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Abstract

Let n, k ≥ 3. In this paper, we analyse the quotient group Bn/Γk(Pn) of the Artin braid
group Bn by the subgroup Γk(Pn) belonging to the lower central series of the Artin pure
braid group Pn. We prove that it is an almost-crystallographic group. We then focus more
specifically on the case k = 3. If n ≥ 5, and i f τ ∈ N is such that gcd(τ, 6) = 1, we show
that Bn/Γ3(Pn) possesses torsion τ if and only if Sn does, and we prove that there is a one-
to-one correspondence between the conjugacy classes of elements of order τ in Bn/Γ3(Pn)
with those of elements of order τ in the symmetric group Sn. We also exhibit a presentation
for the almost-crystallographic group Bn/Γ3(Pn). Finally, we obtain some 4-dimensional
almost-Bieberbach subgroups of B3/Γ3(P3), we explain how to obtain almost-Bieberbach
subgroups of B4/Γ3(P4) and B3/Γ4(P3), and we exhibit explicit elements of order 5 in
B5/Γ3(P5).
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1 Introduction

In this paper, we continue our study of quotients of the Artin braid group Bn by ele-
ments of the lower central series (Γk(Pn))k∈N of the Artin pure braid group Pn. In the pa-
per [GGO1], we analysed the group Bn/Γ2(Pn) in some detail, and we proved notably
that it is a crystallographic group. Using different techniques, I. Marin generalised the
results of [GGO1] to generalised braid groups associated to arbitrary complex reflection
groups [Ma]. In the present paper, we show for all n, k ≥ 3, the quotient Bn/Γk(Pn) of
Bn by Γk(Pn) is an almost-crystallographic group, and we investigate more thoroughly
the group Bn/Γ3(Pn). As in [GGO1], some natural questions that arise are the existence
or not of torsion, the realisation of elements of finite order and that of finite subgroups,
their conjugacy classes and the relation with other types of group, such as (almost-)
crystallographic groups.

This paper is organised as follows. In Section 2, we recall some definitions and facts
about the Artin braid groups, their quotients by the elements of the lower central series
(Γk(Pn))k∈N of Pn, and almost-crystallographic groups. In Section 3, we discuss the
quotient Bn/Γk(Pn), where n, k ≥ 3. If G is a group, for all q ∈ N, let Lq(G) denote
the lower central series quotient Γq(G)/Γq+1(G). These quotients have been widely
studied, see [Hal, MKS] for example. In the case of Pn, it is known that Lq(Pn) is a free
Abelian group of finite rank, and by [LVW, Theorem 4.6], its rank is given by:

rank(Lq(Pn)) =
1

q

n−1

∑
j=1

∑
d|q

µ(d)jq/d (1)

where µ is the Möbius function. From this, it follows that the nilpotent group Pn/Γk(Pn)
of nilpotency class k − 1 is also torsion free (see Lemma 11(a)). Using (1), in Proposi-

tion 10, we calculate the Hirsch length of Pn/Γk(Pn), which is equal to ∑
k−1
i=1 rank(Li(Pn)).

In particular, the Hirsch length of Pn/Γ3(Pn) and Pn/Γ4(Pn) is equal to (n
2) + (n

3) and

(n
2) + (n

3) + 2(n+1
4 ) respectively (see [CS, Theorem 1.1]). Using a criterion given in [De],

we are then able to show that Bn/Γk(Pn) is an almost-crystallographic group.

THEOREM 1. Let n, k ≥ 3. The group Bn/Γk(Pn) is an almost-crystallographic group whose

holonomy group is Sn and whose dimension is equal to ∑
k−1
q=1

(
1
q ∑

n−1
j=1 ∑d|q µ(d)jq/d

)
. In

particular, the dimension of Bn/Γ3(Pn) (resp. of Bn/Γ4(Pn)) is equal to (n
2) + (n

3) (resp. to

(n
2) + (n

3) + 2(n+1
4 )).

Torsion-free almost-crystallographic groups, or almost-Bieberbach groups, are of par-
ticular interest because they arise as fundamental groups of infra-nilmanifolds. Infra-
nilmanifolds are manifolds that are finitely covered by a nilmanifold and represent a
natural generalisation of flat manifolds. They play an important rôle in dynamical sys-
tems, notably in the study of expanding maps and Anosov diffeomorphisms [DD]. The
reader may consult [De, Gr, Ru] for more information about these topics.

Another interesting problem is that of the nature of the finite-order elements of
Bn/Γk(Pn). Knowledge of the torsion of this group may be used for example to con-
struct almost-Bieberbach subgroups. In this direction, we prove Theorem 2, which gen-
eralises [GGO1, Theorem 2].
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THEOREM 2. Let n, k ≥ 3. Then the quotient group Bn/Γk(Pn) has no elements of order 2 nor
of order 3.

From this, we are able to deduce Corollary 15, which proves the existence of almost-
Bieberbach groups in Bn/Γk(Pn) for all n, k ≥ 3. In much of the rest of the paper, we
focus our attention on the case k = 3. To study the torsion of Bn/Γ3(Pn), an explicit
basis of Γ2(Pn)/Γ3(Pn) is introduced in Section 3.2, and in Section 4.1, we partition this
basis into the orbits of the action by conjugation of a certain element δn of Bn/Γ3(Pn).
In Section 4.2, we exhibit presentations of Pn/Γ3(Pn) and Bn/Γ3(Pn). This enables us to
study the finite-order elements of Bn/Γ3(Pn) and their conjugacy classes in Section 4.3.
The following result shows that the torsion of Bn/Γ3(Pn) coincides with that of Sn if we
remove the elements whose order is divisible by 2 or 3.

THEOREM 3. Let n ≥ 5, and let τ ∈ N be such that gcd(τ, 6) = 1. Then the group Bn/Γ3(Pn)
admit finite-order elements of torsion τ if and only if Sn does. Further, if x ∈ Sn is of order τ,
there exists α ∈ Sn of order τ such that σ(α) = x, in particular σ(α) and x have the same cycle
type.

We end Section 4 with an analysis of the conjugacy classes of the finite-order ele-
ments of Bn/Γ3(Pn), the main result in this direction being the following.

THEOREM 4. Let n ≥ 5, and let α and β be two finite-order elements of Bn/Γ3(Pn) whose
associated permutations have the same cycle type. Then α and β are conjugate in Bn/Γ3(Pn).

In Section 5, we discuss some aspects of the quotients Bn/Γ3(Pn), where n is small.
In Section 5.1, we obtain some almost-Bieberbach subgroups of B3/Γ3(P3) of dimension
4 that are the fundamental groups of orientable 4-dimensional infra-nilmanifolds, and
in Section 5.2, we compute δ5

5 in terms of the chosen basis of Γ2(P5)/Γ3(P5). Using
the constructions of Section 4.3, this allows us to exhibit explicit elements of order 5 in
B5/Γ3(P5).

Another important question in our study is the existence and embedding of fi-
nite groups in Bn/Γ3(Pn). For cyclic groups, the answer is given by Theorem 3, and
this may be generalised to Abelian groups in Corollary 24 using Lemma 19(b). We
have proved recently in [GGO2] that Cayley-type theorems hold for Bn/Γ2(Pn) and
Bn/Γ3(Pn), namely that if G is any finite group of odd order n (resp. of order n rel-
atively prime with 6) then G embeds in Bn/Γ2(Pn) (resp. in Bn/Γ3(Pn)). In the case
of Bn/Γ2(Pn), the same result has been proved independently by V. Beck and I. Marin
within the more general setting of complex reflection groups [BM]. In the same paper,
we also show that with appropriate conditions on n and m, two families of groups of
the form G = Zn ⋊θ Zm embed in Bn/Γ2(Pn) and Bn/Γ3(Pn).
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2 Preliminaries

In this section, we recall some definitions and results about Artin braid groups, (almost-)
crystallographic groups, and the relations between them that will be used in this paper.

2.1 Artin braid groups

We start by recalling some facts about the Artin braid group Bn on n strings (see [Han]
for more details). It is well known that Bn possesses a presentation with generators
σ1, . . . , σn−1 that are subject to the following relations:

{
σiσj = σjσi for all 1 ≤ i < j ≤ n − 1 such that |i − j| ≥ 2

σi+1σiσi+1 = σiσi+1σi for all 1 ≤ i ≤ n − 2.
(2)

Let σ : Bn −→ Sn be the homomorphism defined on the given generators of Bn by
σ(σi) = (i, i + 1) for all 1 ≤ i ≤ n − 1. Just as for braids, we read permutations
from left to right so that if α, β ∈ Sn, their product is defined by α · β(i) = β(α(i))
for i = 1, 2, . . . , n. The pure braid group Pn on n strings is defined to be the kernel of σ,
from which we obtain the following short exact sequence:

1 −→ Pn −→ Bn
σ

−→ Sn −→ 1. (3)

Let G be a group. If g, h ∈ G then [g, h] = ghg−1h−1 will denote their commutator,
and if H, K are subgroups of H then we set [H, K] = 〈 [h, k] | k ∈ H, k ∈ K〉. The lower
central series {Γi(G)}i∈N of G is defined inductively by Γ1(G) = G, and Γi+1(G) =
[G, Γi(G)] for all i ∈ N. If i = 2, Γ2(G) is the commutator subgroup of G. For all i, j ∈ N
with j > i, Γj(G) is a normal subgroup of Γi(G). Following P. Hall, for any group-
theoretic property P , G is said to be residually P if for any (non-trivial) element x ∈
G, there exist a group H that possesses property P and a surjective homomorphism
ϕ : G −→ H such that ϕ(x) 6= 1. It is well known that a group G is residually nilpotent
if and only if ∩i≥1Γi(G) = {1}. The lower central series of groups and their sucessive
quotients Γi(G)/Γi+1(G) are isomorphism invariants, and have been widely studied
using commutator calculus, in particular for free groups of finite rank [Hal, MKS]. Falk
and Randell, and independently Kohno, investigated the lower central series of the
pure braid group Pn, and proved that Pn is residually nilpotent [FR2, Ko].

