+1 , j-2)×5

 B(i+1 , j-2) = A(i+1 , j-2)+1

 C(i+1 , j-2) = A(i+1 , j-2)+2

 End for

 For j=n-(g-1) to n do

 D(i+1, j) = B(i , j+1)×C(i , j-1)

 A(i+1, j) = D(i+1 , j)×5

 B(i+1 , j) = A(i+1 , j)+1

 C(i+1 , j) = A(i+1 , j)+2

 End for

End for

p
ro

lo
g

u
e

ep
il

o
g

u
e

Fig. 6. (a) The MDFG; (b) the algorithm of the wave digital filter after loop

striping

i

j

0 1 2 3 4 5

0

1

2

3

4

5

T
im

e

Iteration

(0,0)

Iteration

(0,1)

Iteration

(0,2)

…….

CB
D

A

D

A
CB

D

A

D

A

D

A

D

A

(a) (b)

p
ro

lo
g

u
e …….

…….

CBCB

CBCB

Fig. 7. (a) The cell dependency graph; (b) the static schedule of the wave

digital filter after multidimensional retiming and loop striping

inside each iteration. Therefore, it implies keeping zero-delays

in the , and edges, such as the original

graph. The non-zero delays are modified with respect to the

CDG in Fig. 5(a). The static scheduling of the striped

algorithm is shown in Fig. 5(b) which the iteration instructions

in the original MDFG are modeled with the same pattern. In

the case where and , the loop striping allows

reducing the cycle number from 441 to 291, hence reducing

the execution time from 1764 to 1164 time units, in spite of

raising the code size by 10 instructions.

III. MDFG OPTIMIZATION APPROACH

A. Principles

Our work targets the design of embedded real-time

applications, which require respecting an execution time

constraint. Taking as an example the MDFG in Fig. 1(a), we

aim to execute it in 550 time units. The delayed

multidimensional retiming provides the final MDFG that

requires 924 time units to be executed, as shown in the MDFG

in Fig. 3(a). This technique is unable to respect the execution

time constraint whatever the multidimensional retiming

function is. The loop striping allows increasing the factor

in order to reduce the execution time of the whole application.

Respecting the offset that is equal to 2, this technique should

collect 5 iterations in the same strips in order to achieve the

execution time constraint. However, the innermost loop is to

include 20 instructions that are executed in parallel. In

addition, the iterations which are not stripped are added to the

prologue and epilogue in the final code. As a result, even

through the loop striping respects the execution time

constraint, it increasing the code size more than 8 times.

As we all know, the execution time is defined as the result

of multiplying the cycle period and the cycle number

parameters. Therefore, decreasing the execution time is similar

to minimize either one of the parameters or both of them.

Taking the retimed MDFG in Fig. 3(b) as an example, we

deduce that both iterations and have not any data

dependency between them. This condition is verified for both

iterations: and , for any

and . We proceed to apply the loop striping

 to the retimed MDFG whose the iterations

are collected in strips as shown in the CDG in Fig. 7(a). This

transformation implies duplicating the innermost loop

instructions once, and adding both prologue and epilogue

where each of them runs 3 innermost iterations. The provided

MDFG shown in Fig. 8(a) is still realizable, whose execution

can be done following the scheduling vector . The

correspondent algorithm is structured by 32 instructions as

shown in Fig. 8(b). Based on the static schedule shown in Fig.

7(b), the cycle period has already fallen to . Thus,

the algorithm in Fig. 8(b) requires 250 cycle number, hence

having 500 time units to the whole execution. So, we deduce

that applying the delayed multidimensional retiming and the

loop striping to the wave digital filter allows achieving the

execution time constraint that the delayed multidimensional

retiming has been unable to do. Moreover, it permits getting

the aimed constraint by using a minimal code size then the one

(a) (b)

D

A

C

B

(0,1)

(0,3)

D

A

C

B

(1,-1)

(1,-3)

For i=0 to m step by 2 Do
D(i,0) = B(i-1 , 1) × C(i-1 , -1)

