
HAL Id: hal-01800741
https://hal.science/hal-01800741

Preprint submitted on 21 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified framework for control structures in interactive
software

Stéphane Chatty

To cite this version:
Stéphane Chatty. A unified framework for control structures in interactive software. 2018. �hal-
01800741�

https://hal.science/hal-01800741
https://hal.archives-ouvertes.fr

A unified framework for control structures
in interactive software

Stéphane Chatty
Université de Toulouse - ENAC

7 av. Edouard Belin, 31055 Toulouse, France
chatty@enac.fr

ABSTRACT
Control structures such as event passing, state machines and
data flows help programmers express the behavior of interac-
tive software. But used alone they cannot describe systems
in their totality, and when combined with standard control
structures their semantics becomes unclear. This article pro-
poses a set of requirements for unifiying all control structures
in a general framework. It then proposes a candidate frame-
work in which all software components can be described by
processes and their interactions by process couplings. Cou-
plings are the basic block from which control structure such
as state machines, data flow connectors, sequences and func-
tions can be derived. We show how a wide variety of pro-
gramming situations and architecture patterns can be de-
scribed by combining these control structures. The power of
expression and interoperability provided unlock possibilities
such as interaction-oriented programming languages.

ACM Classification Keywords: H5.2 Information Interfaces
and presentation: User Interfaces; D3.3 Programming Lan-
guages: Language Constructs and Features.

General terms: design; human factors; languages

Author keywords: interactive software, programming lan-
guage, control structure, data flow, state machine, process

INTRODUCTION
Interactive software is long known as costly to produce [26].
This is harmful to high complexity sectors such as aeronau-
tics, where the need for multiplying user interface proto-
types to support validation processes comes up against the
cost of creating prototypes. This also impacts end users, be-
cause programming their digital environment often involves
interaction-related concepts [8].

Various fields, from computation to distributed systems and
artificial intelligence, have produced general purpose pro-
gramming languages. Imperative, functional, object-oriented,
reactive or logic-based, these languages have evolved un-
til communities of programmers have considered them well
founded and adequate for their goals. Interactive software,
with its focus on states and events, seems singular enough
to justify the emergence of interaction-oriented programming

2015 VERSION
FILED IN 2018 AS hal-01800741

languages. However, most interactive software still relies on
a mix of mainstream languages and user interface toolkits that
provide additional concepts, with little theoretical foundation.

This article is a contribution toward the emergence of general-
purpose interaction-oriented programming languages, in the
hope that well defined semantics and wide expressivity will
facilitate interactive software development. We focus here on
execution control, and on the goal of unifying control struc-
tures in a single framework. We first contrast the status of
standard and interaction-oriented control structures, and com-
pare their evolutions. We formulate requirements for a con-
trol framework, that is a set of control structures that cov-
ers the needs of interactive software. We show how, using
a process model, known control structures ones can be de-
rived from a single primitive. Relying on an implementation
of this control framework and its use in full-size applications,
we follow Dix’s recommendations for works on theories in
HCI [9] and demonstrate through examples how the frame-
work meets the requirements. We conclude on the practical
consequences for tools aimed at designers and programmers,
including dedicated programming languages.

LIMITS OF HYBRID MODELS
User interface toolkits come with control structures, which
are gaining importance as post-WIMP interaction requires
designers and programmers to create interactors themselves.
Formulating the internal behavior of a button is easier with a
state machine than with function calls [1], formulating how a
window can be moved and zoomed at the same time is easier
with data flows, and so on.

The role of control structures such as events, state machines
and data flow has been well established by practice, but it
has not replaced the use of traditional control structures. Pro-
grammers use mainstream languages such as Java or C++ not
only to write the non-interactive part of their software, but
also as a host infrastructure to combine control structures.

These hybrid solutions that combine models of execution
have practical merits. Still, there would be benefits in hav-
ing more integrated solutions that clarify the links between
models and dispense from using host languages. One of the
limits of hybrid models is that they are not self-sufficient and
do not provide answers to questions such as:

• data flows and state machines both involve notification;
what is the underlying mechanism that explains this? For
example, why can pointer movements be used as sources

1

to both data flows (to drive a cursor) and state machines (to
implement drag and drop)?

• an on/off switch can be described with a state machine that
emits events, but it also has a value (on or off) that could
feed a data flow. Why and how can this be used?

• an animation trajectory has similarities with both a compu-
tation function and an iterator. What exactly is common,
and can it be factorized?

In other contexts programmers are used to well founded mod-
els that give clear answers to such questions, and do so be-
cause they rely on a few independent primitives from which
all other concepts are derived. A Smalltalk programmer who
wonders about the similarities between expressions [3 + 5]

and [myrect draw] can use the object and message concepts
to understand the roles of 3 and +. A Lisp programmer can
understand the similarities between (mapcar) and (reduce)

by returning to functions and argument lists.

The benefits of such models go beyond mere comprehension,
because they show how the constructs are interoperable, ei-
ther to connect them or to replace one with another with min-
imal refactoring. For instance, understanding the links be-
tween (mapcar) and (reduce) allows to reuse functions and
lists when modifying an algorithm. At the opposite:

• converting a pointer from event style to data flow style re-
quires code written in the host language (eg. see [2]);

• same for turning an on/off switch into a data flow brick;

• the similarity between animation, iteration and computa-
tion cannot be exploited easily in a sequential language.

By showing how standard constructs are made, these mod-
els also suggest other combinations and stimulate creativity.
For instance, Python generators exploit the common roots of
iterators and functions in the object-oriented model. Finally,
being self-sufficient these models support the use of pivot for-
mats for code analysis, MDE techniques, formal techniques,
and graphical programming tools, all of which are partly de-
feated by the use of host languages in hybrid solutions.

