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Gaussian Priors for Image denoising

Julie Delon, Antoine Houdard

Abstract

This chapter is dedicated to the study of Gaussian priors for patch-based image denoising. In the last
twelve years, patch priors have been widely used for image restoration. In a Bayesian framework, such
priors on patches can be used for instance to estimate a clean patch from its noisy version, via classical
estimators such as the conditional expectation or the maximum a posteriori. As we will recall, in the case
of Gaussian white noise, simply assuming Gaussian (or Mixture of Gaussians) priors on patches leads
to very simple closed-form expressions for some of these estimators. Nevertheless, the convenience of
such models should not prevail over their relevance. For this reason, we also discuss how these models
represent patches and what kind of information they encode. The end of the chapter focuses on the
different ways in which these models can be learned on real data. This stage is particularly challenging
because of the curse of dimensionality. Through these different questions, we compare and connect
several denoising methods using this framework.

1 Introduction

This chapter focuses on patch priors for image denoising. In the last decade, patch-based models (also
known as Non-local models) have created a new paradigm in image processing, leading to very significant
improvements both for classical image restoration problems (denoising, inpainting, interpolation) or for
image synthesis and editing. These models represent images by a set of local neighborhoods or patches,
and make them collaborate regardless of their spatial position in the image, relying on the observation that
most natural images present a remarkable redundancy at a semi-local scale. A patch yi(v) is a piece (most
of the time a square) of an image v centered at the pixel i. As pointed out by Mumford and Desolneux [15],
patches are “the analogs of the phonemes of speech”.

Patch-based models have been the subject of numerous works, especially in the context of image de-
noising. Assuming that the noise is additive, image denoising amounts to estimate an image u from its noisy
version v ∈ Rm (m is the image size) such that

v = u+ ε, (1)

with ε a noise with known statistics (not necessarily Gaussian). In digital cameras, the two major sources of
noise during the acquisition process are the thermal agitation, which produces an almost white and Gaussian
noise, and the discrete nature of light, which is behind the photon shot noise, modeled as a Poisson variable
(for a complete description of the sources of noise in a digital camera, see [2]). Stabilizing the noise variance
by a generalized Anscombe transform [13] results in a noise model well approximated by a white Gaussian
noise ε ∼N (0,σ2Im). The vast majority of works on image denoising focus on this simplified model and
it is also our assumption in this chapter.

In this framework, patch-based methods usually attempts at rewriting (1) into a degradation model that
can be expressed for each patch separately. All patches {yi, i = 1 . . . ,m} of size p = s× s are first extracted
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Figure 1: Image patches can be seen as vectors in a high-dimensional space. Most of the patch-based
methods uses the patch-space of an image which is the set of all the sliding patches of size p = s× s
extracted from the image.

from the image v and seen as noisy vectors in a high dimensional space, as illustrated by Figure 1 (in the
whole chapter, when writing patches as vectors, we assume that the patches are read column-wise). Then
the noisy patches are restored sequentially, before reconstructing the whole image. The degradation model
on the patches becomes

yi = xi + εi, i ∈ {1, . . . ,m} (2)

where xi is the patch centered at pixel i in u, yi the same patch in v, and εi the additive noise. In practice, it
is almost always assumed that the {εi, i = 1 . . . ,m} are independent samples from the Gaussian distribution
N (0,σ2Ip), although this hypothesis is obviously wrong since patches are overlapping. We will briefly
discuss this issue in Section 4, along with the aggregation of the restored patches to reconstruct the whole
image.

The first denoising methods relying on patches appear in 2004 [16, 21, 3, 5]. Among these methods, one
of the most popular remains the Non-Local Means [5], which sees similar patches as independent realiza-
tions of the same distribution and averages these repeated structures to reduce noise variance. If numerous
approaches have built on the same core ideas since 2004, the recent and most convincing approaches in
patch-based denoising rely on a Bayesian reformulation of the denoising problem, using local or global
statistical priors for the distribution of each patch [12, 24, 23, 20, 1, 11]. Under the white Gaussian noise
model (2), the conditional distribution of a noisy patch y knowing its original version x (we omit the index i
in the following) can be written

p(y|x) ∝ e−
‖x−y‖2

2σ2 . (3)

The Bayesian model assumes that the original patch x is a realization of a random vector X with a probability
distribution p(x) called the prior distribution. Therefore, the noisy patch y is a realization of the random
vector

Y = X +N, (4)

with N∼N (0,σ2Ip). Under these hypotheses, and assuming that N and X are independent, we can compute
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the posterior distribution

p(x|y) ∝ p(y|x)p(x) ∝ e−
‖x−y‖2

2σ2 p(x). (5)

