
HAL Id: hal-01800762
https://hal.science/hal-01800762

Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Execution Time Optimization Using Delayed
Multidimensional Retiming

Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui

To cite this version:
Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui. Execution Time Optimization Using Delayed
Multidimensional Retiming. IEEE/ACM International Symposium on Distributed Simulation and
Real Time Applications, Oct 2012, Dublin, Ireland. �hal-01800762�

https://hal.science/hal-01800762
https://hal.archives-ouvertes.fr

Execution Time Optimization Using Delayed Multidimensional Retiming

Yaroub Elloumi
1,2

, Mohamed Akil
1
Université Paris-Est, ESIEE Paris

Laboratoire d’Informatique Gaspard Monge, Equipe A3SI

93162 Noisy-le-Grand, France

Emails: {elloumya, akilm}@esiee.fr

Mohamed Hedi Bedoui
2
University of Monastir, Faculty of Medicine of Monastir

Laboratory of Biophysics, TIM Team

5019, Monastir, Tunisia

Email: medhedi.bedoui@fmm.rnu.tn

Abstract— Multidimensional retiming is an efficient

optimization approach that ensures increasing a parallelism

level in order to optimize the execution time. Two existing

techniques called incremental and chained multidimensional

retiming are based on this approach, which aim at achieving a

full parallelism on loop body in order to schedule applications

with a minimum cycle period. However, the cycle number

increases in terms of parallelism level which presents a limiting

factor to respect the execution time constraint of real-time

applications.

In this paper, we show how the minimal cycle period is

achieved in multidimensional applications without applying a

full parallelism. We present the theory of a novel technique,

called delayed multidimensional retiming. Firstly, two efficient

algorithms are presented where the first one insures the

extraction of timing and data dependency properties of the

application and the second one selects the set of data path for

retiming. Then, we propose theorems to deduce a retiming

function for the selected paths. Finally, a third algorithm

describing the optimization approach is introduced. The

experimental results show that our technique improves

execution times in comparison to existing techniques. It

achieves average improvements on the execution time of

41.57% compared to the Incremental technique and 11.55%

compared to the Chained technique.

Keywords: Parallelism, modeling, nested loop, Optimization.

I. INTRODUCTION

Real-time systems are characterized by increasing
computer performances. However, many software real-time
applications are based on iterative and recursive structures,
such as the ones used on high-definition vision, remote
sensing and medical imaging, for instance. This loop body
generally presents the most critical section in terms of
execution time. It fills an important section of the execution
time of the whole application.

Thus, several optimization approaches are proposed
which aim at increasing parallelism in the repetitive patterns,
in order to optimize timing constraints. They always proceed
to model applications by data flow graphs and apply a graph
transformation in order to enhance performances. Many
software pipelining techniques [6,7,8] are proposed to
optimize loop bodies. They allow exploring the instruction
level parallelism of one loop. When they are applied to
optimize nested loops, their performance improvement is
very limited.

The Multi-Dimensional (MD) retiming [1,3] is an
effective approach for optimizing in MD applications. It
ensures increasing parallelism level in order to minimize the
cycle period, and hence enhancing the computing
performance. The software and hardware constraints for
applying the MD retiming are presented in [5], which
consists in a limiting parallelism level by the iteration
numbers of nested loops. Two techniques based on this
approach are proposed [1,3] which are called “incremental”
and “chained” MD retiming. They aim at scheduling MD
applications with the minimal cycle period. Their processes
consist of successively increasing the parallelism level of the
application, until executing all computations in full parallel.
However, achieving a full parallelism requires adding
instructions outside the loop structure, leading to increasing
the cycle number. The more the parallelism increases, the
more the disadvantages are aggravated. Therefore, solutions
provided with such timing characteristics are not adequate to
achieve constraints of real-time systems. Another MD
retiming technique is described in [4,10], which proposes to
retime the whole data paths. It applies the process of the
retiming technique of synchronous applications [9] to the
MD ones. However, this process is based on the non-
negativity of data dependency which is not the case of MD
applications. Furthermore, operations cannot always be
redistributed due to the overlapping of data dependencies
between iterations.

In this paper, we show how to schedule the MD
application with the minimal cycle period without achieving
full parallelism. We propose a new technique of MD
retiming, called “delayed multidimensional retiming”. It
ensures exploring the characteristics of data dependencies
and computation times on MD applications, in order to
retime data paths. Thus, the parallelism level is reduced
while scheduling applications with the minimal cycle period.
It provides solutions with enhanced execution times
compared to those provided by the “incremental” and
“chained” techniques.

The rest of the paper is organized as follows. In section 2,
we present the basic concepts of modeling and retiming MD
applications. In section 3, we present the theory of the
delayed multidimensional retiming technique by describing
its principles and the corresponding algorithms.
Experimental results are presented in section 4, followed by
concluding remarks in section 5.

