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Abstract— Multidimensional retiming is an efficient 

optimization approach that ensures increasing a parallelism 

level in order to optimize the execution time. Two existing 

techniques called incremental and chained multidimensional 

retiming are based on this approach, which aim at achieving a 

full parallelism on loop body in order to schedule applications 

with a minimum cycle period. However, the cycle number 

increases in terms of parallelism level which presents a limiting 

factor to respect the execution time constraint of real-time 

applications. 

In this paper, we show how the minimal cycle period is 

achieved in multidimensional applications without applying a 

full parallelism. We present the theory of a novel technique, 

called delayed multidimensional retiming. Firstly, two efficient 

algorithms are presented where the first one insures the 

extraction of timing and data dependency properties of the 

application and the second one selects the set of data path for 

retiming. Then, we propose theorems to deduce a retiming 

function for the selected paths. Finally, a third algorithm 

describing the optimization approach is introduced. The 

experimental results show that our technique improves 

execution times in comparison to existing techniques. It 

achieves average improvements on the execution time of 

41.57% compared to the Incremental technique and 11.55% 

compared to the Chained technique. 

Keywords: Parallelism, modeling, nested loop, Optimization. 

I.  INTRODUCTION 

Real-time systems are characterized by increasing 
computer performances. However, many software real-time 
applications are based on iterative and recursive structures, 
such as the ones used on high-definition vision, remote 
sensing and medical imaging, for instance. This loop body 
generally presents the most critical section in terms of 
execution time. It fills an important section of the execution 
time of the whole application. 

Thus, several optimization approaches are proposed 
which aim at increasing parallelism in the repetitive patterns, 
in order to optimize timing constraints. They always proceed 
to model applications by data flow graphs and apply a graph 
transformation in order to enhance performances. Many 
software pipelining techniques [6,7,8] are proposed to 
optimize loop bodies. They allow exploring the instruction 
level parallelism of one loop. When they are applied to 
optimize nested loops, their performance improvement is 
very limited. 

The Multi-Dimensional (MD) retiming [1,3] is an 
effective approach for optimizing in MD applications. It 
ensures increasing parallelism level in order to minimize the 
cycle period, and hence enhancing the computing 
performance. The software and hardware constraints for 
applying the MD retiming are presented in [5], which 
consists in a limiting parallelism level by the iteration 
numbers of nested loops. Two techniques based on this 
approach are proposed [1,3] which are called “incremental” 
and “chained” MD retiming. They aim at scheduling MD 
applications with the minimal cycle period. Their processes 
consist of successively increasing the parallelism level of the 
application, until executing all computations in full parallel. 
However, achieving a full parallelism requires adding 
instructions outside the loop structure, leading to increasing 
the cycle number. The more the parallelism increases, the 
more the disadvantages are aggravated. Therefore, solutions 
provided with such timing characteristics are not adequate to 
achieve constraints of real-time systems. Another MD 
retiming technique is described in [4,10], which proposes to 
retime the whole data paths. It applies the process of the 
retiming technique of synchronous applications [9] to the 
MD ones. However, this process is based on the non-
negativity of data dependency which is not the case of MD 
applications. Furthermore, operations cannot always be 
redistributed due to the overlapping of data dependencies 
between iterations. 

In this paper, we show how to schedule the MD 
application with the minimal cycle period without achieving 
full parallelism. We propose a new technique of MD 
retiming, called “delayed multidimensional retiming”. It 
ensures exploring the characteristics of data dependencies 
and computation times on MD applications, in order to 
retime data paths. Thus, the parallelism level is reduced 
while scheduling applications with the minimal cycle period. 
It provides solutions with enhanced execution times 
compared to those provided by the “incremental” and 
“chained” techniques. 

The rest of the paper is organized as follows. In section 2, 
we present the basic concepts of modeling and retiming MD 
applications. In section 3, we present the theory of the 
delayed multidimensional retiming technique by describing 
its principles and the corresponding algorithms. 
Experimental results are presented in section 4, followed by 
concluding remarks in section 5. 