Ideally, in order to reconstruct the (unknown) original patch x from the degraded version y, we would like to
compute the conditional expectation E[X |Y ] (i.e. the mean of the posterior distribution), which minimizes
the quadratic risk under the previous model. This estimator is also called the minimum mean square error
(MMSE) estimator. In practice, computing this conditional expectation is often complex, and it is classical
to compute instead the affine function (called linear MMSE) of Y minimizing the quadratic risk, i.e. the
affine estimator DY +α (with D a p× p real matrix and α a vector in Rp) minimizing the risk

E[‖DY +α−X‖2].

This affine estimator, is called the Wiener estimator and will be denoted EWiener[X |Y ] in the following. It
can be easily shown by deriving the previous risk that (assuming that the following quantities exist),

EWiener[X |Y ] = E[X ]+ΣX ,Y Σ
−1
Y (Y −E[Y ]), (6)

where ΣX ,Y := E [(X−E[X ])(Y −E[Y ])t ] and ΣY := E [(Y −E[Y ])(Y −E[Y ])t ]. This affine estimator only
relies on second-order moments of the signal and noise. Under model (4) and assuming that N and X are
independent, the Wiener estimator becomes

EWiener[X |Y ] = E[X ]+ΣX(ΣX +σ
2Ip)

−1(Y −E[Y ]), (7)

with ΣX the covariance matrix of the random vector X .
Another classical solution to reconstruct x is to compute the maximum (MAP) of the a posteriori distri-

bution p(y|x), which yields:

x̂(y) = argmax
x∈Rp

p(x|y) = argmax
x∈Rp

p[y|x] p(x)

= arg min
x∈Rp
− log p(y|x)− log p(x)

= arg min
x∈Rp

‖x− y‖2

2σ2 − log p(x).

From this point of view, restoring each patch is equivalent to solve a variationnal problem, with a quadratic
fidelity term and a smoothness term derived from the prior.

The most convenient prior for computing the previous estimators is the Gaussian distribution. Indeed,
on the one hand, Gaussian priors are well suited to encode patch structures with some kind of contrast in-
variance, as we will see in Section 2. On the other hand, under a Gaussian prior, the conditional expectation,
Wiener estimator and MAP coincide, as we will see in Section 3. For these reasons, these priors are fa-
vored in most recent works on patch-based image denoising [6, 12, 1]. A slightly more involved prior used
in the literature is the Gaussian Mixture Model (GMM) [24, 19, 23, 20, 11]. In this case, computing the
conditional expectation remains simply tractable. All these works differ among other things in the way they
infer the parameters of the Gaussian or GMM distributions. These distributions live in Rp and estimation
in such high-dimensional spaces is complex. We will see in Section 5 the different possibilities to infer
these parameters and how some of these works tackle the curse of dimensionality. Figure 2 illustrates the
main steps common to all these patch based denoising methods, and each of these steps is described in the
following sections.
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Figure 2: The whole process of patch-based image denoising with Gaussian prior models. First, patches are
extracted from the noisy image. Next, these noisy patches are grouped and modeled with local Gaussians
or Gaussian Mixture Models, whose parameters are inferred by maximum likelihood (Section 5). Each
patch is then denoised with an estimator derived from the model (Section 3). Finally, the clean patches are
aggregated to recover the denoised image (Section 4).
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2 What is encoded in Gaussian and GMM priors ?

Before going into the details of estimation under Gaussian priors, we provide in this section a few insights
on the actual structures they encode. Assume a Gaussian model N (µ,Σ) for p = s× s patches (µ ∈ Rp

and Σ ∈Mp(R)). The diagonal coefficients of the covariance matrix Σ represent the variance of each
pixel in the patch, while the non-diagonal coefficients represent the covariances between pixels. A positive
covariance coefficient means that the two pixels tend to be either both greater or smaller than their means,
while a negative coefficient implies that they tend to be on opposite sides of their means. Clearly, if Σ is
purely diagonal, patches drawn from the model N (µ,Σ) will only be noisy versions of the mean patch µ .
In this case, the only structure information is contained in µ . More interesting models contain geometric
information directly in the covariance matrix Σ.

Figure 3: Left: a covariance matrix Σ with 1 (white) on the second and third quarters, and 0 (black) on the
first and fourth quarters. Right: patches drawn from the Gaussian distribution N (µ,Σ) with µ a constant
patch equal to 0.5.