II. BACKGROUND

In this section, we introduce some basic concepts which
will be used in later sections. We start by introducing how to
model nested loops with the Multidimensional Data Flow
Graph. The multidimensional retiming approach is described
in the second paragraph. The third one discusses the
evolution of execution time in terms of existing MD retiming
techniques.

A. Multidimensional Data Flow Graph

The Multidimensional Data Flow Graph (MDFG) is an
extension of the classic data flow graph that allows
representing nested iterative and recursive structures. It is
modeled by a node-weighted and edge-weighted directed
graph in a way that , where is the set of
computation nodes, is the set of edges, and is

a function from representing the multidimensional
delay between two nodes, where is the number of
dimensions, also is a function from to positive

integers, representing the computation time of the node .
Once running all nodes in the MDFG is similar to one
iteration execution. An edge delay in the MDFG with
dimensions is presented as . For
 , the index presents the difference between the

iteration executing and the iteration executing of the

loop . As example, the wave digital filter is modeled as
two-dimensional Data Flow Graph (2DFG) in Fig. 1(a),
which its code is composed by two nested loops as shown in
Fig. 1(b). Each edge in 2DFG is assigned by a delay
 , whose terms and are
respectively in relation with the outermost loop and the

innermost loop. For an edge , the delay

 means that and are executed in the same iteration

of the outermost loop. For the innermost loop, if the node
is executed in the iteration , the node is executed in the

iteration . An edge with a zero delay
means that both nodes are executed in the same iteration,
such as the edges , and shown in Fig.
1(a).

Time

D

A

CB

D

A

CB

D

A

CB

…….

DA

C

B

e1

e2

e4

e5

e3

(0,0)

(0,0)

(1,-1)

(1,1)

(0,0)

For i from 0 to m do

 For j from 0 to n do

 D(i , j) = B(i-1 , j+1)×C(i-1 , j-1)

 A(i , j) = D(i , j)×5

 B(i , j) = A(i , j)+1

 C(i , j) = A(i , j)+2

 End for

End for

(a) (b) (c)
Figure 1. (a) The wave digital filter MDFG; (b) The code of the nested

loops; (c) The static schedule

We use the notation

 to mean that is a

path from to . The delay vector and the total

computation time of a path are respectively equal to

 and

 . The period

during which all computation nodes in iteration are executed,
according to existing data dependencies and without resource
constraints, is called a cycle period. The cycle period of
an MDFG is the maximal computation time among paths that
have a zero delay. For example, assuming that each node is
executed in one time unit ,
the cycle period of the wave digital filter is , as
shown in the static schedule in Fig. 1(c), whose nodes
belonging to the same iteration are modeled by a same
pattern. It can be measured through the paths
or .

The execution pattern of a nested loop can be illustrated
by an iteration space as shown in Fig. 2(a). It presents an
integral point in a Cartesian space. Each dotted square in the
iteration space is a copy of the MDFG which are identified
by the loop control indexes. The cell assigned by is the
first iteration to be executed. This graph is transformed into
an acyclic graph, called Cell Dependency Graph (CDG), on
which each cell presents a complete iteration and is bounded
by the loop indexes. It allows showing the execution
sequence of a nested loop, and illustrates clearly data
dependencies between iterations on the MDFG, such as the
CDG in Fig. 2(b) of the wave digital filter.

(0,1)

(0,0)

j

(0,2)

B

D

A

C

B

D

A

C

B

D

A

C

(1,1)

(1,0)

(1,2)

B

D

A

C

B

D

A

C

B

D

A

C

(2,1)

(2,0)

(2,2)

B

D

A

C

B

D

A

C

B

D

A

C

i

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2
j

i(a) (b)

Figure 2. (a) The iteration space of the wave digital filter MDFG; (b) The

cell dependency graph

This graph is used to identify an execution order of the
whole application, called schedule vector. An MDFG
 is realizable if a schedule vector for the
CDG in respect to G exists. It means that for
each , and no cycle exists in its corresponding CDG.
The CDG, shown in Fig. 3(b), can be executed by a row-
wise execution sequence, i.e., the schedule vector .

B. Multidimensional Retiming

The multidimensional retiming approach increases the
loop parallelism in order to reduce critical path, while
preserving data dependencies of the original MDFG. The
retiming vector , where and is the
loop dimension, presents the offset between the original
iterations containing and the ones after retiming: for each
 index such as , the execution of the node in
the iteration is moved to the iteration . Fig. 3(a) shows
the wave digital filter after applying . Thus,

each h copy of is shifted up and executed in the previous
iteration of the innermost loop. Some nodes are shifted
upstream the retimed loop which are called prologue, such as

instructions executed outside the innermost loop on the
code in Fig. 3(b). Correspondingly, the complementary
nodes are executed after the loop body to complete the
process, which is called epilogue.

