
HAL Id: hal-01800676
https://hal.science/hal-01800676

Submitted on 14 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraints over structured domains
Carmen Gervet

To cite this version:
Carmen Gervet. Constraints over structured domains. The Handbook of Constraint Programming,
2006. �hal-01800676�

https://hal.science/hal-01800676
https://hal.archives-ouvertes.fr

Preprint for Handbook of Constraint Programming

Chapter 17 Constraints over Structured Domains

Carmen Gervet

The computer will be the most marvellous
of all tools as soon as program writing and

debugging will be no longer necessary
—Jean-Louis Laurière (1976)

A wide range of combinatorial search problems find a natural formulation in the lan-
guage of sets, multisets, strings, functions, graphs or other structured objects. Bin-packing,
set partitioning, set covering, combinatorial design problems, circuits and mapping prob-
lems are some of them. They are NP-complete problems originating from areas as diverse
as combinatorial mathematics, operations research or artificial intelligence. These prob-
lems deal essentially with the search for discrete structured objects. While a high-level
modeling approach seems more natural, many solutions have exploited the effectiveness
of finite domains or mixed integer programming solvers. In this chapter we present higher
level modeling facilities utilizing constraints over structured domains.

What is a structured object? Let us consider the example of a bin-packing problem.
The main constrained objects are the different bins, each describing a collection of un-
ordered distinct elements, subject to disjointness constraints among them, weight con-
straints reflecting on each bin capacity and possible cardinality restrictions on the number
of items allowed in each bin. Informally, such objects are structured in the sense that they
involve more than one elementin a specific setting.

When Fikes introduced the notion of finite domain in 1970 [31], the idea was to ap-
proximate the range of an unknown integer (an integer variable) and to prune inconsistent
values from such a domain that cannot belong to any solution. Already in the description
of the language REF-ARF, Fikes proposed directions for future work such as: “considering
the addition to the program of capabilities for handling unordered sets”. Mid-eighties the
seminal work of Van Hentenryck et al. integrated consistency techniques over finite integer
domains into logic programming [90], and gave birth to the first finite domain constraint
logic programming language CHIP (Constraint Handling In Prolog) [23], leading to a new

Constraints over Structured Domains

generation of academic and industrial constraint programming systems. The successes of
CHIP and its peers also raised the questions of the languages limitations. While Finite Do-
main (FD) solvers grew in efficiency, it remained that models lacked generic and natural
formulations when representing structured objects, making the programming effort more
cumbersome and sometimes ad-hoc.

As an example, let us consider the structured object, “set”, constrained to be subset of
a known base set. A finite domain approach would consider two possible representations:

• a list of FD variables taking their value from a finite set of integers that represents
the base set. This approach requires the removal of order and multiplicity among the
elements of the list, which is achieved by adding ordering constraints. For example
the list [X1, X2, X3] :: [0..5], X1 < X2 < X3 represents a set of 3 elements subset
of the set{0, 1, 2, 3, 4, 5}. If the size of the set is unknown some dummy FD vari-
ables are also necessary. Clearly this does not make easy the modeling of additional
set constraints such as intersection, or union.

• a list of 0-1 FD variables. This second formulation is equivalent to the semantics
of a finite set subset of a known set. It uses 0-1 variables, and originates from 0-1
Integer Programming (ILP). Basically, this approach exploits the one-to-one corre-
spondence that exists between a subset s of a known set S and a Boolean algebra.
The correspondence is defined by the characteristic function:

f : yi → {0, 1} f(yi) = 1 iff i ∈ s

In other words, a 0-1 variable is associated with each element in the base set S
and takes the value 1 if and only if the element belongs to the unknown set s. Set
constraints are then simply represented within the Boolean algebra with arithmetic
operators. The main drawback of this representation is that it looses the semantics
and structure of the problem addressed. Operationally it can benefit from global
reasoning from mathematical programming, but in a constraint programming envi-
ronment lacks conciseness and does not best exploit the problem structure. We give
further on some comparisons between 0-1 and set models.