II. BACKGROUND 

In this section, we introduce some basic concepts which 
will be used in later sections. We start by introducing how to 
model nested loops with the Multidimensional Data Flow 
Graph. The multidimensional retiming approach is described 
in the second paragraph. The third one discusses the 
evolution of execution time in terms of existing MD retiming 
techniques. 

A. Multidimensional Data Flow Graph 

The Multidimensional Data Flow Graph (MDFG) is an 
extension of the classic data flow graph that allows 
representing nested iterative and recursive structures. It is 
modeled by a node-weighted and edge-weighted directed 
graph in a way that             , where   is the set of 
computation nodes,        is the set of edges, and       is 

a function from         representing the multidimensional 
delay between two nodes, where   is the number of 
dimensions, also       is a function from   to positive 

integers, representing the computation time of the node   . 
Once running all nodes in the MDFG is similar to one 
iteration execution. An edge delay in the MDFG with   
dimensions is presented as                     . For 
        , the index    presents the difference between the 

iteration executing    and the iteration executing    of the 

loop  . As example, the wave digital filter is modeled as 
two-dimensional Data Flow Graph (2DFG) in Fig. 1(a), 
which its code is composed by two nested loops as shown in 
Fig. 1(b). Each edge in 2DFG is assigned by a delay 
              , whose terms       and       are 
respectively in relation with the outermost loop and the 

innermost loop. For an edge          , the delay       

       means that    and    are executed in the same iteration 

of the outermost loop. For the innermost loop, if the node    
is executed in the iteration  , the node    is executed in the 

iteration      . An edge with a zero delay              
means that both nodes are executed in the same iteration, 
such as the edges    ,     and     shown in Fig. 
1(a). 
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Figure 1.   (a) The wave digital filter MDFG; (b) The code of the nested 

loops; (c) The static schedule 

We use the notation     
  
   

  
    to mean that   is a 

path from    to   . The delay vector and the total 

computation time of a path   are respectively equal to 

           
   
    and            

   
   . The period 

during which all computation nodes in iteration are executed, 
according to existing data dependencies and without resource 
constraints, is called a cycle period. The cycle period      of 
an MDFG is the maximal computation time among paths that 
have a zero delay. For example, assuming that each node is 
executed in one time unit                      , 
the cycle period of the wave digital filter is       , as 
shown in the static schedule in Fig. 1(c), whose nodes 
belonging to the same iteration are modeled by a same 
pattern. It can be measured through the paths         
or        . 

The execution pattern of a nested loop can be illustrated 
by an iteration space as shown in Fig. 2(a). It presents an 
integral point in a Cartesian space. Each dotted square in the 
iteration space is a copy of the MDFG which are identified 
by the loop control indexes. The cell assigned by       is the 
first iteration to be executed. This graph is transformed into 
an acyclic graph, called Cell Dependency Graph (CDG), on 
which each cell presents a complete iteration and is bounded 
by the loop indexes. It allows showing the execution 
sequence of a nested loop, and illustrates clearly data 
dependencies between iterations on the MDFG, such as the 
CDG in Fig. 2(b) of the wave digital filter. 
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Figure 2.  (a) The iteration space of the wave digital filter MDFG; (b) The 

cell dependency graph 

This graph is used to identify an execution order of the 
whole application, called schedule vector. An MDFG 
             is realizable if a schedule vector   for the 
CDG in respect to G exists. It means that          for 
each      , and no cycle exists in its corresponding CDG. 
The CDG, shown in Fig. 3(b), can be executed by a row-
wise execution sequence, i.e., the schedule vector        . 