To illustrate this point, we propose to create models encoding different patch structures. For instance, in
order to model a vertical edge, we define a Gaussian distribution with constant mean µ = (0.5, . . . ,0.5) and
a covariance matrix with coefficient 1 in the second and third quarter of Σ, and coefficient 0 in the first and
fourth quarters of Σ (see Figure 3). In this simplistic example, the matrix Σ has rank two, with (non trivial)
eigenvectors (1, . . . ,1,0, . . . ,0) and (0, . . . ,0,1, . . . ,1), so all the patches drawn from this distribution can be
written 0.5+(α, . . . ,α,β , . . . ,β ) with α ∼N (0,1) and β ∼N (0,1). These patches all contain a vertical
edge in their middle, with grey levels α and β on both sides of the edge. In this example, we see that the
model encodes a structure and authorizes different contrasts on both sides of the structure. With the same
mechanic, we can create a covariance matrix encoding any desired shape, see for instance Figure 4. Again,
the samples from the corresponding distribution exhibit all possible grey levels in the different regions
defined by the covariance matrix, even if all these grey levels are not all equally likely.

Now, although these models authorize contrast changes or contrast inversions, they are not well suited to
encode geometric invariances on patches. For instance, if we try to learn a model encoding different vertical
edges with invariance to translation, we end up with an average model encoding a vertical gradient image
(see Figure 5).
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Figure 4: Left: a covariance matrix Σ composed of 1 (white) and 0 (black). Right: patches drawn from the
Gaussian distribution N (µ,Σ) with µ a constant patch equal to 0.5.

3 How to derive estimators under Gaussian and GMM priors

Now that we have seen more precisely what could be contained in Gaussian priors, we will now see more
precisely how they can be used to derive estimators under the Bayesian model described in the introduction.

In the whole section, we assume that we work with the model (4)

Y = X +N,

with N ∼N (0,σ2Ip) independent from X . We wish to estimate X knowing Y .
We first recall some classical results on the conditioning of Gaussian vectors, and on the links between

the conditional expectation, Wiener estimator and MAP for Gaussian and GMM priors. These different
estimators will serve in the rest of the chapter as denoising strategies for image patches.

3.1 Estimation with Gaussian priors

We first assume that X follows a Gaussian distribution N (µX ,ΣX) and that the noise N is independent from
X . The classical properties of Gaussian vectors make it possible to show that in this case the estimator
E[X |Y ] is an affine function of Y (thus equivalent in this case to the Wiener estimator). Indeed, recall that if
(T,V ) is a Gaussian vector, then the conditional expectation E[T |V ] is the affine function of V

E[T |V ] = E[T ]+ΣT,V Σ
−1
V (V −E[V ]), (8)

where ΣV is the covariance matrix of V and ΣT,V = E[(T −E[T ])(V −E[V ])t ] (if ΣV is not full rank, the
result is still true by taking the Moore-Penrose pseudo-inverse of ΣV ).

Now, if X and N are independent Gaussian random vectors, the concatenated vector (X ,Y ) = (X ,X +N)
is also Gaussian. We directly deduce the following result.

Proposition 1. Assume that X and Y follow the model (4), with X ∼ N (µX ,ΣX) and N ∼ N (0,σ2Ip)
independent, then the conditional expectation and Wiener estimator of X knowing Y coincide and can be
written

E[X |Y ] = EWiener[X |Y ] = µX +ΣX(ΣX +σ
2Ip)

−1(Y −µX).
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Figure 5: Left: a covariance matrix Σ learned as the sample covariance matric of a set of vertical edges at
different spatial positions, and with also different choices of grey levels on both sides of the edge. Right:
patches drawn from the corresponding Gaussian distribution N (µ,Σ) with µ a constant patch equal to 0.5.

Proof. On the one hand, since (X ,Y ) is a Gaussian vector, the conditional expectation E[X |Y ] can be written

E[X |Y ] = E[X ]+ΣX ,Y Σ
−1
Y (Y −E[Y ])

= E[X ]+E[(X−E[X ])(X +N−E[X +N])t ](ΣX +σ
2Ip)

−1(Y −E[Y ]).
= E[X ]+ΣX(ΣX +σ

2Ip)
−1(Y −E[Y ]) = µX +ΣX(ΣX +σ

2Ip)
−1(Y −µX).

Under the same hypothesis, if we try to maximize the a posteriori probability on the patch X , we obtain

argmax
X

logP[X |Y ] = argmax
X

(logP[Y |X ]+ logP[X ])

= argmin
X

(
(X−Y )t(X−Y )/σ

2 +(X−E[X ])t
Σ
−1
X (X−E[X ])

)
.