Approach. This chapter is not intended to give a complete coverage of all results avail-
able in softwares and systems that embed constraints over structured domains. Instead
we try to cover a number of significant research topics in more detail. This should give
a context and picture for the research and its methodology, provide the most important
references, and enable the reader to study research papers on the topic.

17.1 History and Applications

Before the research field of “constraint programming” even existed, the seminal work of
Laurière in 1976 proposes constrained structured objects in the design and development
of ALICE [61]. Laurière’s idea was to combine generality and efficiency in addressing
combinatorial problems. He defines an input language, purely descriptive, with high level
objects such as functions and relations between two known sets, constrained by some prop-
erties, such as injection and bijection.ALICE was a pioneer in the use of structured objects
to model combinatorial problems.

C. Gervet

In a parallel line of research, most proposals to extend constraint reasoning over new
structured domains came as extensions of the logic programming system, Prolog. Logic
programming is a powerful programming framework which enables the user to state non-
deterministic programs in relational form [56, 20]. The extension to Constraint Logic
Programming (CLP) combines the positive features of logic programming with constraint
solving techniques, where the concept of constraint solving replaces the unification proce-
dure in logic programming and provides, among others, a uniform framework for handling
new structured domains. Previous chapters have presented in depth the state of the art in
the precursors constraint domains (rationals, Boolean algebra, finite integer domains, real
intervals). This chapter is interested in discrete and structured domains such as strings,
finite sets in different forms, relations, maps and graphs.

In 1989 Walinsky presented CLP(Σ∗), an instance of the CLP scheme over the com-
putation domain of strings, represented as regular sets [92]. The practical motivation was
to incorporate strings into logic programming to strengthen the standard string-handling
features (e.g. concat, substring). It constitutes the first attempt to compute regular sets by
means of constraints like the membership relation. For exampleA in (X.‘‘ab’’.Y)
states that any string assigned to variableA must contain the substringab . This approach
was further developed by Golden and Pang in 2003 [42] even though they did not seem
aware of Walinsky’s work. Their main contribution is to use finite automata to represent
regular sets. Both approaches consider possibly infinite sets of strings. More recently Pe-
sant proposed a global constraint on a fixed length sequence of finite domain variables with
application to rostering and car sequencing problems [74].

The most widely studied structured domain is most definitely that of sets. The moti-
vations to embed sets in constraint based languages are quite diverse and address different
issues ranging from program analysis, software prototyping and specification, set theory
axiomatization and combinatorial problem solving. The terminology of “set constraints”
is worth a few words even though it does not relate directly to constraint satisfaction prob-
lems. Heintze and Jaffar [46] coined the term of set constraints in 1990 to handle a class
of sets of trees (possibly infinite) and to deal with relations of the forms1 ⊆ s2 wheres1
ands2 denote specific set expressions, possibly recursive, defined over trees. This line of
research applies to program analysis systems ([6, 2] among others) which was pioneered
by John Reynolds in 1969 [81]. Besides the terminology of set constraints, these systems
do not relate to constraint programming over a specific computation domain, as they do not
interpret set operations but rather show the expressiveness of “set constraints” for the anal-
ysis of programs developed in logic or functional programming. For further information,
please refer to survey articles such as [72].

Ironically it was about the same time that the notion offinite setswas embedded as a
high level programming abstraction in logic-based and then constraint (logic) based lan-
guages, in quite a different setting. We refer to the term set to denote a finite set. A set is
basically a collection of distinct elements commonly described by{x1, ..., xn}. The use
of a logic-based language as the underlying framework came from proposals in database
query languages where the aim was to strengthen typical existing set facilities of languages
like Prolog (e.g.setof, bagof) to handle sets of terms and complex data structures.
In this line of work sets have been embedded in [10, 57, 87, 25]. All these languages con-
verge on one aspect: representing a set variable by a set constructor so as to nest objects
in a natural manner. This constructor is specified either by an extensional representation
{x1, ..., xn} ([10, 57]) or by an iterative one{x} ∪E whereE can be unified with a set of

17. Constraints over Structured Domains

terms containing possibly set variables (concept of sets of finite depth, or hereditarily finite
sets in{log } [25], CLPS [63], and [89]).