DA

C

B

e1

e2

e4

e5

e3

(0,0)

(0,0)

(1,-2)

(1,0)

(0,1)

For i from 0 to m do

 D(i , 0) = B(i-1 , 1) × C(i-1 , -1)

 For j from 0 to n-1 do

 D(i , j+1) = B(i-1 , j+2) × C(i-1 , j)

 A(i , j) = D(i , j) × 5

 B(i , j) = A(i , j) + 1

 C(i , j) = A(i , j) + 2

 End for

 A(i , n) = D(i , n) × 5

 B(i , n) = A(i , n) + 1

 C(i , n) = A(i , n) + 2

End for

(a) (b) (c)

D

A

CB D

A

CB

D

A

CB

…….

D

A

CB D

Time

p
ro

lo
g

u
e

ep
il

o
g

u
e

Figure 3. (a) The retimed Wave digital filter MDFG with r(D)=(0,1); (b)

The code of the retimed MDFG; (c) The static schedule

We notice that instruction inside the innermost loop of
the code in Fig. 3(b) has not any data dependency with other
instructions executed in the same iteration. It allows
executing instructions in parallel, such as executing node
in parallel to node , as shown in the static schedule of Fig.
3(c). Thus, the cycle period is reduced from three to two time
units, assuming that all execution time nodes are equal to
one. However, the code size is increased due to prologue and
epilogue instructions where each one corresponds to an
additional cycle period. This transformation is the principle
of the MD retiming which attempts to parallelize execution
nodes in order to reduce the cycle period, despite of
increasing the code size.

A retiming function is called legal if it provides a
realizable MDFG. Its value is deduced from schedule vectors
of the original graph. It consists in identifying a strictly
positive scheduling sub-space that contains all
vectors such that for every . A
legal MD retiming of node is any vector orthogonal to ,
whose has all the oncoming edges having non-zero delays.
In the case of the wave digital filter, the original MDFG can
be scheduled following the vector , which verifies
that provides a realizable MDFG: the CDG in
Fig. 4(b) can be executed following the scheduling vector
 .

(0,1)

(0,0)

j

(0,2)

B

D

A

C

B

D

A

C

B

D

A

C

(1,1)

(1,0)

(1,2)

B

D

A

C

B

D

A

C

B

D

A

C

(2,1)

(2,0)

(2,2)

B

D

A

C

B

D

A

C

B

D

A

C

i

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2
j

i

(a) (b)
Figure 4. (a) The iteration space of the retimed MDFG with r(D)=(0,1);

(b) The cell dependency graph

All MD retiming techniques proceed to apply
successively such transformation until achieving a fully

parallelized MDFG. All edges on the final MDFG should
have a non-zero delay. For any path of the

MDFG, MD retiming techniques proceed to execute each
node in a cycle period separately, where . We show
in Fig. 5(a) the full parallel wave digital filter MDFG, after
applying and . The static
schedule in Fig. 5(c) shows that the full parallelism is
achieved, whose nodes belonging to the same iteration in the
original loop are distributed into three different ones.
Accordingly, each iteration requires one time unit to be
executed. However, the graph transformation implies adding
three instructions as prologue, and five instructions as
epilogue in the corresponding code, in comparison to the
original one.

DA

C

B

e1

e2

e4

e5

e3

(0,1)

(0,1)

(1,-3)

(1,-1)

(0,1)

For i from 0 to m do

D(i , 0) = B(i-1 , 1) × C(i-1 , -1)

D(i , 1) = B(i-1 , 2) × C(i-1 , 0)

A(i , 0) = D(K , 0) × 5

For j from 0 to n-1 do

D(i , j+2) = B(i-1 , j+3) × C(i-1 , j+1)

A(i , j+1) = D(i,j+1) × 5

B(i , j) = A(i , j) + 1

C(i , j) = A(i , j) + 2

End for

A(i , n) = D(i , n) × 5

B(i , n-1) = A(i , n-1) + 1

C(i , n-1) = A(i , n-1) + 2

B(i , n) = A(i , n) + 1

C(i , n) = A(i , n) + 2

End for(a) (b) (c)

Time

p
ro

lo
g

u
e

ep
il

o
g
u
e

D

A

CB

D

A

CB

D

A

CB

…….

D

A D

Figure 5. (a) The Full parallel MDFG; (b) The code of the full parallel

MDFG; (c) The static schedule

C. Limitations of Existing Techniques

MD retiming affects codes of original loop bodies.
Firstly, the code size has increased due to prologue and
epilogue sections: For an MD retiming function
 , each index implies executing the
occurrences of before the loop and the occurrences of
complementary nodes after the same loop. Secondly, the
retiming transformation implies redefining the loop bounds
and loop indexes. Hence, computation instructions are added
on the algorithm, before each affected loop. Those added
code sections are executed in upstream loop, which leads to
increasing cycle number. Furthermore, they are not executed
in parallel, which requires an important number of cycle
periods compared to that required to execute the whole loop
body. Consequently, the cycle number increases significantly
in terms of MD retiming.