We check easily that the solution of this minimization problem is also given by

ψ(Y ) = µX +ΣX(ΣX +σ
2Ip)

−1(Y −µX).

Said otherwise, for a Gaussian prior, the MMSE, linear MMSE and MAP all coincide and all these
estimators only require linear operations. This property makes Gaussian priors particularly convenient in
practice and explains their success in the restoration literature.

We can illustrate the interest of this estimator on the Gaussian model N (µX ,ΣX) presented on Fig-
ure 3 and representing a vertical edge. If X is an (unknown) realization of this model and Y = X +N
with N ∼ N (0,σ2Ip) independent from X , then E[X |Y ] will also be a patch (α, . . . ,α,β , . . . ,β ) with
α = 0.5+ 1

p/2+σ2 ∑
p/2
k=1(Yk−0.5) and β = 0.5+ 1

p/2+σ2 ∑
p
k=p/2+1(Yk−0.5)(assuming p is even for the sake
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of simplicity). Said otherwise, the denoised patch E[X |Y ] represents the same vertical edge as X and its
values α and β on both sides of the edge are (if σ2 << p/2) the averages of Y on these two half patches.

Figure 6 represents three denoising experiments with the previous estimator. On the first line, a vertical
edge is denoised with the Gaussian model of Figure 3. On the second line, a ”duck” patch is denoised
with the Gaussian model of Figure 4. In both cases, using the conditional expectation works extremely well
because the Gaussian model used in the estimator fits perfectly the image to be denoised. On the third line,
the noisy edge is denoised with the Gaussian model of Figure 5. In this case, the denoised patch is constant
on each column (since the model is learned from a set of translated vertical edges). Although the model
imposes a strong correlation between columns of the first half of the patch on the one hand, and between
columns of the second half of the patch on the other hand, this is not enough to restore the patch perfectly.

Figure 6: For each line, from left to right, clean patch, noisy patch (σ = 10%), denoised patch with the
Wiener estimator. First line, the edge Gaussian model of Figure 3 is used to denoise (PSNR = 37.17).
Second line, the duck Gaussian model of Figure 4 is used to denoise (PSNR = 34.29). Third line, the
gradient model of Figure 5 is used to denoise (PSNR = 29.68). In this last case, the image to be denoised is
not well represented by the model and the result is less convincing.
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3.2 Estimation with Gaussian Mixture Models

The case of Gaussian Mixture Models is a bit more involved but remains globally simple. Assume that X
follows a Gaussian Mixture Model

X ∼
K

∑
k=1

πkN (µk,Σk), (9)

with ∑
K
k=1 πk = 1. There exists a latent random variable Z on {1, . . . ,K} such that P[Z = k] = πk and such

that X |Z = k ∼ N(µk,Σk). In the following, we note ψk(y) the Wiener estimator for the kth Gaussian, i.e.

ψk(y) = µk +Σk(Σk +σ
2Ip)

−1(y−µk).

Under this model, we have the following proposition.

Proposition 2. Assume that X and Y follow the model (4), with X ∼∑
K
k=1 πkN (µk,Σk) and N ∼N (0,σ2Ip)

independent, then the conditional expectation of X knowing Y can be written

E[X |Y ] =
K

∑
k=1

ψk(Y )P[Z = k|Y ]. (10)

Proof. To compute the conditional expectation, we can start by noting that if Z = k, (X ,Y ) is a Gaussian
vector and the results of the previous section apply. We can now compute the conditional expectation

E[X | Y,Z] = ψZ(Y ) =
K

∑
k=1

ψk(Y )1Z=k.

It follows that

E[X |Y ] = E[E[X | Y,Z] | Y ] because σ(Y )⊂ σ(Y,Z)

= E[ψZ(Y ) | Y ] =
K

∑
k=1

E[ψk(Y )1Z=k | Y ]

=
K

∑
k=1

ψk(Y )E[1Z=k | Y ] because ψk(Y ) is σ(Y )-measurable.

We deduce that

E[X |Y ] =
K

∑
k=1

ψk(Y )E[1Z=k | Y ] =
K

∑
k=1

ψk(Y )P[Z = k | Y ].

The conditional expectation E[X |Y ] can be seen as a linear combination of affine functions of Y , with
weight P[Z = k|Y ] representing the probability that the patch belongs to the class k. However, the weights
P[Z = k | Y ] are not linear functions of Y .

The expression of the Wiener estimator EWiener[X |Y ] can be deduced directly from Equation (7), by
replacing E[X ] by ∑

K
k=1 πkµk and ΣX by the complete covariance of the GMM.