Even though these languages use constraints to reason upon sets, they do face the NP-
completeness of the equality relation over constructed sets (as a particular case of Asso-
ciative, Commutative and Idempotent (ACI) relation [65]). The main reason is the absence
of a unique most general unifier when unifying constructed sets. For example, the equality
{X,Y } = {3, 4} derives two solution sets:{X = 3, Y = 4} and{X = 4, Y = 3} neither
of which is more general than the other. This means that the satisfaction of the ACI axioms,
introduces nondeterminism in the unification procedure by deriving disjunctions of a finite
number of equalities.

While such approaches did not offer a practical solution to set unification they were
not essentially motivated by effective solving of combinatorial problems. In 1992, a new
class of finite set constraint solvers was designed to expand the modeling facilities of finite
domain solvers when tackling set-based combinatorial search problems (e.g. bin packing,
set partitioning, combinatorial designs or more recently network design). The idea was
developed independently by Puget [75, 76], and Gervet [37, 38]. The objective was to pro-
pose a high-level modeling language which enabled us to model a set-based combinatorial
problem as a set domain CSP – where set variables range over set intervals – and which
tackled set constraints by using consistency techniques. A set domain is a collection of
known sets of arbitrary elements like{{1, 2}, {1, 4}, {1, 5}}. It is specified by a set in-
terval, [{1}, {1, 2, 4, 5}], where the lower bound contains thedefiniteelements of the set,
and the upper bound extends it with possible elements. Gervet formalized the concepts
and ideas when presenting theConjunto language in [39, 40]. Though implementa-
tion details vary, at their core the set constraint solvers ofsolver [77], ECLiPSe[86],
MOZART-OZ[67, 69], FACILE [7], B-Prolog [94], CHOCO[58], all have the subset
bounds as domain representation. The availability of all these solvers both in academia
and industry, has enabled the design of new models and solutions to problems from com-
binatorial mathematics [8], VLSI circuit verification and warehouse location [3], as well
as network design problems (e.g. weight setting [29], SONET [88, 85]).

However, it has also raised the question of the limitations of the coreConjunto -like
set interval solver, leading to further research in this area. Research advances in finite
set solvers include: i) the extension of the core subset bound solver with new inferences
relative to the set cardinality constraint (mainly described inCardinal [3] andOZ [68]),
ii) the development of global set constraint propagators, iii) the search for more expressive
set domain representations.

Regarding global set constraints propagators, Sadler and Gervet investigated the case
of n-ary constraints on fixed cardinality sets such asatmost1, distinct , stating re-
spectively thatn sets of known cardinality should intersect pairwise in atmost one element,
or not be equal [82]. This first attempt was followed by challenging results both theoreti-
cally and algorithmically. Walsh in [93] addresses the question of whether such global con-
straints could infer anything more than their decompositions and with Bessière et al. started
a systematic investigation of determining the tractability of a range of global set constraints
[14]. New global propagators were presented for thedisjoint andpartition con-
straints for sets of known cardinality, independently by Sadler and Gervet in [83] and
Bessière et al. in [13]. Such constraints have been present in IlogSOLVERwith similar
algorithms [50].

Regarding the effectiveness of finite set intervals, Lagoon and Stuckey propose in [60]

C. Gervet

a radically different approach to the standard subset domain bounds. They show that Re-
duced Ordered Binary Decision Diagrams (ROBDDs) can be used to represent full do-
mains efficiently. The same year, the set interval representation was also reconsidered by
Sadler and Gervet in [84] in order to make better use of the cardinality information and
break set symmetries in problems such as combinatorial designs [85]. They define a hy-
brid set domain whereby the conventional subset domain is enriched with a lexicographic
domain that shows to better exploit the cardinality information and symmetry breaking
constraints. As this chapter was compiled, Gervet and Van Hentenryck proposed a length-
lex representation of set domains that encodes directly cardinality and lexicographic infor-
mation, and shows promise in reaching powerful and cost effective pruning [41].