A presentation of Pn is given by the set of generators
{

Ai,j

}
1≤i<j≤n

, where:

Ai,j = σj−1 · · · σi+1σ2
i σ−1

i+1 · · · σ−1
j−1, (4)

subject to the following relations that are expressed in terms of commutators (see [MK,
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Remark 3.1, p. 56] or [Han, Chapter 1, Lemma 4.2]):





[Ar,s, Ai,j] = 1 if 1 ≤ r < s < i < j ≤ n or 1 ≤ r < i < j < s ≤ n

[Ar,s, Ar,j] = [A−1
s,j , Ar,j] if 1 ≤ r < s < j ≤ n

[Ar,s, As,j] = [A−1
s,j , A−1

r,j ] if 1 ≤ r < s < j ≤ n

[Ar,i, As,j] =
[
[A−1

i,j , A−1
r,j ], As,j

]
if 1 ≤ r < s < i < j ≤ n.

(5)
For notational reasons, if 1 ≤ i < j ≤ n, we set Aj,i = Ai,j, and if Ai,j appears in a word
of Pn with exponent mi,j ∈ Z, then we let mj,i = mi,j. It follows from the presentation (5)

that Pn/Γ2(Pn) is isomorphic to Zn(n−1)/2, and that a basis of Pn/Γ2(Pn) is given by{
Ai,j

}
1≤i<j≤n

, where by abuse of notation, the Γ2(Pn)-coset of Ai,j will also be denoted

by Ai,j. For all k ≥ 2, equation (3) gives rise to the following short exact sequence:

1 −→ Pn/Γk(Pn) −→ Bn/Γk(Pn)
σ

−→ Sn −→ 1, (6)

where σ : Bn/Γk(Pn) −→ Sn is the homomorphism induced by σ. In much of what fol-
lows, we shall be interested in the action by conjugation of Bn/Γ2(Pn) on Γ2(Pn)/Γ3(Pn).
For all 1 ≤ k ≤ n − 1 and 1 ≤ i < j ≤ n, the action of Bn on Pn described in [GGO1,
equation (7)] may be rewritten as:

σk Ai,jσ
−1
k =





A−1
i,j Ai,j−1Ai,j if j = k + 1 and i < k

A−1
i,j Ai−1,jAi,j if i = k + 1

A
σ−1

k (i), σ−1
k (j) otherwise,

(7)

where by abuse of notation, we write σ−1
k (i) = σ(σ−1

k )(i), σ being as in equation (3).
This action was used in [GGO1] to prove the following proposition.

PROPOSITION 5 ([GGO1, Proposition 12]). Let α ∈ Bn/Γ2(Pn), and let π be the permutation
induced by α−1. Then for all 1 ≤ i < j ≤ n, αAi,jα

−1 = Aπ(i),π(j) in Pn/Γ2(Pn).

For all α ∈ Bn/Γ3(Pn), and all 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ n, we claim that:

α[Ai,j, Ar,s]α
−1 = [αAi,jα

−1, αAr,sα
−1] = [Aπ(i),π(j), Aπ(r),π(s)] in Pn/Γ3(Pn), (8)

where π is the permutation induced by α−1, and by abuse of notation, Ai,j and Ar,s are
considered as elements of Pn/Γ3(Pn). To see this, first note that the first equality of (8)
clearly holds, and that for all k ∈ N, we have the following short exact sequence:

1 −→ Γk(Pn)/Γk+1(Pn) −→ Pn/Γk+1(Pn) −→ Pn/Γk(Pn) −→ 1. (9)

Taking k = 2 in (9) and using Proposition 5, there exist γ1, γ2 ∈ Γ2(Pn)/Γ3(Pn) such
that αAi,jα

−1 = γ1Aπ(i),π(j) and αAr,sα
−1 = γ2Aπ(r),π(s). The second equality of (8)

then follows using standard commutator relations.
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2.2 Almost-crystallographic groups

In this section, we recall briefly the definitions of almost-crystallographic and almost-
Bieberbach groups, which are natural generalisations of crystallographic and Bieber-
bach groups, as well as a characterisation of almost-crystallographic groups. For more
details about crystallographic groups, see [Ch, Section I.1.1], [De, Section 2.1] or [Wo,
Chapter 3].

Given a connected and simply-connected nilpotent Lie group N, the group Aff (N)
of affine transformations of N is defined by Aff (N) = N ⋊ Aut (N), and acts on N by:

(n, ϕ) · m = nϕ(m) for all m, n ∈ N and ϕ ∈ Aut (N).

DEFINITION 6 ([De, Sec. 2.2, p. 15]). Let N be a connected, simply-connected nilpotent
Lie group, and consider a maximal compact subgroup C of Aut (N). A uniform dis-
crete subgroup E of N ⋊ C is called an almost-crystallographic group, and its dimension
is defined to be that of N. A torsion-free, almost-crystallographic group is called an
almost-Bieberbach group, and the quotient space E\N is called an infra-nilmanifold. If
further E ⊆ N, we say that the space E\N is a nilmanifold.

It is well known that infra-nilmanifolds are classified by their fundamental group
that is almost-crystallographic [Au] Every almost-crystallographic subgroup E of the
group Aff (N) fits into an extension:

1 −→ Λ −→ E −→ F −→ 1, (10)

where Λ = E ∩ N is a uniform lattice in N, and F is a finite subgroup of C known as the
holonomy group of the corresponding infra-nilmanifold E\N [Au]. Let M be an infra-
nilmanifold whose fundamental group E is almost-crystallographic. Following [GPS,
Page 788], we recall the construction of a faithful linear representation associated with
the extension (10). Suppose that the nilpotent lattice Λ is of class c+ 1 i.e. Γc(Λ) 6= 1 and
Γc+1(Λ) = 1. For i = 1, . . . , c, let Zi = Γi(Λ)

/
Γi+1(Λ) denote the factor groups of the

lower central series {Γi(Λ)}c+1
i=1 of Λ. We will assume further that these quotients are

torsion free, since this will be the case for the groups that we will study in the following
sections. Thus Zi

∼= Zki for all 1 ≤ i ≤ c and for some ki > 0. The rank or Hirsch number
of Λ is equal to ∑

c
i=1 ki. The action by conjugation of E on Λ induces an action of E on

Zi which factors through an action of the group E/Λ (the holonomy group F), because
Λ acts trivially on Zi. This gives rise to a faithful representation θF : F −→ GL(n,Z) via
the composition:

θF : F −→ GL(k1,Z)× · · · × GL(kc ,Z) −→ GL(n,Z), (11)

where n, which is the rank of Γ, is also equal to the dimension of N. Using [GPS,
Remark 2.5], this representation will be used in Section 5.1 to decide whether M is
orientable or not.

In order to prove Theorem 1, we shall use part of the algebraic characterisation of
almost-crystallographic groups given in [De, Theorem 3.1.3] as follows.

THEOREM 7 ([De, Theorem 3.1.3]). Let E be a polycyclic-by-finite group. Then E is almost-
crystallographic if and only if it has a nilpotent subgroup, and possesses no non-trivial finite
normal subgroups.

6



3 The almost-crystallographic group Bn/Γk(Pn)

Let n, k ≥ 3. In this section, we study the group Bn/Γk(Pn). In Section 3.1, we start
by recalling some results about the quotient groups Γk(Pn)/Γk+1(Pn) that appear in (9).
In Section 3.2, we prove Theorems 1 and 2 which state that the groups Bn/Γk(Pn) are
almost-crystallographic, and that Bn/Γk(Pn) possesses no element of order 2 or 3 re-
spectively. This allows us to prove in Corollary 15, which shows that if H is a subgroup
of Sn whose order is not divisible by any prime other than 2 or 3 then the subgroup

σ−1(H)/Γk(Pn) of Bn/Γk(Pn) is almost-Bieberbach.

3.1 The rank of the free Abelian group Γk(Pn)/Γk+1(Pn)

Let n ≥ 2 and k ≥ 1. The group Γk(Pn)/Γk+1(Pn), which we shall denote by Lk(Pn), is
free Abelian of finite rank, and by [FR1, Theorem 4.2] and [Ko, Theorem 4.5], its rank
is related to the Poincaré polynomial of certain hyperplane complements. Using Chen
groups, Cohen and Suciu gave explicit formulæ for rank(Lk(Pn)) for k ∈ {1, 2, 3} and
all n ≥ 2 [CS, Theorem 1.1 and page 46]. More generally, by [LVW, Theorem 4.6], the
rank of Lk(Pn) is given by equation (1). In practice, we may compute these ranks as
follows. If k ≥ 2, let k∗ be the product of the distinct prime divisors of k. Then (1) may
be rewritten as:

rank(Lk(Pn)) =
1

k

n−1

∑
j=1

∑
d|k∗

µ(d)jk/d =
1

k ∑
d|k∗

µ(d)Sk/d(n), (12)

where Sr(n) = ∑
n−1
j=1 jr. The number of summands in the expression 1

k ∑d|k∗ µ(d)jk/d is

equal to 2t.

PROPOSITION 8. Let n ≥ 2. Then rank(Lk(Pn)) is a polynomial of degree k+ 1 in the variable
n.

Proof. By [N, Chapter XVI], the sum Sk/d(n) is a polynomial of degree k
d + 1 in the

variable n, so rank(Lk(Pn)) is also a polynomial in the variable n. The result follows by
noting that d = 1 divides k∗.

REMARKS 9.