COMPUTATION, INTERACTION: REPEATING HISTORY
Unified models are desirable, but available only when no in-
teraction is involved. Comparing computation and interaction
can provide lessons as to how unification can be attained.

Tracing the border between interaction and computation
The split between functional core (FC) and user interface (UI)
proposed in the literature does not capture these situations:
programmers more and more use hybrid solutions for both
FC and UI. In addition, some FCs are interactive software,
for instance a plant supervision system. And some interactive
programs have no FC or UI worth mentioning, for instance
one that says “stop the heating and email me when the tem-
perature is above 20◦C”.

Consequently, we define interaction-oriented and
computation-oriented software using the following dis-
tinction: control is internal in computation, external or mixed

in interaction [18]. Given this distinction, we can study
the evolution of control structures in computation so as to
establish requirements and research directions for interaction.

Control structures: from expressiveness to simplicity
Imperative and functional programming have been the domi-
nant paradigms for a few decades. An imperative program is
a series of instructions whose order describes their execution
sequence. Over time, new control structures have been intro-
duced so as to make algorithms easier to write and to provide
simple support for more complex situations: loops, condi-
tions, functions, coroutines, generators, aspects, etc. These
extensions were often made at the expense of generality [12]
and simplicity: it was expressiveness first.

In contrast, functional programming was advocated for its
conceptual simplicity [3]. A program is a function that calls
other functions, and control structures are provided as func-
tions. Functions are the root primitive of the control frame-
work, which gives strong internal consistency. Later, the
introduction of object-oriented programming and prototype-
oriented programming brought a similar measure of concep-
tual unification to imperative programming, all instructions
being considered as message exchanged with objects [28].

This history of control structures can be analyzed as the pro-
gressive capture of the requirements of a population of users.
First starts a process of identifying concerns and embedding
them in a design. Then because conceptual simplicity is an
important design feature [4, pp. 42-44], starts a second pro-
cess of unification toward simplicity. This could have ended
there, but then programs became interactive and the two de-
sign processes started again.

Interaction: new concerns, new control structures
At first, interaction was through terminals and this only re-
quired marginal changes, because the query-response style is
compatible with standard control structures. Real changes
came with graphical user interfaces. Drawing can still be
described as sequences of instructions, but the execution of
programs became more controlled by external input than by
their own sequence of instructions. The concept of external
control appeared [15] and events became a new control struc-
ture, implemented with extensions such as callback functions
or signal/slot patterns.

Then graphics became more and more encapsulated and algo-
rithms disappeared from the concerns of programmers. The
behavior and the reuse of interactive components became
more central. Programmers started to face the spaghetti of
callbacks [23], and new control structures were needed.

Because these new concerns were specific to user interfaces,
they were not treated in programming languages but in graph-
ics libraries. State management was one of the earliest, first
to describe the global dialogue between the user and the pro-
gram [17], then to describe the behaviors of individual com-
ponents [24]. Attempts were also made at managing state in
combination with another growing concern: the need to or-
ganize the complexity of programs, using hierarchical sys-
tems [14]. Other concerns appeared when the interaction

2

styles became more continuous: animation, drag and drop,
data visualization. Various forms of data flow control were
proposed to support the description of data representation and
graphics layout [25], animation [5], and input [5, 10].

Interaction: seeking simplicity again
What interaction programmers have gained during this pro-
cess for their specific needs, they have lost in simplicity. Var-
ious attempts have been made at getting consistency back.

Taking advantage of similarities between data flow and the
flow of values in function calls, functional reactive program-
ming combines some features of reactive programming with
the syntax of functional languages [11]. Similarly, some have
used the extensibility of the syntaxes of object-oriented lan-
guages to integrate the new control structures (mainly state
machines) as much as possible [19, 1], obtaining some form
of syntactical consistency. The C# programming language
also provides the same consistency for events.

Conversely, it has been proposed to structure programs using
Petri nets and to use an object-oriented language for making
computations when the transitions are fired [27]. Similarly,
several authors have proposed to combine data flows and state
machines by letting the state machines control which data
flows are active at a given time [5, 16, 7].

All these are partial solutions, that lead to the situation de-
scribed earlier in this article. A more complete integration
was described in [6], where events and state machines are
unified and data can be used as event sources and as data flow
feeds, but the unification of states and values was incomplete
and imperative programming was still required for some parts
of programs. Full unification is still an open challenge, ad-
dressed in the rest of this paper.

REQUIREMENTS FOR CONTROL FRAMEWORKS
The above analysis allows to define a set of requirements for
the design of a set of control structures, aimed at future lan-
guages for interactive software or at future tools for designers.
All these requirements are met by functional languages and
object-oriented languages for computation-oriented software,
but not for interaction-oriented software.

Conceptual unification
The ability to place all control structures with regard to oth-
ers or, even better, to understand how they all derive from a
single primitive, is a major goal. It brings semantical inter-
operability and flexibility. It also brings conceptual integrity
and simplicity, which are highly valued not only in computer
science, but also in most science and design disciplines (eg.
unification in physics). A number of other requirements de-
pend on this one.

Additionally, the more the concepts are consistent with those
used by programmers or designers in their daily life, the bet-
ter. This was sought in the design of object-oriented lan-
guages, with explict references to philosophical concepts. For
interactive software, this goal is challenging because it en-
compasses notions such as physical objects and human activ-
ities or procedures.