A(i,0) = D(i,0) × 5

D(i+1,0) = B(i , 1) × C(i , -1)

A(i+1,0) = D(i+1 ,0) × 5

For j=0 to g-1 Do
D(i,j+1) = B(i-1 , j+2) × C(i-1 , j)

A(i,j+1) = D(i,j+1) × 5

B(i,j) = A(i,j) + 1

C(i,j) = A(i,j) + 2

End for

For j=g to n-1 Do
D(i,j+1) = B(i-1 , j+2) × C(i-1 , j)

A(i,j+1) = D(i,j+1) × 5

B(i,j) = A(i,j) + 1

C(i,j) = A(i,j) + 2

D(i+1,j-2) = B(i , j-1) × C(i , j-3)

A(i+1,j-2) = D(i+1,j-2) × 5

B(i+1,j-3) = A(i+1,j-3) + 1

C(i+1,j-3) = A(i+1,j-3) + 2

End for

For j=n-g-1 to n-1 Do
D(i+1,j-2) = B(i , j-1) × C(i , j-3)

A(i+1,j-2) = D(i+1,j-2) × 5

B(i+1,j-3) = A(i+1,j-3) + 1

C(i+1,j-3) = A(i+1,j-3) + 2

End for
B(i,n) = A(i,n) + 1

C(i,n) = A(i,n) + 2

B(i+1 ,n) = A(i+1 ,n) + 1

C(i+1 ,n) = A(i+1 ,n) + 2

End for

p
ro

lo
g
u
e

ep
il

o
g
u
e

(0,1)

(0,1)

(0,1)

(0,1)

Fig. 8. (a) The MDFG; (b) the algorithm of the wave digital filter after

multidimensional retiming and loop striping

provided by the loop striping with an enhancement of 41.06%.

In this context, we propose an optimization approach that

allows using both the delayed multidimensional retiming and

the loop striping, in order to achieve the execution time

constraint while using a lower code size. The both techniques

imply reducing the execution time in spite of rising the code

size. None of the techniques is considered optimal compared

to the other. For this purpose, our optimization approach

ensuring exploring all the solution space offered by these two

techniques in order to provide the one having the minimal

code size among those explored. We note that the only work

that combines iterational parallelism and instructional

parallelism into an MDFG aims to only minimizing the

iteration time average, without taking into account the timing

impact of the added code [9].

We describe in the following sections the theory of

choosing and applying the optimization technique in terms of

the aimed constraint. Even if the formalisms correspond to a

2DFG, they can be directly extended to the general case.

B. Technique Order

We define in this section the theory of applying both the

delayed multidimensional retiming and loop stripping

techniques to the same MDFG. Let us focus on the MDFG

structure before and after each optimization technique. In fact,

the theory of both techniques consists in optimizing uniform

nested loops [6, 7]. The loop striping implies duplicating the

iterations, hence modifying the loop structure of the MDFG.

We introduce in the following theorem the striped MDFG

structure.

Theorem 3.1 Given an MDFG and is a

striping offset of . If then the striped MDFG is a

non-uniform nested loop.

Proof. means that (1,0) and (0,g) iterations compose

the first strip. The iterations where and
 should be executed before the stripped iterations. Thus,

 which implies adding a loop upstream the innermost

one in order to execute the (i,j) iterations. Therefore, the

stripped MDFG is a non-uniform nested loop.

According to the example in Fig. 6(b), the loop striping

implies duplicating 3 times the innermost loop. So, for a

striped MDFG, a multidimensional retiming is limited to

optimize only one of the innermost loops, which minimizes

the multidimensional retiming improvement.

In contrast, a multidimensional retiming transformation

provides an MDFG preserving the loop structure, whatever le

retiming function is. Figure 3 shows that the retimed algorithm

contains the same loops even though the retiming overheads

the instructions in the two loop directions. We study in

theorem 3.2 the ability of applying the loop striping to a

retimed MDFG.

Theorem 3.2 Given an MDFG , a legal

multidimensional retiming of and the retimed

MDFG by , and if is a striping offset of then there

exists a striping offset of .

