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Abstract— Nested loops present the most critical sections in 

several embedded real-time applications. To achieve a higher 

performance, the design process employs an optimization 

technique in order to increase parallelism. However, the nested 

loop codes rise greatly in terms of parallelism level. Due to tight 

execution time constraints, each optimization technique produces 

implementations with an important code size. This criterion 

presents a limiting factor to implement the provided results in 

embedded real-time systems. 

In this paper, we propose a novel optimization approach that 

combines the delayed multidimensional retiming and loop 

striping techniques. It explores the solution space, which is 

composed by all parallelism cases proposed by both techniques, 

in order to provide the implementation that achieves the 

execution time constraint while uses a lower code size. In this 

context, we present the theory of combining both techniques. 

Then, we propose efficient algorithms that ensure selecting a set 

of parallelism transformations, based on their execution time and 

code size evolutions. The experimental results show that our 

optimization approach provides optimal solutions compared to 

those provided by applying only one technique. It achieves 

average improvements on the code size of 35.21% compared to 

the delayed multidimensional retiming and 16.38% compared to 

the loop striping. 

Keywords— design space exploration, optimization, nested 

loops, parallelism. 

I.  INTRODUCTION 

A large group of embedded real-time applications integrate 

loop bodies. Their algorithmic structure implies a higher 

growth in the execution time. To provide an implementation 

that respects the timing constraints, the design process always 

consists of employing approaches which present a graph 

transformation flow. It ensures modeling applications through 

a data flow graph [3, 4, 12], and then modifying the initial 

graph to a one respecting the targeted constraints. The 

transformation steps are based on applying an optimization 

technique such as unrolling [15], extended retiming [14], etc. 

Several design methodologies combine optimization 

techniques [1, 2, 3, 4] which allow exploring a larger solution 

space and hence providing an optimal one compared to those 

provided by a single technique. The actual embedded real-time 

applications integrate increasingly the iterative and recursive 

processing such as 4D reconstruction, high-definition 

television, medical imaging, and remote sensing. In fact, the 

data flow graph mentioned above does not allow modeling 

both the iterative and recursive aspect of the loop bodies. They 

are always limited to model a single loop [3, 4], or are disable 

to model recursive data dependencies [12]. Thus, the 

enhancement of the previous approaches is very limited in the 

case of nested loops.  

Within this framework, the acyclic data flow graph is 

extended to a Multidimensional Data Flow Graph (MDFG) 

that ensures an adequate representation of the nested iterative 

and recursive aspects [7]. Therefore, many optimization 

techniques are proposed in order to explore the MDFG 

potentialities. These techniques can be divided into two types: 

The first one ensures parallelizing iteration executions such as 

the loop striping [5, 6]. It requires duplicate instructions as 

well as the iterations are striped. The second type ensures 

parallelizing the execution of instructions belonging to the 

same iteration, whose all techniques are based on the 

multidimensional retiming principles [7, 8, 10, 11, 18]. Its 

optimization process implies adding instructions on both sides 

of the loop structures. We specify that the delayed 

multidimensional retiming technique [11, 13] allows providing 

optimal solutions in terms of execution time and code size 

then those provided by the previous techniques [7, 8, 18]. 

The loop striping and delayed multidimensional retiming 

techniques proceed to raise the parallelism level in order to 

decrease the execution time. Each technique aims at reducing 

one parameter of the execution time, where the delayed 

multidimensional retiming reduces the cycle period, while the 

loop striping minimizes the cycle number. Consequently, each 

technique is forced to increase parallelism level in order to 

decrease its aimed parameter. However, the more the 

parallelism level is high, the more the code size grows 

dramatically. Moreover, admitting that the application 

complexity keeps rising, the parallelism transformation 

implies a high code rise in the nested loops, due to data 

overlapping. As a result, even through the execution time 

constraint is achieved, each technique provides 

implementations with an important code size.  