Other structured objects have been considered to expand the modeling facilities of
finite domain constraints. Multisets (sets where an element may occur more than once),
commonly referred to asbags, have been embedded in few constraint languages and seem
an adequate choice of model for template design problems [54]. Existing approaches to
multiset reasoning make use of constructors or domains. For exampleCLPSuses multiset
constructors whileSOLVERuses multiset domains. In [93], Walsh formalizes the idea
of multiset domains and discusses the expressiveness of different domain representations.
Quimper and Walsh also recently proposed in [78] to use efficient enumeration procedures
(see Knuth [55]) to extend the use of some global constraint on large domains over sets,
but also tuples represented as lists of integer variables.

Finally, higher level structured domains have recently been re-discovered (graph and
map variables) or proposed (ontologies, lattices). The proposals follow two main trends:
i) high level constructors that are part of a specification or modelling language compiled
into an executable code such as the works of Flener et al. [32] leading to the modeling
languageASRA[32], and the PhD thesis of Hnich inL [48], ii) high level computation
domains to reason with and about relations and graphs as inConjunto [39], CP(Graph)
[24], andCP(Graph + Map) [22], and order-sorted domains introduced by Caseau and
Puget [17], as well as ontology domains introduced by Laburthe [59]. Fernándex and Hill
generalized all interval reasoning approaches over structured domains that are lattices into
a single framework, deriving theclp(L) language [30].

17.2 Constraints over Regular and Constructed Sets

Most of the recent proposals (late eighties) to embed strings or constructed sets as a high
level programming abstraction aim at extending a logic-based language and thus assume
such a language as the underlying framework. In this section we review the major ap-
proaches which embed strings and constructed sets in constraint programming.

17.2.1 Regular Sets

CLP(Σ∗). This language represents an instance of the CLP scheme over the computation
domain of regular sets[92]. A regular set is a finite set composed of strings which are gen-
erated from a finite alphabetΣ. CLP(Σ∗) has been designed and implemented to provide a
logic-based formalism for incorporating strings into logic programming in a more expres-
sive manner than the standard string-handling features (eg.concat, substring). A
CLP(Σ∗) program is a Prolog program enriched with regular set terms and built-in con-
straints.

17. Constraints over Structured Domains

Operations on regular sets comprise concatenationR1.R2, disjunction or unionR1 +
R2 (i.e.,R1 ∪ R2) and the closure operatorR∗

1 which describes the least setR′ such
thatR′ = ǫ + (R′, R1). These operations allow us to build any regular expression when
combined with the identity elements under concatenation (1) and union (∅). This language
provides an atomic constraint over set expressions which is the membership constraint of
the formx in e wherex is either a variable or a string ande is a regular expression. For
exampleA in (X.′′ab′′.Y) states that any string assigned to variableA must contain the
substringab.

The satisfiability of membership constraints over regular sets clearly poses the problem
of termination. In the above example, ifY is a free variable there is an infinite number of
instances forA. The solver guarantees termination by: (i) applying a scheduling strategy
which selects the constraints capable of generating a finite number of instances, (ii) ap-
plying a satisfiability procedure based on deduction rules which check and transform the
selected atomic constraints. The non selected ones are simply floundered.

The selected constraintsx in e are such that eithere is a string ore is a variable andx a
string. The conditional deduction rules over each of these constraints infer a new constraint
or a simplified one if a given condition is satisfied. Each condition represents a possible
form of selected set constraints.

As an example, the following rules describe the derivation of concatenated expressions
under idempotent substitutions:





w = w1.w2

σ1 ⊢ ′′w′′
1 in e1

σ2 ⊢ ′′w′′
2 in e2



 and

(

σ1 ⊢ X1 in e1
σ2 ⊢ X2 in e2

)

σ1 ∪ σ2 ⊢ ′′w′′ in e1.e2 [X = (X1σ1).(X2σ2)] ⊢ X in e1.e2

Theσi are idempotent substitutions, which means that given two substitutionsσ1 and
σ2, σ1 ∪ σ2 produces the most general idempotent substitution if one exists that is more
specific than the two previous ones.

Soundness and completeness of the deduction rules are guaranteed only if there are no
variables within the scope of any closure expressione∗ in addition to the criteria of con-
straint selection. This approach constitutes a first attempt to compute regular sets by means
of constraints like the membership relation. The complexity of the satisfiability procedure
is not given, but infinite computations are avoided thanks to the use of floundering.