These characteristics depend on the value of retiming
function. For , the more the index grows
 , the more the size of prologue and epilogue is great. To
reduce disadvantages, incremental and chained MD

techniques select a scheduling vector where

 is minimal and aims at deducing the retiming

function that provides an optimal MDFG. In addition, the
cycle number increases in the same way as the number of
MD retiming. All existing techniques require the same
number of the MD retiming function in order to achieve full
parallelism: If the critical zero-delay path is composed by
nodes then any existing technique employs MD
retiming. They are applied incrementally from the first node

having zero delay outcoming edges to the last one on the
critical path. Code sections are added after each retiming
function. They correspond not only to the loops structures,
but also to the existing prologues and epilogues. Thus, cycle
numbers increase exponentially and the disadvantages are
heavily aggravated, in terms of the retiming number.

We proceed to identify the evolution of the cycle number
in terms of retiming functions in the case of the infinite
impulse response filter schematized in Fig. 6. Based on its
data dependencies, this MD application requires four
retiming functions to obtain a fully parallelized MDFG. We
use the chained technique with an optimal Retiming function
 . After each MD retiming, we provide the
retimed MDFG and we deduce its codes in order to compute
the cycle number. These steps are repeated until providing
the full parallel MDFG which cycle number values are
illustrated in Fig. 7.

M3

M1

M2

M4

M8

A5

A7

A3

A1

A2

A6A4

A8

M5

M7

M6

(2,2)

(2,1)

(2,0)

(1,2)

(1,1)

(1,0)

(0,2)

(0,1)

Figure 6. The MDFG of the infinite impulse response filter

Based on cycle number values, we conclude that the
more we apply a MD retiming functions, the more the cycle
number increases: It develops by 58% on the fully parallel
solution, compared to the original MDFG. Thus, we
conclude that final solutions, provided by the existing MD
retiming techniques, do not allow respecting strict timing
constraints. Therefore, although full parallel applications are
scheduled with minimum cycle period, they are not suitable
to be implemented in real-time systems.

Figure 7. Evolution of cycle number in term of Retiming function

III. THEORY OF DELAYED MULTIDIMENSIONAL

RETIMING

A. Principles

The minimal cycle period in a data flow graph is defined
as the computation time of the longest zero-delay path
() [4]. For general executing-time cases,
a cycle period of a full parallelized MDFG is equal to the
maximal execution time among the computation nodes
 . Taken the example of the wave digital
filter, the MDFG contains two node types which are the
multiplier and adder. Assuming that the first type requires
one time unit while the second one requires two, the full
parallel MDFG in Fig. 5(a) is scheduled with . Any
existing technique requires two MD retiming to achieve a
full parallelism, whose static schedule is showed in Fig. 8.
Nodes belonging to the same iteration in the original MDFG,
which are illustrated with the same color, are divided into
three different iterations.

The full parallelized graph in Fig. 5(a) can be executed
following the schedule vector that has two
orthogonal vectors or . While both edges
and are non-zero delay, we proceed to retime node by
 , which results in the MDFG in Fig. 9(a). It is
easy to verify that the provided MDFG is not fully
parallelized. However, it keeps scheduling the application
with the minimal cycle period . We deduce from the
static schedule in Fig. 9(c) that cycle periods are optimally
used by reducing the lost time between providing and
consuming data. Nevertheless, the code contains only two
instructions in both prologue and epilogue, as shown in Fig.
9(b). Therefore, the cycle number is reduced by 7.69%
compared to the full parallel graph in Fig. 5(a), and so is the
execution time. We deduce that an optimal execution time
can be realized without achieving a full parallelism.

Time

D

A

CB

D

A

CB

D

A

CB

…….

D

A D

Figure 8. The static schedule of the full parallel wave digital filter MDFG

Based on the new delays, the MDFG keeps the same data
cycle delays from the original one. The
 equation [1,3] is verified for all paths in the
MDFG. Moreover, the CDG in Fig. 10(b) does not contain
any cycle and hence the existence of infinite schedule
vectors that can ensure a legal execution order, so we cite as
an example . As a consequence, we conclude that
this transformation provides a realizable MDFG and
preserves the functionality of the whole application.

150

200

250

300

0 1 2 3 4

C
y
cl

e
n

u
m

b
er

Number of MD retiming functions

Let us focus on the transformation applied to provide the
MDFG showed in Fig. 9(a). We note that nodes belonging to
the same iteration in the original MDFG are shared on two
cycles, as illustrated in Fig. 9(c). This node distribution is
similar to applying one MD retiming function. Furthermore,
the edge have a zero delay, which means that the delay
is kept through retiming with respect to the original MDFG,
and so and are still executed in the same iteration.
Besides, the iteration space in Fig. 10(a) shows that each
whole path, originally executed in the iteration ,
becomes executed in the iteration . Moreover, each
path belonging to the first iteration on the innermost loop
is pushed outside cellules of the iteration space.