In this paper, we present a novel optimization approach 

that allows using both the delayed multidimensional retiming 

and the loop striping, in order to achieve the execution time 

constraint of the MDFG while using a lower code size. It 
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0: For i=0 to m Do

1:   For j=0 to n Do

2:      D(i , j) = B(i-1 , j+1)×C(i-1 , j-1)

3:      A(i , j) = D(i , j)×5

4:      B(i , j) = A(i , j)+1

5:      C(i , j) = A(i , j)+2

6:   End for

7: End for
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Fig. 1. (a) The MDFG; (b) the algorithm of the wave digital filter 
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Fig. 2.  (a) The cell dependency graph; (b) the static schedule of the wave 

digital filter 

ensures exploring a large solution space by combining the 

optimization processes of both techniques. This work consists 

in predicting the execution time and the code size evolution in 

terms of each optimization transformation. The optimization 

approach explores the predicted values in order to select the 

set of transformations that ensure respecting the execution 

time while using a lower code size. 
The rest of the paper is organized as follows. In section 2, 

we present the MDFG and we describe the delayed 
multidimensional retiming and the loop striping formalisms. In 
section 3, we present the principles and the basic concepts of 
our approach. The experimental results are presented in section 
4, followed by the concluding remarks in section 5. 

II. BASIC CONCEPTS 

A. Multidimensional Data Flow Graph 

The MDFG is a graphical representation allowing 

modeling   nested loops whose   number is called the graph 

dimension. It is formulated as             , where   

represents the set of computation nodes,         represents 

the set of edges,       is a function representing a 

multidimensional delay between two nodes, and       is the 

computation time of the node   . An iteration corresponds to 

running all nodes in the MDFG once. An      edge delay is 

modeled by a vector with an   index such as       
              . For         , the index    presents the 

difference between the iteration executing    and the iteration 

executing    of the loop  . As an example, the wave digital 

filter algorithm in Fig. 1(b), composed by two nested loops, is 

modeled as the two-dimensional Data Flow Graph (2DFG) in 

Fig. 1(a). Each           edge is assigned by a      

          delay, where the       and       terms are in 

relation with the outermost loop and the innermost one, 

respectively. Taking as an example the instruction number 4 

of the algorithm shown in Fig. 1(b), the        and        

values are computed in the same iteration whether for the 

innermost or the outermost loop. For this purpose, the 

       edge is labeled by the delay            . The 

                  means that if B is executed in the 

iteration   of the outermost loop, then D is executed in the 

iteration    . Similarly to the innermost loop, D is executed 

in the previous iteration of the B execution. 

All iterations of the algorithm in Fig. 1(b) are modeled into 

an acyclic graph, called the Cell Dependency Graph (CDG) 

shown in Fig. 2 (a). It is a cartesian space, whose the 

horizontal and the vertical axes show respectively the 

outermost and the innermost iteration indexes. Each iteration 

is modeled as a circle that is ranged in terms of its index 

values. Due to the space constraint, we are restricted to present 

only (6*6) iterations. The CDG illustrates explicitly the data 

dependencies between the iterations; e.i., The discontinuous 

arrows present the occurrences of the    edge of the MDFG in 

Fig 1.(a), while the continuous ones present those of the    

edge. The CDG is used to identify an execution order of 

iterations, called the schedule vector   that verifies        
  for each       [7]. An MDFG              is called 

realizable if there exists a schedule vector s with respect to  , 

and no cycle exists in its CDG. For instance, the iterations of 

the CDG in Fig. 2 (a) can be executed following the schedule 

vector        . 

A path represents a node succession from    to   , noted as 

    

  
   

  
   . The delay vector of a path   is equal to 

           
   
   . Accordingly, the computation time is 

equal to            
   
   . A     is defined as critical path if 

it has the maximal computation time among paths having zero 

delays                     . An MDFG scheduling 

requires defining the critical path for the reason that its 

computation time presents the MDFG cycle period     . In 

the case of the MDFG in Fig. 1(b), and assuming that      
       and            , we identify two critical paths 

that are          and         . Thus, the cycle 

period is equal to       . Fig. 2(b) shows the static 

scheduling of the algorithm in Fig. 1(a). Those nodes 

belonging to the same iteration, which are executed in a single 

cycle period, are modeled by the same pattern. In the case 

where      and     , the wave digital filter requires 

441 cycle periods and thus 1764 time units to be executed. 

