
HAL Id: hal-01800678
https://hal.science/hal-01800678

Submitted on 27 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certainty Closure A Framework for Reliable Constraint
Reasoning with Uncertainty

Neil Yorke-Smith, Carmen Gervet

To cite this version:
Neil Yorke-Smith, Carmen Gervet. Certainty Closure A Framework for Reliable Constraint Reasoning
with Uncertainty. Principles and Practice of Constraint Programming, 2003, Kinsale, Ireland. �hal-
01800678�

https://hal.science/hal-01800678
https://hal.archives-ouvertes.fr

Certainty Closure
A Framework for Reliable Constraint Reasoning with Uncertainty

Neil Yorke-Smith and Carmen Gervet

IC–Parc, Imperial College London, SW7 2AZ, U.K.�
nys,cg6 � @icparc.ic.ac.uk

Abstract Constraint problems with incomplete or erroneous data are often sim-
plified to tractable deterministic models, or modified using error correction meth-
ods, with the aim of seeking a solution. However, this can lead us to solve the
wrong problem because of the approximations made. Such an outcome is of little
help to a user who expects the right problem to be tackled and reliable informa-
tion returned. The certainty closure framework we present aims to provide the
user with reliable insight by: (1) enclosing the uncertainty using what is known
for sure about the data, to guarantee that the true problem is contained in the
model so described, (2) deriving a closure, a set of possible solutions to the un-
certain constraint problem. In this paper we first demonstrate the benefits of re-
liable constraint reasoning on two different case studies, and then generalise our
approaches into a formal framework.

1 Motivation

Data uncertainties are inherent in real-world Large Scale Combinatorial Optimisation
problems (LSCOs). The uncertainty can be due to the dynamic and unpredictable nature
of the commercial world, but also due to the information available to those modelling
the problem. In this paper we are concerned with the latter form of uncertainty, which
can arise when the data is not fully known or is even erroneous.

Our work is motivated by practical issues we faced when addressing two real-world
applications: energy trading [11] and network traffic analysis [12]. In both applications
the data information is incomplete or erroneous. In the energy trading problem, the
demand and cost profiles had evolved due to market privatisation; thus the existing sim-
ulation or stochastic models did not help address the actual problem, since no valid data
trends were available. Further, the obsolete data was inconsistent with the constraint
model. In the network traffic analysis problem, the overwhelming amount of informa-
tion forced us to use partial data. Further, due to practical measurement difficulties (e.g.
unrecorded packet loss), the data acquired in the problem was frequently erroneous.

When addressing the energy trading problem, we understood that the customer did
not need nor want a solution to an approximation of his problem, but rather a guarantee
that the model built was reliable, and that from it informed decisions could be made.
Informally, a model and solution are reliable with respect to the state of the world if
they accurately reflect the true problem and its possible solutions. The uncertain data
is represented using what is known for sure about it, without any approximation, and
no potential solutions are excluded. Our goal was to build such a model and to provide

Proceedings of CP’03, Kinsale, Ireland, September 2003. LNCS 2833 c
�

2003 Springer–Verlag.
Some minor oversights have been corrected in this version.

effective insight into the set of possible solutions. It became clear that further research
was necessary to extend the potential of constraint programming to meet this goal.

Indeed, in the face of data uncertainty, existing CP approaches come from quite a
different perspective. Models and methods have been proposed to tackle incomplete
and dynamic data by seeking robust solutions to the problem, i.e. solutions that hold
under the maximum number of possible states of the world [9]; or by reasoning upon
probabilistic data distributions [5, 21]. These approaches are suited for applications
where data trends are available and realistic, or where robustness is sought after: for
example, dynamic scheduling problems. However, they are less suited for the reliable
reasoning our motivational problems demand.

In this paper we focus on uncertainty due to incomplete or erroneous data. With the
aim of providing the user with reliable insight, our threefold objective is:

1. To create a reliable model of the LSCO, i.e. remove approximations about the data
and enclose the true problem in the model.

2. To compute the full closure, i.e. the set of all possible solutions to the model; or a
subset of it as the user specifies. By possible, we mean a solution that holds for at
least one realisation of the data.

3. To propose two resolution forms to solve uncertain CSPs, and give instances over
specific constraint classes.

In Sect. 2, we first show on two different uncertain LSCOs how we can attain such
an objective in practice. We then generalise the case studies as instances of the certainty
closure framework, in Sect. 3 and 4. The framework, based on the CSP formalism, al-
lows us to reason about uncertain problems by modelling explicitly what is known about
the uncertain data in terms of an uncertain constraint satisfaction problem (UCSP). We
define a UCSP and its full closure. Then, we formally describe two resolution forms
that can derive closures in a practical way, and we give examples of the forms for vari-
ous classes of UCSPs. In Sect. 5 we review and contrast with related work, and finally
we conclude in Sect. 6.

2 Case Studies

Despite the presence of incompleteness or errors, we assume that those modelling the
problem do have some definite knowledge about the data. We use this knowledge to
enclose the uncertainty within an interval or a set of values. We assume further that
knowledge about the data is only refined (e.g. to a subset of the initial possible values).
Since the closure excludes no possible solution, we guarantee that the true solution lies
in the closure whatever the state of the world. However, the closure might comprise of
a large set of solutions. A key issue therefore is how informative it is in practice, and
how complex it is to derive and represent.