Finally, computing the MAP argmaxX logP[X |Y ] under a GMM prior on X is much less convenient and
does not lead to a closed-form solution. Indeed, it boils down to compute the maximum of the posterior
distribution, which is another Gaussian Mixture distribution.

In other words, the linear MMSE, MMSE and MAP do not coincide for Gaussian Mixture priors. In
practice, the conditional expectation is favored since it is much simpler to compute than the MAP.
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3.3 Other estimation strategies

Estimation under Gaussian or GMM models has several links with other estimation strategies found in the
literature. For a noisy patch y, and a Gaussian model N (µ,Σ), we have seen that the conditional expectation
strategy consists in computing the denoised patch

x̂(y) = µ +Σ(Σ+σ
2Ip)

−1(y−µ).

Now, if we consider the eigendecomposition Σ = Q∆Qt with ∆ = diag(λ1, . . . ,λp), this can be rewritten

x̂(y) = µ +Qdiag
(

λ1

λ1 +σ2 , . . . ,
λp

λp +σ2

)
Qt(y−µ). (11)

More generally, denoting Q1, . . . ,Qp the columns of Q representing the eigenvectors, we can write

x̂(y) = µ +
p

∑
k=1

ηk (〈Qk|y−µ〉)Qk, (12)

with ηk(z) =
λk

λk+σ2 z. Although the previous Wiener estimator is used in numerous recent patch-based
denoising methods [12, 19, 20], other choices are obviously possible for ηk, such as hard or soft threshold-
ing [8], or all estimators classically used in diagonal estimation.

Writing x̃ = Qt(x−µ), we can see that the conditional expectation x̂(y) is also solution of the optimiza-
tion problem

argmin
x̃
‖Qx̃− (y−µ)‖2 +σ

2x̃t
∆
−1x̃ = argmin

x̃
‖Qx̃− (y−µ)‖2 +σ

2
p

∑
k=1

x̃2
j

λk
.

This permits to see the link between the previous approach and the dictionary-based approaches, the dictio-
nary here being given by Q and the second term corresponding to a regularization of the solution x̃. Figure 7
represents the denoising of a noisy patch with the same Gaussian model and two different denoising strate-
gies: the conditional expectation (Wiener) and hard thresholding at 2.7σ (as recommended in [8]).

Figure 7: Clean patch, noisy patch (10% noise), denoised patch with gradient model (from Fig. 5) and
Wiener estimator (PSNR = 29.68dB), and denoised patch with gradient model and hard thresholding (PSNR
= 31.12dB, th = 2.7σ )
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4 From patches to images: aggregation procedures

In the previous sections, we have seen how to derive bayesian estimators to perform denoising on each
patch separately. In this framework, each observed patch yi from a noisy image v is denoised into x̂i,
which is an estimate of the unknown patch xi. Each pixel of the image v is contained in p patches, which
provide p denoised versions for this pixel. Most aggregation procedures consists in defining a reprojection
function ψ : Rm×p → Rm which reconstructs an image from the set of its denoised patches. Observe that
since denoised patches usually do not coincide on their overlap, this operation is not invertible. Moreover,
since the noise on overlapping patches is not independent, the p denoised versions of the pixel carry this
dependence under the form of low-frequency noise. In the literature, we find three main strategies for this
reprojection step:

• Central pixel reprojection. The idea is to keep only the central pixel of each denoised patch.

• Uniform reprojection. All the estimators coming from the different patches containing the pixel are
averaged with uniform weights. This strategy is the most commonly used in practice, and this is the
one we use in this chapter for the sake of simplicity.

• Weighted reprojection. All the estimators coming from the different patches containing the pixel are
averaged with weights representing the precision of the corresponding estimator. For some details see
[18, 17, 6].

A more involved strategy is explored in [24]. The authors propose to reconstruct the denoised image u
as the solution of

argmin
u

λ

2
‖u− v‖2

2−∑
j

log p(x j),

where the {x j} are the patches extracted from the unknown image u and p is a GMM prior on the image
patches. This formulation includes both the denoising and aggregation step into a single variational problem.

5 Inference of Gaussian and GMM priors

Gaussian models and GMMs appear to be well suited for patch based denoising. However, the quality of
the restoration strongly depends on the relevance of the model. Unfortunately, in real denoising problems
the perfect model is never known and the most challenging step is to find a good prior for each patch. In the
literature, we find essentially two strategies to learn these models. The first one consists in learning the model
on some external set of patches that represent the diversity of natural images [24]. The second one consists in
learning the model directly on the noisy patches [19, 12, 11]. In this section, we discuss different approaches
adopting the second strategy. Before going further, we recall some basics about statistical inference.

