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 Static Quantized Radix-2 FFT/IFFT Processor for Constraints 

Analysis 

This research work focuses on the design of a high-resolution fast Fourier 

transform (FFT) /inverse fast Fourier transform (IFFT) processors for 

constraints analysis purpose. Amongst the major setbacks associated with such 

high resolution, FFT processors are the high power consumption resulting from 

the structural complexity and computational inefficiency of floating-point 

calculations. As such, a parallel pipelined architecture was proposed to statically 

scale the resolution of the processor to suite adequate trade-off constraints. The 

quantization was applied to provide an approximation to address the finite 

word-length constraints of digital signal processing (DSP). An optimum 

operating mode was proposed, based on the signal-to-quantization-noise ratio 

(SQNR) as well as the statistical theory of quantization, to minimize the trade-

off issues associated with selecting the most application-efficient floating-point 

processing capability in contrast to their resolution quality. 

Key Words:  DFT, IDFT, FFT, IFFT, quantized, floating-point, DSP 

1. Introduction  

Discrete Fourier Transform (DFT) is amongst the most fundamental operations in 

digital signal processing. However, the widespread uses of DFTs make its 

computational requirements an important issue. The direct computation of the DFT 

requires approximately N2 operations where N is the transform size. The breakthrough 

of Cooley-Tukey (CT) FFT comes from the fact that it reduces the complexity to an 

order of Nlog2N operations. The FFT is therefore an efficient algorithm to compute the 

DFT and its inverse (IDFT). It has several applications in the field of signal processing 

including the real-time processing of wireless time-domain and frequency-domain 

signals especially for use in Orthogonal Frequency Division Multiplexing (OFDM) 



systems such as Digital Video Broadcasting (DVB), Digital Subscriber Line (xDSL) 

and WiMAX (IEEE 802.16) [1-4]. These applications require large-point FFT 

processing, such as 1024/2048/8192-point, FFTs for multiple carrier modulation.  

Many FFT algorithms based on the CT decomposition such as radix-22, radix-23, 

radix-4, radix-(4+2), prime-factor as well as split-radix algorithms, have been proposed 

using the complex mathematical relationship to reduce the hardware complexity. The 

computational complexity and the hardware requirements are greatly dependent on the 

algorithm in use [2]. The conventional parallel architecture poses issues related to 

hardware cost, complexity, power consumption and is not easily flexible to meet other 

design constraints. As such, different architectures to efficiently map the different FFT 

algorithms to hardware have been proposed [3].  

A first approach for these implementations concerns time non-critical 

applications and has small hardware requirements, but it needs a significantly large 

number of clock cycles to compute a full FFT. For example, in [4] one butterfly unit is 

used for all computations and N+N.log2N clock cycles are required for the computation 

of the FFT. A second implementation approach is for speed demanding applications, 

where one butterfly unit is used for each decimation stage of a radix-2 FFT [5].  

A pipeline architecture based on the constant geometry radix-2 FFT algorithm, 

which uses log2N complex-number multipliers (more precisely butterfly units) and is 

capable of computing a full N-point FFT in N/2 clock cycles has been proposed in 2009 

[8]. However, this architecture requires a large amount of delay elements (memory size 

of N.log2N samples) and a quite complicated switching mechanism for the routing of 

the data. This commonly used pipeline architecture is characterized by continuous 

processing of input data as well as being highly regular, making it straight forward to 

automatically generate FFTs of various lengths [6]. All these developments have 



introduced their own disadvantages, in addition to the age-long finite word-length 

effects of digital circuitry [7-9]. This paper thus, uses the pipeline architecture [1],[2] to 

propose a model for the analysis of important design constraints like the finite word-

length effects and amount of resolution needed to achieve the appropriate SNR [8-10] 

for the desired design needs using the statistical tools for the analysis of a range of 

feasible resolution. 

2. Design Architecture  

A. Algorithm development of the decimation-in-time (DIT) radix-p FFT 

The DFT of an N-point sequence x[n] is given by: 

                                               For k = 0, 1, 2,...,N-1                                        (1) 

Where . 