In this section we investigate the practical benefits of reliable constraint reasoning
by considering two quite different case studies which address real-world problems. The
first case study is the network traffic analysis problem introduced earlier; the second is
a planning problem in the aerospace domain. In both, an uncertain CSP is presented,
together with a solution operator used to derive the closures. Both problems were mod-
elled and solved using the ECLiPSe CLP platform [7].

2.1 Network Traffic Analysis

The network traffic analysis problem poses a diagnosis question. The problem is: for a
known network with incomplete and possibly erroneous traffic measurements at routers,
determine guaranteed bounds for each end-to-end traffic flow. The true problem must
be satisfiable, because the network exists and is executing. The complexity lies in ade-
quately handling the data, in guaranteeing that the right problem is being solved, and in
seeking tight bounds. We illustrate our approach on an example fragment of a network.

75

80

D C

90

A B

55

30

180150 40

Figure 1. Traffic flow in a network fragment

Initial model. Consider the frag-
ment of a network shown in
Fig. 1. Four nodes, correspond-
ing to routers and designated A–
D, are shown, together with the
bidirectional traffic flow on each
link. Each router makes decisions
on how to direct traffic it receives,
based on a routing algorithm.

The network was initially modelled as a classical CSP, as follows. The variables
correspond to the traffic flow between any two end-points, and their domains are the
non-negative reals: ���������
	 is the volume of traffic entering the network at node �
and leaving it at node � . The constraints form a linear flow model. They state that the
volume of traffic through each link in each direction is the sum of the traffic entering
the link in that direction. There is also an upper bound (here, ��) on the flows that use
only a single link, such as ����� or ����� .

The traffic volume data is collected by reading router tables at each node over a
given time interval (e.g. 20 minutes). As a result, the data information obtained is erro-
neous. On the link A � D, for example, the flow might measure as 135 at A and as 160
at D, whereas the true value, equal at both nodes, is presumably somewhere in between.
A common approach therefore is to use the median value.

Another source of uncertainty comes from traffic routing. In 90% of cases, the traffic
is known to be split equally when two paths are of equal cost (from the perspective of
the routing algorithm). In our running example we consider this to be the case for flows
between any two non-consecutive nodes, e.g. from A to C. To simplify the model, it was
first assumed that the traffic is split equally in all such cases. For example, on the link
A � D the traffic flow constraint generated is:

A � D ��������������������� �!� �"�!�#�%$'&(�)� (1)

The generated CSP model was unsatisfiable. Thus a data correction procedure (min-
imising deviation on the link traffic volumes) was employed in order to reach a sat-
isfiable, deterministic model. The resulting model was solved using the most suitable
techniques; in this case standard Linear Programming (LP). Maximum and minimum
bounds were derived for each flow variable �*� by solving two linear programs, with
objectives +-,/.0��� and +21435��� respectively.

Certainty closure approach. The first approach amalgamated data uncertainty and con-
straint satisfiability issues. Our aim was to investigate whether the approach was leading
to the true problem, and hence whether the bounds obtained were reliable. We therefore
removed the approximations made: we represented the uncertain flow measurements
explicitly, and we modelled the splitting of traffic, actually known to be anywhere be-
tween 30–70%. We modelled the problem as an uncertain CSP. For example, on the link
A � D we have the following constraint (in which � � � ��� denotes an interval):

A � D ������� � ��� � � �!��� � ����� � � ��� � � ����� � �!�#� $ � &	�"� � & "� � (2)

Uncertain coefficients thus represent (i) percentage of traffic going through each route,
and (ii) measured flow volume on each link.

Implementation and solving. We modelled and solved the problem using the ic inter-
val constraint library from the ECLiPSe platform [7]. The library provides a bounded
real datatype: an interval representing an unknown real value; and interval constraint
solvers over numerical constraint systems of arbitrary combinations of integer and
bounded real variables. Using ic, we can model constraints such as (2) simply by:
VAD + 0.3__0.7 VAC + 0.3__0.7 VBD = 135__160.

To calculate the closure, we first tried to solve the uncertain CSP as is, using interval
and quantified CSP methods (e.g. [4, 15]). The methods proved costly or unsuited to
producing tight bounds when compared with the presented method. We then considered
a transformation of the uncertain model to an equivalent certain CSP, in order to benefit
from existing resolution methods for standard CSPs. We defined a transform operator
and proved its correctness using methods from interval linear programming [8]. A full
description of the transformation can be found in [22].