Given a set of patches {y1, . . . ,yn} ∈ Rp extracted from an image, we consider them as independent
realizations of a random variable Y with density φ depending on some parameters θ . The parameters θ of
the model are inferred by maximizing the likelihood of the data w.r.t. θ , where the likelihood is defined as

`(y;θ) =
n

∏
i=1

φ(yi;θ). (13)

Maximizing the likelihood is equivalent to minimize the negative log-likelihood

L (y;θ) =− log(`(y;θ)) =−
n

∑
i=1

log(φ(yi;θ)) , (14)
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which is usually more convenient for computation.
In the context of denoising, we put a prior model on the random vector X representing the clean patches.

When X follows a Gaussian model of parameters (µX ,ΣX), resp. a Gaussian mixture model of parameters
{πk,µk,Σk}k=1...K , then Y = X +N also follows a Gaussian model of parameters {µX ,ΣX +σ2I}k, resp. a
GMM of parameters (πk,µk,Σk +σ2I). Since ΣX (resp. Σk) is positive semi-definite and σ > 0, ΣX +σ2I
(resp. Σk +σ2I) is always positive definite. Thus, the random vector Y always has a probability density
function φ and the likelihood is always defined.

5.1 Gaussian models

In the case of a Gaussian prior X ∼N (µX ,ΣX) on the clean patches, the set of parameters on the noisy
patches is given by θ = {µY ,ΣY} where ΣY = ΣX +σ2I and µX = µY . The negative log-likelihood for a set
of noisy data {y1, . . . ,yn} becomes

L (y;θ) =
1
2

n

∑
i=1

(y−µY )
T

ΣY
−1(y−µY ). (15)

The computation of the maximum likelihood estimators (MLE) of the parameters, i.e. argminθ L (x;θ), for
µY and ΣY yields the sample mean

µ̂Y (n) =
1
n

n

∑
i=1

yi, (16)

and the sample covariance matrix

Σ̂Y (n) =
1
n

n

∑
i=1

(yi− µ̂Y )
T (yi− µ̂Y ). (17)

Theses estimators depend on the number n of samples and from the strong law of large numbers

µ̂Y (n)
a.s.−→

n→∞
µY and ΣY (n)

a.s.−→
n→∞

ΣY . (18)

This gives us an estimator Σ̂X := Σ̂Y −σ2I for ΣX satisfying

Σ̂X(n)
a.s.−→

n→∞
ΣX . (19)

In summary, for a given set of noisy patches {y1, . . . ,yn} we can easily compute the MLE of the param-
eters (µX ,ΣX) for the Gaussian model on the underlying clean patches. Now, since we showed in Section
2 that Gaussian models are representing really precise structures, the most challenging part is to choose the
set of noisy patches from which the model can be derived.

5.2 How to group patches to infer Gaussian priors?

In this section, we discuss how patches can be grouped in order to learn the previous Gaussian models
directly from a noisy image.
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5.2.1 Global Gaussian prior

The first really basic idea is to model the set of all image patches with a unique Gaussian prior. In this case,
we are modeling the whole “patch-space” by a unique Gaussian model of mean µ̂X and covariance Σ̂X . This
model poorly represents the complexity of the patch-space but still encodes some proper image information.
This modeling is adopted in [8] to perform a basic denoising by performing the eigendecomposition ΣX =
Q∆Qt and denoising the patches with an estimator of the form (12). Figure 8 illustrates the fact that the
eigenvectors of the covariance matrix learned on the whole patch space encode some proper information
about the image.

Figure 8: Visualization of the first 16 eigenvectors of the sample covariance matrix of the whole patch space
for two different images. Left: original images. Middle: the 16 first eigenvectors. Right: patches generated
with the low rank covariance matrix created from these eigenvectors.

In this case, since the Gaussian model is very broad, we do not expect the Wiener estimator to yield
good results. But since the eigenbasis seems to encode some proper information about the image patches,
the hard thresholding strategy manages surprisingly good denoising. The second line of Figure 9 shows the
denoising result for this global grouping with the two denoising strategies and shows that in this case, the
hard-thresholding strategy is better than the Wiener one.