B. Delayed Multidimensional Retiming 

The multidimensional retiming approach aims at reducing 

the cycle period. It proceeds to reduce the critical path size by 

redistributing the nodes in iteration, while preserving the loop 

structures of the original MDFG. As a result, it implies 

growing the parallelism in the nested loops. Several 

multidimensional retiming techniques [7, 8, 18] proceed to 

apply successively the multidimensional retiming 
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Fig. 4. (a) The cell dependency graph; (b) the static schedule of the wave 

digital filter after multidimensional retiming 
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Fig. 3. (a) The MDFG; (b) the algorithm of the wave digital filter after 

multidimensional retiming 

transformation until achieving a full parallelism. They provide 

an MDFG without any zero delay edge. However, the full 

parallelized MDFG implementation is characterized by an 

important code size. The work in [11,13] describes a technique 

called the “delayed multidimensional retiming” which allows 

achieving the minimal cycle period without achieving the full 

parallelism. It proceeds to retime the whole paths instead of 

retiming each node in the MDFG. Therefore, it provides 

implementations with the minimal execution time and code 

size compared to those provided by previous techniques. 

The delayed multidimensional retiming technique applies a 

graphical transformation modeled as          
          , where   is a zero delay path               
      and   is the loop dimension. It consists in subtracting 

the            delay from all the   incoming edges and adding 

them to all   outcoming ones. Each   path is moved from its 

original iteration as follows: For each    index, such as 

     , the execution of the   path in the iteration   is 

moved to the iteration     . We show in Fig. 3(a) the MDFG 

after applying the multidimensional retiming          
     . It consists in modifying the MDFG in Fig. 1(a) by 

subtracting       delay from    and   , hence adding it to    

and   . It implies that the   path is executed one iteration 

before its originally one. In this context, the first occurrence of 

the   path should be executed before the first iteration. It 

involves adding to the retimed algorithm the   instructions 

upstream the innermost loop which is called the prologue. 

Likewise, the complementary instructions should be added 

downstream the same loop, which is called the epilogue. The 

code provided after the retiming is as shown in Fig. 3(b). 

The inter-iteration data-dependencies of the retimed 

MDFG are showed in the CDG in Fig. 4(a), where the    and 

   edge are modeled by dotted arrows, and the    and    edges 

preserve the same patterns of the CDG in Fig. 2(a). This 

multidimensional retiming transformation provides a 

realizable MDFG whose the CDG can be executed following 

the scheduling vector        . Based on the algorithm in 

Fig. 3(b), there is not any data dependency between the   

nodes and the other ones belonging to the same iteration. 

Consequently, it allows executing the   path in parallel with 

the B and C nodes, as shown in the static scheduling in Fig. 

4(b). Thus, it allows reducing the cycle period       from 4 

to 2 time units. In the case where      and     , the 

delayed multidimensional retiming allows reducing the 

execution time from 1764 to 924 time units, despite increasing 

the code size by 4 instructions. 

C. Loop Striping 

The loop striping aims at reducing the cycle number 

necessary to execute the nested loop. It proceeds to execute in 

parallel several iterations of the MDFG without modifying the 

original data dependency. This transformation requires that the 

striped iterations have not any data dependencies between 

them. The loop striping modifies the MDFG with respect to 

both parameters which are the factor   and the offset  . The 

first one presents the number of iterations that will be placed 

in the same strip. The second one defines the direction of the 

striping iteration; i.e., the iteration       and iteration       

are placed in the same strip if   is equal to 2. The choice of the 

offset   is done in a way that there is not any data dependency 

between the striped iterations [6]. This criterion is the major 

difference between the unrolling and the loop striping. Taking 

the MDFG in Fig. 1(a) as an example, the loop striping 

technique allows striping the iterations such that     and 

   , called            , whose strips are modeled by 

fat eclipses in the CDG of Fig. 5(a). 