Hereafter, we illustrate the transform in the three variable case for simplicity. Let
��
 , �� and ��� be variables with domains in � 	 . Then the constraints have the form � :��� ��
 � �� ����� ��� ����� ��� , where �� $ � ��� � ��� � are real, closed intervals. Each uncertain
flow constraint � can be transformed into a certain constraint �����! as follows:

���"�! $
#$% $&
��� ��
 � �� ��� � ��� ��'� ��� if ��� (���� ��
 � �� ��� � ��� ��'� ��� if � � ������ ��
 � �� ��� � ��� ��'� ��� if ���*) � (3)

By convexity, it suffices to operate on the bounds of the data values. The transfor-
mation operates only on linear inequalities. Thus as a prelude to the transform, each
equality constraint is replaced by a pair of inequalities; the decision variables remain
unchanged. For example, the constraint (2) above is transformed to:

� � ��� � �!����� ��� �������)� � � (&	�"� �+,� � ��� � �!� � � ��� ����� �"� � � � & �� (4)

The resulting model, like the initial model, describes a standard LP problem. Thus
we can solve it using the same method, but now we obtain guaranteed bounds. For
the example above, we obtain the following intervals, which represent the projection
of the closure onto the variable domains: �*��� � � � � &(�)� �-� �!��� � � ��� � �� �-� ��� � �� � � &.��� �-� ��� � � � � �0/ � �1� �!� � � � � � � � �-� ��� � � � � /��2/ ��� �1� ��� � � � � � &.��� �-� �!� � �� &3� � �� � (omitting the four single-link flows in the clockwise direction).

Outcome. Compared to the initial approach to the problem, the certainty closure has
lead to more reliable quantitative results and to improved understanding of the relation-
ship between network topology and traffic flow. For instance, if the closure is empty,
we can infer that the problem is unsatisfiable due to the constraint network and not due
to the data: since no approximation is considered but the data enclosure. Treating the
data adequately reveals the true reasons for unsatisfiability.

2.2 Planning for Aerospace Equipment

The second case study arises in the aerospace domain, where future systems will be ex-
pected to achieve more complex missions with less human intervention [20]. The sys-
tem must continuously operate in a changing, ill-known environment; command com-
plicated equipment; and simultaneously fulfill mission goals and satisfy system require-
ments, e.g. timeliness and safety. On the whole, however, existing aerospace component
design does not integrate uncertainty into autonomous planning functions [20].

Fig. 2 shows an example automaton, representing the behaviour of a thruster sub-
system (a satellite ‘engine’). The goal is to achieve a certain thrust performance in
a given time window, while maintaining the internal temperature within given limits.
Temperature, however, evolves in an ill-known way according to the heating (thrust)
and cooling states. We model the thruster as a non-deterministic finite state automa-
ton (FSA) where temperatures are attached to transitions and states of the automaton.
The data uncertainty concerns the temperature increments, which are subject to both
measurement errors and incomplete information. We associate with the automaton the
following constraint model.

Model. Our constraint model is again an uncertain CSP. Here it is simplified for the
sake of clarity; a full description is found in [23]. The variables are all finite domain
integers. A path in the automaton is specified by transition and timing variables. The
transitions � �
� � � ��� � are a sequence of states, where ��� is the initial state. The timings� � ��� specify the duration spent in each state. We write �0� � � ��� � to index the states
on the path, and � � � � �	� � for the value of the � th state: i.e. � $ � � . Associated with
the path are edge boolean variables
 � ��� � � &� , which specify whether an edge is ever
taken on the path. Finally, the temperature is modelled with variables � � � � � � & �"� � , and
the uncertain temperature increments with coefficients � � � ��� & ��� � & �"� � .

Heat

Nominal temp.

Thrust

Alarm

4. Emergency
cooling

Reset

6. Reseting

0. Boost

1.Nominal thrust

3. Warning

2. Heat limit

5. Cool down������

���
���

�����
critical

�����
critical

Figure 2. Discrete automaton representing the behaviour of a thruster sub-system. The temper-
ature increments are uncertain in the two thrusting states and in the two cooling states.

The main constraints are of three types. The first two types are certain. Constraint (5)
states flow conservation on the edge variables. For example, for state 5:

*�
 �5$
�� .
Constraint (6) is an example of a constraint modelling a contingent event. Here it is
the event that the temperature exceeds the warning threshold, whereupon if in state 0
we must move to state 3. The final type of constraint describes the evolution of the
temperature, and is thus uncertain. For this automaton, (7) models a linear recursion.

�
�����	��
 ��

 � $ �
��������
 ��

 � � �2� � � �	� � (5)

�0� (� critical $�� ��� 	
 $�� � � � � corresponding to state � (6)

� � 	
 $
0��� ��� � � � ��� �	 � � � � � �	� � (7)

Solving. The need to guarantee safe behaviour even in the worst case means that seeking
a single plan, however optimality is measured, is inadequate for our problem.1 There-
fore, we chose to compute a covering set closure of feasible plans: a set containing at
least one plan for every feasible realisation. Ideally this set should be of minimal size,
because a smaller set in general is more compact to represent.

Given the heterogeneous nature of the constraints, we found no natural transforma-
tion from the UCSP to an equivalent CSP. We describe in [23] different enumeration
methods to compute a covering set closure. For space reasons, we will outline the most
efficient: enumeration using a decomposition method. The idea is to first derive a fea-
sible plan for a given realisation, and then decompose the remainder of the UCSP by
removing from future consideration all realisations covered by this plan. This decom-
position method is based on the conditional decision method for mixed CSPs with full
observability [9]. It uses a technique called sub-domain subproblem extraction [10].
Given a feasible plan (a solution), the extraction technique decomposes the set of reali-
sations into a disjunction of two sets: one containing precisely the realisations covered
by the plan. The decomposition approach is tractable because the data is discrete, and
each constraint contains at most one uncertain coefficient.

