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Abstract A directional coding (DC) method is proposed to extract rotation
invariant features for texture classification. DC uses four orientations in 3× 3
neighborhood pixel. For each orientation, the rank order of the central gray
level pixel is calculated. The four ranks are used to get 15 codes. The codes
are combined with the information of the central pixel to extract 30 rotation
invariant features. For a multi-resolution study, DC is calculated by altering
the window size around a central pixel. The number of samples is restricted
to eight neighbors by local averaging. Therefore, in each single scale DC his-
togram, the number of bins is kept small and constant. Outex, CUReT and
KTH TIPS2 databases are used to evaluate and compare the proposed method
against some state of the art local binary techniques and other texture anal-
ysis methods. The results obtained suggest that the proposed DC method
outperforms other methods making it attractive for use in computer vision
problems.
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1 Introduction

Texture is one of the most important features in image processing and machine
vision applications. Although texture analysis and classification have been ex-
tensively investigated over the past few decades, it is still an open problem,
particularly for complex textured surfaces under varying luminance and view-
ing conditions. Many methods were proposed [1] where early ones were fo-
cussed on the statistical analysis of texture images such as the co-occurrence
matrix method [2]. Later on, many model-based methods were proposed in-
cluding circular autoregressive model [3] and Markov Random Fields [4–7].
Rotation and scale invariant features obtained through filter bank responses
are also proposed in [8–10].

Local binary patterns (LBP) proposed by Ojala et al. [11] are one of the
most important statistical features that have attracted much attention in re-
cent years. In this method a neighborhood around each pixel is first defined,
then the relationship between neighborhood pixel is exploited. Many exten-
sions of this approach have recently been proposed [12–14]. For example, Liao
et al. [15] extracted the most frequent patterns of LBP histograms to de-
tect the dominant patterns which generate the new descriptors; the authors
also used Gabor filter as a second feature to enforce the classification task.
Heikkila et al. [16] proposed center-symmetric LBP(CS-LBP) by comparing
center-symmetric pairs of pixels instead of comparing neighbors with the cen-
tral pixels. Guo et al. [17] proposed to include both the signs and the magnitude
and the center pixel intensity in order to improve the discriminative power of
the original LBP operator. Khellah [18] proposed a Dominant Neighborhood
Structure (DNS) method which fused the local LBP with global rotation-
invariant features extracted from the generated image dominant neighborhood
structure.
Although LBP and its variants have achieved impressive classification results
on representative texture databases, there still remain some potential flaws
mostly the limiting of LBP variants to three scales , failing to capture long
range texture information [19]. Also, LBP variants often classify many differ-
ent patterns into a same class [20].

In this paper, we propose a novel method to extract compact, discrimina-
tive and rotation invariant features. The Directional Coding method is based
on directional information representing the rank order of the central gray level
pixel calculated in four orientations in 3×3 neighborhood pixel. The four ranks
are exploited to get 15 codes which are combined with the information of the
central pixel resulting in 30 rotation invariant features. For multi-resolution
study, DC is calculated by altering the window size around a central pixel.
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Fig. 1 (a) a 3 × 3 neighborhood pixel ,(b) the fourth elements used for coding .

The number of samples is restricted to eight neighbors by local averaging.
Therefore, in each single scale DC histogram, the number of bins is kept small
and constant.

The rest of this paper is organized as follows: section 2 introduces the
rotation invariant texture descriptor, in section 3 results and discussions are
presented. Finally the conclusions are given in section 4.

2 The directional coding method

We propose a new feature descriptor which is evaluated by taking into con-
sideration the magnitude of local difference between the central pixel and its
neighbors. Therefore, this scheme differs from the existing LBP in such a way
that it extracts the information based on the distribution of local extrema in
the four direction of a 3× 3 pixel neighborhood.

For this encoding, we consider a series of neighborhoods composed of four
elements. Each element is defined by a central pixel x and two aligned adjacent
pixels surrounding it in a particular direction as shown in Fig.1. This allows
for the scanning of the four main directions 0◦, 45◦, 90◦ and 135◦.