Proof. is a striping offset of G which means that there exists

 and that for each . This

condition proves that is a scheduling vector of , and

therefore and are orthogonal [7]. R is a legal

multidimensional retiming of , which means that there

exists a scheduling vector and that

for each , where , which verifies the

existence of a striping offset of .

This theorem proves that we can apply the loop striping to

a retimed MDFG independently from the optimization

parameters of both techniques. Based on theorem 3.1 and

theorem 3.2, the solutions can be provided either by applying

the loop striping, the multidimensional retiming or the

multidimensional retiming followed by the loop striping. In

fact, the delayed multidimensional retiming proceeds to

applying several multidimensional retiming transformations to

the same MDFG. Similarly, the final MDFG of the delayed

multidimensional retiming technique can always be striped, as

introduced in the following lemma.

Lemma 3.1 Given an MDFG , a legal

multidimensional retiming of and the MDFG

 after the delayed multidimensional retiming technique

using , and if is a striping offset of , then there exists a

striping offset of .

Proof. The delayed multidimensional retiming applies n times

the a multidimensional retiming function to the same

MDFG until achieving the minimal cycle period. Thus, the

lemma is checked immediately by repeating n times the

verification of theorem 3.2.

Our work aims at achieving an execution time constraint.

When an algorithm requires appealing both techniques, we

have to apply the delayed multidimensional retiming first. The

loop striping will be the last graphical transformation in order

to achieve the targeted constraint.

Original MDFG

Select a multidimensional retiming R

Select a loop striping LS

Apply R Apply LS

Final MDFG

Yes

R LS

No

LS or

R?

Achieve

TC ?

Fig. 9. The optimization approach flow

Algorithm 1. The optimization approach

Inputs: MDFG , execution time constraint , the iteration

bounds of the outermost loop and the innermost loop

Outputs : the optimized MDFG

0: Begin

/* Compute the execution time and the minimal cycle period */

1: Compute the cycle period where is a

path of G

2:

3:

4: Compute the minimal cycle period
/* Choose the optimization technique */

5: While do

6: Select a multidimensional retiming function

7: Compute the retiming cost (as described in algorithm 2)

8: Select a loop striping

9: Compute the loop striping cost (as described in algorithm 3)

10: If and then

11: Apply the multidimensional retiming

12:

13: Else

14: Apply the loop striping

15:

16: End if

17: End While

18: End

The lemma 3.1 offers several cases of multidimensional

retiming, from applying the first transformation to applying all

ones purposed by the delayed technique [11], before the loop

striping. Thus, the optimization approach selects the

optimization parameters of the multidimensional retiming

and the loop striping . Then, it chooses the most profitable

one as described in paragraph C, in order to apply it to the

original MDFG. This provided MDFG presents the subject of

the next test. This step is done iteratively until achieving the

execution time constraint as modeled in the flow of Fig. 9.

C. Technique Choice

This work aims to provide an implementation that respects

an execution time constraint while using a minimal code size.

Thus, the selection of a parallelism is based on its contribution

in terms of execution time and code size. Therefore, after

selecting the parameters of each technique which are the

function of the retiming technique, and the factor and the

offset of the loop striping one, our optimization approach

proceeds to predict the execution time enhancement and the

code size rise of each technique result in terms of the selected

parameters, which the prediction steps are detailed in the

paragraph . Next, it chooses an optimization technique

which is based on the predicted values.

On the one hand, choosing the optimization transformation

that provides the maximal execution time may lead to an

implementation with a high code size. As cited in section 3.1,

the loop striping achieves the execution time constraint while

the multidimensional retiming is unable to do that. Yet, the

result purposed by the loop striping requires a greater code

size than those provided by applying the multidimensional

retiming as a first optimization, as shown in Fig. 8(b). On the

other hand, the approach cannot choose the transformation that

requires the minimal code. It can have a negligible

contribution to the execution time which implies a

compensating effect. That is why, the choice should be based

on both execution time and code size contributions. In this

context, we purpose to generate a cost function as done in

[12], as indicated in (1).