To give the intuition of the approach, consider the UCSP with just one uncertain
constraint: � $�� � ��� � , where variables � �� � � � � � � & �"�� and � � � � �)� � �)�
is an uncertain coefficient. We can find a covering set closure as follows. For each
possible value � of � , form the realised CSP ��� , and solve it to find a consistent tuple
for � � �� � � . For example, if � $ / � , the realised CSP is � $�� � � � / � , and a
consistent tuple is � & � � �)� � � . A naive approach would require us to: (i) generate each
realised CSP � � , (ii) seek a solution to each, and (iii) take the union of all the solutions to
derive a covering set closure. The use of decomposition allows us to consider a smaller
number of realised CSPs, by eliminating realisations already covered as we progress.

Outcome. Contrasted to some current practice in aerospace design, the certainty clo-
sure approach enables a new expressiveness in planning and control of low-level com-
ponents, by allowing us to consider the uncertainty. As a result, aerospace component
behaviour can be adapted in a more reliable way to its environment, and so the be-
haviour and performance guarantees sought by aerospace designers can be reinforced.

1 Unless it holds under all realisations, or unless we rely on online plan repair.

3 Uncertain CSP and its Closures

The two case studies indicate the practical value and potential benefits of reliable rea-
soning. We now define the certainty closure framework to provide a comprehensive and
generic approach to reliable reasoning under uncertain data. After some preliminaries,
we define the concepts of an uncertain CSP and its closures.

3.1 Preliminaries

We consider the CSP formalism since it has the generality we desire to model LSCO
problems. Recall that a classical CSP is a tuple ��� ��� ����� , where � is a finite set of
variables, � is the set of corresponding domains, and � $ � �
 � � � � � �
	 is a finite
set of constraints. A solution is a complete consistent value assignment. We represent
a CSP by a conjunction of its constraints � � � � (as opposed to the set of its allowed
tuples). Similarly, we represent a solution or set of solutions to a CSP by a conjunction
of constraints. These constraints should be from a simple class, e.g. unary equalities.

Recall that, with respect to a given computation domain, a constraint domain spec-
ifies the syntax and semantics of permitted constraints. It specifies the constants, func-
tions and constraint relations. The constants we will refer to as coefficients. A coefficient
may be certain (its value is known) or uncertain (value not known). In a classical CSP,
all the coefficients are certain. We assume the user has some knowledge of the possible
values for the coefficients, or bounds on their range. Call the set of possible values of a
coefficient ��� its uncertainty set, denoted � . We say an uncertain constraint is one in
which some coefficients are uncertain. Note the coefficients in an uncertain constraint
are still constants; merely their exact values are unknown. For example, if the coefficient
�
 has uncertainty set
 $ � /�� � � � , the constraint ��� �
 is uncertain.

Regarding the data, following Ben-Tal and Nemirovski [3], a data realisation is a
fixing of the coefficients to values; in related literature, the terms possible world and
context space are also used. The notation � � will denote certainty. For an uncertain CSP
� , we will say that any certain CSP �� , corresponding to a data realisation of the coef-
ficients of � , is a realised CSP, and write �� � � . Each uncertain constraint is made
certain by a realisation, thus �� $ ��� ��� � ���� , where �� � � denotes a set of realised
constraints. In the same way, a realisation of a constraint � will be denoted �� � � . It
is worth noting that an uncertain constraint can have many realisations, as many as the
size of the Cartesian product of the uncertainty sets involved.

3.2 Uncertain Constraint Satisfaction Problem

A UCSP is a simple extension to a classical CSP with an explicit description of the data:

Definition 1 (UCSP). An uncertain constraint satisfaction problem ��� ��� ��� ��� ����� is a
classical CSP ��� ��� ����� in which some of the constraints may be uncertain. The finite
set of coefficients is denoted by � , and the set of corresponding uncertainty sets by � .

In this paper we assume the coefficients are either all discrete or all continuous.
We also assume the coefficients are independent. The uncertainty set � is then the

Cartesian product of the uncertainty sets of the coefficients, i.e. the Cartesian product
of their possible values. Other than this, there is no requirement as to the nature of the
data or the representation of � .

Example 1. The constraints for the network traffic analysis problem form a UCSP with
the uncertainty specified by real intervals. Similarly, the constraints for the aerospace
planning problem form a UCSP with the uncertainty specified by finite sets. ��

For a certain CSP �� , recall that its complete solution set (or space) is the set of all
solutions to �� , which we will denote ���� . The extension of this concept to UCSPs will
play a key role. In line with our aim of reliable reasoning, we define the complete solu-
tion set � � of a UCSP � as the set of all solutions supported by at least one realisation.

3.3 Closures of a UCSP

A closure is the resolution to a UCSP model. Depending on his application, the user
might be interested in different types of closures. We distinguish several types of clo-
sures by the properties they hold. For example, a covering set is a set of solutions that
contains at least one solution (not necessarily all solutions) for each realisation. A most
robust solution is a solution that is supported by the greatest number of realisations. The
full closure of a UCSP � is the set of all solutions such that each is supported by at least
one realisation, i.e. the complete solution space � � . A closure in general is a subset of
the complete solution space:

Definition 2 (Closure). Let � be a UCSP ��� ��� ��� ��� ����� . We say that a subset of the
complete solution space � � is a closure for � . If the closure is the entire solution space,
we say it is the full closure, denoted ���-� � .