Coverage
The set of control structures must cover all the concerns usu-
ally met by programmers and designers, whatever the interac-
tion style they choose. Sequences, functions, loops, and tests
are needed for command line dialogs and for computation.
State machines are used for widgets, direct manipulation and
dialog design. Data flows are useful for visualization, anima-
tion and direct manipulation. Parallelism and synchronization
primitives are required by multimodal interaction. Aspect-
like control structures are useful for adaptive user interfaces
[21]. In addition, new domains such as the Internet of things
will probably bring their own requirements.

Extensibility
Since new interaction styles bring new concerns, and possi-
bly new control structures, the framework must be extensible.
Given the diversity of possible interactions styles, program-
mers should be able to create control structures themselves
with no need to use another language. This stresses the im-
portance of organizing the set of control structures as a frame-
work in which primitives can be combined at will.

Compatibility with development processes
The development processes of interactive software require
cooperation between different disciplines; for instance a de-
signer may need to modify a behavior written by a program-
mer. They involve concurrent engineering: designers can pro-
duce graphics and behaviors while programmers are writing
algorithms, on the basis of a predefined application architec-
ture. They also are iterative, with successive refinements and
extensions of the same design.

This variety of actors and tools (programming languages,
graphical editors, transformation tools) pleads in favor of a
further unification, available in languages such as LISP: com-
mon concepts for code and data, which favor the exchange of
code between tools.

Support for formal analysis
A number of stakeholders are in demand of better support for
analyzing interactive software and its behavior: safety experts
who need to validate the software against a specification, pro-
grammers who want to check their code against various be-
havior requirements, human factors professionals who want
to predict the performance of end-users with the software,
etc. The closer the control structures are to a form that can
be processed automatically, the better.

SELECTING AN EXECUTION MODEL
The rest of this article describes a control framework that
meets the above requirement. We start by analyzing two
design decisions on which the proposed solution relies: the
use of the reactive programming paradigm, and an execution
model that supports multiple scale analysis.

Formally describing the chosen execution model is beyond
the goal of this article. Instead we highlight the reasons for
our design decisions and outline the basic concepts of the ex-
ecution model, in order to root the control framework in these
concepts and to help the reader assess how the requirement of
support for formal analysis can be met.

3

The role of the execution model
When using two sets of control structures, one for computa-
tion and one for interaction, it is sometimes difficult to under-
stand how programs are executed. For instance, in the code
below the two animation sequences and the message print-
ing do not occur in the order that the inattentive reader would
think: the done message is printed first.
void sequence () {

a1 = Animate (rect, 100, 100);
a2 = AnimateAfter (a1, rect, 50, 50)
printf ("done");

}

The reason is that the two Animate calls do not execute the
whole animation sequences: they merely start them and re-
turn. There is no standard way in any sequential language to
express ordering constraints between animation sequences.

Most control structures have a clear meaning in a given ex-
ecution model only: loops and functions are derived from
sequential programming, Prolog’s cuts are meaningful only
within its backtracking system, etc. The control structures
used for interaction, such as state machines, events and data
flows, are generally associated with reactive models, e.g. in
Lustre [7]. This is consistent with the concurrency exhib-
ited by user interface software: graphical components have
concurrent behaviors with very few ordering constraints, ani-
mations need to execute in parallel, input and output devices
have an intrinsically concurrent behavior, and so on.

Relying on the reactive paradigm for interactive software
seems a natural choice to avoid the confusions described
above. Not only does it provide the appropriate basis for in-
teractive control structures, but since models of concurrency
are supersets of sequential execution models [22] it also pro-
vides appropriate semantics for classical control structures.

Choosing an execution model also has consequences on the
development processes requirement. When working on a
component, programmers and designers frequently need to
shift from one level of granularity to another. For instance,
designers sometimes improve graphical buttons by replacing
their atomic state changes with more complex animation se-
quences. Similarly, an atomic value assignment can be re-
placed with a dialog that asks confirmation of the change.
Therefore, it is desirable that the execution model allows to
change the level of analysis without difficulty, like functional
programming makes its easy to replace a literal expression
with a function call.

A hierarchical process model
The model chosen here relies on a hierarchy of interacting
processes, derived from common process algebras in which a
process is an abstraction defined by the signals it exchanges
with other processes [20].

Everything is a process
All that happens on the computer can be modeled by a pro-
cess. This includes the behavior of interactive components
such as buttons and menus. This includes components them-
selves, made of all their internal processes. This includes an-
imation as well. But this also includes many other things: en-
tities as diverse as graphical objects, physical input devices,

and memory cells can all be modeled as processes if need be.
This helps meeting the conceptual unification requirement in
its more ambitious version, because it covers both the soft-
ware and its environment.

Hierarchy and couplings
Each process can be considered as made of other processes.
This allows to describe all systems of interest at the chosen
level of granularity, whether for hardware or software. For
instance, graphical objects can be considered as atomic pro-
cesses for some purposes. Alternatively, they can be modeled
as a combination of memory cells and rendering routines.

Some processes, such as the contact between two electrical
conductors or the interconnection between two software com-
ponents, belong to two or more parent processes. We call
them couplings. Some couplings are predefined, such as the
coupling between memory cells and rendering routines in a
graphical object or the physical connections in an input de-
vice. Others are created by programmers. Dor instance a pro-
gramming instruction that modifies a variable creates a cou-
pling between a program and the computer memory.

Activation and interaction
The evolution of a system is described by the activation of
its sub-processes. Activating a lamp makes it emit light, acti-
vating an assignment instruction modifies memory, activating
a dialog box starts an interaction sequence.

When two processes are coupled, activating one can trigger
the activation of the other through that of the coupling. This
is called an interaction. Because processes are hierarchical,
interactions are hierarchical too: a gesture on a touch screen is
an interaction between the finger and the sensors of the touch
screen, made of a series of shorter interactions. The smallest
interactions between software components are named events.