This coding is processed in three steps:
First, for each direction, the rank of the gray level of the central pixel is defined.
The detailed explanation of θ direction calculation is given as follows: Let x
be the central pixel, pi (i = 1, 2) are its two surrounding pixels according to θ
direction. I(x), I(pi) are their corresponding gray levels .

rankΘ(x) =

2∑
i=1

F (I(x), I(pi)) θ = 0◦, 45◦, 90◦, 135◦ (1)

F (a, b) =

{
1, (a− b) ≥ 0
0, otherwise

(2)

The possible values of rankΘ(x) are 0, 1 and 2. It can be noted that
if rankΘ(x)=0; I(x)represents the minimum gray level according to the di-
rection θ; in contrast it represents the maximum gray level if rankΘ(x)=2.
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The four directional ranks are associated in one vector noted Rank , Rank=
[rank135 rank90 rank45 rank0]. So, the vector Rank brings directional extrema
which is a significant and important information for texture characterization.

Second, to remove the effect of rotation and extract rotation invariant fea-
tures, the three values n0, n1 and n2 corresponding respectively to the number
of 0, 1 and 2 in the vector ranks are exploited . n0 corresponds to the number of
times the central gray level pixel is a minimum (rankΘ(x)=0) while n2 repre-
sents the number of times the central gray level is a maximum (rankΘ(x)=2).
n1represents the number of times the central pixel has an intermediate gray
level (rankΘ(x)=1). n0, n1 and n2 can be obtained using the following equa-
tions:

nl =

4∑
i=1

f(Rank(i), l)) l ∈ [0, 2] (3)

f(a, b) =

{
1 a = b
0, otherwise

(4)

nl is included in the closed interval [0,4], such that
∑2
l=0nl=4. There are

15 possible combinations of the three values n0,n1 and n2 which are 400, 040,
004, 211, 112,121, 013, 031, 022, 202, 220, 310, 103, 310 and 130. For example,
the combination 301 means that the central gray level pixel is a minimum on
three directions and a maximum on one direction.
It has been proven that the central pixel can be used to express the local
gray level in image[16,17]. Therefore, to find the DC operator, nl are jointly
combined with the information of the central pixel using C which thresholds
the central pixel against the global mean gray value of the whole image ac-
cording to equation (6). As nl is included in the closed interval [0,4], it can
be presented in base 5. So to find the DC operator, the code (C n2 n1 n0 ) is
converted to decimal code using equation (5). The DC operator produces 30
rotation invariant features.

DC(x) = n0 × 50 + n1 × 51 + n2 × 52 + C × 53 (5)

C = F (I(x)− 1

N ×M

N∑
i=1

M∑
j=1

I(i, j)) (6)

N ×M represent the size of texture image, F is defined in (2).

Fig.2 shows two examples of calculation of the DC code. The gray level of
the center pixel is first classified according to the four directions: 0◦, 45◦, 90◦

and 135◦. In the first example, at direction 0◦, the central pixel is surrounded
by two neighbors having a corresponding gray level of 64 and 32. As such, the
rank of the central pixel equal to 1 (Rank0=1). Also, at each direction 45◦and
90◦, the central pixel has the maximum gray level and its rank is equal to 2
(Rank45=Rank90 = 2). Also, the rank of the central pixel at direction 135◦ is
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Fig. 2 Two examples of computing DC

0 (Rank135=0), since the gray level of the two neighbors are greater than that
of the central pixel . DC is finally calculated by combining the three values
n0, n1 and n2 with C according to equation 5 (we assume in this example that
C = 0). The final value of DC is 56 . In the second example, the central gray
level pixel is a minimum in three directions (n0 = 3) and a maximum on one
direction(n2 = 1). The final value of DC is 76.

After computing the DC for each pixel (i,j), the whole image I is repre-
sented by building an histogram using equation (7)

HDC(I) =

N∑
i=1

M∑
j=1

f(DC(i, j), l) l ∈ [0, L] (7)

L is the maximal DC code value, f is defined in (4).