This technique implies collecting the striped iteration 

instructions in the innermost loop. The index evolution of the 

outermost loop is incremented by a step equal to the   factor. 

Moreover, in the case of a non-zero   offset value, the       

iteration, where      , does not belong to any strip. 

Nevertheless, they must be executed before running the striped 

iterations. For this purpose, a loop structure is added to the 

algorithm upstream the innermost loop, which is called the 

prologue. Similarly, a second loop is added in upstream, 

which is called the epilogue. For example, the          
   loop striping applied to the wave digital filter provides the 

algorithm shown in Fig. 6(b). The innermost loop instructions 

are duplicated compared to the original algorithm. The       

and       iterations in the original algorithm are executed in 

the prologue, while the         and           ones are 

executed in the epilogue. 

Due to the duplication of instructions in each iteration unit, 

the provided MDFG integrates two occurrences of each node 

belonging to the original MDFG in Fig. 1(a), which is shown 

in Fig. 6(a). The loop striping preserves the data dependency 
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Fig. 5. (a) The cell dependency graph; (b) the static schedule of the wave 

digital filter after loop striping 
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Fig. 6. (a) The MDFG; (b) the algorithm of the wave digital filter after loop 

striping 
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Fig. 7. (a) The cell dependency graph; (b) the static schedule of the wave 

digital filter after multidimensional retiming and loop striping 

inside each iteration. Therefore, it implies keeping zero-delays 

in the    ,      and     edges, such as the original 

graph. The non-zero delays are modified with respect to the 

CDG in Fig. 5(a). The static scheduling of the striped 

algorithm is shown in Fig. 5(b) which the iteration instructions 

in the original MDFG are modeled with the same pattern. In 

the case where      and     , the loop striping allows 

reducing the cycle number from 441 to 291, hence reducing 

the execution time from 1764 to 1164 time units, in spite of 

raising the code size by 10 instructions. 

III. MDFG OPTIMIZATION APPROACH 

A. Principles 

Our work targets the design of embedded real-time 

applications, which require respecting an execution time 

constraint. Taking as an example the MDFG in Fig. 1(a), we 

aim to execute it in 550 time units. The delayed 

multidimensional retiming provides the final MDFG that 

requires 924 time units to be executed, as shown in the MDFG 

in Fig. 3(a). This technique is unable to respect the execution 

time constraint whatever the multidimensional retiming 

function   is. The loop striping allows increasing the   factor 

in order to reduce the execution time of the whole application. 

Respecting the   offset that is equal to 2, this technique should 

collect 5 iterations in the same strips in order to achieve the 

execution time constraint. However, the innermost loop is to 

include 20 instructions that are executed in parallel. In 

addition, the iterations which are not stripped are added to the 

prologue and epilogue in the final code. As a result, even 

through the loop striping respects the execution time 

constraint, it increasing the code size more than 8 times. 

As we all know, the execution time is defined as the result 

of multiplying the cycle period and the cycle number 

parameters. Therefore, decreasing the execution time is similar 

to minimize either one of the parameters or both of them. 

Taking the retimed MDFG in Fig. 3(b) as an example, we 

deduce that both iterations       and       have not any data 

dependency between them. This condition is verified for both 

iterations:         and        , for any          

and         . We proceed to apply the loop striping 

            to the retimed MDFG whose the iterations 

are collected in strips as shown in the CDG in Fig. 7(a). This 

transformation implies duplicating the innermost loop 

instructions once, and adding both prologue and epilogue 

where each of them runs 3 innermost iterations. The provided 

MDFG shown in Fig. 8(a) is still realizable, whose execution 

can be done following the scheduling vector        . The 

correspondent algorithm is structured by 32 instructions as 

shown in Fig. 8(b).  Based on the static schedule shown in Fig. 