In a computer, the hardware environment and the operating
system already implement couplings. For instance, physical
couplings in a mouse are designed so that movements of the
hands trigger electronic sensors, and these sensors are cou-
pled to software components that represent the mouse in the
operating system. Couplings created by application program-
mers enrich the wealth of couplings that already constitute
the user’s environment. They define how programs become
part of this interactive environment, and how the components
inside the programs interact together.

AN INTERACTION-ORIENTED CONTROL FRAMEWORK
The proposed control framework relies on the above hierar-
chical process model. It is based on a single primitive that
can be derived into all the required control structures by com-
bining it with the basic operations on memory. We describe
below how control structures from the literature are defined
and demonstrate their use, thus showing how the coverage
requirement is met. We also give an example of how new
control structures can be created when required, so as to ad-
dress the extensibility requirement.

All the examples in the rest of this article have been imple-
mented using a component-based programming environment
named djnn, available at http://djnn.net. djnn has three

4

goals: supporting innovative interactive software, support-
ing modern development processes, and paving the way to
interaction-oriented programming languages. djnn is avail-
able as a toolkit with APIs in C, C++, Java, Python and Perl.
Alternatively, it can be used as an XML interpreter so as to
implement components in a portable format. The contents of
these XML files are hierarchies of components, and can be
understood as abstract syntax trees resulting from the compi-
lation of more usable notations.

In order to save space, the examples are formulated in com-
pact pseudocode rather than in XML format or with any djnn
API. For instance, we write:
component c {

rectangle r (0, 0, 10, 10);
}

instead of the following XML code:
<djnn:component id="c">
<svg:rect id="r" x="0" y="0" width="10" height="10"/>
</djnn:component>

Control structures as components
A component-oriented environment can be defined from the
execution model defined above by considering that each com-
ponent is the implementation of a given process. Program-
ming then consists in creating components and couplings be-
tween them. Coupling components makes new interactions
possible between them, thus defining the behavior of a pro-
gram. For instance, by coupling the position of the mouse to
a graphical object, one creates a cursor that is updated every
time the mouse moves. Note that this coupling has the ef-
fect of creating an indirect coupling between the user and the
graphical object, thus allowing the user to interact with the
cursor. Similarly, one can create an animation sequence by
coupling the completion of an animated effect to the start of
another. By coupling operations to the start of an application,
one can also create a traditional program that runs computa-
tions as soon as it starts.

All control structures are aimed at creating couplings, each
control structure being dedicated to a pattern of coupling.
In order to meet the development processes requirement as
much as possible, control structures are defined as compo-
nents themselves. This allows to manage them like any other
components, thus contributing to requirement unification and
allowing programmers to create programs by creating and
assembling components. We will also see later that it con-
tributes to unification and extensibility by allowing to create
couplings between control structures.

Control primitive: the binding
The most elementary programming instruction consists of
creating a single coupling: “when component A is activated, I
want component B to be activated too”. Component A is the
trigger of the coupling and component B is its action. Trigger
and action are just roles that any component can play. For
instance, given an integer variable, one can decide to mod-
ify this variable as the action of a coupling, just as one can
use modifications of the variable as the trigger of a coupling,
making it an active value.

The component that manages the creation of a simple cou-
pling is named binding1. The following pseudocode gives
various examples of bindings. It illustrates the variety of en-
tities that can be considered as components: graphical ob-
jects, input devices, programmer-defined components, func-
tions, and even components from other programs, resources
from the operating system and from other computers. It also
stresses the importance of having a complete and consistent
system for addressing components. The naming system in
djnn is not described in this article, but a hierarchical system
similar to URIs can be used in most cases and actions can ac-
cess their execution context, such as their trigger’s properties,
through the same naming system.

beeping repeatedly
binding (myclock, beep);
beeping when an numerical value changes
binding (mygame/score, beep);
beeping when another application quits
binding (system://application1/quit, beep);
launching a program when a file is modified
binding (file://eics.tex, system://XLaTeX/reload);
controlling an animation with a mouse button
binding (mouse/left/press, animation1/start);
binding (mouse/left/release, animation1/stop);
displaying a help box when an ’h’ gesture is made
binding (gestures/h, myapplication/helpbox);
quitting the application upon a button press
binding (quitbutton/hit, application/quit);
implementing part of the behavior of a button
binding (quitbutton/rect1/enter, quitbutton/hovercolor);
chaining two animation sequences
binding (animation1/end, animation2/start);

Bindings are not only a very simple control structure. We will
use them below to derive all other control structures, ensuring
that no reference to the sequential execution model is ever
required to explain the reactive behavior of programs. This
makes them the root primitive of the control framework.

Since bindings are components, programmers can choose to
activate them only at given times, thus creating conditional
behaviors. For instance, in the pseudocode below that alter-
natively emits the sounds tick and tock, the activation status
of bindings b1 and b2 is used to create a two-state system.

1 binding b1 (myclock, tick);
2 binding b2 (myclock, tock);
3 binding (b1/run, b2/stop);
4 binding (b2/run, b1/stop);
5 binding (b1/trigger, b2/run);
6 binding (b2/trigger, b1/run);
7 b1/run;

The two states are implicit in this code. Initially b1 is active
(line 7), and b2 is stopped (line 3). When the clock goes
off, b1 is triggered; this activates tick (line 1) and b2 (line
5), and stops b1 (line 4), thus entering a second state. When
the clock goes off again, lines 2, 6 and 1 ensure that tock is
activated and the system returns to the initial state. Note how
the hierarchical system is used when referring to the b1/run,
b1/stop and b1/trigger subcomponents; here, the trigger

subcomponent of b1 refers to the process of detecting that the
trigger of b1 is activated.