B. Multidimensional Retiming 

The multidimensional retiming approach increases the 
loop parallelism in order to reduce critical path, while 
preserving data dependencies of the original MDFG. The 
retiming vector                , where     and   is the 
loop dimension, presents the offset between the original 
iterations containing   and the ones after retiming: for each 
   index such as      , the execution of the node   in 
the iteration   is moved to the iteration     . Fig. 3(a) shows 
the wave digital filter after applying           . Thus, 

each   h copy of   is shifted up and executed in the previous 
iteration of the innermost loop. Some nodes are shifted 
upstream the retimed loop which are called prologue, such as 



instructions   executed outside the innermost loop on the 
code in Fig. 3(b). Correspondingly, the complementary 
nodes are executed after the loop body to complete the 
process, which is called epilogue.  
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Figure 3.  (a) The retimed Wave digital filter MDFG with r(D)=(0,1); (b) 

The code of the retimed MDFG; (c) The static schedule 

We notice that instruction   inside the innermost loop of 
the code in Fig. 3(b) has not any data dependency with other 
instructions executed in the same iteration. It allows 
executing instructions in parallel, such as executing node   
in parallel to node  , as shown in the static schedule of Fig. 
3(c). Thus, the cycle period is reduced from three to two time 
units, assuming that all execution time nodes are equal to 
one. However, the code size is increased due to prologue and 
epilogue instructions where each one corresponds to an 
additional cycle period. This transformation is the principle 
of the MD retiming which attempts to parallelize execution 
nodes in order to reduce the cycle period, despite of 
increasing the code size. 

A retiming function is called legal if it provides a 
realizable MDFG. Its value is deduced from schedule vectors 
of the original graph. It consists in identifying a strictly 
positive scheduling sub-space    that contains all     
vectors such that          for every             . A 
legal MD retiming   of node   is any vector orthogonal to  , 
whose   has all the oncoming edges having non-zero delays. 
In the case of the wave digital filter, the original MDFG can 
be scheduled following the vector        , which verifies 
that            provides a realizable MDFG: the CDG in 
Fig. 4(b) can be executed following the scheduling vector 
       . 
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Figure 4.   (a) The iteration space of the retimed MDFG with r(D)=(0,1); 

(b) The cell dependency graph 

All MD retiming techniques proceed to apply 
successively such transformation until achieving a fully 

parallelized MDFG. All edges on the final MDFG should 
have a non-zero delay. For any           path of the 

MDFG, MD retiming techniques proceed to execute each    
node in a cycle period separately, where      . We show 
in Fig. 5(a) the full parallel wave digital filter MDFG, after 
applying            and           . The static 
schedule in Fig. 5(c) shows that the full parallelism is 
achieved, whose nodes belonging to the same iteration in the 
original loop are distributed into three different ones. 
Accordingly, each iteration requires one time unit to be 
executed. However, the graph transformation implies adding 
three instructions as prologue, and five instructions as 
epilogue in the corresponding code, in comparison to the 
original one. 
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Figure 5.  (a) The Full parallel MDFG; (b) The code of the full parallel 

MDFG; (c) The static schedule 

C. Limitations of Existing Techniques 

MD retiming affects codes of original loop bodies. 
Firstly, the code size has increased due to prologue and 
epilogue sections: For an MD retiming function      
         , each index        implies executing the      
occurrences of   before the loop   and the      occurrences of 
complementary nodes after the same loop. Secondly, the 
retiming transformation implies redefining the loop bounds 
and loop indexes. Hence, computation instructions are added 
on the algorithm, before each affected loop. Those added 
code sections are executed in upstream loop, which leads to 
increasing cycle number. Furthermore, they are not executed 
in parallel, which requires an important number of cycle 
periods compared to that required to execute the whole loop 
body. Consequently, the cycle number increases significantly 
in terms of MD retiming. 

These characteristics depend on the value of retiming 
function. For               , the more the index grows 
    , the more the size of prologue and epilogue is great. To 
reduce disadvantages, incremental and chained MD 

techniques select a scheduling vector           where 

      is minimal and aims at deducing the retiming 

function that provides an optimal MDFG.  In addition, the 
cycle number increases in the same way as the number of 
MD retiming. All existing techniques require the same 
number of the MD retiming function in order to achieve full 
parallelism: If the critical zero-delay path is composed by   
nodes then any existing technique employs       MD 
retiming. They are applied incrementally from the first node 



having zero delay outcoming edges to the last one on the 
critical path. Code sections are added after each retiming 
function. They correspond not only to the loops structures, 
but also to the existing prologues and epilogues. Thus, cycle 
numbers increase exponentially and the disadvantages are 
heavily aggravated, in terms of the retiming number. 