(a) For small values of r, a polynomial expression for Sr(n) was computed for ex-
ample in [AIK, Section 1.2] for 1 ≤ r ≤ 6, and [N, Chapter XVI, page 296] or [Wi,
Tables I and II] for 1 ≤ r ≤ 10.
(b) Using the description given in equation (12), we have computed rank(Lk(Pn)) for
all 1 ≤ k ≤ 10. If n = 2 or 3, we obtain the equalities rank(L2(Pn)) = (n

3) and

rank(L3(Pn)) = 2(n+1
4 ) given in [CS, Theorem 1.1]. For 3 ≤ k ≤ 10, rank(Lk(Pn)) is

the product of (n+1
4 ) by a polynomial in the variable n of degree k − 3. The authors do

not know whether this is true in general.
(c) The numbers rank(Lk(Pn)) may be expressed in terms of Bernoulli numbers since
the latter are closely related to sums of powers of consecutive integers (see [AIK] for
more information about Bernoulli numbers, and especially Formula (1.1) on page 1).
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3.2 The quotient groups Bn/Γk(Pn)

The proofs of the first two results of this section are straightforward, but will be useful
in the analysis of the group Bn/Γk(Pn). First note that Pn/Γk(Pn) is a nilpotent group of
nilpotency class k − 1, and as we shall see in Lemma 11(a), it is torsion free.

PROPOSITION 10. Let n, k ≥ 3. The Hirsch length of the nilpotent group Pn/Γk(Pn) is equal

to ∑
k−1
q=1

(
1
q ∑

n−1
j=1 ∑d|q∗ µ(d)jq/d

)
. In particular, the Hirsch length of Pn/Γ3(Pn) (resp. of

Pn/Γ4(Pn)) is equal to (n
2) + (n

3) (resp. to (n
2) + (n

3) + 2(n+1
4 )).

Proof. Let n, k ≥ 3. Since the Hirsch length of a nilpotent group is equal to the sum of
the ranks of the consecutive lower central series quotients, the first part of the statement
follows from equation (12). If q ∈ {3, 4}, the formulæ is then a consequence of those
given in Remarks 9(b).

LEMMA 11.

(a) Let n, k ≥ 2. Then the group Pn/Γk(Pn) is torsion free.
(b) Let n ≥ 3, let k ≥ l ≥ 1, and let G be a finite group. If Bn/Γk(Pn) possesses a (normal)
subgroup isomorphic to G then Bn/Γl(Pn) possesses a (normal) subgroup isomorphic to G. In
particular, if p is prime, and if Bn/Γl(Pn) has no p-torsion then Bn/Γk(Pn) has no p-torsion.

Proof.

(a) The proof is by induction on k. If k = 2 then Pn/Γ2(Pn) ∼= Zn(n−1)/2, which implies
the result in this case. Suppose then that the result holds for some k ≥ 2. Then the
quotient of the short exact sequence (9) is torsion free by induction, and the kernel is
torsion free by the results mentioned at the beginning of Section 3.1. It follows that
Pn/Γk+1(Pn) is also torsion free.
(b) Assume that Bn/Γk(Pn) possesses a (normal) subgroup isomorphic to G. For all
j ≥ 2, we have a central extension of the form:

1 −→ Γj−1(Pn)/Γj(Pn) −→ Bn/Γj(Pn) −→ Bn/Γj−1(Pn) −→ 1. (13)

As we mentioned above, the kernel of the short exact sequence (13) is torsion free, so
the restriction of the homomorphism Bn/Γj(Pn) −→ Bn/Γj−1(Pn) to this subgroup is
injective, and Bn/Γj−1(Pn) also has a (normal) subgroup isomorphic to G. The first part
of the statement then follows by reverse induction on j. In particular, if Bn/Γk(Pn) has
p-torsion, the second part of the statement follows by taking G = Zp.

We now prove Theorem 1.

Proof of Theorem 1. Let n, k ≥ 3. In order to prove that the group Bn/Γk(Pn) is almost-
crystallographic, by Theorem 7, it suffices to show that it does not have finite (non-
trivial) normal subgroups. Suppose on the contrary that it possesses such a subgroup
H. Taking l = 2 (resp. l = 1) in Lemma 11(b), it follows that Bn/Γ2(Pn) (resp. Sn) has

a normal subgroup H′ (resp. Ĥ) isomorphic to H. Hence the groups Ĥ, H′ and H are
either isomorphic to Sn, or to the alternating subgroup An, or if n = 4, to Z2 ⊕ Z2. If

n ≥ 4, or if n = 3 and Ĥ = S3, it follows that H′ possesses 2-torsion, but this contra-

dicts [GGO1, Theorem 2]. It remains to analyse the case n = 3 and Ĥ = A3
∼= Z3. Then
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H′ has 3-torsion, and since the elements of B3/Γ2(P3) of order 3 are pairwise conjug-
ate [GGO1, Theorem 5], and H′ is normal in B3/Γ2(P3), the only elements of B3/Γ2(P3)
of order 3 are those belonging to H′, but this contradicts the fact that B3/Γ2(P3) pos-
sesses infinitely many elements of order 3 [GGO1, Proposition 21]. This proves the
first part of the statement of Theorem 1. For the second part, the dimension of the
almost-crystallographic group Bn/Γk(Pn) is equal to the Hirsch length of Pn/Γk(Pn)
given in Proposition 10, and the associated holonomy group is the quotient group
Bn/Γk(Pn)/Pn/Γk(Pn), which is isomorphic to Sn.

REMARKS 12.

(a) As in [GGO1, Corollary 13], the first part of Theorem 1 may be generalised as fol-
lows: let n, k ≥ 3, and let H be a subgroup of Sn. Then the group σ−1(H)/Γk(Pn) is an
almost almost-crystallographic group whose holonomy group is H and whose dimen-
sion is equal to that of Bn/Γk(Pn).
(b) Using Theorem 1, we may compute the dimension of the almost-crystallographic
group Bn/Γk(Pn). In Table 1, we exhibit these dimensions for small values of n and k.
This gives us an idea about their growth in terms of k and n.

k
n

3 4 5 6

2 3 6 10 15
3 4 10 20 35
4 6 20 50 105
5 9 41 131 336

Table 1: The dimension of the almost-crystallographic group Bn/Γk(Pn) for n = 3, 4, 5, 6
and k = 2, 3, 4, 5.

In order to prove Theorem 2, we first recall the following lemma from [GGO1].

LEMMA 13 ([GGO1, Lemma 28]). Let k, n ≥ 3 and r ≥ 0 such that k is odd and r + k ≤ n,
and define δr,k, αr,k ∈ Bn/Γ2(Pn) by:

δr,k = σr+k−1 · · · σr+ k+1
2

σ−1

r+ k−1
2

· · · σ−1
r+1 and αr,k = σr+1 · · · σr+k−1. (14)

Then δr,k is of order k in Bn/Γ2(Pn), and satisfies:

δr,k =
(

A
r+ k+1

2 ,r+k
A

r+ k+3
2 ,r+k

· · · Ar+k−1,r+k

)
α−1

r,k . (15)

Let n ≥ 3. We now describe a basis of the free Abelian group Γ2(Pn)/Γ3(Pn) of rank
(n

3) by Remark 9(b). This group is generated by the elements of the form [Ai,j, Ar,s],
where 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ n, but by equation (5), [Ai,j, Ar,s] = 1 in
Γ2(Pn)/Γ3(Pn) if Card {i, j, r, s} ∈ {2, 4}, so Γ2(Pn)/Γ3(Pn) is generated by the elements
of the form [Ai,j, Ar,s], where Card {i, j, r, s} = 3. Let αi,j,k = [Ai,j, Aj,k] for all 1 ≤ i <
j < k ≤ n. Using (5) once more, the following equalities hold in Γ2(Pn)/Γ3(Pn):

[Ai,k, Aj,k] = α−1
i,j,k, [Ai,j, Ai,k] = α−1

i,j,k and [Aj,k, Ai,j] = α−1
i,j,k, (16)
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and if αi,j,k = α±1
r,s,t then {i, j, k} = {r, s, t}. So the set

B =
{

αi,j,k

∣∣ 1 ≤ i < j < k ≤ n
}

, (17)

generates Γ2(Pn)/Γ3(Pn). Since Card(B) = (n
3) = rank(Γ2(Pn)/Γ3(Pn)), it follows that

B is a basis for Γ2(Pn)/Γ3(Pn), in particular, αi,j,k 6= 1. Applying equation (8) to the Artin
generators of Bn, and using equation (16), the action of Bn/Γ3(Pn) on the elements of B
given in (17) is as follows:

σkαr,s,tσ
−1
k =





ασk(r),σk(s),σk(t)
if σk(r) < σk(s) < σk(t)

α−1
σk(s),σk(r),σk(t)

if σk(r) > σk(s)

α−1
σk(r),σk(t),σk(s)

if σk(s) > σk(t)

(18)

for all 1 ≤ k ≤ n − 1 and 1 ≤ r < s < t ≤ n. Using the action of Bn on Pn given in
equation (7) and equation (16), one may check that in Bn/Γ3(Pn):

σk Ai,jσ
−1
k =





Ai,j−1α−1
i,j−1,j if j = k + 1 and i < k

Ai−1,jα
−1
i−1,i,j if i = k + 1

Aσk(i),σk(j) otherwise.

(19)

REMARK 14. Consider the action by conjugation of Bn/Γ3(Pn) on Γ2(Pn)/Γ3(Pn) de-
scribed by (18). The restriction of this action to Pn/Γ3(Pn) on Γ2(Pn)/Γ3(Pn) is trivial,
and so the action of Bn/Γ3(Pn) factors through Sn. Further, if n > 3, the action of
Sn is injective, i.e. if α is a non-trivial permutation, then the induced automorphism is
different from the identity by (8), (16) and the fact that B is a basis.