1“binding” is closer here to the “bind” instruction in Tcl than to data
bindings in XAML

5

State machines
State machine components are a more compact way of obtain-
ing the same result as above. They are useful to describe the
behavior of components with a reasonable number of states,
such as buttons, menus, many existing post-WIMP compo-
nents, and probably many that remain to be invented. For
instance, the Pinch-Rotate-Zoom behavior on tablets is easily
expressed with a state machine.

State machines can be built by combining bindings with com-
ponents that are able to maintain a state. Being reducible to
the same concept of coupling, they can be interchanged and
combined at will with bindings. They just make it easier to
describe collections of conditional couplings.

Finite state machine components (FSM) are composite com-
ponents that contain other components named states and
transitions. Transitions are special cases from bindings: they
are defined with a trigger, and create the same type of cou-
pling as a binding. What makes them special is that 1) each
transition is defined relative to a state, named its origin, and
is active only when its origin is active, and 2) the action of a
transition is always a second state, named its destination. As
a consequence, the triggers of the transitions constitute the
inputs of the state machine: the machine changes state de-
pending on the sequence of activation of triggers, and ignores
events that do not match the current state.

As an example, the code below describes the internal behav-
ior of a software button designed for use with a mouse:
component mybutton {

rectangle r (0, 0, 100, 50);
fsm f {
state idle, pressed, out;
transition press (idle, r/press, pressed);
transition click (pressed, r/release, idle);
transition leave (pressed, r/leave, out);
transition enter (out, r/enter, pressed);

}
}

Because states and transitions are components, they can be
used as triggers in bindings and transitions from other FSMs.
For instance, when properly renamed to be accessible as
mybutton/click, the above click transition can be used to
bind actions to the triggering of the button:
binding (mybutton/hit, application/quit);

This is the behavior of a Mealy machine. Alternatively, by
binding actions to states rather than transitions, one can pro-
duce a state machine whose outputs depend only on the states
that have been reached and not on the transitions (Moore ma-
chine). By combining the two systems, one can for instance
produce the visual feedback for the behavior of a widget as
well as the appropriate events to trigger other components.
We will later see a switch component designed to make this
easier.

Combining FSMs by coupling their transitions, or by control-
ling the activation of one by a state or a transition of another,
makes it possible to create complex behaviors without hav-
ing to introduce more complex structures such as hierarchical
state machines. It also makes it easier to structure applica-
tions as collections of reusable components.

Properties: data primitives and control structures
The concept of memory is toned down in functional lan-
guages in favor of arguments and return values, to avoid so-
called side effects. But in interactive software, it is important
to explictly represent properties such as the label of a but-
ton. In addition, properties also play a role in control flows
because their changes are events of interest.

We propose two equivalent definitions of properties. They
can be defined as state machines with a large number of pre-
defined states (264 states for an integer), and with no support
for accessing individual transitions. The value of a property
is its state. Properties can also be defined as primitive com-
ponents that represent the physical memory of a computer,
state transitions being implemented by the hardware like the
rendering of a graphical object. This duality ensures both a
proper foundation for a data model and consistency with the
control framework, as illustrated below with data flow.

Data flow
In contrast to state machines, data flow is a programming
style for when the flow of propagation of states is more im-
portant for programmers than the individual state changes.
This often occurs when there are many states or very frequent
changes, usually because the various states are just perceived
as the result of sampling a value that changes continuously.

Since “value” and “state” are two aspects of the same thing,
data flow can be interpreted as a special case of coupling state
machines together. With state machines, the default principle
is that every transition has a different action. With data flow,
all transitions trigger the same action: propagating the new
state, that is the new value, to other components. When the
user’s hand moves on a touch screen for instance, program-
mers are more interested in deciding what components will
receive the flow of values and how they will route and filter
it than by handling each event individually. We define two
control structures to support such continuous behaviors.

Connecting components
Connector components allow the value of a component to
propagate to another component whenever it changes. For in-
stance, the two connectors below ensure that rectangle rect1

will move with the mouse.
connector (mouse/position/x, rect1/position/x);
connector (mouse/position/y, rect1/position/y);

A connector is equivalent to a binding with a predefined ac-
tion that copies the value from its source to its destination.
This means that the first line in the above pseudocode is
equivalent to the combination of two components below, in
which we artificially introduce an “assignment” component
to represent traditional assignment instructions.
an assignment that sets rect1/position/x
assignment c (rect1/position/x, mouse/position/x);
the assignment is bound to changes in mouse/position/x
binding (mouse/position/x, c);

There are strong similarities between data flow and functional
programming. Functional reactive programming can be inter-
preted as a syntax that disguises connectors as function calls,
and functional programming per se can be seen as a chain of

6

connectors that is only triggered once when the program is
launched. To illustrate this, consider the following data flow
chain to the functional expression that follows it. Both rep-
resent a simplified version of the chain of computations that
transforms the actual data emitted by a physical mouse into
what application programmers are used to: the relative move-
ments are “accelerated”, then compounded, then cropped to
stay within the display area.
multiplier mult (3);
adder add (512);
maximum max (1024)
compute (max 1024 (+ 512 (∗ 3 physmouse_position_x)))
connector (physmouse/position/x, mult/input2);
connector (mult/result, add/input2);
connector (add/result, max/input);
connector (max/result, softmouse/position/x);

Synchronizing flows
The above example is a chain of connected components,
used as data filters. Predefined filters can be used, but pro-
grammers often need to create their own, like for instance
the multiplier component from above. This can be done by
putting three numerical components named input1, input2
and output as well as a multiplication operation into a larger
component, and adding two bindings on the two inputs. Un-
fortunately, this would have an undesired side-effect: when
the two inputs are modified as the result of a single event, the
output would be modified twice for that single event and this
would lead to inconsistent behaviors. For instance, say that
a beep is emitted every time the output changes, and that the
inputs are computed from a key press; then there would be
two beeps for each key press, where the user expects one.