Let 	 denote a solution satisfying a realised CSP ��� ��� � ���� and �
	 � be a conjunction
of constraints describing 	 . Then we can write the full closure of � as the constraint:

���-� � $ �
�� � �

�
 satisfies ��

�
	 � (�)

Example 2. Let � and � be temperature variables with integer domains � & � � � over the
following constraints: �
�� � � �
 , � ����� � � � ��$ � � , and � ��� � � �
��$ & . Let �

and � � , which represent temperature increments, have uncertainty sets
 $ � /�� � � �
and � $ / respectively. The full closure is � � �� � � � � � & , � � � � , � � �2/ , � � � � ; a
covering set closure of minimal size is � � �� � � � � � & �.� � � � , since this solution set
covers all three realisations. ��

The different closures form a lattice under inclusion. A simple hierarchy of closures
is shown in Fig. 3. The full closure is the top, and the empty closure (the empty set) the
bottom. The observation that the different closures fall into a lattice hierarchy allows us
to study how they relate to one another.

For example, consider the UCSP depicted in Fig. 4. The full closure at the top of the
lattice hierarchy is the set � $ � ����� �2�3������� . The most robust solution is � ; and there
are two covering sets of minimal cardinality, � ����� and � � � � .

�
xx

xx FF
FF

mrs

4
4

4
4
4
4

4
4 cs

mcs

xx
xx�

Figure 3. Simple hierarchy of closures. At the top of the lattice
is the full closure, at the bottom the empty closure. Illustrated
in the middle are a covering set (cs), a minimal covering set
(mcs), and the most robust solution (mrs).

��
 � � �
�� � � �
�� � � �
���� � �

Figure 4. Realised CSPs
(denoted

����
–
����

) and their
feasible solutions (denoted� –).

4 Resolution Forms

A UCSP adds expressive power and flexibility to a CSP but, depending on the closure
demanded, is harder to solve. Indeed, the complexity of deriving a closure from an
UCSP is in the worst case that of finding at least one solution to a realised CSP, times
the size of the Cartesian product of all the uncertainty sets.2 Thus we cannot expect to
derive the full closure, for example, by a generic practical approach, unless we restrict
to a modest number of uncertain coefficients or accept approximation. Rather, we will
look at two resolution forms — two possibilities to move from a UCSP to a closure
— and we will instantiate the resolution forms to specific constraint domains. Where
possible, we would like to exploit existing methods for CSP solving. Each case study
in Sect. 2 is an instances of one of the resolution forms.

The first resolution form is to transform the UCSP: we find and then solve an equiv-
alent certain CSP. The set of all its solutions is the closure to the UCSP. The second
form, enumeration, applies when there are a finite number of realisations. Each realisa-
tion gives rise to a certain CSP, which we solve, and the closure is then the union of all
the solutions to the satisfiable CSPs. We show how this approach relates to methods for
handling disjunctions.

4.1 Comparing Uncertain and Certain Constraints

For both resolution forms, we reason about uncertain constraints in terms of certain
constraints. This section describes the algebraic structure over which we perform the
reasoning. The central idea is that uncertain constraints form a lattice:

Proposition 3 (Constraint lattice). Let
 be the set of all constraints, certain and un-
certain, that can arise with respect to a computation domain. With conjunction and
disjunction as meet and join,
 is a distributive lattice. With logical implication of con-
straints,
 has a natural partial order. Let �
��
 be the subset of certain constraints;
then �
 forms a sublattice of
 . ��

2 UCSP solving is a highly specialised case of quantifier elimination (i.e. computing an equiva-
lent, quantifier-free version of a first-order formula), which is known as an exceedingly difficult
problem in the general case [15].

The conjunction, disjunction and implication operations, defined as usual for certain
constraints (i.e. on �
), need to be extended to
 . For space reasons, we will only present
the extension of the implication operation. In line with our aim for reliable reasoning,
we say that an assignment satisfies an uncertain constraint if it satisfies at least one
realisation. Hence implication is defined by: if every assignment that holds under some
realisation of �	
 also holds under some realisation of �.� (not necessarily the same), then�.
 implies �!� .

Recall that any UCSP can be represented by the conjunction of its constraints.
Prop. 3 tells us this conjunction is an element of a suitable constraint lattice. More-
over, since solutions to a CSP can also be represented by a conjunction of constraints,
every closure of a UCSP can likewise be described as an element of
 . Depending on
the constraint class, this element may be a disjunction. For example, the full closure
���1� � is described by the constraint (�). A well-chosen representation of a closure is
crucial in any practical application.

As a consequence, firstly and importantly, mappings from
 to itself can encapsu-
late the solving process. Reliable solutions in the certainty closure framework will be
guaranteed by properties of the mappings. Secondly, knowledge refinement can be seen
in terms of a subsumed-by order on solutions. Should we learn more about the data, the
revised closure will be subsumed by the old. We say that a constraint �	� subsumes a
constraint �.
 if the complete solution set of �!� contains that of �	
 :
Definition 4 (Order). Recall the subsumed-by partial order on �
 , defined by Tsang
[17].3 Let � be an extension of the order to
 such that � ���
 subsumes �
 �
 ,
written �
 � � � , if and only if ���-�"� � subsumes ���1���
 .