Proof of Theorem 2. Let n, k ≥ 3. By [GGO1, Theorem 2], Bn/Γ2(Pn) has no 2-torsion, so
applying Lemma 11(b), we conclude that this is also the case for Bn/Γk(Pn). To com-
plete the proof, using Lemma 11(b) once more, it suffices to prove that Bn/Γ3(Pn) has
no 3-torsion. Suppose on the contrary that Bn/Γ3(Pn) possesses an element ρ of order
3. Let m denote the number of conjugacy classes of elements of Bn/Γ2(Pn) of order 3.
By [GGO1, Theorem 5], m is equal to the number of conjugacy classes of elements of
order 3 in Sn, so m = ⌊n/3⌋ ≥ 1, and using [GGO1, Proposition 29], representatives of
the conjugacy classes of elements of order 3 in Bn/Γ2(Pn) are given by the elements of
the form ηt = δ3t,3 · · · δ6,3δ3,3δ0,3, where 0 ≤ t ≤ m − 1. Conjugating ρ if necessary and
using the short exact sequence (13), there exists θ ∈ Γ2(Pn)/Γ3(Pn) such that ρ = θηt

for some 0 ≤ t ≤ m − 1 (here ηt is considered as an element of Bn/Γ3(Pn)). Note that
ηt acts by conjugation on σ−1(S3 × 1 × · · · × 1) and σ−1(1 × 1 × 1 × Sn−3), where σ is

as in (6). Further, by (8) and (16), we see that ηtα1,2,3η−1
t = α1,2,3 in Bn/Γ3(Pn), and that

if θ′ is a word in the elements of B \ {α1,2,3} then ηtθ
′η−1

t , written in reduced form as

a word in Pn/Γ3(Pn), does not contain α1,2,3. Let θ = αl
1,2,3θ1, where l ∈ Z and θ1 is a

word in the elements of B \ {α1,2,3}. For all i ∈ {0, . . . , t}, we have:

δ3
3i,3 = (σ3i+2σ−1

3i+1)
3 = σ2

3i+2σ−1
3i+2σ−1

3i+1σ3i+2σ−1
3i+1σ3i+2σ−1

3i+1

= σ2
3i+2σ3i+1σ−1

3i+2σ−2
3i+1σ3i+2σ−1

3i+1 = σ2
3i+2σ2

3i+1σ−2
3i+2σ−2

3i+1 = [σ2
3i+1, σ2

3i+2]
−1

= [A3i+1,3i+2, A3i+2,3i+3]
−1 = α−1

3i+1,3i+2,3i+3,
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and since the δ3i,3 commute pairwise, it follows that η3
t = α−1

1,2,3 · · · α−1
3t+1,3t+2,3t+3. Hence:

ρ3 = (θηt)
3 = αl

1,2,3θ1ηtα
l
1,2,3θ1η−1

t η2
t αl

1,2,3θ1η−2
t η3

t

= α3l
1,2,3θ1. ηtθ1η−1

t . η2
t θ1η−2

t . α−1
1,2,3 · · · α−1

3t+1,3t+2,3t+3

in Γ2(Pn)/Γ3(Pn). As we saw above, the words ηtθ1η−1
t and η2

t θ1η−2
t (written in reduced

form in Pn/Γ3(Pn)) do not contain α1,2,3, and since ρ3 = 1, it follows by comparing the
coefficients of α1,2,3 that 3l = 1, which yields a contradiction. So Bn/Γ3(Pn) has no
3-torsion as required.

The following result is a consequence of Theorems 1 and 2 and the definition of
almost-Bieberbach groups.

COROLLARY 15. Let n ≥ 3 and let k ≥ 3. Let H be a subgroup of Sn whose order is equal
to 2s3t for some s, t ∈ N. Then σ−1(H)/Γk(Pn) is an almost-Bieberbach group. In particular,
the groups B3/Γ3(P3) and B4/Γ3(P4) are almost-Bieberbach groups of dimension 4 and 10
respectively.

Proof. The first part is a consequence of Theorems 1 and 2 and Definition 6. The second
part follows by taking H = Sn for n ∈ {3, 4}, and by applying the short exact se-
quence (6) and the results of Table 1.

4 Torsion elements, conjugacy classes and a presentation

of Bn/Γ3(Pn)

Let n ∈ N. The main aim of this section is to prove Theorems 3 and 4 that describe the
torsion elements of Bn/Γ3(Pn) and their conjugacy classes. We also exhibit a presenta-
tion of the quotient group Bn/Γ3(Pn) in Proposition 18.

4.1 A partition of the basis of Γ2(P3)/Γ3(P3)

Let δn be equal to the element δ0,n of equation (14), considered as an element of the
group Bn/Γ3(Pn). By Lemma 13, δn

n ∈ Γ2(Pn)/Γ3(Pn). We start by partitioning the basis
B of Γ2(Pn)/Γ3(Pn) given in (17) into orbits for the action by conjugation by δn.

PROPOSITION 16. Let n ≥ 5. Then the basis B of Γ2(Pn)/Γ3(Pn) given in equation (17)
is invariant with respect to the action of Zn given by conjugation by δn. Further, under this
action:

(a) if gcd(n, 3) = 1, B is the disjoint union of
(n−1)(n−2)

6 orbits each of length n.

(b) if gcd(n, 3) 6= 1, B is the disjoint union of n(n−3)
6 + 1 orbits, one of which is of length n

3 ,

and the remaining
n(n−3)

6 orbits are each of length n.

Proof. Let n ≥ 5, and let 1 ≤ i < j < k ≤ n. Using (8), (14) and (16), we see that:

δnαi,j,kδ−1
n =

{
αi−1,j−1,k−1 if i ≥ 2

[An,j−1, Aj−1,k−1] = [Aj−1,n, Aj−1,k−1] = αj−1,k−1,n if i = 1.
(20)
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So the action of conjugation by δn permutes the elements of B, which proves the first
part of the statement. By (20), δn

nαi,j,kδ−n
n = αi,j,k for all 1 ≤ i < j < k ≤ n. Suppose that

1 ≤ l < n is such that δl
nαi,j,kδ−l

n = αi,j,k. Then by (20), we have:

(i) i − l + n = k, j − l = i and k − l = j, or
(ii) i − l + n = j, j − l + n = k and k − l = i.

Summing the three equations in both cases, we see that 3 | n. In particular:

• if 3 ∤ n then all of the orbits are of length n, and there are (n
3)/n = (n−1)(n−2)

6 orbits.

• if 3 | n then from (i) and (ii), we have either l = n
3 or l = 2n

3 . It follows that j = i + n
3

and k = i + 2n
3 , and for these values of i, j and k, we obtain a single orbit of length

n
3 . The remaining orbits are of length n, and so the number of such orbits is given by

((n
3)−

n
3 )/n, which is equal to

n(n−3)
6 .

REMARK 17. Let n = 3q + r, where q ∈ N and r ∈ {0, 1, 2}. Let S be the subset of B
defined by:

S=

{{
α1,j,k

∣∣ 2 ≤ j ≤ q + 1 and 2j − 1 ≤ k ≤ n − (j − 1)
}

if r 6= 0{
α1,j,k

∣∣ 2 ≤ j ≤ q and 2j − 1 ≤ k ≤ n − (j − 1)
}
∪ {α1,n/3+1,2n/3+1} if r = 0.

(21)

Then S is a transversal for the action of δn on B described in Proposition 16, and B may
be rewritten as:

B=





{
δt

nα1,j,kδ−t
n

∣∣ 2 ≤ j ≤ q + 1, 2j − 1 ≤ k ≤ n − (j − 1) and 0 ≤ t ≤ n − 1
}

if r 6= 0

{
δt

nα1,j,kδ−t
n

∣∣ 2 ≤ j ≤ q, 2j − 1 ≤ k ≤ n − (j − 1) and 0 ≤ t ≤ n − 1
}⋃

{
δt

nα1,n/3+1,2n/3+1δ−t
n

∣∣ 0 ≤ t ≤ n/3 − 1
}

if r = 0.

With the notation of Proposition 16, let O(n) be equal to the number of orbits of the
action on B by conjugation by δn, and let T = {bi,1}1≤i≤O(n) be a transversal for this

action (for example, we may take T to be the transversal S defined in (21)). We choose
T so that bO(n),1 is a representative of the orbit of length n/3 if 3 | n. For 1 ≤ i ≤ O(n),

let q(i) be the length of the orbit of bi,1, so that q(i) = n/3 if 3 | n and i = O(n), and
q(i) = n otherwise, and let:

bi,j = δ
j−1
n bi,1δ

−(j−1)
n for all 1 ≤ j ≤ q(i). (22)

Then B =
{

bi,j

∣∣ 1 ≤ i ≤ O(n) and 1 ≤ j ≤ q(i)
}

.

4.2 A presentation of Bn/Γ3(Pn)

In this section, we exhibit a presentation of Bn/Γ3(Pn) by applying the techniques of [Jo,
Proposition 1, p. 139] to obtain a presentation of a group extension to the short exact
sequence (9).

PROPOSITION 18. Let n ≥ 3.

(a) The group Pn/Γ3(Pn) has a presentation given by the generating set Xn =
{

Ai,j

}
1≤i<j≤n

∪

{αr,s,t}1≤r<s<t≤n, subject to the following relations:
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(i) the αr,s,t commute pairwise and with the Ai,j.

(ii) [Ai,j, Al,m] =





αi,j,m if Card {i, j, l, m} = 3 and j = l

α−1
i,k,m if Card {i, j, l, m} = 3, where k = j if i = l, and k = l if j = m

1 if Card {i, j, l, m} ∈ {2, 4}.

(b) The group Bn/Γ3(Pn) has a presentation given by the generating set {σk}1≤k≤n−1 ∪ Xn,
subject to the following relations:

(i) relations (a)(i) and (a)(ii) emanating from those of Pn/Γ3(Pn).
(ii) the Artin braid relations (2), viewed in Bn/Γ3(Pn).
(iii) the conjugacy relations described in (18) and (19).

Proof. To prove parts (a) and (b), it suffices to apply [Jo, Proposition 1, p. 139] first to (9)
taking k = 2, and then to (6) taking k = 3 using also part (a).