For this, we introduce a second data flow-oriented structure:
the watcher. A watcher is a binding with several triggers.
It uses synchronization techniques similar to those of reac-
tive languages [7] to ensure that its action is activated only
once per asynchronous event, that is once for each event that
has external causes. For instance, given a passive compo-
nent named multiplication, the internals of the multiplier
component would be as follows.
component multiplier {
integer input1;
integer input2;
integer output;
multiplication m (input1, input2, output);
watcher (input1, input2, m);

}

Composite flows
Finally, while we have only used data flow in conjunction
with numerical components so far, this applies to other com-
ponents as well. As already mentioned, the value of a numer-
ical component is its current state. This definition extends to
all components that have a state, including those that contain
components that have a state. Therefore, connectors can be
used between any pair of compatible components to synchro-
nize their state. For instance, the mouse-rectangle connection
from earlier can be written:
connector (mouse/position, rect1/position);

Combining and extending
The components described so far, all built around the same
basic blocks, provide unification of the most common con-
trol structures used for user interface programming: events,
state machines and data flows. Combined together, they can
also be used to create new control structures that extend the
control framework.

To begin with, components named switches can be created to
control what parts of a component are active at a given time.
For instance we can enrich component mybutton from page 6
with one color for each state:
component mybutton {

...
switch s {

color idle (black);
color pressed (white);
color out (grey);

}
connector (f/state, s/state);

}

A switch is an open collection of components, named its
branches; the above switch has three branches. In addition,
switches have a property named state and a watcher that ac-
tivates the branch named in this property. When the state

property is connected to the state of a compatible FSM, this
ensures that the FSM controls which sub-component of the
switch is active. Here, this makes the button changes color
when it changes state.

Switches can be used to convert data flows to states when
needed. For instance, in the pseudocode below the color of
rectangle changes with the values of a number:
integer i;
division d (0, 3);
connector (i, d/input1);
switch s {

color 0 (red);
color 1 (green);
color 2 (blue);

}
connector (d/remainder, s/state);
rectangle r;

This also allows for the creation of simple conditions. For
instance, the following pseudocode emits a beep when the x

coordinate of a pointer has a given value, which can be useful
for debugging purposes.
switch s {

beep 42;
}
connector (pointer/position/x, s/state)

Other classical control structures can be obtained by combin-
ing the basic structures described above. For instance:

• sequences can be defined with bindings to the end of com-
ponents that terminate on their own;

• a graphical scene graph can be considered as a control
structure: it tells what graphical objects must be rendered
and in which order. This can be defined by managing
two sets of bindings: parent-child bindings that ensure that
child objects are active only when their parents are active,
and bindings that create a sequence between the activation
of children so as to control their rendering order;

7

• a function call is a particular kind of interaction similar to
a dialogue fragment: the caller activates the function with
some context, the function computes a result, passes it to
the caller, terminates, then the caller resumes its own activ-
ity. To reproduce this, we define functions as components
that terminate their activation on their own. In an impera-
tive setting, calling a function then consists of binding the
activation of a function to the termination of the previous
instruction in the sequence, and binding the next instruc-
tion to the termination of the function. In a functional set-
ting, each function consists of series of function calls: first
those needed to evaluate a series of arguments, then the
main call performed with these arguments. This structure
can be modeled as a simple sequence or a four-state FSM:
start, activation of the functions used to compute the ar-
guments, activation of the main function, then termination
and return to start.

APPLICATION TO ARCHITECTURE SCENARIOS
Deriving control structures could be used to validate the pro-
posed framework by establishing its Turing-completeness.
However, the value of a theoretical result can also be estab-
lished by selecting examples that demonstrate its applicabil-
ity [9]. For this reason, we now describe a few scenarios com-
monly encountered in interactive software programming, so
as to illustrate how the control framework works in practical
situations and to demonstrate its relevance.

Common architecture patterns
Creating a graphical application consists mostly of assem-
bling components, connecting them, and organizing them to
make their structure and their reuse more manageable. djnn
supports this by encouraging programmers to create a hierar-
chy of components, each made of previously existing compo-
nents. We describe below how a few common situations can
be managed with the control framework described above.

Building and initializing components
We have already described how to build a component by as-
sembling other components: mybutton is made of four com-
ponents, a rectangle, a FSM, a switch and a connector. This
button is simplistic, but improving it would just require elab-
orating on the number of states and the number of graphi-
cal components. To further illustrate how components can
be combined recursively, the pseudocode below describes a
dialog box made of two instances of mybutton.
component mydialogue {

rectangle frame (0, 0, 300, 100);
mybutton o (’ok’, 30, 25);
mybutton c (’cancel’, 170, 25);

}

This dialog box is made of a rectangle and two instances of
mybutton. For this to work, two changes have to be made to
mybutton: adding a text, and allowing the text and the rect-
angle of the button to be initialized with parameters.

The latter point underlines a situation in which programmers
currently fall back to imperative or functional programming:
initialization. Because in the case of initialization the flow of
control is internal like in traditional computation scenarios,
function calls are indeed appropriate and very few authors

have felt the need to propose alternative solutions. Here, the
initialization flow is derived from the relationship between
a component and its sub-components: the activation hierar-
chy is managed by implicit bindings between the parent and
each of is children. In this regard, the empty components that
programmers can fill to build their own components can be
considered as a specialized control structure.