We proceed to identify the evolution of the cycle number 
in terms of retiming functions in the case of the infinite 
impulse response filter schematized in Fig. 6. Based on its 
data dependencies, this MD application requires four 
retiming functions to obtain a fully parallelized MDFG. We 
use the chained technique with an optimal Retiming function 
        . After each MD retiming, we provide the 
retimed MDFG and we deduce its codes in order to compute 
the cycle number. These steps are repeated until providing 
the full parallel MDFG which cycle number values are 
illustrated in Fig. 7.  
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Figure 6.  The MDFG of the infinite impulse response filter 

Based on cycle number values, we conclude that the 
more we apply a MD retiming functions, the more the cycle 
number increases: It develops by 58% on the fully parallel 
solution, compared to the original MDFG. Thus, we 
conclude that final solutions, provided by the existing MD 
retiming techniques, do not allow respecting strict timing 
constraints. Therefore, although full parallel applications are 
scheduled with minimum cycle period, they are not suitable 
to be implemented in real-time systems. 

 

Figure 7.  Evolution of cycle number in term of Retiming function 

III. THEORY OF DELAYED MULTIDIMENSIONAL 

RETIMING 

A. Principles 

The minimal cycle period in a data flow graph is defined 
as the computation time of the longest zero-delay path  
(                ) [4]. For general executing-time cases, 
a cycle period of a full parallelized MDFG is equal to the 
maximal execution time among the computation nodes 
               . Taken the example of the wave digital 
filter, the MDFG contains two node types which are the 
multiplier and adder. Assuming that the first type requires 
one time unit while the second one requires two, the full 
parallel MDFG in Fig. 5(a) is scheduled with       . Any 
existing technique requires two MD retiming to achieve a 
full parallelism, whose static schedule is showed in Fig. 8. 
Nodes belonging to the same iteration in the original MDFG, 
which are illustrated with the same color, are divided into 
three different iterations. 

The full parallelized graph in Fig. 5(a) can be executed 
following the schedule vector         that has two 
orthogonal vectors       or       . While both edges    
and    are non-zero delay, we proceed to retime node   by 
           , which results in the MDFG in Fig. 9(a). It is 
easy to verify that the provided MDFG is not fully 
parallelized. However, it keeps scheduling the application 
with the minimal cycle period       . We deduce from the 
static schedule in Fig. 9(c) that cycle periods are optimally 
used by reducing the lost time between providing and 
consuming data. Nevertheless, the code contains only two 
instructions in both prologue and epilogue, as shown in Fig. 
9(b). Therefore, the cycle number is reduced by 7.69% 
compared to the full parallel graph in Fig. 5(a), and so is the 
execution time. We deduce that an optimal execution time 
can be realized without achieving a full parallelism. 
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Figure 8.  The static schedule of the full parallel wave digital filter MDFG 

Based on the new delays, the MDFG keeps the same data 
cycle delays from the original one. The            
          equation [1,3] is verified for all paths in the 
MDFG. Moreover, the CDG in Fig. 10(b) does not contain 
any cycle and hence the existence of infinite schedule 
vectors that can ensure a legal execution order, so we cite as 
an example        . As a consequence, we conclude that 
this transformation provides a realizable MDFG and 
preserves the functionality of the whole application. 
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Let us focus on the transformation applied to provide the 
MDFG showed in Fig. 9(a). We note that nodes belonging to 
the same iteration in the original MDFG are shared on two 
cycles, as illustrated in Fig. 9(c). This node distribution is 
similar to applying one MD retiming function. Furthermore, 
the    edge have a zero delay, which means that the    delay 
is kept through retiming with respect to the original MDFG, 
and so   and   are still executed in the same iteration. 
Besides, the iteration space in Fig. 10(a) shows that each 
whole       path, originally executed in the iteration    , 
becomes executed in the iteration      . Moreover, each 
path   belonging to the first iteration on the innermost loop 
is pushed outside cellules of the iteration space. 
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Figure 9.  (a) The wave digital filter MDFG provided by the delayed MD 