5.2.2 Spatially local Gaussian priors

To derive more precise prior models, it is necessary to group “similar” patches and to restrict the inference
to each of these groups. A first possibility is to group patches based on their spatial proximity in the image.
This makes sense in homogeneous regions, but the risk is high to group patches representing really different
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structures. The third line of Figure 9 shows that the result of this strategy is not really better, PSNR-wise,
than the result of the global strategy. However, the Wiener strategy for this local approach seems nicer than
in the global approach, while the result of the hard-thresholding strategy does not really change.

5.2.3 Local Gaussian priors in the space of patches

In order to learn more precise models, patches can be clustered directly in the patch space and a Gaussian
model can be inferred for each cluster. All patches from the cluster can then be denoised using this model.
This clustering implies to use an appropriate similarity measure between patches. The fourth line of Figure
9 shows such a denoising experiment with a K-means clustering relying on the Euclidean distance, with
K = 256 clusters (Figure 10 shows the corresponding clustering). This usually yields a better denoising than
the global and the local grouping strategies.

This way of grouping patches in the patch space together with a Wiener filtering is also one of the main
ideas behind the two steps of the NL-Bayes algorithm [12]. In this algorithm, each patch yi is associated
with the group of all its ε-close patches for the Euclidean norm. A Gaussian model is inferred from this
group and the whole group is denoised using this model. The final estimator for each patch is the average
of all its denoised versions. The NL-Bayes algorithm uses this strategy twice: in the first step, distances are
computed directly between noisy patches in Rp; in the second step, distances between patches are computed
between the versions which have denoised during the first step. Grouping ε-close patches presents the
advantage of putting together patches representing the same structures. However, a straightforward one-step
implementation (fifth row of Figure 9) of this idea shows that it does not work as well as expected in practice.
Two major issues arise in this context:

• The high dimensionality of the patch space makes the estimation of the covariance matrix difficult;

• The use of the Euclidean distance for grouping does not allow similar patches with different contrast
to be in the same group, which is a loss because we saw in Section 2 that a Gaussian model can encode
information up to contrast changes.

The first issue, discussed in Section 5.4, is crucial and related to the curse of dimensionality. Unfortu-
nately, it is hardly taken into account in the image denoising literature.

To tackle the second issue, other norms were investigated in the literature [7]. Another idea is to use
the Gaussian models previously learned for recalculating new clusters. Indeed, each covariance matrix of
the different Gaussian models provides a semi-norm that can be used to recompute the ε-nearest patches of
each group.

5.3 Inference for Gaussian Mixture Models

The inference in the case of a mixture model is slightly more challenging since a direct maximization of the
likelihood is not possible. The negative log-likelihood of the noisy data {y1, . . . ,yn} is given by

L (y;θ) =
n

∑
i=1

log

(
K

∑
k=1

πkφ(yi;θk)

)
(20)

and the minimization of this function w.r.t θ is a complex problem. However, if we know to which group
each sample xi belongs, the log-likelihood becomes

L (y,z;θ) =
n

∑
i=1

K

∑
k=1

zik log(πkφ(yi;θk)) (21)
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with zik = 1 if yi belongs to the group k and 0 otherwise. L (y,z;θ) is the log-likelihood of the data completed
with the latent random variable Z that determines the group from which the observations come from, that is
Yi|(Zi = k)∼N (µk,Σk) and p(Zi = k) = πk.

The EM algorithm consists in iterating two steps ; the expectation (E) step that calculates the expected
value of (21) with respect to the conditional distribution of Z given Y for the current value of the param-
eters θ . And the maximization (M) step that consists in the update of the parameters by minimizing the
expectation of the complete log-likelihood from the E-step:

E(L (y,z;θ)) =
n

∑
i=1

K

∑
k=1

E(zik|xi,θ) log(πkφ(yi;θk)) (22)

which leads to tractable expressions for the MLE of the parameters. It can be shown (see for example [4])
that this algorithm converges to a local minimum of the log-likelihood (20).

In the precise case of a Gaussian mixture model, the two steps of the algorithm become

• E-step, computation of tik := E(zik|yi,θ)

tik =
πkφ(yi;θk)

∑
K
l=1 πlφ(yi;θl)

(23)

• M-step, update of the parameters

π̂k =
1
n

n

∑
i=1

tik, (24)

µ̂k =
∑

n
i=1 tikyi

∑
n
i=1 tik

, (25)

Σ̂k =
∑

n
i=1 tik(yi−µk)(yi−µk)

T

∑
n
i=1 tik

. (26)

Observe that if we impose the tik to be 1 when the patch i belongs to the group k and 0 otherwise, the
M-step consists in inferring the parameters of the Gaussian models for the groups, while the E-step uses the
knowledge of the inferred model to update the groups themselves. This model provides a better clustering
of the patches than a K-means clustering with the Euclidean norm (which only produces isotropic clusters)
and consequently should yield better denoising results. This idea is used in [20, 22, 11] and the GMM model
on patches is also used in [23]. A straightforward implementation of the denoising with a GMM model on
the patches gives the result in the first line of Figure 11. However, this inference of a GMM also strongly
suffers from the curse of the dimensionality and algorithms such S-PLE [20] or HDMI [11, 10] propose to
use Gaussian Mixture models with intrinsic lower dimensions in order to reduce the number of parameters
to estimate, as detailed in the following section.