In the new version of mybutton below, we represent the shar-
ing of information between parent and children during ini-
tialization. We use a syntax similar to arguments in function
calls. Note that this is just a syntactic convention: mybutton
and rectangle are not functions, if only because they do not
terminate spontaneously.
component mybutton (t, x, y) {

text (t, x, y);
rectangle r (x, y, 100, 50);
...

Reusing a component, event style
Programmer-defined components can be used as event
sources, like basic components. For instance, the following
additions to mydialogue show how one ensures that the dia-
log box disappears when either of its buttons is pressed.
component mydialogue {

...
binding (o/hit, stop)
binding (c/hit, stop)

}

Adapting components
Our dialog box can also be used as an event source, but pro-
grammers who reuse it expect ok and cancel events, not
o/hit and c/hit. Such interface adapatations are one of the
reasons why patterns such as the Functional Core Adapter and
Presentation-Abstraction-Control had to be introduced [13].
The following additions to the dialog box illustrate how the
external interface of a component can be adapted using empty
components and bindings. More complex adaptations can
also be performed, relying for instance on their own state ma-
chine to translate events.
component mydialogue {

...
component ok;
component cancel;
binding (o/hit, ok);
binding (c/hit, cancel);

}
binding (mydialogue/ok, beep);

Communicating state machines
Describing the behavior of applications with Petri nets or ex-
tended state machines that communicate among themselves
has often been proposed. This is what happens here when
two components with state machines are bound, for instance
when a button uses the press and release events that come
from the state machine of an input device. We show below
how this can occur inside components so as to express com-
plex behaviors; for instance, the following pseudocode sim-
ulates a three-state lamp switch controlled by a push button.

8

component myswitch (source) {
fsm pushbutton {
state pressed, released;
transition press (pressed, source, released);
transition release (released, source, pressed);

}
fsm behavior {
state off, 1, 2;
transition (off, pushbutton/press, 1);
transition (1, pushbutton/press, 2);
transition (2, pushbutton/press, off);

}
}

Reusing a component, data flow style
Its is sometimes more practical to reason about the state of
a component rather than its events, and some authors have
suggested using a functional programming style to describe
this: one reads the “value” of a toggle button by “calling” it,
for instance. This can be reproduced using data flow. For in-
stance, consider a toggle button that we want to use as a light
switch: instead of reasoning about on and off events, one
would rather reason about the state of the system, as below.
Note how we export the state of the toggle and the light, like
we did for the dialogue box.
component mytoggle {

rectangle r (0, 0, 100, 50);
fsm f {;
state off, on;
transition (off, r/press, on);
transition (on, r/release, off);

}
switch s {
color off (black);
color on (white);

}
connector (f/state, s/state);
value state;
connector (f/state, state);

}
component mylight {

value state;
switch s {

color on (yellow);
color off (gray);

}
connector (state, s/state);

}
connector (mytoggle/state, mylight/state);

Managing modalities and access to resources
After focusing on classical scenarios of graphical user inter-
faces, we describe here a few scenarios related to new inter-
action modalities or other computer resources.

Using alternative input
Tablets have an accelerometer to measure their orientation.
The following pseudocode shows how one can use it in data
flows. Here, we use it to control which part of a graphic scene
loaded from a SVG file is visible through a clipping area. This
illustrates how much the control model is independent from
the event sources, whether they are classical input devices,
new input devices, or any other compatible component.
component myapp {

load (file://scene.svg);
clip c (0, 0, 100, 100);
connector (accelerometer/x, c/x);
connector (accelerometer/y, c/y);

}

Animation as components
Since all software entities, including data and control struc-
tures, are components, animation can also be expressed as
components. For instance, in the pseudocode below we mod-
ify the application above so that the accelerometer does not
control the horizontal position of the clipping zone but the
way it drifts over time in an approximation of gravity.
component myapp {

...
component xdrift {

value x;
value dx;
clock c (100);
incr i (x, dx);
binding (c, i);

}
connector (xdrift/x, clip/x);
connector (accelerometer/x, xdrift/dx);
...

Note how the combination of connectors and bindings merges
two asynchronous input sources (clock and sensor), and en-
sures multimodal fusion.

Interacting with the context
Future interactive software will not be limited to graphical
interfaces. It will react to all sorts of sensors in the user’s en-
vironment, whether physical or logical. Already, sensors are
multiplying and applications are reacting to more and more
context changes. To illustrate how this can be addressed with
the control structures that we have described, the following
code reacts to file creations in a directory.
directory d (file://data);
beep b;
binding (d/new, b);

Data flow can also be used to similar purposes. For instance,
assuming that directories have a copy child that copies files
when it receives references to them, the following code copies
files from a directory to another as soon as they are created.
directory d1 (file://data);
directory d2 (file://backup);
connector (d1/new, d2/copy);

Not only does this show how control structures originally ap-
plied to graphical user interfaces can apply to other types of
interactive software. It also illustrates how more and more ap-
plications are becoming interactive in the general sense, that
is they react to their environment.

CONCLUSION AND PERSPECTIVES
In this article, we have elicited requirements for a frame-
work for control structures in interactive software, described
a candidate solution, and provided elements to assess how
this solution meets the requirements. The proposed frame-
work constitutes a complete solution to the problem of uni-
fying behavior descriptions in interactive software, and also
encompasses control structures used in computation-oriented
software. This unification allows programmers to combine
control structures at will, and it provides them with an unam-
biguous model of how their programs are executed.