TCf t /cos (1)

where represents the code size rising and represents

the execution time reduction. A cost function is computed for

each eventual optimization among the multidimensional

retiming and loop striping. Then, our approach chooses the

optimization presenting the small cost, hence applying it to the

current MDFG.

The whole steps of our proposed optimization approach

are described in algorithm 1. It starts by predicting the

execution time of the MDFG. Based on [16, 17], this term

consists of estimating two parameters whose are the

computation time and the communication time. The first one

is predicted by multiplying the cycle period and cycle number

of the whole application. The second one presents the time

spent on data scheduling and memory access. It depends of the

processor technology and the memory architecture. In this

work, we restrict on predicting only the computation time.

Therefore, our approach computes the cycle period , the

cycle number and the minimal cycle period that

can be achieved [11]. Then, it runs an iterative structure that

selects a loop striping and a multidimensional

retiming . Afterward, it computes both technique

costs and chooses that presents the minimal ones. If the

minimal cycle period is achieved, the approach applies

directly the selected loop striping. The approach stops

running when the execution time constraint is achieved.

D. Cost Function Computing

We describe in this section our process to predict the

optimization costs. The first term, which is the execution

time reduction, presents the difference between the execution

times before and after the optimization transformation.

Admitting that both two values are used into the approach

progress, each one of them must be predicted for each

eventual optimization. For the second term, which is the

code rising, the optimization approach runs without requiring

the code size values in any step of the optimization process.

However, the added prologue and epilogue after a

multidimensional retiming can be computed in terms of the

retiming function . Similarly, we can define the iterations

Algorithm 2. Cost function of the delayed multidimensional retiming

Inputs: MDFG , retiming function , the

current cycle number

Outputs : multidimensional retiming cost

0: Begin

1: Define the paths to retime [11]

/* Compute the cycle period of the multidimensional retiming*/

2: Extract the critical paths after retiming

3: Compute the cycle period after retiming

 where

4: Compute the code size of the innermost loop

/* Compute the cycle number and the added code size after the

multidimensional retiming */

5: If then

6:

7:

8: Else

9:

10:
11: End if

/* Compute the cost function of the multidimensional retiming */

12:

13: End

Algorithm 3. Cost function of the loop striping

Inputs: MDFG , loop striping vector , the current

cycle period

Outputs : loop striping cost

0: Begin

/* Compute the cycle number after the loop striping */

1:

2: For from 0 to do

3: For from 0 to do

4:

5: End for

6: End for

7:

/* Compute the added code size after the loop striping */

8: Compute the instruction code size of the innermost loop

9:

/* Compute the cost function of the loop striping */

10:

11: End

that are not striped in terms of the factor and the offset.

Thus, we proceed to predict only the added code size using

the optimization parameters of each technique.

In the case of the multidimensional retiming, the

optimization modifies the cycle period , the cycle number

 and the code size, where all must be predicted. If the

retiming function affects only the innermost loop, the prologue

and epilogue will be added only upstream and downstream

this last loop, which consists in adding the innermost loop

instructions duplicated by the second index of the

function . Contrarily, the prologue and the epilogue are

added to each loop structure. The multidimensional retiming

cost is predicted as described in algorithm 2.

In the case of the loop striping, the optimization consists in

duplicating times the innermost iteration instructions and

adding the non-striped iteration as prologue and epilogue.

Thus, this technique modifies only the cycle number

and the code size. We start by defining the number of

iterations that are run in each part of prologue and

epilogue. Then, we compute the cycle number
 while

taking into account the new iteration bound values of both

loops. The code rise is the addition of those duplicated in

the innermost loop and those added in the prologue and

epilogue. The cost of a loop striping is computed as described

in algorithm 3.

Our optimization approach always provides an

implementation with a minimal code size whose efficiency is

proved in theorem 3.3.

THEOREM 3.3. Given an MDFG , the

innermost iteration instructions number and the maximal

iterations bounds , the optimization approach provides the

final MDFG in at most times.