This partial order is well-defined because ���-�"�. is always a certain constraint. It is
compatible with and extends the natural order that arises from constraint implication.

Along with the lattice
 , we need a notion of equivalence to be able to compare the
solution sets of UCSPs (which we seek) and CSPs (which we use to describe a closure).
The subsumed-by relation of Def. 4 provides this notion.

Example 3. Consider constraints �
 : � � � /�� � � � and ��
 : � � / . �
 and ��
 are
equivalent under � : they describe the same set of possible values for � . Note that ��
 is
precisely the full closure of �
 . ��

4.2 Solution Operators

Recall that a classical CSP is solved by propagation and search: one calculates the fixed-
point of some local consistency operators and (if necessary) explores the search space.
Since we wish to consider both discrete and continuous CSPs, we encapsulate fully
solving a CSP by a solution operator. The specific methods used to solve CSPs are not
relevant: the essential point is to guarantee that the inferences are correct.

We define a solution operator as a map from �
 to itself that provides the conjunction
of a set of solutions to a CSP �� . The conjunction may be empty, indeed must be if �� is
inconsistent. A complete solution operator is one that yields the set of all solutions.

3 Intuitively, �� ���
��

is subsumed-by ���� �
��

if for every satisfying tuple � � to �� � there exists a
satisfying tuple � � to ���� such that � � is a projection of � � .

Definition 5 (Solution operator). Let �� be a certain CSP. Let � � �
 � �
 be a map
such that � � � describes a set of solutions to the CSP. If � obeys:

1. Contraction The final state is a subset of the initial state: � � � � �
2. Monotone Subsumed-by order respected: �
 � � �5$�� � � �
 ��� � � �
3. Idempotence Further application of � yields no further solutions

Then we say that � is a solution operator.4 If further � � � describes the set of all solu-
tions to �� , we say � is complete for �� .

Example 4. Consider a solution operator for finite domain CSPs. Let �
 be the map
that corresponds to naive backtrack search. If we insist that the whole search tree be
explored, then �
 will give all solutions; this makes it complete. ��

Similarly, a solution operator for uncertain CSPs is a map that yields a closure
when given a UCSP � . A complete uncertain solution operator is one that yields the
full closure ���-� � . Formally, it is defined as a mapping from
 to �
 :

Definition 6 (Uncertain solution operator). Let � be a UCSP. An uncertain solution
operator is a map � �
 � �
 such that ��� �� �� ���1� � . An uncertain solution operator
� must obey the contraction, monotone and idempotence properties. If further ��� � $
���1� � , we say � is complete for � .

This definition is stated in a simple way because it builds on the results of Sect. 4.1;
the concept of a solution operator thus transfers naturally to UCSPs. Transformation to
an equivalent certain CSP is one way to build an uncertain solution operator; enumera-
tion is another. In the following sections we describe both resolution forms.

4.3 Solving an Equivalent CSP

The issues related to this approach are twofold: finding a CSP equivalent to the UCSP,
i.e. one whose set of all solutions coincides with the sought closure to the original prob-
lem; and then solving it efficiently. We achieve the first part by seeking a transformation
operator from UCSP to CSP which satisfies certain properties; for the second part we
can use any existing technique appropriate to the computation domain at hand.

Unless she specifies otherwise, by default we suppose the user desires the full clo-
sure, since it excludes no possible solution. For reasons of space, we now concentrate
the discussion to the case. The equivalent CSP is found using a CET:

Definition 7 (Certain Equivalence Transform). A map � �
 � �
 is a certain equiv-
alence transform if it: (1) preserves certainty, i.e. ��� ��. $ �� � �� � �
 ; (2) is a closure
operator, i.e. is increasing, monotone and idempotent; and (3) distributes over meet.

Preservation of certainty and the closure properties ensure that a certain constraint
system is found. The third property governs the behaviour on conjunctions of con-
straints. Together, the properties which characterise a CET allow us to guarantee cor-
rectness of the uncertain solution operator. In other words, they ensure that the complete

4 Note the equivalents in other theoretical frameworks, e.g. Apt’s reduction functions [1].

solution set of the equivalent CSP contains the full closure to the original problem. Fur-
ther, if the solution sets are equivalent, then � is a tight CET. If � is a non-tight CET,
we obtain only an outer approximation to the closure. There is often value in such an
approximation, if suitably close, since correctness is retained.

Prop. 8 sums up the result: an uncertain solution operator � can be defined as a
composition of a tight CET � and a solution operator � . The proof is omitted.

Proposition 8 (Closure by transformation). Let � be a UCSP. If � is a tight CET and
� is a solution operator complete for ��� � , then � $ ��� � is an uncertain solution
operator, complete for � . ��

Example 5. Recall how resolution by transformation was applied to the network traffic
analysis problem. In Sect. 2.1 we gave a simplified form (3) of the CET � used. It can
be shown to be tight and to have the properties of Def. 7. Our use of LP as the solution
operator � likewise obeys the properties expected in Def. 5. Hence by Proposition 8,
the certainty closure framework derives an enclosure guaranteed to be reliable. ��

4.4 Enumerating Realised CSPs

Depending on the constraint class, it might not always be possible to find a CET. A sec-
ond means to derive closures is by enumeration. As an essentially exhaustive technique,
enumeration requires operationally there be only finitely-many,

�)�� , realisations
of the data. We generate and solve each realised CSP, forming the closure from the so-
lutions to all the good realisations. Contrasted with transformation, the cost of enumer-
ating and solving

�
possibly similar CSPs grows with

�
, which can be exponential in

the size of the UCSP. This said, in a given computation domain, it may be possible to
exploit knowledge of the structure of the realised problems (e.g. [16, Chapter 6]).