retiming; (b) The code of the retimed MDFG; (c) The static schedule 

Based on those characteristics, this modification can be 
considered as applying the MD retiming       to the path 
      on the original MDFG in Fig. 1(a). It consists of 
subtracting delays from    and   , which are the incoming 
edges of the first node  , and adding them to    and   , 
which are the outcoming edges of the last node  . The 
retimed path is executed in a two time units. While the path 
is a zero delay, hence its execution in the same iteration, the 
MDFG is still scheduled with the minimal cycle period. This 
result is achieved by applying just one MD retiming whose 
overheard is added once. It provides an enhanced execution 
time compared to the existing techniques. 
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Figure 10.  (a) The iteration space of MDFG in Fig. 9.a ; (b) The cell 

dependency graph 

We propose a new approach of MD retiming that aims to 
schedule the MDFG with a minimal cycle period, without 
achieving a full parallelism. It proceeds to identify zero-
delay paths where execution times are below or equal to 
    . Thereafter, it selects MD retiming functions that will 

be applied to the extracted paths. Contrary to the existing 
techniques, retiming functions are not applied to successive 
nodes but distant nodes. Thus, we call our technique Delayed 
MD retiming. 

B. Zero-Delay Path Identification 

In this section, we describe our process to identify the 
zero delay paths that should be retimed. First, we introduce a 
model to extract data dependency and timing proprieties of 
all paths in the MDFG. Second, we show how to explore 
those proprieties to identify the set of paths for retiming. In 
this paper, our technique is presented with two dimensional 
notations. It can be easily extended to multi-dimensions. 

1) Data dependency and timing proprieties of MDFG 
Our approach aims at scheduling the MDFG with 

minimal cycle period. It means that each zero delay path   
should be executed in     . Thus, we proceed to sweeping 
the MDFG in order to identify the delay and execution time 
of each path. As known, any two nodes   and   can be 
connected by several paths. If only one path is zero delay 
then it is susceptible to be retimed. We define        as the 
minimum delay between the paths connecting   and  , such 

as                         . If only one path among 
those connecting   and   has a zero-delay then        
       ; else,               . In addition, two nodes 
can be connected with several zero-delay paths whose 
execution time should be taken into account. Based on our 
approach, all paths should be executed in the bound of the 
cycle period. Thus, we define        as the maximum 
execution time among the zero delay path connecting   and 

 , such as                                        

       . Our approach aims at providing MDFGs whose 
paths should have a non-zero delay if their execution time 
exceeds     . This principle is described in theorem 1. 

Theorem 1. Let G =(V,E,d,t) a realizable MDFG and c a 

cycle period. The following are equivalent:  

        

 For all nodes      , if          then         . 

Proof. We suppose that       , and       such as 

        . If         , then it exists a p path from u 

to v having an execution time             that exceeds 

c, and a delay              , which are in 

contradiction with the first supposition. We suppose now 

that the second condition is verified, and let     be any 

p path with zero delay in G, then we have        
       which implies that              . 

Based on the previous theorem, we proceed to compute 
D and T of each pair of nodes, and apply MD retiming in 
order to respect theorem 1. The results are ranged in two 
matrices called D and T, whose computing process is 
indicated in algorithm 1. 

As an example, we run algorithm 1 in the case of the 
wave digital filter whose MDFG is showed in Fig. 1(a). It 
provides values of the matrices D and T as illustrated in 
Table 1. To distinguish the zero-delay paths, we proceed to 
model their corresponding cells in matrices D and T by a 
gray color. 