4.3 Torsion elements and conjugacy classes in Bn/Γ3(Pn)

In this section, we prove Theorems 3 and 4. We start by proving the following lemma
whose result generalises [GGO1, Theorem 3(a)].

LEMMA 19. Let m, k ∈ N.

(a) Let n ∈ N be such that 2 ≤ n ≤ m, and let ι : Bn −→ Bm denote the injective homo-
morphism defined by ι(σi) = σi for all 1 ≤ i ≤ n − 1. Then the induced homomorphism
ι : Bn/Γk(Pn) −→ Bm/Γk(Pm) is injective.
(b) Let t ∈ N, let n1, n2, . . . , nt be integers greater than or equal to 2 for which ∑

t
i=1 ni ≤ m,

and let ζ : Bn1
× · · · × Bnt −→ Bm denote the natural inclusion. Then the induced homo-

morphism ζ : Bn1
/Γk(Pn1

)× · · · × Bnt/Γk(Pnt) −→ Bm/Γk(Pm) is injective.

Proof. Let t, m and n be positive integers such that 2 ≤ n ≤ m.

(a) If k = 1, the result is straightforward. So assume that k ≥ 2. For 2 ≤ n ≤ m,
let ιn,m : Bn −→ Bm (resp. ιn,m,k : Bn/Γk(Pn) −→ Bm/Γk(Pm)) be the homomorphism ι
(resp. ι) given in the statement. By equation (4), ιn,m restricts to an injective homo-
morphism ιn,m |Pn : Pn −→ Pm given by ιn,m |Pn (Ai,j) = Ai,j for all 1 ≤ i < j ≤ n. For

n ≤ q ≤ m − 1, let ιq : Pq −→ Pq+1 denote the homomorphism ιq,q+1

∣∣∣Pq . We claim that

the homomorphism ιn,m

∣∣∣Γk(Pn)/Γk+1(Pn) : Γk(Pn)/Γk+1(Pn) −→ Γk(Pm)/Γk+1(Pm) that is

induced by ιn,m |Pn is injective for all k ≥ 2. To see this, first note that since ιn,m |Pn

is equal to the composition ιm−1 ◦ · · · ◦ ιn, the homomorphism ιn,m

∣∣∣Γk(Pn)/Γk+1(Pn) is

equal to the composition ιm−1

∣∣∣Γk(Pm−1)/Γk+1(Pm−1)
◦ · · · ◦ ιn

∣∣∣Γk(Pn)/Γk+1(Pn) , where the ho-

momorphism

ιq

∣∣∣Γk(Pq)/Γk+1(Pq) : Γk(Pq)/Γk+1(Pq) −→ Γk(Pq+1)/Γk+1(Pq+1)

is induced by ιq for all n ≤ q ≤ m − 1, it suffices to prove that ιq

∣∣∣Γk(Pq)/Γk+1(Pq) is in-

jective. To do so, consider the Fadell-Neuwirth short exact sequence 1 −→ Ker (p) −→

Pq+1
p

−→ Pq −→ 1, where p is the homomorphism given geometrically by forgetting
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the last string. Using the presentation given in equation (5), we obtain two well-known
facts, first that ιq is a section for p, and secondly that the resulting semi-direct product
is almost direct, i.e. the action induced by Pq on the Abelianisation Ker (p) /Γ2(Ker (p))
of Ker (p) is trivial. It follows from [FR1, Theorem 3.1] that the induced sequence

of homomorphisms 1 −→ Γk(Ker (p))/Γk+1(Ker (p)) −→ Γk(Pq+1)/Γk+1(Pq+1)
p

−→

Γk(Pq)/Γk+1(Pq) −→ 1 is split short exact, and that the homomorphism ιq

∣∣∣Γk(Pq)/Γk+1(Pq)

is a section for p. In particular, ιq

∣∣∣Γk(Pq)/Γk+1(Pq) is injective, and the claim follows. Now

consider the following commutative diagram of short exact sequences:

1 // Γk(Pn)/Γk+1(Pn) //

ιn,m

∣∣∣Γk(Pn)/Γk+1(Pn)
��

Bn/Γk+1(Pn) //

ιn,m,k+1
��

Bn/Γk(Pn) //

ιn,m,k
��

1

1 // Γk(Pm)/Γk+1(Pm) // Bm/Γk+1(Pm) // Bm/Γk(Pm) // 1,

where the rows are the short exact sequences given by the central extension (13). The
statement of part (a) is then a consequence of applying the 5-Lemma to this diagram,
the above claim, induction on k, and the fact that ι : Bn/Γ2(Pn) −→ Bm/Γ2(Pm) is an
injective homomorphism by [GGO1, Theorem 3(a)].
(b) Let n1, . . . , nt be integers greater than or equal to 2 such that ∑

t
i=1 ni ≤ m, let

σ : B
∑

t
i=1 ni

−→ S
∑

t
i=1 ni

denote the usual homomorphism that to a braid associates its

permutation, and let Bn1,...,nt denote the corresponding mixed braid group, namely
the preimage under σ of the subgroup Sn1

× · · · × Snt of S
∑

t
i=1 ni

. For 1 ≤ i ≤ t, let

ϕi : Bni
−→ Bn1,...,nt denote the embedding of Bni

into the ith factor of Bn1,...,nt . Note that
ζ is the equal to the following composition:

Bn1
× · · · × Bnt

ϕ1×···×ϕt
−−−−−→ Bn1,n2,...,nt −֒→B

∑
t
i=1 ni

−֒→Bm.

Note that ϕi induces a homomorphism ϕi : Bni
/Γk(Pni

) −→ Bn1,n2,...,nt/Γk

(
P

∑
t
i=1 ni

)
be-

cause ϕi(Γk(Pni
)) ⊂ Γk

(
P

∑
t
i=1 ni

)
. Now let ψi : Bn1,...,nt −→ Bni

/Γk(Pni
) be the composi-

tion of the projection onto the ith factor of Bn1,...,nt , followed by the canonical projection
Bni

−→ Bni
/Γk(Pni

). Under this composition, the normal subgroup P
∑

t
i=1 ni

of Bn1,...,nt

is sent to Pni
/Γk(Pni

), hence the normal subgroup Γk

(
P

∑
t
i=1 ni

)
of Bn1,...,nt is sent to the

trivial element of Bni
/Γk(Pni

), from which it follows that ψi induces a homomorphism
ψi : Bn1,...,nt/Γk

(
P

∑
t
i=1 ni

)
−→ Bni

/Γk(Pni
). From the constructions of ϕi and ψi, we see

that ψi ◦ ϕi = IdBni
/Γk(Pni

) for all 1 ≤ i ≤ t, and so the composition

Bn1

Γk(Pn1
)
× · · · ×

Bnt

Γk(Pnt)

ϕ1×···×ϕt
−−−−−→

Bn1,n2,...,nt

Γk

(
P

∑
t
i=1 ni

) ψ1×···×ψt
−−−−−→

Bn1

Γk(Pn1
)
× · · · ×

Bnt

Γk(Pnt)

is the identity. Thus ϕ1 × · · · × ϕt is injective, and the composition

Bn1

Γk(Pn1
)
× · · · ×

Bnt

Γk(Pnt)

ϕ1×···×ϕt
−−−−−→

Bn1,n2,...,nt

Γk

(
P

∑
t
i=1 ni

) −→
B

∑
t
i=1 ni

Γk

(
P

∑
t
i=1 ni

) −→
Bm

Γk(Pm)
,

which is the homomorphism ζ of the statement, may be seen to be injective using
part (a) and the injectivity of the homomorphism Bn1,...,nt −֒→ B

∑
t
i=1 ni

.
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The following results allow us to decide whether certain elements of a group are of
finite order or not. They will be used to obtain finite-order elements in Bn/Γ3(Pn), as
well as in the proof of Theorem 3.

LEMMA 20. Let d ≥ 2, let G be a group that has no d-torsion, and let α ∈ G. Suppose that
σ : G −→ Sn is a surjective homomorphism whose kernel K is torsion free, and such that d
divides the order of σ(α). Then for all θ ∈ K, θα is of infinite order in G.

Proof. Suppose on the contrary that there exists θ ∈ K for which θα is of finite order,
m say, in G. Let q denote the order of σ(α). Since θ ∈ K, Id = σ((θα)m) = (σ(α))m ,
and thus q | m. In a similar manner, we see that σ((θα)q) = Id, so (θα)q ∈ K. Now
1 = (θα)m = ((θα)q)m/q, and the fact that K is torsion free implies that (θα)q = 1, hence
q = m. By hypothesis, d | q, and so ((θα)q/d)d = 1. This implies that the order of (θα)q/d

divides d. On the other hand, the fact that σ(θα) is of order q implies that σ((θα)q/d) is
of order d, and so the order of (θα)q/d cannot be strictly less than d. Hence (θα)q/d is of
order d, but this contradicts the fact that G has no d-torsion.

PROPOSITION 21. Let n ≥ 3.

(a) If n is even then for all k ∈ N and θ ∈ Pn/Γ3(Pn), (θδn)k /∈ Γ2(Pn)/Γ3(Pn).
(b) Suppose that n is odd. Then the element δn

n belongs to Γ2(Pn)/Γ3(Pn), and with the nota-
tion of (22), we have:

δn
n =

O(n)

∏
i=1

q(i)

∏
j=1

b
mi,j

i,j , (23)

where mi,1 = mi,2 = · · · = mi,q(i) for all 1 ≤ i ≤ O(n). Further, if 3 | n then for all k ∈ N

and θ ∈ Pn/Γ3(Pn), (θδn)
k is non trivial in Bn/Γ3(Pn).

Proof.