Example 6. Consider a UCSP with three variables: � ��� � � � � , and constraints of the
form: � $ �'� � � � , where � ��� is an uncertain coefficient. In Sect. 2.2 we showed
how to derive by enumeration a covering set closure for this class of UCSPs. ��

4.5 Approximation

In practice it might be desirable to approximate the closure, either because the user
seeks a different representation, or because the complexity of deriving or representing
the closure to the UCSP is too high. Approximation must not impair correctness, i.e.
omit elements of a closure (since it would no longer be a reliable resolution of a UCSP
model), but may forgo tightness, i.e. include non-elements of the closure. We must
balance complexity and closeness of the approximation.

For example, in the network traffic analysis problem, since the user’s interest is to
determine safe operating capacities, he will be satisfied by reliable intervals for the traf-
fic flow variables. Thus we can give a tight outer box approximation. This means we
need not calculate a general convex polytope, which could be computationally expen-
sive, but a simpler shape, an axis-parallel hyperbox.

4.6 Instances of Resolution Forms

The choice of the resolution form is driven by the constraint class, variable domains
and nature of the uncertain data. We give some instances of the resolution forms for
four classes of UCSPs ��� ��� ��� ��� ����� . We sketch how existing solution methods can
be leveraged to provide practical algorithms for deriving closures in each class.

Transformation for UCSPs with � $ � 	 , � $ ��� and � $ � n-ary linear, arith-
metic constraints . When the variable domains are nonnegative, i.e. � $ � � 	 	 , the
UCSP � is an instance of a positive orthant interval linear system. The CET we saw in
Sect. 2.1 transforms � into an equivalent linear problem, solvable in polynomial time
by linear programming.

A generalisation in operational research is to semi-definite problems5 with uncertain
data coefficients. In particular, for the class of UCSPs with ellipsoidal data and linear
constraints, the CET transforms the UCSP to an equivalent conic quadratic problem,
solvable in polynomial time by interior point methods [3].

Enumeration for UCSPs with � $ � 	 , � $ � � and � $ � n-ary negatable constraints .
If reals are finitely represented (e.g. as in floating point arithmetic), enumeration is ap-
plicable to continuous data. In the field of interval constraint solving, several works
seek complete, sound solution sets in the presence of universally quantified variables.
At present, the constraints must be able to be negated (which excludes equalities). The
combination of numerical constraint propagation and search can be thought of as a non-
naive enumeration. In [4], an exact method for a single uncertain coefficient is given;
in [15], an approximate method for many coefficients.

Transformation and enumeration for UCSPs with � $ � 	 , � $���� and � $ � basic
constraints . Over finite domains, consider the classes of basic constraints as defined
in [18]. A system of uncertain monotone constraints (e.g. binary inequalities) can be
transformed by a CET similar to (3) in Sect. 2.1. The constraints of the resulting CSP
are monotone, and their complete solution set can be found in linear time by computing
the 2D integer hull [13]. For other types of basic constraints, enumeration is available.

Enumeration for UCSPs with � $ � 	 , � $ � � . CSP algorithms have been extended
to derive robust solutions for mixed CSPs [9]. These algorithms can be adapted for the
discrete data case of UCSPs over finite domains, as Sect. 2.2 illustrated.

If we consider a UCSP � as a disjunction of its realised CSPs,
�
� �� � , then ���-� �

is a constraint implied by the disjunction. Specifically, in constructive disjunction one
eliminates all domain values not supported in at least one of the disjuncts (i.e. not sup-
ported by at least one realisation) [19]. However, because each ��#� is itself a conjunction,
the constraints in � would have to be of simple form if the algorithms of constructive
disjunction are to be applied. In a similar way, generalised propagation can be thought
of as reasoning on a disjunction to infer a constraint that describes all solutions [14].
Depending, again, on the complexity of the constraints, the topological branch and
bound algorithm [14] can be used to derive the full closure to � by enumeration.

5 That is, optimisation problems with semi-definite constraint matrix.

5 Related Work

Existing generic approaches to uncertain data in CP propose models and methods for
robust solutions to the problem. The mixed CSP framework [9] of Fargier et. al., de-
fined for discrete data and variables, seeks a solution that holds under the most possible
realisations of the data;6 the stochastic CSP framework [21] of Walsh attaches a prob-
ability distribution to parameters and seeks a solution that maximises expectation. The
purpose of computing robust solutions is to ensure that whatever the real world situa-
tion, the solution holds under most cases. Robust solutions are semantically ideal for
dynamic changes but inadequate for handling data errors where one is certainly not
looking for a solution that satisfies as many erroneous models as possible.

In dealing with unsatisfiability, the potential data issue is not considered in CP. The
approach most widely used consists of reasoning at the constraint level: when the model
is unsatisfiable, the usual interpretation is that the problem is over-constrained. Thus,
most of the research has focused on relaxing constraints and setting priorities (e.g. [6]).