Consider the general formula of the DIT radix-p FFT as follows: 

                                                                              (2) 

for k = 0,1,2,…,N/p-1 and r = 0,1,2,…,p-1. Using the above decomposition, the DFT 

can be reduced successively to N/p p-point DFTs. In general, this process can be 

repeated m times and therefore there are totally m stages in the implementation of the 

DFT.  

B.  Parallel Architecture 

The computational structure of a butterfly unit is shown in Figure 1. It is the 

fundamental computational of the parallel architecture.  
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Figure 1. Radix-2 butterfly unit 

The butterfly unit requires a complex multiply and two complex additions. 

Therefore, it takes a total of (N/2) Log2N complex multiplies and Nlog2N complex 

additions to compute all N-point DFT samples. An 8-point Radix-2 DIT FFT requires 

N/2 butterfly units per stage for all m stages. The input bit-reversed and inter-stage 

index routing gets even more complicated as the size of the unit N increases.  

For larger butterflies (N > 26), the processor becomes extremely complex and 

slow. Hence, a simpler and faster architecture is then required. Therefore, the proposed 

system was designed and simulated to reduce the system complexity by using control 

signals. Figure 2, shows the overall pipelined system structure and its designed control 

signals.   
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Figure 2.  Proposed over view of pipelined system algorithm 

C.    Pipeline Architecture 

The same butterfly unit can perform the N/2 butterfly operations computed in every 

stage sequentially. Since the two inputs of a next butterfly unit of a stage are provided 

from the output of the butterfly unit of the previous stage at different time points, a 



shuffling unit is inserted between two successive butterfly units in order to route these 

outputs to the corresponding inputs of the next stage. Figure 3 shows the inner layer of 

proposed FFT processor design.  
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Figure 3. Proposed inner layer of FFT/IFFT Processor 

The signal input is inserted at the control signal to program the processor 

functionality. The control signals are to select FFT or IFFT calculation, while the other 

enables and disables the quantization of the twiddle factors. Figure 4 illustrates the 10 

stages butterfly for 1024-point pipeline FFT/IFFT processor.  
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Figure 4. Ten-Stage 1024-point pipeline processor 

In the proposed design, excluding the input stage, the rest of stages consist of the 

twiddle factors, the shuffling unit and a floating-point quantize model. The interval of 

the quantize unit for each stage is preset statically and this is used to vary the bit-

resolution of the processor. Figure 5 shows the flowchart of overall system operation 

while quantizing is applied.   
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Figure 5. Proposed overall system operation 

The IFFT computation uses the same fundamental Radix-2 DIT Butterfly unit. 

However, the input is scaled by the factor of N (1024). These discrete input values are 

then sent through the processor stage, which performs the same operation except that 

the conjugate of the twiddle factors are used instead. The output stage simply compares 

the results of the proposed FFT/IFFT Processor with the idle FFT/IFFT processor and 

their difference is observed as system error that will be analysed in the next chapter.   

3. Statistical Theory of Quantization 

A. Uniform Quantization 

One would expect that quantization has a similar effect on functions of the amplitude as 

sampling has on functions of time. Quantization is an operation on signals that is 

represented as a “staircase” function. The probability of each discrete output level 



equals the probability of the input signal occurring within the associated quantum band. 

For example, the probability that the output signal has the value zero equals the 

probability that the input signal falls between , where q is the quantization box size 

[8]. Figure 6 shows the model of quantizing 

 

 

Figure 6. Uniform Quantize Model 

 

The quantize error (h) is given as 

                                        h = x – Q(x)                                         (3) 

If x and h are real, with probability density function (PDF) as Px(.), then the 

quantization error variance is 

 

                              (4) 

                                                                            (5) 

                                                                                            (6) 

where q is the quantization interval, b is the number of bits. Quantization noise is 

defined as the difference between the output and input of the quantizer. 