(a) Let n be even, and assume on the contrary that (θδn)k ∈ Γ2(Pn)/Γ3(Pn) for some
k ∈ N and θ ∈ Pn/Γ3(Pn). Let f : Bn/Γ3(Pn) −→ Bn/Γ2(Pn) be the homomorphism
given in (13) with j = 3. Then (θδn)k = 1 in Bn/Γ2(Pn), where θ = f (θ) and δn = f (δn).
We now apply Lemma 20 to the short exact sequence (6), taking k = 2, G = Bn/Γ2(Pn),
α = δn, and the homomorphism σ of that lemma to be σ. Note that σ(δn) is of order
n, so 2 | n, and Bn/Γ2(Pn) has no 2-torsion by [GGO1, Theorem 2]. Since Pn/Γ2(Pn) is
torsion free, it follows from Lemma 20 that θδn is of infinite order in Bn/Γ2(Pn), and we
obtain a contradiction. We conclude that (θδn)k /∈ Γ2(Pn)/Γ3(Pn).

(b) Since δ
n
n = 1 in Bn/Γ2(Pn) by Lemma 13, it follows from the short exact sequence (13)

with j = 3 that δn
n ∈ Γ2(Pn)/Γ3(Pn). Hence in terms of the basis B of Γ2(Pn)/Γ3(Pn)

given by (17), and with the notation of (22), for all 1 ≤ i ≤ O(n) and 1 ≤ j ≤ q(i),
there exist mi,j ∈ Z that are unique and for which (23) holds. The equality mi,1 = mi,2 =
· · · = mi,q(i) follows by conjugating (23) by δn and using (22). The last part of the state-
ment follows by applying Lemma 20 to the short exact sequence (6), where we take
G = Bn/Γ3(Pn), d = 3 and α = δn, and using Theorem 2.

THEOREM 22. Let n ∈ N, let m ≤ n, and let s be the largest divisor of m for which gcd(s, 6) =
1. If s > 1, the group Bn/Γ3(Pn) possesses infinitely-many elements of order s.
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Proof. Let 1 ≤ m ≤ n, and let s be the largest divisor of m for which gcd(s, 6) = 1.
Since we assume that s > 1, we must have n ≥ 5. Further, the fact that s ≤ n implies
using Lemma 19(a) that the homomorphism ι : Bs/Γ3(Ps) −→ Bn/Γ3(Pn) is injective.
So it suffices to prove that if n ∈ N is relatively prime with 6 then Bn/Γ3(Pn) possesses
elements of order n. In this case, δn

n is as given in (23), where O(n) = (n − 1)(n − 2)/6
by Proposition 16(a), and q(i) = n for all 1 ≤ i ≤ O(n). Let:

δ̂n = θδn, (24)

where we take θ to be an element of Γ2(Pn)/Γ3(Pn), so θ = ∏
O(n)
i=1 ∏

n
j=1 b

ri,j

i,j , where

ri,j ∈ Z for all 1 ≤ i ≤ O(n) and 1 ≤ j ≤ n. Then by (22) and Proposition 21(b), we
have:

δ̂ n
n = (θδn)

n = θ. δnθδ−1
n . δ2

nθδ−2
n · · · δn−1

n θδ
−(n−1)
n . δn

n

=
O(n)

∏
i=1

( n

∏
j=1

bi,j

)∑
n
j=1 ri,j

.
O(n)

∏
i=1

n

∏
j=1

b
mi,1

i,j =
O(n)

∏
i=1

( n

∏
j=1

bi,j

)∑
n
j=1 ri,j+mi,1

. (25)

Taking k = 3 in (6), σ(δ̂n) is of order n in Sn, and it follows from this and (25) that δ̂n is
of order n if and only if:

n

∑
j=1

ri,j = −mi,1 for all i = 1, . . . ,O(n). (26)

This system of equations has infinitely-many solutions in the ri,j, which yields infinitely-
many elements in Bn/Γ3(Pn) of order n.

REMARK 23. If n ∈ N and gcd(n, 6) = 1, the proof of Theorem 22 shows how to ob-
tain explicit finite-order elements of Bn/Γ3(Pn). However, as part of the process, we
need to determine δn

n in terms of the elements of the basis B. This seems to be an ar-
duous computation in general, as the calculation given in Section 5.2 in the case n = 5
indicates.

We are now able to prove Theorem 3.

Proof of Theorem 3. Let n ≥ 5, and let τ ∈ N be such that gcd(τ, 6) = 1. If β is an element
of Bn/Γ3(Pn) of order τ then using (6) and the fact that Pn/Γ3(Pn) is torsion free by
Lemma 11(a), it follows that σ(β) is an element of Sn of order τ. Conversely, suppose
that x ∈ Sn is an element of order τ, and let η1 · · · ηt be the cycle decomposition of
x. Then τ = lcm(n1, . . . , nt), where for i = 1, . . . , t, ηi is of length ni. In particular,
gcd(ni , 6) = 1 for all i = 1, . . . , t, and ∑

t
i=1 ni ≤ n by [Ho]. Let y ∈ Sn be such that

yxy−1 = (1, . . . , n1)(n1 + 1, . . . , n1 + n2) · · · (n1 + · · ·+ nt−1 + 1, . . . , n1 + · · ·+ nt). (27)

Since σ is surjective, there exists ρ ∈ Bn/Γ3(Pn) such that σ(ρ) = y. For i = 1, . . . , t, let

δ̂ni
∈ Bni

/Γ3(Pni
) be as defined in (24), where the coefficients of θ satisfy (26). From the

proof of Theorem 22, δ̂ni
is of order ni. Let β = ζ(δ̂n1

, . . . , δ̂nt) in Bn/Γ3(Pn). By taking
k = 3 in Lemma 19(b), we see that β is of order τ, and since the permutation associated

to δ̂ni
is the ni-cycle (1, . . . , ni), it follows that σ(β) = yxy−1, and hence σ(α) = x, where

α = ρ−1βρ. In particular, Bn/Γ3(Pn) has elements of order τ if and only if Sn does.
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One consequence of Theorem 3 is the classification of the isomorphism classes of the
finite cyclic subgroups of Bn/Γ3(Pn). Using Lemma 19(b), we may also caracterise the
isomorphism classes of the finite Abelian subgroups of Bn/Γ3(Pn) in a manner similar
to that of Bn/Γ2(Pn) given in [GGO1, Theorem 6].

COROLLARY 24. Let n ≥ 3. Then there is a one-to-one correspondence between the isomorph-
ism classes of the finite Abelian subgroups of Bn/Γ3(Pn) and those of the finite Abelian sub-
groups of Sn whose order is relatively prime with 6.

Proof. The proof is similar to that of [GGO1, Theorem 6], using Lemma 19(b) and the
finite-order elements of the form (24) constructed in the proof of Theorem 22.

To end this section, we prove Theorem 4, which says that if n ≥ 5, two finite-order
elements of Bn/Γ3(Pn) are conjugate if and only if their associated permutations are
conjugate.

Proof of Theorem 4. Let n ≥ 5, and let α and β be two finite-order elements of Bn/Γ3(Pn)
whose associated permutations have the same cycle type. Conjugating β in Bn/Γ3(Pn)
if necessary, we may suppose that β is as in the proof of Theorem 3, in particular, it
is of order τ = lcm(n1, . . . , nt), where gcd(ni, 6) = 1 for all i = 1, . . . , t, and σ(β) is
equal to the permutation given in (27). To complete the proof of the theorem, it suffices
to show that if α ∈ Bn/Γ3(Pn) is any finite-order element such that σ(α) has the same
cycle type as σ(β), then α and β are conjugate in Bn/Γ3(Pn). Conjugating α if necessary,
we may suppose further that σ(α) = σ(β). Since Ker (σ) = Pn/Γ3(Pn) is torsion free
by Lemma 11(a), it follows that α is also of order τ.

Let B′ be the union of the elements of the basis B defined in (17) and their inverses.
From (8) and (16), β acts on B′ by conjugation, and if βαi,j,kβ−1 = α−1

r,s,t for some 1 ≤ i <
j < k ≤ n and 1 ≤ r < j < s ≤ t, then either i = n1 + · · ·+ nm + 1 < j ≤ n1 + · · ·+
nm+1 < k for some 0 ≤ m < t, or i < j = n1 + · · · + nm + 1 < k ≤ n1 + · · ·+ nm+1

for some 1 ≤ m < t. From this and the fact that nl is odd for all l = 1, . . . , t, we see
that under this action, the orbits of αi,j,k and α−1

i,j,k are disjoint for all 1 ≤ i < j < k ≤ n,

and that the orbit of α−1
i,j,k is obtained by taking inverses of the elements of the orbit of

αi,j,k. We then choose a transversal
{

bi,1, b−1
i,1

∣∣1 ≤ i ≤ q
}

for this action on B′, where
for 1 ≤ i ≤ q, bi,1 ∈ B, and we let si denote the length of the orbit of bi,1. Observe that
si divides τ. Then B′′ =

{
bi,j

∣∣ 1 ≤ i ≤ q and 1 ≤ j ≤ si

}
is a basis of Γ2(Pn)/Γ3(Pn),

where:
bi,j = βj−1bi,1β−(j−1) for all 1 ≤ i ≤ q and 1 ≤ j ≤ si. (28)

As in the proof of Proposition 21(a), let f : Bn/Γ3(Pn) −→ Bn/Γ2(Pn) be the pro-
jection given in (13) with j = 3, and let σ′ : Bn/Γ2(Pn) −→ Sn be the homomorphism
given in (6) with k = 2. Since Ker ( f ) = Γ2(Pn)/Γ3(Pn) is torsion free, f (α) and f (β)
are elements of Bn/Γ2(Pn) of order τ. Further, σ = σ′ ◦ f , so σ′( f (α)) = σ′( f (β)), and
applying [GGO1, Theorem 5], there exists ξ ∈ Bn/Γ2(Pn) such that ξ f (α)ξ−1 = f (β).
Since f is surjective, there exists ξ′ ∈ Bn/Γ3(Pn) such that f (ξ′αξ′−1) = f (β). So con-
jugating α if necessary, there exists θ ∈ Γ2(Pn)/Γ3(Pn) such that θβ = α.