Regular sets and finite automata. The key challenges when reasoning about string con-
straints effectively are 1) to represent infinite string sets without actually requiring infinite
space, and 2) to enforce constraints over infinite string sets without exhaustively listing
the consistent values [42]. To do so one would use regular languages, i.e. sets of strings
accepted by regular expressions or finite automata, which are widely used for instance in
string matching or lexical analysis.

Constraints over the string variables extend the ones presented in CLP(Σ∗) with con-
straints on the length of a stringlength . Two different representations of regular lan-
guages are used: regular expressions and finite automata (FAs) [49]. Regular expressions
that represent a regular language over an alphabetΣ, are used as input and are converted
to FAs, which are used computationally. This system has been used within a constraint

C. Gervet

based planner for NASA. The solver performs set operations on Finite Automata to prune
the string domains and reach a consistent state. All of the set operations and string con-
straints are either linear or quadratic in the size of the FAs representing the string domain.
However, the FA can grow exponentially with the number of operations, i.e. the number
of constraints that contain the variable whose domain is represented by the FA. Ultimately
how the FA grows will depend on the nature of the problem at hand.

Such languages allow variables to range over an infinite set of strings. This is suit-
able for their motivational problems but is not a requirement in all application domains
involving strings.

The use of membership constraints for sequences of finite domain variables also exists
in the constraint programming literature to address in particular combinatorial search prob-
lems such as rostering and car sequencing. The objective is usually to identify or enforce
patterns of values, specified over finite domain variables. The approaches are commonly
embedded as global constraints with associated propagator. We refer the reader to the
sequence constraint (constrains the number of times a certain pattern of lengthl appears
in a sequence of variables) introduced in [80], solver’sIlcTableConstraint [50]
(takes a sequence ofn finite-domain variables and a set ofn-tuples representing the valid
assignments of values to these variables), or the more recentregular(x,M) constraint
[74]. This constraint is a regular language membership constraint that constrains “any se-
quence of values taken by the finite domain variables ofx to belong to the regular language
recognized byM ”. It reasons upon strings of the regular language that have a given length
n which is powerful enough for its purpose.

The embedding and use of regular sets in constraint (logic) programming has a clear
diversity from enhancing the string manipulation of Prolog to enforcing patterns of values
in combinatorial search problems.

17.2.2 Constraints over Constructed Sets

The first steps towards embedding sets in constraint programming first assumed a logic-
based language as the underlying framework. This follows from the declarative nature
of logic programming, which well combines with set constructs, and its nondeterminism
which is suited to stating set-based programs. The presented languages are the main ones
relating to constraint reasoning. More literature exists relating solely to logic program-
ming.

{log} and CLP(SET). {log} [25, 26, 27] has been designed and implemented mainly
for theorem proving. Consequently, it embeds an axiomatized set theory whose properties
guarantee soundness and completeness of the language.

Set terms are constructed using the interpreted functorswith and{}, e.g.∅ with x
with (∅ with y with z) = {{z,y},x}. The language includes a limited collection of
predicates (∈,=, 6=, /∈) as set constraints. The axiomatized set theory consists of a set of
axioms which describe the behaviour of the constructorwith. For example theextension-
ality axiomshows how to decide if two sets can be considered equal:

v with x = w with y →
(x = y ∧ v = w) ∨ (x = y ∧ v with x = w) ∨
(x = y ∧ v = w with y) ∨∃z (v = z with y ∧w = z with x)

17. Constraints over Structured Domains

Using the axioms, a set of properties are derived describing the permutativity (right asso-
ciativity) and absorption of thewith constructor. For example, the permutativity property
is depicted by:

(x with y) with z = (x with z) with y (permutativity)