Since the quantized unit is designed in the proposed processor to enhance the 

calculations, Figure 7 illustrates a plot of the error versus the number of bits for the 

uniform quantizer, while Figure 8 shows a comparison of the mean, standard deviation 

  Q   x Q(x) 



as well as variance of the uniform quantization model achieved by the proposed FFT 

Processor. 
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Figure 7. Error of the Uniform Quantization 

The probability of getting a given error value is the sum of probabilities of all 

the quantization boxes. The uniform quantize model performs uniform quantization on 

the signal input and thus, a linear signal is required at the input. Fixed-point numbers 

are considered linear since the Radix point remains fixed. However, this research was 

focused on floating-point numbers hence; the response of the uniform quantize to 

floating point input was observed. As result, the quantization noise was increased. 

Equation (6) gives an expression for the SNR of the quantizer using the ratio of the 

variances of the input to noise.  

 

Figure 8. Measured dispersion of uniform quantizer 

 

 



B. Non-Uniform Quantization 

The uniform quantization model is usually not used for floating-point quantization due 

to the overall non-uniform characteristic of the latter. Quantization of floating-point 

numbers is carried out only on the mantissa hence; it is more relevant to consider the 

relative error ε caused by the quantization process. The relative error defined in terms of 

the numerical values of the quantized floating-point number Q(x) = 2e Q(M) and the un-

quantized number x = 2e M is given as 

                                                                                         (7) 

It is possible however, to represent the floating-point quantizer using a 

combination of a compressor, a uniform quantizer and an expander. Figure 9 shows the 

non-uniform quantized model. 

 

     

Figure 9. Non-uniform quantization model 

 

                                                                               (8)  

An expression for the variance is shown in equation (8). The variance from the 

floating-point quantization equals half that obtained from the uniform quantization 

which is a generally preferred characteristic. Figure 10 determines that the stability of 

the processor performance such that no variation occurs when the number of bits is 7 

bit, unlike that of the uniform quantization which attains this stability at bit position 

eight 8, as shown in Figure 7. That is the advantage of the system while modelling the 

floating-point structure. 
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Figure 10. Error variance of the non-uniform quantized model 

In addition, bit position 2 of Figure 10 gives minimum swing before stability, 

contrary to that of Figure 7, which occurs at bit position 3. This minimum swing gives a 

false minimum error position and is used for less sensitive applications in which 

minimum error is not important. Figure 11 illustrates the comparison between mean, 

standard deviation when number of bit increased.  

 

Figure 11. Comparison of the measured dispersion of non-uniform quantization 

4. Discussion 

Statistical parameters like the mean, standard deviation and variance were used to 

analytically develop expressions for the variation in error as a function of the 

quantization interval. These parameters were also known to have relationships with the 

SQNR. The percentage error of the non-uniform quantization generally decreased with 



an increase in the quantizer interval. As such, the SQNR is increased with respect to the 

quantization step size. The same general trend was observed in the uniform 

quantization, as well as the FFT and IFFT results. Figure 12 shows the error variation 

when the bit resolution increased.  

 

Figure 12. Error variation of the FFT processor 

The general trend observed from the results indicates that the measured 

dispersion can only be valuable when they are used alongside the mean since the mean 

actually provides the benchmark for understanding the decreasing trend. Figure 13 

shows the mean standard deviation and variance when the number of bit increased.  

 

Figure 13.  Measured dispersion of FFT/IFFT processor 

Therefore, the variance is decreased as quantization interval increased. Hence, 

the variance is inversely proportional to the percentage error, and as such, inversely 



proportional to the SQNR. This provides experimental proof to the theoretical models 

given earlier and provides a benchmark for the trade-off between the SQNR and the 

resolution. In other words, bit number increasing has significant effect on resolution 

improvement.  As shown in Figure 14 the error variation also decreased as bit resolution 

increased. In addition, it proves that higher number of data point in FFT processor will 

leads to have high accuracy spectrum measurement.  

 

Figure 14.  Error variation of IFFT processor 

5. Conclusion 

The percentage error and all the measured dispersion were found to decrease as the bit-

resolution increased. This shows how the SQNR improves with bit-resolution. Although 

the power requirement for such SQNR systems are high, the proposed architecture 

provides an ease in the trade-off decision between the SQNR, power requirement and 

bit-resolution of the Radix-2 FFT/IFFT processor. 
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