It suffices to show that there exists Ω ∈ Γ2(Pn)/Γ3(Pn) such that ΩαΩ−1 = β, or
equivalently that:

θ = (βΩβ−1)Ω−1, (29)
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using the fact that θ commutes with Ω. Let θ = ∏ 1≤i≤q
1≤j≤si

b
ri,j

i,j , and Ω = ∏ 1≤i≤q
1≤j≤si

b
xi,j

i,j ,

where ri,j, xi,j ∈ Z for all 1 ≤ i ≤ q and 1 ≤ j ≤ si. Since θβ = α, the elements β and θβ
are of order τ, and so:

1 = (θβ)τ = θ(βθβ−1) · · · (βτ−1θβ−(τ−1))βτ = θ(βθβ−1) · · · (βτ−1θβ−(τ−1)). (30)

From the construction of the basis B′′, it follows from (30) that:

1 = θ(βθβ−1) · · · (βτ−1θβ−(τ−1)) = ∏
1≤i≤q

(
∏

1≤j≤si

bi,j

)τ(∑1≤j≤si
ri,j)/si

,

from which we conclude that ∑1≤j≤si
ri,j = 0 for all 1 ≤ i ≤ q. In a similar manner, (29)

may be written as:

∏
1≤i≤q
1≤j≤si

b
ri,j

i,j = ∏
1≤i≤q
1≤j≤si

b
xi,j−1−xi,j

i,j ,

where the index j − 1 of xi,j−1 is taken modulo si. So for all i = 1, . . . , q, we obtain a
system of equations xi,j−1 − xi,j = ri,j for all 1 ≤ j ≤ si that is subject to the compatibility
condition ∑1≤j≤si

ri,j = 0, and it may be seen easily that each such system admits a
solution. Using (29), we conclude that α and β are conjugate as required.

5 Some examples with a small numbers of strings

In this section, we study a couple of examples where the number of strings is small.
In Section 5.1, we determine, up to conjugacy, the almost-Bierberbach subgroups of
B3/Γ3(P3) that contain P3/Γ3(P3), and we identify them using the classification of [De].
In Section 5.2, we calculate explicitly δ5

5 in Γ2(P5)/Γ3(P5) in terms of the basis B. This
example illustrates the computational difficulties that we encounter with respect to the
constructions of Proposition 21 and Theorem 22. We finish the paper with a remark
concerning the study of the quotients Bn/Γk(Pn) for k > 3.

5.1 Some almost-Bieberbach subgroups of B3/Γ3(P3)

In this section, we describe the almost-Bieberbach groups σ−1(H)/Γ3(P3), where H is a
subgroup of S3. Recall that representatives of the conjugacy classes of subgroups of S3

are given by {Id}, 〈(1, 2)〉, 〈(1, 2, 3)〉 and S3. As we shall see now in Theorem 25, these
groups are of dimension 4 and their holonomy group is H, and that any subgroup of
B3/Γ3(P3) containing P3/Γ3(P3) is in fact of the form σ−1(H)/Γ3(P3), where H is a
subgroup of S3.

THEOREM 25.

(a) Let K be a subgroup of B3/Γ3(P3) that contains P3/Γ3(P3). Then K is conjugate to
σ−1(H)/Γ3(P3), where H is one of the subgroups {Id}, 〈(1, 2)〉, 〈(1, 2, 3)〉 or S3 of S3.
(b) Consider the four subgroups of S3 given in part (a).

(i) If H = {Id}, the group σ−1(H)/Γ3(P3) = P3/Γ3(P3) has a presentation whose generators
are a = A1,3, b = A2,3, c = A1,2 and d = [A1,2, A2,3], and that are subject to the following
relations:

18



(1) [b, a] = d
(2) [c, a] = d−1

(3) [c, b] = d
(4) [d, a] = 1

(5) [d, b] = 1
(6) [d, c] = 1.

For each of the remaining groups, a presentation is obtained by adding extra generators and
relations to those of P3/Γ3(P3) given in (i). In each case, we will just indicate these extra
generators and relations.
(ii) If H = 〈(1, 2)〉, the group σ−1(H)/Γ3(P3) has a presentation with one extra generator
α = σ1 and five extra relations:

(1) α2 = c
(2) αdα−1 = d−1

(3) αaα−1 = b
(4) αbα−1 = ad−1

(5) αcα−1 = c.

(iii) If H = 〈(1, 2, 3)〉, the group σ−1(H)/Γ3(P3) has one extra generator α = σ2σ−1
1 and five

extra relations:

(1) α3 = d−1

(2) αdα−1 = d
(3) αaα−1 = bd
(4) αbα−1 = cd−1

(5) αcα−1 = a.

(iv) If H = S3, the group σ−1(H)/Γ3(P3) = B3/Γ3(P3) has two extra generators α = σ2σ1

and β = σ1 and eleven extra relations:

(1) α3 = abc
(2) β2 = c
(3) αdα−1 = d
(4) βdβ−1 = d−1

(5) αaα−1 = b
(6) αbα−1 = c
(7) αcα−1 = a
(8) βaβ−1 = b

(9) βbβ−1 = ad−1

(10) βcβ−1 = c
(11) βαβ−1 = b−1α2.

Proof.

(a) First suppose that K1 and K2 are subgroups of B3/Γ3(P3) that contain P3/Γ3(P3),
and for which σ(K1) = σ(K2). We claim that K1 = K2. To see this, let x ∈ K1. Since
σ(K1) = σ(K2), there exists y ∈ K2 such that σ(x) = σ(y), and so there exists z ∈
P3/Γ3(P3) such that y−1x = z. But P3/Γ3(P3) ⊂ K1 ∩ K2 by hypothesis, so x = yz ∈ K2,
which proves that K1 ⊂ K2. A similar argument shows that K2 ⊂ K1, which proves

the claim. So if K is a subgroup B3/Γ3(P3) that contains P3/Γ3(P3), K = σ−1(σ(K)), in

particular K = σ−1(H), where H = σ(K) is a subgroup of S3. Since all such subgroups
are normal in S3, with the exception of those of order 2, to complete the proof of part (a),
it suffices to show that if K1 and K2 are subgroups of B3/Γ3(P3) that contain P3/Γ3(P3),
and for which σ(K1) = 〈(1, 2)〉 and σ(K2) = τ, where τ ∈ {(1, 3), (2, 3)}, then K1 and K2

are conjugate in B3/Γ3(P3). To see this, let τ′ ∈ S3 be such that τ′(1, 2)τ′−1 = τ, and let
τ̃′ ∈ B3/Γ3(P3) be such that σ(τ̃′) = τ′. Then τ̃′K1τ̃′−1 contains Ker (σ) = P3/Γ3(P3),
and σ(τ̃′K1τ̃′−1) = σ(K2) = 〈τ〉. The result then follows from the first part of the proof.
(b) The case (i) follows from Proposition 18(a). For cases (ii)–(iv) we apply the tech-
niques of [Jo, Proposition 1, p. 139] to the extension

1 −→ P3/Γ3(P3) −→ σ−1(H)/Γ3(P3) −→ H −→ 1.

The extra relations involving the action by conjugacy of H on the kernel follow from
equations (18) and (19).
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By Remarks 12(a), the groups of the form σ−1(H)/Γ3(P3) described in Theorem 25
are almost-crystallographic. Further, since Ker (σ) is torsion free by Lemma 11(a) and
the torsion of S3 divides 6, it follows from Theorem 2 that these groups are also almost-
Bieberbach. Using Theorem 25, we now identify these groups with those given in the
classification of 4-dimensional almost-Bieberbach groups with 2-step nilpotent sub-
group given in [De, Section 7.2]. Note that by [GPS, Remark 2.5], if M is an infra-
nilmanifold whose fundamental group is E, then it is orientable if and only if the im-
age of the representation θF : F −→ GL(n,Z) given by equation (11) is contained in
SL(n,Z).

COROLLARY 26. Let H be a subgroup of S3. Then σ−1(H)/Γ3(P3) is a 4-dimensional almost-
Bieberbach group with 2-step nilpotent subgroup, is the fundamental group of an orientable
4-infra-nilmanifold XH , and is isomorphic to:

(a) group number 1, Q = P1, given in [De, p. 169] with k1 = k3 = 1 and k2 = −1 if
H = {1}.
(b) group number 9, Q = Cc, given in [De, pp. 173-174] with k1 = 1, k2 = −1, k3 = k4 = 0
and non-trivial action if H = 〈(1, 2)〉.
(c) group number 146, Q = R3, given in [De, p. 207] with k1 = k2 = 1 and k3 = k4 = −1 if
H = 〈(1, 2, 3)〉.
(d) group number 161, Q = R3c, given in [De, p. 209] with k1 = 1 and k2 = k3 = k4 = k5 =
0 if H = S3.

REMARK 27. If G is a group and a, b ∈ G, then the notation used in [De] for the com-
mutator [a, b], namely [a, b] = a−1b−1ab, is different to that used in this paper. However
[a, b] ≡ [a−1, b−1] modulo Γ3(G), so the difference in notation does not cause any prob-
lems in the identification of our subgroups with those of [De].

Proof of Corollary 26. By Remarks 9(b) and Proposition 10, the groups P3/Γ2(P3) and
Γ2(P3)/Γ3(P3) are torsion free and their respective ranks are 3 and 1, and the Hirsch
length of P3/Γ3(P3) is equal to 4. So by Corollary 15, σ−1(H)/Γ3(P3) is a 4-dimensional
almost-Bieberbach group with 2-step nilpotent subgroup. In order to identify the group
σ−1(H)/Γ3(P3) with the corresponding group of [De] for each subgroup H of S3, it
suffices to use Theorem 25 and to apply the classification of [De, Section 7.2], where the
ki are as given in the statement of parts (a)–(d).