7(b), the cycle period has already fallen to       . Thus, 

the algorithm in Fig. 8(b) requires 250 cycle number, hence 

having 500 time units to the whole execution. So, we deduce 

that applying the delayed multidimensional retiming and the 

loop striping to the wave digital filter allows achieving the 

execution time constraint that the delayed multidimensional 

retiming has been unable to do. Moreover, it permits getting 

the aimed constraint by using a minimal code size then the one 
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Fig. 8. (a) The MDFG; (b) the algorithm of the wave digital filter after 

multidimensional retiming and loop striping 

provided by the loop striping with an enhancement of 41.06%. 

In this context, we propose an optimization approach that 

allows using both the delayed multidimensional retiming and 

the loop striping, in order to achieve the execution time 

constraint while using a lower code size. The both techniques 

imply reducing the execution time in spite of rising the code 

size. None of the techniques is considered optimal compared 

to the other. For this purpose, our optimization approach 

ensuring exploring all the solution space offered by these two 

techniques in order to provide the one having the minimal 

code size among those explored. We note that the only work 

that combines iterational parallelism and instructional 

parallelism into an MDFG aims to only minimizing the 

iteration time average, without taking into account the timing 

impact of the added code [9]. 

We describe in the following sections the theory of 

choosing and applying the optimization technique in terms of 

the aimed constraint. Even if the formalisms correspond to a 

2DFG, they can be directly extended to the general case. 

B. Technique Order 

We define in this section the theory of applying both the 

delayed multidimensional retiming and loop stripping 

techniques to the same MDFG. Let us focus on the MDFG 

structure before and after each optimization technique. In fact, 

the theory of both techniques consists in optimizing uniform 

nested loops [6, 7]. The loop striping implies duplicating the 

iterations, hence modifying the loop structure of the MDFG. 

We introduce in the following theorem the striped MDFG 

structure. 

Theorem 3.1 Given an MDFG              and   is a 

striping offset of  . If     then the striped MDFG is a 

non-uniform nested loop. 

Proof.     means that (1,0) and (0,g) iterations compose 

the first strip. The iterations       where     and     
  should be executed before the stripped iterations. Thus, 

    which implies adding a loop upstream the innermost 

one in order to execute the (i,j) iterations. Therefore, the 

stripped MDFG is a non-uniform nested loop. 

According to the example in Fig. 6(b), the loop striping 

implies duplicating 3 times the innermost loop. So, for a 

striped MDFG, a multidimensional retiming is limited to 

optimize only one of the innermost loops, which minimizes 

the multidimensional retiming improvement. 

In contrast, a multidimensional retiming transformation 

provides an MDFG preserving the loop structure, whatever le 

retiming function is. Figure 3 shows that the retimed algorithm 

contains the same loops even though the retiming overheads 

the instructions in the two loop directions. We study in 

theorem 3.2 the ability of applying the loop striping to a 

retimed MDFG. 

Theorem 3.2 Given an MDFG             , a legal 

multidimensional retiming         of   and the retimed 

MDFG    by  , and if   is a striping offset of   then there 

exists a striping offset    of   . 

Proof.   is a striping offset of G which means that there exists 

        and that       for each    . This 

condition proves that   is a scheduling vector of  , and 

therefore   and   are orthogonal [7]. R is a legal 

multidimensional retiming of  , which means that there 

exists a scheduling vector         and that        

for each      , where             , which verifies the 

existence of a striping offset    of   . 

This theorem proves that we can apply the loop striping to 

a retimed MDFG independently from the optimization 

parameters of both techniques. Based on theorem 3.1 and 

theorem 3.2, the solutions can be provided either by applying 

the loop striping, the multidimensional retiming or the 

multidimensional retiming followed by the loop striping. In 

fact, the delayed multidimensional retiming proceeds to 

applying several multidimensional retiming transformations to 

the same MDFG. Similarly, the final MDFG of the delayed 

multidimensional retiming technique can always be striped, as 

introduced in the following lemma. 