2.1 Multi scale DC

For a multi-resolution study, DC feature Histogram is concatenated over the
multiple scales. To limit the growth in histogram bins with scale, we deploy
the strategy proposed in [19] with the neighbors of the central pixel x are
sampled on square neighborhoods having a window of size s× s. The number
P of neighbors is restricted to be a multiple of eight, thus P=8× q for positive
integer q.

xs,8q = [xs,8q,0, ..., xs,8q,8q−1] (8)

The neighbors vector xs,8q is transformed by local averaging to ys,q, such that
ys,q=[ys,q,0,...,ys,q,7], the number of neighbors in ys,q is always eight according
to equation (9)
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Fig. 3 Illustration of transforming original neighborhood into new one with 3 × 3 window
size. The different colors correspond to the 4 directional neighborhoods used in DC operator

ys,q,i =
1

q

q−1∑
k=0

xs,8q,(qi+k) i = 0, ..., 7 (9)

Fig. 3 illustrates an example for transforming the original neighborhood xs,8q
into ys,q according to equation 8, for example y5,2,0 =

x5,16,0+x5,16,1

2 and y7,3,1 =
x7,24,3+x7,24,4+x7,24,5

3
The DC code is calculated for different spatial resolutions by altering the

window size s×s. Given ys,q=[ys,q,0,...,ys,q,7], DC is computed with respect to
the central pixel for different scales according to equations (1) and (2). Finally,
the DC feature Histogram is concatenated over the multiple scale resulting in
,it has n× 30 dimensional features, where n is the number of scales.

3 Results and discussions

To demonstrate the performances of the proposed technique, experiments were
performed on three comprehensive databases: Outex [21], CUReT [22]and
KTH TIPS2b [23], summarized in table I. These databases have different prop-
erties such as different number of classes, rotation, illumination and poses.
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Table 1 Summary of texture datasets used for classification

Dataset name No of classes Images Per class Total images Image size(pixels)

OUTEX 24 200 4800 128 × 128
CURET 61 92 5612 200 × 200
KTH 11 432 4752 200 × 200

Each texture image is converted into gray scale and normalized to zero mean
and unit standard deviation. DC feature Histogram is concatenated over five
scales by altering the window size from 3×3 to 11×11. The features are com-
puted at each resolution as described in Sect. 2.1. The concatenating features
histogram is noted MSn, n is the number of scales.
The k nearest neighbors (k-NN) classifier was trained with a subset of tex-
tures from each class, and its ability to recognize textures of the same class at
different alterations was then evaluated. The k-NN is used with χ2 distance
defined as:

χ2(a, b) =
1

2

∑
i

(ai − bi)2

(ai + bi)
(10)

Where a and b are the features vectors. The number of k-NN was fixed to one
for all experiments.

Our proposed method was compared with the conventional LBP approach
and some of its modified approaches such as DLBP[15], CLBP[17], and DNS[18].
VZ-MR8 [8] and VZ- Joint[24] are also used for comparison.

3.1 Experiments on Outex Database

The Outex database includes two test suites: Outex TC 0010 and Outex
TC 0012 which were created for the classification of rotation invariant tex-

tures, and also for classification of rotation and illumination invariant textures,
respectively. These two test suites contain the same 24 classes of texture as
shown in Fig.4. Each texture was collected under three different illumination
conditions (”inca”, ”tl84” and ”horizon”) and nine different rotation angles
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦). There are 20 nonverlapping 128× 128
texture samples for each class under each setting. Therefore, there are three
datasets in total each contains 4320(24×20×9) different texture samples. The
experimental setups for both sets are as follows:
1. For TC10, samples of illuminant ”inca” and angle 0◦ in each class were
used for classifier training and the other eight rotation angles with the same
illuminant were used for testing. Hence, there are 480(24 × 20) models and
3840(24× 8×20) validation samples.
2. For TC12, the classifier was trained with the same training samples as TC10,
it was tested with all samples captured under tl84 and horizon light illumina-
tion referred respectively by ”TC12 000” and ”TC12 001”. Hence, there are
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Fig. 4 Samples of 24 classes in Outex TC 0010 and Outex TC 0012.