DA

C

B

e1

e2

e4

e5

e3

(0,1)

(0,1)

(1,-2)

(1,0)

(0,0)

For i from 0 to m do

D(i,0) = B(i-1 , 1) × C(i-1 , -1)

A(i,j) = D(i,1) × 5

For j from 0 to n-1 do

D(i,j+1) = B(i-1 , j+2) × C(i-1 , j)

A(i,j) = D(i,j+1) × 5

B(i,j) = A(i,j) + 1

C(i,j) = A(i,j) + 2

End for

B(i,n) = A(i,n) + 1

C(i,n) = A(i,n) + 2

End for

(a) (b) (c)Time

p
ro

lo
g

u
e

e
p

ilo
g

u
e

D

A

CB
D

A

CB

D

A

CB

…….

D

A

Figure 9. (a) The wave digital filter MDFG provided by the delayed MD

retiming; (b) The code of the retimed MDFG; (c) The static schedule

Based on those characteristics, this modification can be
considered as applying the MD retiming to the path
 on the original MDFG in Fig. 1(a). It consists of
subtracting delays from and , which are the incoming
edges of the first node , and adding them to and ,
which are the outcoming edges of the last node . The
retimed path is executed in a two time units. While the path
is a zero delay, hence its execution in the same iteration, the
MDFG is still scheduled with the minimal cycle period. This
result is achieved by applying just one MD retiming whose
overheard is added once. It provides an enhanced execution
time compared to the existing techniques.

(0,1)

(0,0)

j

(0,2)

B

D

A

C

B

D

A

C

B

D

A

C

(1,1)

(1,0)

(1,2)

B

D

A

C

B

D

A

C

B

D

A

C

(2,1)

(2,0)

(2,2)

B

D

A

C

B

D

A

C

B

D

A

C

i

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2
j

i

(a) (b)
Figure 10. (a) The iteration space of MDFG in Fig. 9.a ; (b) The cell

dependency graph

We propose a new approach of MD retiming that aims to
schedule the MDFG with a minimal cycle period, without
achieving a full parallelism. It proceeds to identify zero-
delay paths where execution times are below or equal to
 . Thereafter, it selects MD retiming functions that will

be applied to the extracted paths. Contrary to the existing
techniques, retiming functions are not applied to successive
nodes but distant nodes. Thus, we call our technique Delayed
MD retiming.

B. Zero-Delay Path Identification

In this section, we describe our process to identify the
zero delay paths that should be retimed. First, we introduce a
model to extract data dependency and timing proprieties of
all paths in the MDFG. Second, we show how to explore
those proprieties to identify the set of paths for retiming. In
this paper, our technique is presented with two dimensional
notations. It can be easily extended to multi-dimensions.

1) Data dependency and timing proprieties of MDFG
Our approach aims at scheduling the MDFG with

minimal cycle period. It means that each zero delay path
should be executed in . Thus, we proceed to sweeping
the MDFG in order to identify the delay and execution time
of each path. As known, any two nodes and can be
connected by several paths. If only one path is zero delay
then it is susceptible to be retimed. We define as the
minimum delay between the paths connecting and , such

as . If only one path among
those connecting and has a zero-delay then
 ; else, . In addition, two nodes
can be connected with several zero-delay paths whose
execution time should be taken into account. Based on our
approach, all paths should be executed in the bound of the
cycle period. Thus, we define as the maximum
execution time among the zero delay path connecting and

 , such as

 . Our approach aims at providing MDFGs whose
paths should have a non-zero delay if their execution time
exceeds . This principle is described in theorem 1.

Theorem 1. Let G =(V,E,d,t) a realizable MDFG and c a

cycle period. The following are equivalent:



 For all nodes , if then .

Proof. We suppose that , and such as

 . If , then it exists a p path from u

to v having an execution time that exceeds

c, and a delay , which are in

contradiction with the first supposition. We suppose now

that the second condition is verified, and let be any

p path with zero delay in G, then we have
 which implies that .

Based on the previous theorem, we proceed to compute
D and T of each pair of nodes, and apply MD retiming in
order to respect theorem 1. The results are ranged in two
matrices called D and T, whose computing process is
indicated in algorithm 1.

As an example, we run algorithm 1 in the case of the
wave digital filter whose MDFG is showed in Fig. 1(a). It
provides values of the matrices D and T as illustrated in
Table 1. To distinguish the zero-delay paths, we proceed to
model their corresponding cells in matrices D and T by a
gray color.