Algorithm 1. Compute D and T 

Input : a realizable MDFG              
Output : matrices D and T 

1: Begin 
2: For each edge in G 

3: Add element   
 
                   to ARC list 

4: End for 
5:          

6: For each element   
 
        of TEST 

7:           

8:          

9: End For 
10: Repeat 

11: For each element    

 
           of TEST  

12: For each element    
 
           of ARC 

13: If       &    

 
          then 

14: Add    

 
                 to   

15: Else if        &    

 
           then 

16: Add                                    to   

17: End if 
18: End For 
19: End For 

20: For each element   
 
        of   

21:           

22:          

23: End For 
24:        

25: Until D and T are totally filled 
26: End 

TABLE I.  MATRICES D AND T OF THE ORIGINAL WAVE DIGITAL 

FILTER 

                                                              

u\v A B C D  u\v A B C D 

A (0,0) (0,0) (0,0) (1,1)  A 1 3 3 3 

B (1,1) (0,0) (1,1) (1,1)  B 4 2 6 3 

C (1,1) (1,1) (0,0) (1,1)  C 4 6 2 3 

D (0,0) (0,0) (0,0) (0,0)  D 2 4 4 1 

2) Path selection 
We proceed now to identify the set of paths that should 

be retimed. Those paths are deduced directly from the 
matrices D and T, as described in algorithm 2. We start by 
selecting the nodes having all the incoming edges with a 
non-zero delay. For each node  , we extract from the 
corresponding line in the matrix D the cells having a zero 
delay edge. The paths        to retime are those having  
               and            . 

The extraction process may result in a redundancy in the 
paths. Moreover, an extracted path may present a sequence 
of another one, where our approach should select the one to 
retime. In fact, our approach aims at decreasing the 
parallelism level by employing the minimum number of 
retiming functions. It means that the path to be retimed must 
contains the maximum successive nodes, while respecting 
the cycle period constraint. This principle is followed in the 
last instruction of algorithm 2 when optimizing the set of 
paths. 

We run algorithm 2 to the wave digital filter, whose node 
D is the only one having all incoming edges with non-zero 
delays. We show from matrix D that four paths starting from 

D are zero delay, which are                
    . Only the two first paths are added to the list L, 
which are able to be retimed. While they are superimposed, 
the last instruction in algorithm 2 provides the path     to 
retime. 

Algorithm 2. Path selection 

Input : a realizable MDFG             , matrices D and T 

Output : list of paths 

1: Begin 

2: Identify nodes n having all incoming edges with a non-zero 

delay and at least one outcoming edge with a zero delay  

3: For each node n  
4: For each node x in GFDM 

5: If                and             then  

6: Add path       to   

7: End if 

8: End for 

9: End for 

10: Optimize   

11: End 

C. Multidimensional Retiming Selection 

We describe in this section how to select a retiming 
function for a zero delay path. In fact, selecting a retiming 
function consists in choosing an orthogonal vector to   that 
verifies         . The retiming function is deduced from 
the values of all non-zero delays in the MDFG, and hence 
their independence from the nodes that will be retimed. 
However, the selected retiming is only applied to nodes, 
which have all incoming edges with non-zero delays. We try 
to define from this selected function a legal retiming for a 
zero delay path. First of all, we describe in theorem 2 the 
way to deduce a legal MD retiming of a node that has an 
incoming zero-delay edge. 

THEOREM 2. Let              be a realizable MDFG, 

and       where   has only one incoming edge 

      where d(e)=(0,...,0). If   a legal multidimensional 

retiming of  ,  then   is a legal multidimensional Retiming 

of  . 

Proof. Let    
     
    

     
    

     
     be a path in G.      

      is a legal MD retiming of G, which means that there 

exists a scheduling vector s where            and 

         . Adding those two inequalities shows that 

             . Knowing that             
  and so          , the MDFG containing    
         
        

     
    

         
          is realizable, which can be 

executed following the scheduling vector s. Thus, r(v) is a 

legal MD retiming. 
This theorem proves that the legal MD retiming for a 

node can be applied to its successor, if this last has only one 
incoming edge. Moreover, it is easy to observe that the 
previous theorem can be used for successive nodes that 
respect the same condition. Therefore, theorem 2 allows 
identifying a legal retiming function for a zero delay path. 
We consider a node with an outcoming zero delay edge as 
the first node of a zero delay path and we proceed to test 
nodes following the data dependency direction. If the 
successor node tallies the theorem condition, we add it to the 



path that will be retimed. This test can be repeated 
incrementally while the execution time path is less than     . 