The djnn programming framework implements the proposed
control framework. djnn is available in various languages
for instantiating components from the djnn core, its graphical

9

module and basic input support. djnn is already used in var-
ious applications, ranging from an experimental ground sta-
tion for drones [21] to the control of an interactive showroom
and a multimodal aircraft cockpit prototype. Ongoing work
includes the formal definition of the execution model, the
modeling and implementation of various interaction modal-
ities and bridges to computer resources.

Because it permits to describe programs and their control by
solely instantiating components, the proposed framework can
serve as the basis for graphical editors and visual languages in
addition to textual programming languages. Future research
includes the design of a collection of visual and textual pro-
gramming languages that would each specialized in a differ-
ent facet of interactive software (graphics, architecture, be-
haviors, etc) and that could be used by design teams to pro-
duce applications together.

REFERENCES
1. Appert, C., and Beaudouin-Lafon, M. Swingstates:

Adding state machines to Java and the Swing toolkit.
Software: Practice and Experience 38, 11 (2008),
1149–1182.

2. Appert, C., Huot, S., Dragicevic, P., and
Beaudouin-Lafon, M. Flowstates: prototypage
d’applications interactives avec des flots de données et
des machines à états. In Proc. IHM ’09, ACM (2009),
119–128.

3. Backus, J. Can programming be liberated from the von
Neumann style? a functional style and its algebra of
programs. Communications of the ACM 21, 8 (1978).

4. Brooks, F. P. The Mythical Man-Month. In Proceedings
of the international conference on Reliable software,
ACM Prss (1975).

5. Chatty, S. Extending a graphical toolkit for two-handed
interaction. In Proceedings of the ACM UIST,
Addison-Wesley (Nov. 1994), 195–204.

6. Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Mertz, C.,
and Lemort, A. Revisiting visual interface
programming: Creating GUI tools for designers and
programmers. In Proceedings of the ACM UIST,
Addison-Wesley (Oct. 2004), 267–276.

7. Colaço, J.-L., Pagano, B., and Pouzet, M. A conservative
extension of synchronous data-flow with state machines.
In Proc. of ACM EMSOFT’05, ACM (2005), 173–182.

8. Coutaz, J., Demeure, A., Caffiau, S., and Crowley, J. L.
Early lessons from the development of spok, an end-user
development environment for smart homes. In Proc.
ACM Ubicomp’14, ACM (2014), 895–902.

9. Dix, A. Research Methods for Human-Computer
Interaction. Cambridge University Press, 2008,
ch. Theoretical analysis and theory creation, 175–195.

10. Dragicevic, P., and Fekete, J.-D. Support for input
adaptability in the icon toolkit. In Proceedings of the
Sixth International Conference on Multimodal
Interfaces (ICMI’04), ACM Press (2004), 212–219.

11. Elliott, C., and Hudak, P. Functional reactive animation.
In International Conference on Functional
Programming (1997), 263–273.

12. Fisher, D. A. A survey of control structures in
programming languages. SIGPLAN Not. 7, 11 (Nov.
1972), 1–13.

13. Gram, C., and Cockton, G., Eds. Design Principles for
Interactive Software. Chapman & Hall, Ltd., 1997.

14. Harel, D. Statecharts: A visual formalism for complex
systems. Science of Computer Programming 8, 3 (June
1987), 231–274.

15. Hartson, H. R., and Hix, D. Human-computer interface
development: Concepts and systems for its
management. ACM Computing Surveys 21 (1989), 5–92.

16. Jacob, R., Deligiannidis, L., and Morrison, S. A
software model and specification language for
non-WIMP user interfaces. ACM Transactions on
Computer-Human Interaction 6, 1 (1999), 1–46.

17. Jacob, R. J. K. Using formal specifications in the design
of a human-computer interface. Communications of the
ACM 26 (1983), 259–264.

18. Johnson, R. E., and Foote, B. Designing Reusable
Classes. Object-Oriented Programming 1, 2 (1988).

19. Lecolinet, E. A molecular architecture for creating
advanced GUIs. In Proceedings of the ACM UIST
(2003), 135–144.

20. Lee, E. A., and Sangiovanni-Vincentelli, A. Comparing
models of computation. In Proceedings of ICCAD
(1996), 234–241.

21. Mathieu Magnaudet, M., and Chatty, S. What should
adaptivity mean to interactive software programmers? In
Proc. ACM EICS’14, ACM (2014), 13–22.

22. Milner, R. Functions as processes. Mathematical
Structures in Computer Science 2, 2 (1992), 119–141.

23. Myers, B. Separating application code from toolkits:
Eliminating the spaghetti of callbacks. In Proceedings of
the ACM UIST, Addison-Wesley (1991), 211–220.

24. Myers, B. A. A new model for handling input. ACM
Transactions on Office Information Systems (July 1990),
289–320.

25. Myers, B. A., et al. Garnet, comprehensive support for
graphical, highly interactive user interfaces. IEEE
Computer (Nov. 1990), 71–85.

26. Myers, B. A., and Rosson, M. B. Survey on user
interface programming. In Proceedings of ACM CHI’92,
ACM (1992), 195–202.

27. Navarre, D., Palanque, P., Jean-Franois Ladry, J.-F., and
Barboni, E. ICOs: A model-based user interface
description technique dedicated to interactive systems
addressing usability, reliability and scalability. ACM
TOCHI 16, 4 (Nov. 2009), 18:1–18:56.

28. Ungar, D., and Smith, R. B. Self: The power of
simplicity. In Proceedings of the ACM OOPSLA (Oct.
1987), 227–241.

10