Lemma 3.1 Given an MDFG             , a legal 

multidimensional retiming         of   and the MDFG 

    after the delayed multidimensional retiming technique 

using  , and if   is a striping offset of  , then there exists a 

striping offset     of    . 

Proof. The delayed multidimensional retiming applies n times 

the a multidimensional retiming function   to the same 

MDFG until achieving the minimal cycle period. Thus, the 

lemma is checked immediately by repeating n times the 

verification of theorem 3.2. 

Our work aims at achieving an execution time constraint. 

When an algorithm requires appealing both techniques, we 

have to apply the delayed multidimensional retiming first. The 

loop striping will be the last graphical transformation in order 

to achieve the targeted constraint. 
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Fig. 9. The optimization approach flow 

Algorithm 1. The optimization approach 

Inputs: MDFG             , execution time constraint   , the iteration 

bounds of the outermost loop   and the innermost loop   

Outputs : the optimized MDFG 

0: Begin 

/* Compute the execution time    and the minimal cycle period        */ 

1: Compute the cycle period                      where   is a 

path of G 

2:          

3:             

4: Compute the minimal cycle period                      
/* Choose the optimization technique */ 

5: While        do 

6: Select a multidimensional retiming function         

7: Compute the retiming cost     (as described in algorithm 2) 

8: Select a loop striping          

9: Compute the loop striping cost      (as described in algorithm 3) 

10: If              and            then 

11: Apply the multidimensional retiming   

12:      

13: Else 

14: Apply the loop striping    

15:       

16: End if 

17:  End While 

18: End 

 

The lemma 3.1 offers several cases of multidimensional 

retiming, from applying the first transformation to applying all 

ones purposed by the delayed technique [11], before the loop 

striping. Thus, the optimization approach selects the 

optimization parameters of the multidimensional retiming   

and the loop striping   . Then, it chooses the most profitable 

one as described in paragraph C, in order to apply it to the 

original MDFG. This provided MDFG presents the subject of 

the next test. This step is done iteratively until achieving the 

execution time constraint    as modeled in the flow of Fig. 9. 

C. Technique Choice 

This work aims to provide an implementation that respects 

an execution time constraint while using a minimal code size. 

Thus, the selection of a parallelism is based on its contribution 

in terms of execution time and code size. Therefore, after 

selecting the parameters of each technique which are the 

function   of the retiming technique, and the factor   and the 

offset   of the loop striping one, our optimization approach 

proceeds to predict the execution time enhancement and the 

code size rise of each technique result in terms of the selected 

parameters, which the prediction steps are detailed in the 

paragraph  . Next, it chooses an optimization technique 

which is based on the predicted values. 

On the one hand, choosing the optimization transformation 

that provides the maximal execution time may lead to an 

implementation with a high code size. As cited in section 3.1, 

the loop striping achieves the execution time constraint while 

the multidimensional retiming is unable to do that. Yet, the 

result purposed by the loop striping requires a greater code 

size than those provided by applying the multidimensional 

retiming as a first optimization, as shown in Fig. 8(b). On the 

other hand, the approach cannot choose the transformation that 

requires the minimal code. It can have a negligible 

contribution to the execution time which implies a 

compensating effect. That is why, the choice should be based 

on both execution time and code size contributions. In this 

context, we purpose to generate a cost function as done in 

[12], as indicated in (1). 

TCf t  /cos                                 (1) 

where    represents the code size rising and    represents 

the execution time reduction. A cost function is computed for 

each eventual optimization among the multidimensional 

retiming and loop striping. Then, our approach chooses the 

optimization presenting the small cost, hence applying it to the 

current MDFG. 

The whole steps of our proposed optimization approach 

are described in algorithm 1. It starts by predicting the 

execution time   of the MDFG. Based on [16, 17], this term 

consists of estimating two parameters whose are the 

computation time and the communication time. The first one 

is predicted by multiplying the cycle period and cycle number 

of the whole application. The second one presents the time 

spent on data scheduling and memory access. It depends of the 

processor technology and the memory architecture. In this 

work, we restrict on predicting only the computation time. 