The growing size of MDFG is proportional to the set of 
the selected zero-delay paths, and hence to the number of 
required MD retiming transformation. However, defining a 
retiming function for each selected path cannot be an 
adequate solution. Thus, we aim at reducing it by identifying 
paths that can be retimed with the same function. In fact, the 
set of nodes that have all incoming edges with non-zero 
delays can be retimed using the same retiming function [2]. 
We introduce the method of predicting an MD retiming for 
several paths theorem 3. 

THEOREM 3. Let              be a realizable MDFG, 

     ,       and    
       
       for all y incoming 

edges, where     and    . If      is a legal MD 

retiming, then      is a legal MD retiming. 

Proof. Proved immediately from theorem 2. 
This theorem gives us the alternative to retiming several 

paths, which start by the nodes having incoming edges with a 
non-zero delay, using just one MD retiming function.  

D. The Delayed Multidimensional Retiming Algorithm 

This step ensures selecting an MD retiming function and 
providing the MDFG scheduled in a minimal cycle period. 
Our technique starts by identifying the minimal cycle period 
and computing the matrices D and T as described in 
algorithm 1. Thereafter, it selects a legal MD retiming   of 
the MDFG as proceeded in the existing techniques, and it 
runs algorithm 2 to identify the set of paths L, in order to 
apply on them the retiming function r. These steps are 
repeated until all zero delay paths are executed in     , as 
described in algorithm 3. 

Algorithm 3. Delayed multidimensional retiming 

Input : a realizable MDFG             , 
Output : a realizable MDFG                with cycle period 

           
1: Begin 

2: Identify the minimal cycle period      

3: Compute the matrices   and   (as described in algorithm 1)  

4: While                                           Do 

5: Find a scheduling vector             where         is 
minimal 

6: Select an MD retiming function   orthogonal to   
7: Identify the list of the path L (as described in algorithm 2) 

8: For each path    of   

9: Apply       
10: End for 

11: Update matrices   et   

12: End while 

13: End 

Using the delayed MD retiming, an MDFG scheduled 
with the minimal cycle period is always achievable, which 
efficiency is proved in theorem 4. 

THEOREM 4. Let              be a realizable MDFG, 

the Delayed MD retiming algorithm transforms   to   , in 

at most         times, in a way that    is scheduled 

with a minimal cycle period. 

Proof. Algorithm 1 allows computing D and T for each pair 

of nodes in the MDFG, which requires         times. 

Thereafter, algorithm 2 tests at the most all cells of the 

matrices D and T, which can be performed in       
instructions where   is an integer value    . Finally, 

algorithm 3 selects one MD retiming function, which 

requires at most   instructions, and applies it for each 

selected paths. Thus, delayed MD retiming technique 

requires only          times to be performed. 
We run algorithm 3 to the MDFG in Fig. 1(a) which      

is equal to two time units, and the matrices D and T are 
showed in Table 2. On the first iteration of the algorithm 3, 
the identified scheduling vector   is equal to (1,0), and hence 
the retiming function      . Algorithm 2 provides the path 
      that is retimed in the following step. The new 
matrices D and T are showed in Table 2 that all cells respect 
theorem 1 constraints. As a result, the final MDFG is as 
illustrated in Fig. 9(a). 

TABLE II.  MATRICES D AND T OF THE WAVE DIGITAL FILTER 

PROVIDED BY THE DELAYED MD RETIMING 

                                                              