It remains to show that for each subgroup H of S3, the manifold XH are orientable.
To see this, by the paragraph preceding the statement of Corollary 26, it suffices to show
that the image of each representation θH : H −→ GL(4,Z) lies in SL(4,Z). We exhibit
the matrices θH(α) and θH(β), where α and β are the generators given in Theorem 25
that act on the (ordered) elements a, b, c and d. If H = {Id}, the representation θH is
clearly trivial, and the result follows. For the remaining cases, consider the elements

M1 =

( 0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

)
and M2 =

(
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

)
of SL(4,Z). If H = 〈(1, 2)〉, θH(α) = M1, if

H = 〈(1, 2, 3)〉, θH(α) = M2, and if H = S3, θH(α) = M2 and θH(β) = M1.

REMARK 28. Since S4 has 11 non-conjugate subgroups (including the trivial group and
the whole group), then in a similar manner, we may show that there are eleven non-
isomorphic almost-Bieberbach subgroups of B4/Γ3(P4) of the form σ−1(H)/Γ3(P4) with
holonomy group H, each of dimension 10 using Proposition 10, where H runs through
the subgroups of S4.
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5.2 Some explicit finite-order elements in B5/Γ3(P5)

By [GGO1, Corollary 4], B5/Γ2(P5) possesses elements of order 3 and 5. From The-
orem 2, B5/Γ3(P5) does not have elements of order 3, but Theorem 22 implies that there
exist elements of order 5. Further, if gcd(n, 6) = 1, elements of order n in Bn/Γ3(Pn)
may be determined explicitly using the construction given in the proof of Theorem 22
provided we are able to compute δn

n in terms of the elements of the basis B of the group
Γ2(Pn)/Γ3(Pn) described in (17). We now carry out this calculation in the case n = 5.

Using equation (7) and with the notation of Lemma 13, we start by describing the

action by conjugation of α−1
5 = α−1

0,5 , where α0,5 = σ1σ2σ3σ4, on the elements of the

generating set
{

Ai,j

}
1≤i<j≤5

of P5:

α−1
5 = σ−1

4 σ−1
3 σ−1

2 σ−1
1 :





A1,2 7−→ [A1,2A1,3A1,4, A1,5]A1,5

A1,3 7−→ [A1,2A2,3A2,4, A2,5]A2,5

A1,4 7−→ [A1,3A2,3A3,4, A3,5]A3,5

A1,5 7−→ [A1,4A2,4A3,4, A4,5]A4,5

Ai,j 7−→ Ai−1,j−1 if 2 ≤ i < j ≤ 5.

(31)

From equation (17), the following 10 elements form a basis of Γ2(P5)/Γ3(P5):

a1 = [A1,2, A2,3] , a2 = [A1,2, A2,5] , a3 = [A1,4, A4,5] , a4 = [A3,4, A4,5]
a5 = [A2,3, A3,4] , b1 = [A1,2, A2,4] , b2 = [A1,3, A3,5] , b3 = [A2,4, A4,5]
b4 = [A1,3, A3,4] , b5 = [A2,3, A3,5] ,

(32)

and that using (8) and (16), under the action by conjugation by α−1
5 (considered as an

element of B5/Γ3(P5)), this basis splits into two orbits of length 5 of the form:

a1 7−→ a2 7−→ a3 7−→ a4 7−→ a5 and b1 7−→ b2 7−→ b3 7−→ b4 7−→ b5.

In order to obtain an element α of finite order in B5/Γ3(B5), by the construction of the
proof of Theorem 22, it suffices to compute δ5

5 in terms of the basis of Γ2(P5)/Γ3(P5)
given in (32). Let:

c1 = [A1,2A2,3A2,4, A2,5], c2 = [A1,5 A1,2A1,3, A1,4] and c3 = [A1,2A1,3A1,4, A1,5].

In Γ2(P5)/Γ3(P5), we have c1c2c3 = b−1
1 b−1

2 b−1
3 b−1

4 b−1
5 . To see this, recall that if a, b and c

are elements of a group G, we have a Witt-Hall identity [ab, c] = [a, [b, c]][b, c][a, c] [MKS,
Theorem 5.1]. So using equation (16), in Γ2(P5)/Γ3(P5) we obtain:

c1c2c3 = [A1,2 A2,3A2,4, A2,5][A1,5A1,2A1,3, A1,4][A1,2A1,3A1,4, A1,5]

= [A1,2, A2,5][A2,3, A2,5][A2,4, A2,5][A1,5, A1,4][A1,2, A1,4][A1,3, A1,4]·

· [A1,2, A1,5][A1,3, A1,5][A1,4, A1,5]

= [A1,2, A2,5][A2,3, A3,5]
−1[A2,4, A4,5]

−1[A1,4, A1,5]
−1[A1,2, A2,4]

−1[A1,3, A3,4]
−1·

· [A1,2, A2,5]
−1[A1,3, A3,5]

−1[A1,4, A1,5]

= [A2,3, A3,5]
−1[A2,4, A4,5]

−1[A1,2, A2,4]
−1[A1,3, A3,4]

−1[A1,3, A3,5]
−1

= b−1
1 b−1

2 b−1
3 b−1

4 b−1
5 .
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By equation (15), we have δ5 = A3,5A4,5α−1
5 , and using equation (31) and Proposi-

tion 18(a)(ii), as well as the fact that α−1
5 c1α5 = c2, in P5/Γ3(P5), we have:

δ5
5 = (A3,5 A4,5α−1

5 )5

= A3,5A4,5(α
−1
5 A3,5A4,5α5)(α

−2
5 A3,5A4,5α2

5)(α
−3
5 A3,5A4,5α3

5)(α
−4
5 A3,5A4,5α4

5)α
−5
5

= A3,5A4,5A2,4A3,4A1,3A2,3c1A2,5A1,2(α
−1
5 c1A2,5α5)c3 A1,5α−5

5

= c1c2c3A3,5A4,5A2,4A3,4A1,3A2,3A2,5A1,2A1,4A1,5α−5
5

= c1c2c3a−1
2 a−1

1 a1b−1
1 A1,2A3,5A4,5A2,4A3,4A1,3A2,3A2,5A1,4A1,5α−5

5

= c1c2c3a−1
2 b−1

1 b−1
4 b−1

2 A1,2A1,3A3,5A4,5A2,4A3,4A2,3A2,5A1,4A1,5α−5
5

= c1c2c3a−1
2 b−1

1 b−1
4 b−1

2 b4b1a−1
3 A1,2A1,3A1,4A3,5A4,5A2,4A3,4A2,3A2,5A1,5α−5

5

= c1c2c3a−1
2 b−1

2 a−1
3 a2a3b2A1,2A1,3A1,4A1,5A3,5A4,5A2,4A3,4A2,3A2,5α−5

5

= c1c2c3a−1
5 a5b−1

5 A1,2A1,3A1,4A1,5A2,3A3,5A4,5A2,4A3,4A2,5α−5
5

= c1c2c3b−1
5 b−1

3 A1,2A1,3A1,4A1,5A2,3A2,4A3,5A4,5A3,4A2,5α−5
5

= c1c2c3b−1
5 b−1

3 b3b5A1,2A1,3A1,4A1,5A2,3A2,4A2,5A3,5A4,5A3,4α−5
5

= c1c2c3a−1
4 a4 A1,2A1,3A1,4A1,5A2,3A2,4A2,5A3,4A3,5A4,5α−5

5

= c1c2c3α5
5α−5

5 = b−1
1 b−1

2 b−1
3 b−1

4 b−1
5 . (33)

The idea of the above computation is first to eliminate all of the terms involving α5

using equation (31), and then to move each of the underlined terms to the left one-
by-one in order to create the word A1,2A1,3A1,4A1,5A2,3A2,4A2,5A3,4A3,5A4,5, which we
know to be the full twist braid α5

5 in P5, and so in P5/Γ3(P5). In doing so, we introduce
basis elements of Γ2(P5)/Γ3(P5) given by (32), perhaps written in one of the forms of
equation (16). Note that the result is coherent with that of Proposition 21, and with the

notation of that proposition, we have m. Setting θ = ∏
2
i=1 ∏

5
j=1 b

ri,j

i,j , where b1,j = aj,

b2,j = bj and ri,j ∈ Z for all i = 1, 2 and j = 1, . . . , 5, using the notation of Propos-
ition 21(b), and applying the construction of Theorem 22, by (33) and (26), we have
m1,j = 0, m2,j = −1, and θδ5 is of order 5 if and only if ∑

5
j=1 r1,j = 0 and ∑

5
j=1 r2,j = 1.

So to obtain an explicit element θ, it suffices to pick any integers satisfying these two
relations. For example, if r2,1 = 1 and r2,2 = · · · = r2,5 = r1,1 = · · · = r1,5 = 0 then the

element b1δ5 = [A1,2, A2,4](σ4σ3σ−1
2 σ−1

1 ) is of order 5 in B5/Γ3(P5).

REMARK 29. The study of the quotients Bn/Γk(Pn) for k > 3 does not appear to be an
easy problem. Our approach requires a description of a basis of Γk(Pn)/Γk(Pn). For
example, if n = 3 and k = 4, a long and arduous calculation show that a basis of
the group Γ3(P3)/Γ4(P3), which is free Abelian of rank 2 by Remark 9(b), is given by
{[[A1,2, A2,3], A1,3], [[A2,3, A1,3], A1,2]}. Since S3 has 4 subgroups (up to isomorphism),
arguing as in Remark 28, we may exhibit 4 non-isomorphic almost-Bieberbach sub-
groups of B3/Γ4(P3) of dimension 6 of the form σ−1(H)/Γ4(P3) with holonomy group
H, where H is a subgroup of S3 and σ is as in (3).
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