The complete solver consists of a constraint simplification algorithm defined by a set of
derivation rules with respect to each primitive constraint. A derivation rule for the equality
constraint is, for example:

h with {tn, ..., t0} = k with {sm, ..., so}
If h andk are not the same variables then select non-deterministically one action among

a set of possible substitutions (minimal set of unifiers). The nondeterministic satisfaction
procedure of constructed sets reduces a given constraint to a collection of constraints in
a suitable form by introducing choice points in the constraint graph itself. This leads to
a hidden exponential growth in the search tree. In this approach, completeness of the
solver is required if one aims at performing theorem proving. Thus, there is no possible
compromise here between completeness and efficiency. The soundness and completeness
of its solver allow us to use it for theorem proving and problem specification.
{log} has been revisited from a LP to a CLP framework in order to provide a uniform

framework for the handling of set constraints (∈,=, 6=, /∈). The CLP counterpart called
CLP(SET) is described in [28]. The design and implementation of{log} and subsequently
CLP(SET) have settled the theoretical foundations for embedding constructed sets of the
form {x} ∪ S into (constraint) logic programming.

CLPS. The CLPS language (Constraint Logic Programming with Sets) was designed for
prototyping combinatorial search problem dealing with sets, multisets, or sequences. It
is based on a three sorted logic, the three sorts being: sets, multisets and sequences of
finite depth (eg.s = {{{e, a}}, c} is a set of depth three) [63]. The concept of depth is
equivalent for each sort.

In CLPS, set expressions are built from the usual set operator symbols (∪,∩, \,#).
Set variables are constructed either iteratively by means of the set constructor{x} ∪ s
or by extension by grouping elements within braces (eg.{x1, ..., xn}). The language
also embeds finite integer domains and allows set elements to range over a finite domain.
Sequences and multisets are built using, respectively, the constructorssq{...} andm{...}.
Basic constraints are relations from{∈,=, /∈, 6=,⊆} interpreted in the usual mathematical
way together with a depth (::) and a type checking operator.

The satisfiability problem for sets, sequences and multisets isNP -complete [65]. To
cope with this, CLPS provides several methods whose use depends on the characteristics
of the CLPS program at hand. The solver makes use of various techniques comprising: (i)
a set of semantical-consistency rules, (ii) an arc-consistency algorithm of type AC-3 [66]
combined with a local search procedure (forward checking) and (iii) a transformation pro-
cedure which transforms the set constraint system into an equivalent mathematical model
based on integer linear programming [47]. The rules in (i) check the consistency of each
set constraint with respect to homogeneity of types, depth and cardinality. For example the
system

{x} = {y, z} is semantically-consistent ify = z

C. Gervet

A semantically-consistent system of set constraints is then solved in two stages. The solver
first divides the system in two independent subsets: 1) the first one,SCfd, contains set con-
straints whose constrained sets are sets of integer domain variables, 2) the other one, writ-
tenSCv contains sets and set constraints where set elements are free variables or known
values. The solver applies (ii) and (iii) respectively to check satisfiability overSCfd and
SCv.

An interesting component is the resolution ofSCv using (iii). A systemSCv is sat-
isfiable if its equivalent integer linear programming form is satisfiable [47]. To check
satisfiability, the system provides a correct and complete procedure which transforms the
set constraint system into an equivalent mathematical model based on integer linear pro-
gramming. This procedure consists in flattening each set constraint and reducing the sys-
tem of flattened formulas to an equivalent system of linear equations and disequations
over finite domain variables. The derived system is then solved using consistency tech-
niques. The flattening algorithm works by adding additional variables to reach forms from
(x = y, x ∈ y, x = {x1, ..., xn}, x = y ∪ z, x = y ∩ z, x = y \ z, etc.). The reduction
to linear form is performed by associating to each set variablexi a new variableCxi which
represents its cardinality and to each pair of variables(xi, xj) a new binary variableQij
denoting possible set equality constraints. If there aren constraints the complexity of the
reduction procedure is inO(n3).

The proposed solving methods are among the most appropriate for handling set con-
straints over constructed sets. They fit the application domain of the language which aimed
initially at combinatorial problem prototyping. Unfortunately the nondeterminism in the
unification of set/multisets/strings constructs prevents an efficient pruning of the domains
attached to set elements (in case they represent domain variables). The focus is put on the
expressive power of the language rather than on the efficient solving.