u\v A B C D  u\v A B C D 

A (0,0) (0,1) (0,1) (1,1)  A 1 3 3 3 

B (1,1) (0,0) (1,1) (1,1)  B 4 2 6 3 

C (1,1) (1,1) (0,0) (1,1)  C 4 6 2 3 

D (0,0) (0,1) (0,1) (0,0)  D 2 4 4 1 

IV. EXPERIMENTAL RESULTS 

In our experiments, we compare our technique to the 
“incremental” and “chained” MD retiming ones. We proceed 
to apply the three techniques to the same set of MDFGs, in 
order to deduce their execution times. We conduct 
experiments from two-dimensional loops which are the 
Infinite Impulse Response Filter (IIRF), the Wave Digital 
Filter (WDF) after applying the Fettweis transformation [2], 
and the Walsh-Fourier Transform (WFT) [8]. All MD graphs 
are composed of adder and multiplier nodes. Knowing that 
our technique applies MD retiming in terms of execution-
time nodes, we model each graph with different cases of 
timing parameters. We proceed to model each one with 
several pairs of execution-time nodes            , where 
the adder and multiplier execution-times are respectively 
indicated by      and     . We indicate that each one of 
three techniques achieves the same final MDFG when using 
a pair of execution time nodes                 which 
are the multiple of the pair            . For this, we just 
employ four pairs of execution time nodes as indicated in 
Table 3. Those values are chosen among the most frequent 
experiments. The minimal cycle period values are illustrated 
in Table 3. 

To realize the contribution of our technique and 
guarantee a reliable comparison, we select optimal retiming 
functions to be used for the three retiming techniques. Our 
technique employs less MD retiming functions than the 
existing techniques. As described in paragraph 2.3, while 
incremental and chained techniques achieve the fully 
parallelized MDFGs of the IIR filter using 4 retiming 
functions, our technique employs no more than two. The 
retiming functions are decreased from five to four in the case 
of the WDF, and from two to one in the case of the WFT. 



After providing the final MDFGs, we generate their 
respective algorithms to extract their execution times [1].  

TABLE III.  EXECUTION TIME NODES AND NUMBER OF MD RETIMING 

FUNCTION IN TERM OF TECHNIQUES 

Benchmark MDFG 

Timing parameters MD retiming number 

                 

Incremental or 

Chained MD 

retiming 

Delayed 

MD 

retiming 

IIRF 

G1 1 2 2 4 2 

G2 1 3 3 4 2 

G3 1 4 4 4 1 

G4 2 5 5 4 2 

WDF 

G5 1 2 2 5 4 

G6 1 3 3 5 4 

G7 1 4 4 5 4 

G8 2 5 5 5 4 

WFT 

G9 1 2 2 2 1 

G10 1 3 3 2 1 

G11 1 4 4 2 1 

G12 2 5 5 2 1 

We present in Table 4 the execution-time values in terms 
of time units of each MDFG in function of MD retiming 
techniques. We note that the cycle numbers are directly 
deduced from the execution time. The row “improve” 
presents the benefit in terms of execution-time of the results 
generated by our techniques compared to those generated by 
the existing ones, which accounts for an average 
improvement of 41.57% compared to the Incremental 
technique and 11.55% compared to the chained technique. 

TABLE IV.  EVOLUTION OF EXECUTION-TIME IN TERMS OF MD 

RETIMING TECHNIQUES 

MDFG 
Incremental MD 

retiming 
Chained MD  

retiming 
Delayed MD 

retiming 

G1 956 632 516 

G2 1434 948 774 

G3 1912 1264 932 

G4 2390 1580 1290 

G5 3548 1800 1760 

G6 5322 2700 2640 

G7 7096 3600 3520 

G8 8870 4500 4400 

G9 326 276 238 

G10 489 414 357 

G11 652 512 476 

G12 815 690 595 

Improve 41.57% 11.55% 
 

V. CONCLUSION 

In this paper, we have described the theory of the delayed 
multidimensional retiming technique. It allows scheduling 
the MD applications with the minimal cycle period using the 
least retiming functions in order to avoid achieving a full 
parallelism. It provides MD applications with optimized 
execution times compared to those provided by the 
”incremental” and “chained” techniques. The improvement 

averages deduced from the experimental results prove that 
delayed technique is beneficial when applying it on real-time 
applications.  

In our future works, we will be interested to identify the 
evolution of code sizes in terms of our MD retiming. This 
study will allows us to extend the delayed technique in order 
to optimize both execution time and code size in MD 
applications. 
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