Therefore, our approach computes the cycle period    , the 

cycle number      and the minimal cycle period        that 

can be achieved [11]. Then, it runs an iterative structure that 

selects a loop striping          and a multidimensional 

retiming        . Afterward, it computes both technique 

costs and chooses that presents the minimal ones. If the 

minimal cycle period is achieved, the approach applies 

directly the selected    loop striping. The approach stops 

running when the execution time constraint    is achieved. 

D. Cost Function Computing 

We describe in this section our process to predict the 

optimization costs. The first term, which is the    execution 

time reduction, presents the difference between the execution 

times before and after the optimization transformation. 

Admitting that both two values are used into the approach 

progress, each one of them must be predicted for each 

eventual optimization. For the second term, which is the    

code rising, the optimization approach runs without requiring 

the code size values in any step of the optimization process. 

However, the added prologue and epilogue after a 

multidimensional retiming can be computed in terms of the 

retiming function  . Similarly, we can define the iterations 



Algorithm 2. Cost function of the delayed multidimensional retiming 

Inputs: MDFG             , retiming function        , the 

current cycle number      

Outputs : multidimensional retiming cost    

0: Begin 

1: Define the paths to retime [11] 

/* Compute the cycle period of the multidimensional retiming*/ 

2: Extract the critical paths     after retiming 

3: Compute the cycle period after retiming                    

   where       

4: Compute the code size of the innermost loop     

/* Compute the cycle number and the added code size after the 

multidimensional retiming */ 

5: If                       then 

6:      
                     

7:            

8: Else 

9:      
                                    

10:                  
11: End if 

/* Compute the cost function of the multidimensional retiming */ 

12:                       
   

13: End 

 

Algorithm 3. Cost function of the loop striping 

Inputs: MDFG             , loop striping vector      , the current 

cycle period     

Outputs : loop striping cost     

0: Begin 

/* Compute the cycle number after the loop striping */ 

1:        

2: For   from 0 to       do 

3: For   from 0 to       do 

4:             

5: End for 

6: End for 

7:       
  

 

 
                  

/* Compute the added code size after the loop striping */ 

8: Compute the instruction code size of the innermost loop     

9:                   

/* Compute the cost function of the loop striping */ 

10:      
  

              
  

 

11: End 

 

that are not striped in terms of the   factor and the   offset. 

Thus, we proceed to predict only the added code size    using 

the optimization parameters of each technique. 

In the case of the multidimensional retiming, the 

optimization modifies the cycle period     , the cycle number 

     
 and the code size, where all must be predicted. If the 

retiming function affects only the innermost loop, the prologue 

and epilogue will be added only upstream and downstream 

this last loop, which consists in adding the innermost loop 

instructions     duplicated by the second index     of the 

function  . Contrarily, the prologue and the epilogue are 

added to each loop structure. The multidimensional retiming 

cost is predicted as described in algorithm 2. 

In the case of the loop striping, the optimization consists in 

duplicating   times the innermost iteration instructions and 

adding the non-striped iteration as prologue and epilogue. 

Thus, this technique modifies only the cycle number       
 

and the code size. We start by defining the number of 

iterations      that are run in each part of prologue and 

epilogue. Then, we compute the cycle number       
 while 

taking into account the new iteration bound values of both 

loops. The    code rise is the addition of those duplicated in 

the innermost loop and those added in the prologue and 

epilogue. The cost of a loop striping is computed as described 

in algorithm 3.  

Our optimization approach always provides an 

implementation with a minimal code size whose efficiency is 

proved in theorem 3.3. 

THEOREM 3.3. Given an MDFG             , the 

innermost iteration instructions number     and the maximal 

iterations bounds  , the optimization approach provides the 

final MDFG in at most               times. 