Besides work on quantified constraints over the reals [4], we are not aware of any
work in CP aimed at building reliable solution sets in the presence of uncertain data.
The closest parallels are the meta-solution reasoning of generalised propagation [14]
and constructive disjunction [19].

While our work is defined with CP modelling in mind, in concept it is more closely
related to work in control theory and operational research on continuous problems.
In particular, convex modelling (of which interval analysis over the reals is a simple
instance) is used to obtain a closure guaranteed to contain the true solution [2, 3, 8].

6 Discussion and Future Work

In this paper we have investigated how the successes of CP can be extended to real-
world problems with data uncertainty. We introduced the certainty closure as a generic
framework to allow the modelling of incomplete and erroneous data, both discrete and
continuous. It guarantees reliable reasoning in that, whatever the true value of the data,
the solution to the corresponding realised CSP is contained within the full closure.

A formal framework does not suffice unless its application to real LSCOs is practi-
cal. We derive a reliable solution set by solving standard CSPs, to make use of the most
appropriate specific resolution techniques for the problem at hand. We have demon-
strated the use of the framework by showing the benefits of reliable constraint reasoning
on case studies from network traffic analysis and aerospace planning.

Most models with data uncertainty presently assume independence of the data (e.g.
[9, 21]). For the certainty closure, assuming independence retains correctness but loses
tightness. Future work will include study of how to extend the framework to account for
dependency. We also wish to study new instances of the resolution forms for different

6 If we restrict to finite domains and discrete data, a UCSP ���������	����
����� can be viewed as a
mixed CSP ������������������������ with
 being the complete solution set of the CSP ������������� in-
duced by the parameters. However, as we discussed, the objectives (and algorithms, in general)
of the two frameworks are quite different.

uncertain constraint classes. In particular we will consider the hybrid case where the
data uncertainty is both discrete and continuous.

Acknowledgements. The authors thank P. Brisset, C. Guettier, S. Ratschan, M. Wal-
lace, and the participants of the UICS’02 workshop for their discussions; and the re-
viewers for their recommendations. This work was partially supported by the EPSRC
under grant GR/N64373/01.

References

[1] K. R. Apt. The essence of constraint propagation. TCS, 221(1–2), 1999.
[2] Y. Ben-Haim and I. Elishakoff. Convex Models of Uncertainty in Applied Mechanics. El-

sevier Science Publishers, Amsterdam, 1990.
[3] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations

Research, 23, 1998.
[4] F. Benhamou and F. Goualard. Universally quantified interval constraints. In CP-2000.
[5] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic constraint

programming: A study of online multi-choice knapsack with deadlines. In Proc. of CP’01.
[6] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based

CSPs and valued CSPs: Basic properties and comparison. In LNCS 1106. 1996.
[7] A. Cheadle, W. Harvey, A. Sadler, J. Schimpf, K. Shen, and M. Wallace. ECLiPSe: An

Introduction. IC–Parc Technical Report IC-Parc-03-1, 2003.
[8] J. W. Chinneck and K. Ramadan. Linear programming with interval coefficients. J. Opera-

tional Research Society, 51(2), 2000.
[9] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: A framework for decision

problems under incomplete knowledge. In Proc. of AAAI-96, pages 175–180, 1996.
[10] E. Freuder and P. Hubbe. Extracting constraint satisfaction subproblems. In Proc. of IJCAI-

95, pages 548–557, 1995.
[11] C. Gervet, Y. Caseau, and D. Montaut. On refining ill-defined constraint problems: A case

study in iterative prototyping. In Proc. of PACLP’99, pages 255–275, 1999.
[12] C. Gervet and R. Rodošek. RiskWise-2 problem definition. IC–Parc Internal Report, 2000.
[13] W. Harvey. Computing two-dimensional integer hulls. SIAM J. Computing, 28(6), 1999.
[14] T. Le Provost and M. Wallace. Generalized constraint propagation over the CLP scheme. J.

Logic Programming, 16(3), 1993.
[15] S. Ratschan. Continuous first-order constraint satisfaction. In LNCS 2385, 2002.
[16] I. Tsamardinos. Constraint-Based Temporal Reasoning Algorithms with Applications to

Planning. Ph.D. Thesis, University of Pittsburgh, 2001.
[17] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.
[18] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm and

its specializations. Artificial Intelligence, 57(2–3), 1992.
[19] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evaluation of

the constraint language cc(FD). In LNCS 910, 1994.
[20] G. Verfaillie. What kind of planning and scheduling tools for the future autonomous space-

craft? In Proc. ESA Workshop on On-Board Autonomy, 2001.
[21] T. Walsh. Stochastic constraint programming. In Proc. of AAAI’01 Fall Symposium on

Using Uncertainty within Computation, pages 129–135, 2001.
[22] N. Yorke-Smith and C. Gervet. Data uncertainty in constraint programming: A non-

probabilistic approach. In Proc. of Using Uncertainty within Computation, 2001.
[23] N. Yorke-Smith and C. Guettier. Towards automatic robust planning for the discrete com-

manding of aerospace equipment. In Proc. of IEEE ISIC’03, Oct. 2003. To appear.