Proof. The delayed multidimensional retiming requires

 times. Thereafter, the loop striping requires

to select the f factor and the g offset parameters and

 to generate the final code [6]. Moreover, the cost

functions is run on in the case of the multidimensional

retiming and for the loop striping which are

associated to each optimization selection. Admitting that the

code generation after the loop striping is executed once and

 , our optimization approach requires only
 times to be performed.

IV. EXPERIMENTAL RESULTS

To validate our approach contribution, we have compared

its provided results to those provided by the loop striping or

the delayed multidimensional retiming. This step consists in

applying the three optimization processes to the same set of

MDFGs. The applications chosen in our experiments are the

Wave Digital Filter (WDF), the Infinite Impulse Response

Filter (IIRF) and the Walsh-Fourier Transform (WFT), whose

MDFGs are composed by the adder and multiplier nodes.

Recognizing that the multidimensional retiming [11, 13]

depends on the execution-time nodes, we proceed to model

each MDFG with different node execution times, as shown in

the second column of TABLE.I, where the adder and

multiplier execution times are respectively indicated by and

 . To verify the solution space exploration, we require

different execution time constraints for each graph which

are indicated in the third column. Then, we apply the three

optimization techniques with the aim of achieving each

required constraint. The execution time and the code size

values of each technique are shown in the three last columns

of TABLE.I. We indicate that the bold values mean that the

used technique does not allow achieving the execution time

constraint.

The “improve” row presents the benefit in terms of the

code size of the results provided by our techniques compared

to those provided by the multidimensional retiming and the

loop striping, which accounts for an average improvement of

35.21% compared to the multidimensional retiming technique

and 16.38% compared to the loop striping technique.

TABLE I. THE EXECUTION TIME AND CODE SIZE VALUES IN

TERMS OF OPTIMIZATION TECHNIQUES

MDFG)

Multidim.

retiming

Loop

striping

Optim.

approach

WDF

(1,1)

800 504 16 693 12 639 12

550 504 16 525 28 504 16

450 504 504 411 36 314 28

(1,2)

1500 1449 12 1155 12 1155 12

1200 1008 16 1155 12 1155 12

700 1008 16 685 36 628 28

(2,1)

1100 924 12 1004 24 924 12

700 924 12 624 32 534 24

550 924 12 548 36 534 24

IIRF

(1,1)

750 720 130 525 70 525 70

450 316 402 395 102 436 92

380 316 402 315 134 284 108

(1,2)

1200 844 52 1050 70 844 52

900 720 130 790 102 872 92

650 516 149 615 134 568 108

(2,1)

1200 1157 130 1050 70 1050 70

900 632 402 790 102 872 92

650 632 402 615 134 568 108

WFT

(1,1)

300 242 26 165 24 165 24

150 138 77 147 32 120 28

110 138 77 147 32 110 42

(1,2)

400 202 16 220 24 202 16

300 202 16 196 32 202 16

200 202 16 196 32 120 28

(2,1)

400 357 26 275 24 275 24

300 276 77 275 24 275 24

250 276 77 245 32 240 28

Improve (%) 35.21 16.38

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an optimization approach

that explores the solution space offered by the

multidimensional retiming and the loop striping techniques, in

order to select an implementation that achieves the execution

time constraint while using a lower code size. The

improvement averages in the experimental results prove that

our approach provides optimal solutions compared to each

technique used separately. The approach efficiency proved in

theorem 3.3 allows implementing our approach in a software

tool dedicated to design embedded real-time applications.

In our future works, we aim to concretize our approach in

a software tool that allows the designer to model a MDFG and

to fixe an execution time constraint in order to provide

automatically the optimized implementation. Moreover, we

aim for developing the execution time and code size prediction

by taking into account the technological parameters such as

the memory access and the data routing, etc. Also, we will be

interested in enhancing the function cost by offering the ability

of weighting between the execution time and the code size.

REFERENCES

[1] Q. Zhuge, Z. Shao, B. Xiao, and E.H.-M. Sha, “Design space
minimization with timing and code size optimization for embedded
DSP”, CODES+ISSS, California (USA), pp. 144-149, October 2003.