Table 2 DC performance as a function of number of scales, the highest classification accu-
racy highlighted in bold

Outex Databases MS1 MS2 MS3 MS4 MS5

TC10 95.39 96.48 97.24 96.80 96.22
TC12 000 87.11 91.46 92.85 92.94 92.87
TC12 001 86.71 90.97 92.57 92.94 92.73

Table 3 Comparison of the proposed method with other texture analysis methods on TC10
and TC12 datasets. The two highest classification accuracies are highlighted in bold

Methods TC10 TC12 000 TC12 001 Features number

LBP riu2
P,R /Var[11] 97.7 87.3 86.4 242

VZ-MR8[8] 93.59 92.55 92.82 610
VZ-Joint[24] 92.00 91.41 92.06 610
DLBP+NGF[15] 99.1 93.2 90.4 K80%

CLBP riu2
P,R [17] 99.14 95.18 95.55 2200

DNS + LBP24,3[18] 99.27 94.40 92.85 242
DC(MS3) 97.24 92.85 92.57 90
DC(MS4) 96.80 92.94 92.94 120

480(24× 20) models and 4320(24× 20×9) validation samples for each illumi-
nant.
We evaluated the classification performance of the proposed method as a

function of number of scales. Table 2 presents the results obtained from one to
five scales. The best performance is obtained using threes scales for TC10 and
four scales for TC12. Compared to several methods in literature (Table 3), the
proposed method features is competitive with the most successful techniques.
Especially on TC12, the classification rate of DC appears among the best using
the smallest number of features, for example the classification rate of CLBP
is more successful however CLBP feature size (2200) is about eighteen times
the feature size of DC (120).
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Fig. 5 Sixty-one homogeneous texture samples from the CUReT data set .

3.2 Experiments on CUReT database

The CUReT database consists of 61 different material surfaces where each one
is observed with 205 combinations of viewing and illumination directions(see
Fig.5). However, only 92 samples per class are selected for the classification
task. In this experiment, different numbers of images (46, 23, 12 and 6) per
class are randomly chosen for training. For each case, the average classification
accuracies of 50 samples of training and testing sets are used to assess the
performance.

As for the Outex data base, the results have shown an increase of the
classification rates when the number of scales is increased (Table 4). The max-
imum is achieved using five scales (MS5) when the number of samples N equals
46 or 23. However, the maximum is obtained for three scales (MS3) when N
equals 12 or 6. Compared against other well-known methods from the litera-
ture, the proposed method achieves attractive results. As indicated in Table
5, the proposed DC significantly improves the others methods . For exam-
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Table 4 DC performance as a function of number of scales, the highest classification accu-
racy highlighted in bold

Methods Number of training sample (N)

46 23 12 6
MS1 58.01 56.71 53.28 52.17
MS2 95.72 94.40 91.92 87.45
MS3 98.41 96.84 94.50 89.23
MS4 98.50 96.88 94.01 89.21
MS5 98.67 97.01 94.14 88.48

Table 5 Comparison of the proposed method with other texture analysis methods on
CUReT dataset. The two highest classification accuracies are highlighted in bold

Methods features size Number of training sample (N)

46 23 12 6

VZ-MR8[8] 610 97.79 95.03 90.48 82.60
VZ-Joint[24] 610 97.66 94.58 89.40 81.06
DLBP+NGF[15] K80% 84.1 - - -
DNS + LBP16,2[18] 234 95.00 - - -

CLBP riu2
P,R [17] 2200 97.39 94.19 88.72 79.88

DC(MS3) 90 98.41 96.84 94.50 89.23
DC(MS5) 150 98.67 97.01 94.14 88.48

ple,the best classification rates obtained by VZ-MR8 with different number of
training images(N=46, 23, 12 or 6) are respectively 97.79%, 95.03%, 90.48%
and 82.60%. With the same configuration setting the DC(MS3) reaches clas-
sification rates of 98.41%, 96.84%, 94.50% and 89.23%.The best classification
accuracy achieves(98.67%) which is obtained with DC(MS5) improves the state
of the art performance on this date set. It is to be noted that when the num-
ber of training sample is small, larger improvement is achieved. For example
DC(MS3) achieves 0.6 % higher than VZ-MR8 when N=46, while difference
is more than 7% when N=6. Also VZ-MR8 feature size (610) is about seven
times the feature size of DC (90).