Since its first release, the CLPS kernel has been extended in many ways. In particular,
new solvers on constructed terms for multisets and sequences have been defined based on
PQR-trees and proved to be appropriate for modelling and solving scheduling problems
with a reasonable efficiency [9]. The application domain of CLPS has since migrated and
a new solver called CLPS-B has been designed and implemented to animate and generate
test sequences from B and Z formal specifications [15]. The B method, developed by
Abrial, forms part of a formal specification model based on first order logic extended to set
constructors and relations, (see [1] for a description of the B method).

17.3 Constraints over Finite Set Intervals

As we mentioned earlier on, many combinatorial search problems find a natural formula-
tion in the language of sets. The embedding of finite set intervals in constraint program-
ming languages builds upon the successes of finite domain constraint satisfaction problem
(CSP) in order to allow for natural and concise modeling of a set-based combinatorial
search problems as set domain CSP – where set variables range over finite set domain
– and set constraints are handled using consistency techniques. The motivations differ
slightly from the previous languages since the approach compromises expressiveness (sets
don’t contain variables) with efficiency (trivial deterministic unification of finite sets). We
present the main components of the finite set solver, since it is available in most CP lan-

17. Constraints over Structured Domains

guages and lead to much further research and improvements in recent years. Comprehen-
sive theoretical and practical descriptions can be found in [39, 77, 40].

Notations. Set variables will be represented by the lettersx, y, z, s, set constants by the
lettersa, b, c, d, natural numbers by the lettersm,n and integer variables byv, w. All these
symbols can be subscripted.

17.3.1 Subset Domain Bounds and Convex Closure Operator

A set domain can be specified in extension as a collection of known sets of arbitrary ele-
ments like{{a, b}, {c, d}, {e}}. However, such domains can be large (e.g., ifs ⊆ {1, . . . ,
100}, its domain contains2100 elements). A common approach to tackling large domains
is to approximate the domain reasoning by an interval reasoning as in many FD solvers.
This is why the notion of set domain has been approximated by aset interval specified by
its upper and lower bounds, defined by some appropriate ordering on the domain values.
In this case the partial ordering under set inclusion is considered. This enables the use
of consistency techniques [66] by reasoning in terms of interval variations, when dealing
with a system of set constraints. The set interval[{}, {a, b, c, d, e}] represents the convex
closure of the set domain above.

The core idea is to approximate the domain of a set variable by a closed interval denoted
[glb, lub], specified by its unique least upper boundglb, and unique greatest lower bound
lub, under set inclusion. Any such interval within a powerset lattice is necessarily convex
allowing us to perform correct computations over the set intervals. This approach finds
similarities with other interval reasoning approaches like real intervals or Booleans (see
[71, 11]).

Theglb of the set domain contains thedefiniteelements ofs and thelub contains in
additionpossibleelements ofs.

Example 17.1.The constraints ∈ [{3, 1}, {3, 1, 5, 6}]means that the elements3, 1 belong
to s and that5 and6 are possible elements ofs.

Regarding set expressions, the domain of a union or intersection of sets is not a set in-
terval because it is not a convex subset of theP({1, 2, 3, 4, 5, 6}), the domain of discourse
(e.g.I = [{1}, {1, 3}]∪ [{}, {2, 6}], {1, 3}, {6} ∈ I but [{}, {1, 3, 6}] 6⊆ I). It is possible
to maintain such disjunctions of domains during the computation, but this leads to a com-
binatorial explosion. This handling of “holes” can be avoided by considering the convex
closure of a set expression domain. To do so one needs a convex closure operation over a
subset of a powerset lattice equipped with set inclusion ordering.

Convex closure operation. LetDS be the powerset lattice〈P(Hu),⊆〉 with the partial
order⊆ whereP(s) denotes the powerset ofs and the universe of discourseHu refers to
the Herbrand universe. To ensure that any set domain is a set interval, we define a convex
closure operation which associates to anyDS its convex closure as being a set interval.

Definition 17.2. Given any subsetx = {a1, ..., an} ofDS we have:

~conv (x) = x = [
⋂

ai∈x

ai,
⋃

ai∈x

ai]

C. Gervet

The convex closure of the set{{3, 2}, {3, 4, 1}, {3}} belonging toP(DS) is the set
interval[{3}, {1, 2, 3, 4}].