[2] Q. Zhuge, B. Xiao, Z. Shao, and E.H.-M. Sha, C. Chantrapornchai,
“Optimal code size reduction for software-pipelined and unfolded
loops”, ISSS, pp. 144-149, 2002.

[3] T.W. O’neil, and E.H.-M. Sha, “Combining extended retiming and
unfolding for rate-optimal graph transformation”, J. of VLSI Sign.
Process., vol. 39, iss. 3, pp: 273–293, March 2005.

[4] Q. Zhuge, C. Xue, Z. Shao, M. Liu, M. Qiu, and E.H.-M. Sha, “Design
optimization and space minimization considering timing and code size
via retiming and unfolding”, J. Microproc. Microsyst., vol. 30,pp. 173–
183, 2006.

[5] C. Xue, Z. Shao, M. Liu, and E.H.-M. Sha, “Iterational retiming:
maximize iteration-level parallelism for nested loops”, CODES+ISSS,
pp. 309-314, 2005.

[6] C. Xue, E.H.-M. Sha, “Maximize parallelism minimize overhead for
nested loops via loop Striping”, J. of VLSI Sig. Proc., vol. 47, pp. 153–
167, December 2006.

[7] N. L. Passos, and E.H.-M. Sha. “Achieving full parallelism using multi-
dimensional retiming”, J. IEEE Trans. Par. Dist. Syst., vol. 7, iss. 11, pp.
1150-1163, November 1996.

[8] M. Sheliga, N. L. Passos, and E.H.-M. Sha. “Fully parallel
hardware/software codesign for multidimensional DSP applications”,
CODES, Pennsylvania (USA), pp. 18-20, March 1996.

[9] C. J. Xue, Z. Shao, M. liu, M. K. Qiu, E.H.-M. Sha, “Optimizing
parallelism for nested loops with iterational and instructional retiming”,
J. Embed. Comput., vol. 3, iss.1, pp. 29-37, January 2009.

[10] Y. Elloumi, M.Akil, and M.H. Bedoui, “Timing and code size
optimization on achieving full parallelism in uniform nested loop”, J.
Comp., vol. 3, iss. 7, Jully 2011.

[11] Y. Elloumi, M.Akil, and M.H. Bedoui, “Execution time optimization
using delayed multidimensional retiming”, IEEE/ACM DSRT, Dublin
(Ireland),pp. 177-184, October 2012.

[12] L. Kaouane, M. Akil,T. Grandpierre, and Y. Sorel, “ A methodology to
implement real-time applications onto reconfigurable circuits”, J.
Supercomp., vol. 30, iss. 3, , pp. 283-301, December 2004.

[13] Y. Elloumi, M.Akil, and M.H. Bedoui, “Achieving Minimal Cycle
Period with Delayed Multidimensional Retiming”, J. App. Soft Comp.,
unpublished.

[14] T. O'Neil, S. Tongsima, and E.H.-M. Sha, “Extended retiming: Optimal
scheduling via a graph-theoretical approach,” ICASSP, vol. 4, pp. 2001–
2004, March 1999.

[15] K.K. Parhi, and D.G. Messerschmitt, “Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding”, IEEE Transact.
Comp., vol. 40, iss. 2, pp. 178-195, February 1991.

[16] O. Lobachev, M. Guthe, and R. Loogen, “Estimating parallel
performance”, J. Par. Dist. Comp., January 2013, (in press).

[17] G. Romanazzi, P.K. Jimack, and C.E. Goodyer, “Reliable performance
prediction for multigrid software on distributed memory systems”, J.
Adv. Engin. Softw., vol. 42, pp. 247–258, May 2011.

[18] Q. Zhuge, C. Xue, M. Qiu, J. Hu and E. H.-M. Sha, “Timing
Optimization via Nest-Loop Pipelining Considering Code Size,” J.
Microproc. Microsyst., vol. 32, iss. 7, pp. 351-363, october 2008.

http://dl.acm.org/author_page.cfm?id=81100324565&coll=DL&dl=ACM&trk=0&cfid=75809502&cftoken=18768314