3.3 Experiments on KTH-TIPS2 database

The major drawback of the CUReT database is that materials are imaged
at a constant scale. In contrast, the KTH-TIP2-b database [19] uses different
distances from the camera. It includes four physical samples of 11 different
materials similar to those used in CUReT database (see Fig.6). These samples
were imaged with variation in scale as well as variations in pose and illumi-
nation. Images were taken in combination of three poses, four illuminations
and nine scale yielding 108 images per each physical sample. The images are
then cropped to a size of (200× 200) pixels and the four physical samples are
categorized into one texture class. In result the database contains 4752 images
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Fig. 6 The KTH-TIPS2 data set includes 11 different texture classes.

Table 6 Comparison of the proposed method with other texture analysis methods on
KTHTIPS2b dataset. The two highest classification accuracies are highlighted in bold

Methods features size Number of training set

1 2 3

VZ-MR8[8] 610 46.1 52.0 55.3
VZ-Joint[24] 610 53.5 60.0 61.0
DLBP+NGF[15] K80% 49.3 55.1 58.0

CLBP riu2
P,R [17] 2200 55.0 61.1 67.7

DC(MS1) 30 54.17 61.08 64.88.0
DC(MS2)s=3,17 60 59.99 64.47 68.56

(11×108×4). For this purpose we used three configurations, with one, two and
three training sets per class. The sets 1,2,3 and 4 were combined as (training,
testing) couples with all possible combinations; for one training set we have
the couples (1,2∪ 3∪4), (2,1∪ 3∪4), (3,1∪ 2∪4), (4,1∪ 2∪3). For two training
sets (1 ∪ 2,3 ∪ 4),(3 ∪ 4,1 ∪ 2), (1 ∪ 3,2 ∪ 4), (2 ∪ 4,1 ∪ 3), (1 ∪ 4,2 ∪ 3) and
(2 ∪ 3,1 ∪ 4). Three training sets yield (2 ∪ 3∪4,1),(1 ∪ 3∪4,2),(1 ∪ 2∪4,3) and
(1 ∪ 2∪3,4).The classification score is the average of all combinations scores
for each configuration.

As indicated in Table 6, the proposed DC method achieves the best classi-
fication accuracy when compared against the other techniques including VZ-
MR8, VZ-joint and CLBP. The best result is obtained using two scales(MS2),
The two windows size(s=3,s=17) are chosen after many tests. The DC classi-
fication accuracy achieves 59.99%, 64.47% and 68.56% for one, two and three
training sets, respectively. Note that with even one scale (MS1) using only 30
features, the proposed method achieves a significant classification rate com-
pared to other methods which prove the relevance of the DC features.

3.4 Computational Complexity

The DC algorithm is very fast. Its computation is linear with respect to the
number N of pixels in the image and to the cardinality P of the neighborhood.
The procedure has a complexity in time of O(N × P ).
All experiments in this paper have been implemented on a PC with Intel i5
core, 4G RAM Windows 7 and Matlab version 7.10(2010a). The time elapsed
to extract the 30 features from a texture image of size 200× 200 is about 0.08
seconds.
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4 Conclusion

We have proposed a novel method to extract compact, discriminative and ro-
tation invariant features. We have evaluated the proposed descriptor over a
wide range of textures using, Outex, CUReT and KTH TIPS2 databases and
studied different problems related to texture recognition such as the effect of
illumination, rotation and scale change, and also the influence of the number
of the training samples. Compared with the other state of the art methods,
the proposed method acquired the highest classification rate on CUReT and
KTH-TPS2 databases; it also had promising results on Outex database. Ac-
cording to its simplicity and its small features size, the proposed method opens
opportunities for other researcher to work on different parts such as employing
other multi resolution analysis.
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