Algorithm 1. Compute D and T

Input : a realizable MDFG
Output : matrices D and T

1: Begin
2: For each edge in G

3: Add element

 to ARC list

4: End for
5:

6: For each element

 of TEST

7:

8:

9: End For
10: Repeat

11: For each element

 of TEST

12: For each element

 of ARC

13: If &

  then

14: Add

 to

15: Else if &

 then

16: Add to

17: End if
18: End For
19: End For

20: For each element

 of

21:

22:

23: End For
24:

25: Until D and T are totally filled
26: End

TABLE I. MATRICES D AND T OF THE ORIGINAL WAVE DIGITAL

FILTER

u\v A B C D u\v A B C D

A (0,0) (0,0) (0,0) (1,1) A 1 3 3 3

B (1,1) (0,0) (1,1) (1,1) B 4 2 6 3

C (1,1) (1,1) (0,0) (1,1) C 4 6 2 3

D (0,0) (0,0) (0,0) (0,0) D 2 4 4 1

2) Path selection
We proceed now to identify the set of paths that should

be retimed. Those paths are deduced directly from the
matrices D and T, as described in algorithm 2. We start by
selecting the nodes having all the incoming edges with a
non-zero delay. For each node , we extract from the
corresponding line in the matrix D the cells having a zero
delay edge. The paths to retime are those having
 and .

The extraction process may result in a redundancy in the
paths. Moreover, an extracted path may present a sequence
of another one, where our approach should select the one to
retime. In fact, our approach aims at decreasing the
parallelism level by employing the minimum number of
retiming functions. It means that the path to be retimed must
contains the maximum successive nodes, while respecting
the cycle period constraint. This principle is followed in the
last instruction of algorithm 2 when optimizing the set of
paths.

We run algorithm 2 to the wave digital filter, whose node
D is the only one having all incoming edges with non-zero
delays. We show from matrix D that four paths starting from

D are zero delay, which are
 . Only the two first paths are added to the list L,
which are able to be retimed. While they are superimposed,
the last instruction in algorithm 2 provides the path to
retime.

Algorithm 2. Path selection

Input : a realizable MDFG , matrices D and T

Output : list of paths

1: Begin

2: Identify nodes n having all incoming edges with a non-zero

delay and at least one outcoming edge with a zero delay

3: For each node n
4: For each node x in GFDM

5: If and then

6: Add path to

7: End if

8: End for

9: End for

10: Optimize

11: End

C. Multidimensional Retiming Selection

We describe in this section how to select a retiming
function for a zero delay path. In fact, selecting a retiming
function consists in choosing an orthogonal vector to that
verifies . The retiming function is deduced from
the values of all non-zero delays in the MDFG, and hence
their independence from the nodes that will be retimed.
However, the selected retiming is only applied to nodes,
which have all incoming edges with non-zero delays. We try
to define from this selected function a legal retiming for a
zero delay path. First of all, we describe in theorem 2 the
way to deduce a legal MD retiming of a node that has an
incoming zero-delay edge.

THEOREM 2. Let be a realizable MDFG,

and where has only one incoming edge

 where d(e)=(0,...,0). If a legal multidimensional

retiming of , then is a legal multidimensional Retiming

of .

Proof. Let

 be a path in G.

 is a legal MD retiming of G, which means that there

exists a scheduling vector s where and

 . Adding those two inequalities shows that

 . Knowing that
 and so , the MDFG containing

 is realizable, which can be

executed following the scheduling vector s. Thus, r(v) is a

legal MD retiming.
This theorem proves that the legal MD retiming for a

node can be applied to its successor, if this last has only one
incoming edge. Moreover, it is easy to observe that the
previous theorem can be used for successive nodes that
respect the same condition. Therefore, theorem 2 allows
identifying a legal retiming function for a zero delay path.
We consider a node with an outcoming zero delay edge as
the first node of a zero delay path and we proceed to test
nodes following the data dependency direction. If the
successor node tallies the theorem condition, we add it to the

path that will be retimed. This test can be repeated
incrementally while the execution time path is less than .

The growing size of MDFG is proportional to the set of
the selected zero-delay paths, and hence to the number of
required MD retiming transformation. However, defining a
retiming function for each selected path cannot be an
adequate solution. Thus, we aim at reducing it by identifying
paths that can be retimed with the same function. In fact, the
set of nodes that have all incoming edges with non-zero
delays can be retimed using the same retiming function [2].
We introduce the method of predicting an MD retiming for
several paths theorem 3.

THEOREM 3. Let be a realizable MDFG,

 , and

 for all y incoming

edges, where and . If is a legal MD

retiming, then is a legal MD retiming.

Proof. Proved immediately from theorem 2.
This theorem gives us the alternative to retiming several

paths, which start by the nodes having incoming edges with a
non-zero delay, using just one MD retiming function.

D. The Delayed Multidimensional Retiming Algorithm

This step ensures selecting an MD retiming function and
providing the MDFG scheduled in a minimal cycle period.
Our technique starts by identifying the minimal cycle period
and computing the matrices D and T as described in
algorithm 1. Thereafter, it selects a legal MD retiming of
the MDFG as proceeded in the existing techniques, and it
runs algorithm 2 to identify the set of paths L, in order to
apply on them the retiming function r. These steps are
repeated until all zero delay paths are executed in , as
described in algorithm 3.