Proof. The delayed multidimensional retiming requires 

        times. Thereafter, the loop striping requires      

to select the f factor and the g offset parameters and     

       to generate the final code [6]. Moreover, the cost 

functions is run on      in the case of the multidimensional 

retiming and        for the loop striping which are 

associated to each optimization selection. Admitting that the 

code generation after the loop striping is executed once and 

   , our optimization approach requires only        
        times to be performed. 

IV. EXPERIMENTAL RESULTS 

To validate our approach contribution, we have compared 

its provided results to those provided by the loop striping or 

the delayed multidimensional retiming. This step consists in 

applying the three optimization processes to the same set of 

MDFGs. The applications chosen in our experiments are the 

Wave Digital Filter (WDF), the Infinite Impulse Response 

Filter (IIRF) and the Walsh-Fourier Transform (WFT), whose 

MDFGs are composed by the adder and multiplier nodes. 

Recognizing that the multidimensional retiming [11, 13] 

depends on the execution-time nodes, we proceed to model 

each MDFG with different node execution times, as shown in 

the second column of TABLE.I, where the adder and 

multiplier execution times are respectively indicated by    and 

  . To verify the solution space exploration, we require 

different execution time constraints    for each graph which 

are indicated in the third column. Then, we apply the three 

optimization techniques with the aim of achieving each 

required constraint. The execution time   and the code size   

values of each technique are shown in the three last columns 

of TABLE.I. We indicate that the bold values mean that the 

used technique does not allow achieving the execution time 

constraint. 

The “improve” row presents the benefit in terms of the 

code size of the results provided by our techniques compared 

to those provided by the multidimensional retiming and the 

loop striping, which accounts for an average improvement of 

35.21% compared to the multidimensional retiming technique 

and 16.38% compared to the loop striping technique. 



TABLE I. THE EXECUTION TIME AND CODE SIZE VALUES IN 

TERMS OF OPTIMIZATION TECHNIQUES 

MDFG       )    

Multidim. 

retiming 

Loop 

striping 

Optim. 

approach 

            

WDF 

(1,1) 

800 504 16 693 12 639 12 

550 504 16 525 28 504 16 

450 504 504 411 36 314 28 

(1,2) 

1500 1449 12 1155 12 1155 12 

1200 1008 16 1155 12 1155 12 

700 1008 16 685 36 628 28 

(2,1) 

1100 924 12 1004 24 924 12 

700 924 12 624 32 534 24 

550 924 12 548 36 534 24 

IIRF 

(1,1) 

750 720 130 525 70 525 70 

450 316 402 395 102 436 92 

380 316 402 315 134 284 108 

(1,2) 

1200 844 52 1050 70 844 52 

900 720 130 790 102 872 92 

650 516 149 615 134 568 108 

(2,1) 

1200 1157 130 1050 70 1050 70 

900 632 402 790 102 872 92 

650 632 402 615 134 568 108 

WFT 

(1,1) 

300 242 26 165 24 165 24 

150 138 77 147 32 120 28 

110 138 77 147 32 110 42 

(1,2) 

400 202 16 220 24 202 16 

300 202 16 196 32 202 16 

200 202 16 196 32 120 28 

(2,1) 

400 357 26 275 24 275 24 

300 276 77 275 24 275 24 

250 276 77 245 32 240 28 

Improve (%) 35.21 16.38  

 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we have proposed an optimization approach 

that explores the solution space offered by the 

multidimensional retiming and the loop striping techniques, in 

order to select an implementation that achieves the execution 

time constraint while using a lower code size. The 

improvement averages in the experimental results prove that 

our approach provides optimal solutions compared to each 

technique used separately. The approach efficiency proved in 

theorem 3.3 allows implementing our approach in a software 

tool dedicated to design embedded real-time applications.  

In our future works, we aim to concretize our approach in 

a software tool that allows the designer to model a MDFG and 

to fixe an execution time constraint in order to provide 

automatically the optimized implementation. Moreover, we 

aim for developing the execution time and code size prediction 

by taking into account the technological parameters such as 

the memory access and the data routing, etc. Also, we will be 

interested in enhancing the function cost by offering the ability 

of weighting between the execution time and the code size. 
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