5.4 Inference in high dimension

The dimensions of the patch spaces are usually high, from p = 9 (for 3×3 patches) to p = 100 for 10×10
patches, or even higher. Estimating the parameters of Gaussian models (or GMM) in such high dimensional
spaces is complex. When p is large, patches seen as points in Rp are essentially isolated, the euclidean
distance and the notion of nearest neighbor become much less reliable than in low dimensional spaces [9].
These phenomena, known as the curse of dimensionality, cause difficulties to decide which patches should
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be grouped together in a common Gaussian model. Besides, parametric models such as Gaussian Mixture
Models in high-dimension are usually over-parametrized: the covariance matrix of a Gaussian model in
dimension p = 100 contains 5050 different coefficients. They necessitate huge quantities of data to be
estimated correctly. Indeed, the convergence of the sample covariance matrices to the true covariance matrix
depends on the ratio between the number n of samples and the dimension p. More precisely, if n and p both
tend toward infinity while n

p tends toward a constant c > 0, the eigenvalues of the sample covariance matrix

Σ̂(n) do not necessarily converge towards the eigenvalues of the model covariance matrix (Marc̆enko-Pastur
Theorem [14] describes the limit law of the empirical distribution of these eigenvalues).

A consequence of the curse of dimensionality is that clustering methods such as K-means of GMM are
often disappointing in high dimension, or do not converge at all if p is too large. Solutions to circumvent
these problems usually rely on dimension reduction, or regularization of the model parameters. For instance,
if the sample covariance matrix Σ is singular of ill-conditioned, or is not definite positive, it is usual to add
a small εIp to it. This is the strategy followed by [12, 23]. In the case of Gaussian Mixture Models, another
approach consists in assuming that the intrinsic dimension of the Gaussian is lower than p. This is the idea
adopted in [20], where the groups intrinsic dimensions are heuristically fixed to 1 (flat regions), p

2 or p−1. A
more involved method consists in inferring for each group its own intrinsic dimension [11] (see Figure 11).
The corresponding parsimonious model assumes that each Gaussian of the mixture lives in its own specific
subspace.

6 Conclusion

In this chapter, we have focused on patch priors for image denoising. As we have seen, assuming Gaussian
and GMM priors on image patches is now quite common in the restoration literature. We have tried to pro-
vide a unified point of view for all of these methods, in order to underline their similarities and differences.
Table 1 summarizes the main features of the methods mentioned in this chapter. We have also described
some of their limitations, such as the inference difficulties in high dimension or the absence of invariance
properties to geometric transformations. We did not discuss the computational cost of these approaches, but
this point is clearly a critical issue for industrial applications.
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Figure 9: First line: two images and their noisy versions (σ = 30). Columns correspond to denoising
strategies (Wiener or Hard thresholding). Lines correspond to grouping strategies: 1. one Gaussian model
for all patches (PSNR, from left to right: 29.18dB, 31.22dB, 25.94dB, 26.85dB), 2. K = 256 local Gaussian
models in the image space, see Figure 10 (PSNR, from left to right: 29.14dB, 30.72dB, 26.28dB, 26.88dB),
3. K = 256 local Gaussian models from a k-means clustering, see Figure 10 (PSNR: 31.30dB, 31.09dB,
26.92dB, 27.08dB), 4. local Gaussian models for group of ε-close patches (PSNR: 30.45dB, 29.65dB,
26.72dB, 25.95dB).
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Figure 10: Left: the local grouping used in the local strategy. Middle and Right: the grouping used in the
K-means strategy for the two images Simpson and Alley.
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Figure 11: First line: Denoising with a full GMM model (50 groups) on all the patches. The clustering (left)
is quite noisy and the denoising result (right) is not very good (PSNR: 28.50dB). Second line: Denoising
with a GMM model (50 groups) with intrinsic dimension regularization as in [11]. The clustering (left) is
smoother and the denoising yields quite good results (PSNR: 31.23dB)
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