Algorithm 3. Delayed multidimensional retiming

Input : a realizable MDFG ,
Output : a realizable MDFG with cycle period

1: Begin

2: Identify the minimal cycle period

3: Compute the matrices and (as described in algorithm 1)

4: While Do

5: Find a scheduling vector where is
minimal

6: Select an MD retiming function orthogonal to
7: Identify the list of the path L (as described in algorithm 2)

8: For each path of

9: Apply
10: End for

11: Update matrices et

12: End while

13: End

Using the delayed MD retiming, an MDFG scheduled
with the minimal cycle period is always achievable, which
efficiency is proved in theorem 4.

THEOREM 4. Let be a realizable MDFG,

the Delayed MD retiming algorithm transforms to , in

at most times, in a way that is scheduled

with a minimal cycle period.

Proof. Algorithm 1 allows computing D and T for each pair

of nodes in the MDFG, which requires times.

Thereafter, algorithm 2 tests at the most all cells of the

matrices D and T, which can be performed in
instructions where is an integer value . Finally,

algorithm 3 selects one MD retiming function, which

requires at most instructions, and applies it for each

selected paths. Thus, delayed MD retiming technique

requires only times to be performed.
We run algorithm 3 to the MDFG in Fig. 1(a) which

is equal to two time units, and the matrices D and T are
showed in Table 2. On the first iteration of the algorithm 3,
the identified scheduling vector is equal to (1,0), and hence
the retiming function . Algorithm 2 provides the path
 that is retimed in the following step. The new
matrices D and T are showed in Table 2 that all cells respect
theorem 1 constraints. As a result, the final MDFG is as
illustrated in Fig. 9(a).

TABLE II. MATRICES D AND T OF THE WAVE DIGITAL FILTER

PROVIDED BY THE DELAYED MD RETIMING

u\v A B C D u\v A B C D

A (0,0) (0,1) (0,1) (1,1) A 1 3 3 3

B (1,1) (0,0) (1,1) (1,1) B 4 2 6 3

C (1,1) (1,1) (0,0) (1,1) C 4 6 2 3

D (0,0) (0,1) (0,1) (0,0) D 2 4 4 1

IV. EXPERIMENTAL RESULTS

In our experiments, we compare our technique to the
“incremental” and “chained” MD retiming ones. We proceed
to apply the three techniques to the same set of MDFGs, in
order to deduce their execution times. We conduct
experiments from two-dimensional loops which are the
Infinite Impulse Response Filter (IIRF), the Wave Digital
Filter (WDF) after applying the Fettweis transformation [2],
and the Walsh-Fourier Transform (WFT) [8]. All MD graphs
are composed of adder and multiplier nodes. Knowing that
our technique applies MD retiming in terms of execution-
time nodes, we model each graph with different cases of
timing parameters. We proceed to model each one with
several pairs of execution-time nodes , where
the adder and multiplier execution-times are respectively
indicated by and . We indicate that each one of
three techniques achieves the same final MDFG when using
a pair of execution time nodes which
are the multiple of the pair . For this, we just
employ four pairs of execution time nodes as indicated in
Table 3. Those values are chosen among the most frequent
experiments. The minimal cycle period values are illustrated
in Table 3.

To realize the contribution of our technique and
guarantee a reliable comparison, we select optimal retiming
functions to be used for the three retiming techniques. Our
technique employs less MD retiming functions than the
existing techniques. As described in paragraph 2.3, while
incremental and chained techniques achieve the fully
parallelized MDFGs of the IIR filter using 4 retiming
functions, our technique employs no more than two. The
retiming functions are decreased from five to four in the case
of the WDF, and from two to one in the case of the WFT.

After providing the final MDFGs, we generate their
respective algorithms to extract their execution times [1].

TABLE III. EXECUTION TIME NODES AND NUMBER OF MD RETIMING

FUNCTION IN TERM OF TECHNIQUES

Benchmark MDFG

Timing parameters MD retiming number

Incremental or

Chained MD

retiming

Delayed

MD

retiming

IIRF

G1 1 2 2 4 2

G2 1 3 3 4 2

G3 1 4 4 4 1

G4 2 5 5 4 2

WDF

G5 1 2 2 5 4

G6 1 3 3 5 4

G7 1 4 4 5 4

G8 2 5 5 5 4

WFT

G9 1 2 2 2 1

G10 1 3 3 2 1

G11 1 4 4 2 1

G12 2 5 5 2 1

We present in Table 4 the execution-time values in terms
of time units of each MDFG in function of MD retiming
techniques. We note that the cycle numbers are directly
deduced from the execution time. The row “improve”
presents the benefit in terms of execution-time of the results
generated by our techniques compared to those generated by
the existing ones, which accounts for an average
improvement of 41.57% compared to the Incremental
technique and 11.55% compared to the chained technique.

TABLE IV. EVOLUTION OF EXECUTION-TIME IN TERMS OF MD

RETIMING TECHNIQUES

MDFG
Incremental MD

retiming
Chained MD

retiming
Delayed MD

retiming

G1 956 632 516

G2 1434 948 774

G3 1912 1264 932

G4 2390 1580 1290

G5 3548 1800 1760

G6 5322 2700 2640

G7 7096 3600 3520

G8 8870 4500 4400

G9 326 276 238

G10 489 414 357

G11 652 512 476

G12 815 690 595

Improve 41.57% 11.55%

V. CONCLUSION

In this paper, we have described the theory of the delayed
multidimensional retiming technique. It allows scheduling
the MD applications with the minimal cycle period using the
least retiming functions in order to avoid achieving a full
parallelism. It provides MD applications with optimized
execution times compared to those provided by the
”incremental” and “chained” techniques. The improvement

averages deduced from the experimental results prove that
delayed technique is beneficial when applying it on real-time
applications.

In our future works, we will be interested to identify the
evolution of code sizes in terms of our MD retiming. This
study will allows us to extend the delayed technique in order
to optimize both execution time and code size in MD
applications.

REFERENCES

[1] N. L. Passos and E. H.-M. Sha, “Achieving full parallelism using
multi-dimensional retiming,” J. IEEE Trans. Par. Dist. Syst., Vol. 7,
Iss. 11, nov. 1996, pp. 1150-1163, doi:10.1109/71.544356.

[2] M. Sheliga, N. L. Passos and E. H.-M. Sha, “Fully parallel
hardware/software codesign for multidimensional DSP applications,”
Proc. 4th int. Workshop on Hardware/Software Co-Design
(CODES’96), mar. 1996, pp. 18-25, doi:10.1109/HCS.1996.492222.

[3] N. L. Passos and E. H.-M. Sha, “Scheduling of Uniform Multi-
Dimensional Systems under Resource Constraints,” IEEE Trans. on
VLSI Syst. Vol. 6, Iss. 4, dec. 1998, pp. 719-730,
doi:10.1109/92.736145.

[4] Q. Zhuge, C. Xue, M. Qiu, J. Hu and E. H.-M. Sha, “Timing
Optimization via Nest-Loop Pipelining Considering Code Size,” J.
Microproc. Microsyst., vol. 32, Iss. 7, oct. 2008, pp. 351-363,
doi:10.1016/j.micpro.2008.02.002.

[5] N. L. Passos , D. C. Defoe, R. J. Bailey, R. H. Halverson, and R.
P. Simpson, “Theoretical Constraints on Multi-Dimensional
Retiming Design Techniques,” Proc. visual information processing
(SPIE), Vol. 4388, Apr. 2001, pp. 238-245.

[6] B.R. Rau, “Iterative modules scheduling: an algorithm for software
pipelining loops,” Proc. Int. symp. on MICROarchitecture (MICRO-
27), Dec. 1994, pp. 63-74, (New York, USA, Nov. 30-Dec. 02,
1994)., doi:10.1145/192724.192731.

[7] T. O'Neil, S. Tongsima, and E. H.-M. Sha, “Extended retiming:
Optimal scheduling via a graph-theoretical approach,” Proc.
the Acoustics, Speech, and Signal Processing (ICASSP '99),
Mar. 1999, volume 4, pp. 2001–2004,
doi:10.1109/ICASSP.1999.758320.

[8] T. O'Neil, S. Tongsima, and E. H.-M. Sha, “Optimal scheduling
of data-flow graphs using extended retiming,” Proc. Int. Conf.
Parallel & Distributed Computing System (ISCA 12th), Dec.
1999, pp. 292-297.

[9] E. Leiserson and B. Saxe, “Retiming synchronous circuitry,” J. of
Algorithmica, vol. 6, Jun. 1991, pp. 5-35, doi:10.1007/BF01759032.

[10] Q. Zhuge, Z. Shao and E. H.-M. Sha, “Timing optimization of
nested loops considering code size for DSP applications,” Proc. of the
2004 Int. Conf. on Parallel Processing (ICPP 2004), Aug. 2004, pp.
475-482, doi:10.1109/ICPP.2004.1327957.

http://dl.acm.org/author_page.cfm?id=81100324565&coll=DL&dl=ACM&trk=0&cfid=75809502&cftoken=18768314
http://dl.acm.org/author_page.cfm?id=81410595883&coll=DL&dl=ACM&trk=0&cfid=75809502&cftoken=18768314
http://dl.acm.org/author_page.cfm?id=81414598357&coll=DL&dl=ACM&trk=0&cfid=75809502&cftoken=18768314