The operations
⋂

ai∈x
ai and

⋃

ai∈x
ai derive respectivelyglb(x)andlub(x). The op-

eration ~conv(x) = x = [glb(x), lub(x)] satisfies the properties of extension (x ⊆ x),
idempotence (x = x), and monotony (ifx ⊆ y, thenx ⊆ y)

The existence of limit elements for any set{a, b} belonging toDS allows us to define
a notion of set domain as a convex subset ofDS , that is a set interval[a ∩ b, a ∪ b].

Set interval calculus. The powerset algebraDS interprets the set function symbols∪, ∩,
\ in their usual set theoretical sense (i.e.,∅ is the empty set,\ the set difference, etc.). The
interpreted set union and intersection symbols have the usual algebraic properties (com-
mutativity, associativity, idempotence, absorption). By making use of the convex closure
operation we ensure that the union and intersection of set intervals yield intervals as well.
The resulting set interval calculus is described as follows:

[a, b] ∪ [c, d] = [a ∪ c, b ∪ d]
[a, b] ∩ [c, d] = [a ∩ c, b ∩ d]
P(Ds) = P(Ds) and∅ = ∅

With regard to the set difference operation[a, b] \ [c, d], its set theoretical definition
is x \ y = x ∩ y′ wherey′ is the complement ofy. The complement of a set interval is
characterized only by the fact that it does not contain the elements in the lower bound (e.g.
c in this case). So the convex closure of a set interval difference is:

[a, b] \ [c, d] = [a \ d, b \ c]

17.3.2 Set Constraints and Graduations

Primitive set constraints apply to set variables or ground sets. They constrain at most two
set variables or a set variable and an integer (for graduated constraints). They can be of the
form S ∈ [a, b], S ⊆ S1, S = S1 ∪ S2, S = S1 ∩ S2, S = S1 \ S2, e ∈ S, e /∈ S, |S| ≥
c, |S| ≤ c.

Many more constraints can be specified but will be rewritten in term of the primitive
ones. For instance, n-ary constraints of the forms1 ∪ s2 ⊆ s3 ∩ s4. Th reason is that
the partial solving of constraints requires us to express each set variable in terms of the
others. Since there is no inverse operation for∪,∩, \ there is no way to move all the
operation symbols on one side of the constraint relation. So it is necessary to decompose
n-ary constraints into primitive ones unless some global reasoning is sought with dedicated
propagators (see next section). The decomposition approach is similar to the relational
form of arithmetic constraints over real intervals [18].

To increase the expressiveness of a set solver, and in particular to be able to deal with
optimization functions, we apply graduation functions to sets. A graduation maps a no
quantifiable term to an integer value denoting a measure of the term. The set cardinality is
one example of such a function. Another one is the weight function that sums the element
values of the set. Both can then be restricted by arithmetic constraints. The following
definitions give necessary conditions to consider graduations for a given set.

17. Constraints over Structured Domains

Definition 17.3. A setS provided with an order relation� is graduated if there exists a
functionf fromS toZ (positive and negative integers) which satisfies:

x ≺ y ⇒ f(x) < f(y) (≺ is a strict ordering,< the arithmetic inequality)
x precedesy ⇒ f(x) = f(y) + 1

An elementxi precedes an elementxi+1 if in the chain of elementsx = x0 ≺ x1 ≺
... ≺ xn = y in S there is no other element between them.
f is thegraduation ofS.

The existence of a graduation of a set which does not correspond to a chain (e.g. a set
of set intervals) is guaranteed for the closed set intervals under set inclusion [40]. Further-
more, if there exists one such graduation of a set, then there exists an infinite number of
graduations of this set. The weight function is a case in point.

Definition 17.4. A graduationf is a function from[DS ,⊆] toZ (set of positive and neg-
ative integers) which maps each elementx ∈ DS to a uniquem such thatf(x) = m.

The convex closure of a graduationf is required to deal with elements fromΩDS. The
closure function, writtenf , maps elements fromΩDS to a subset of the powersetP(Z)
containing intervals of positive and negative integers. This subset is designated byΩZ.

Example 17.5. Let s be a set and|s| its cardinality (a positive integer). Consider the
constraints ∈ [{}, {1, 2}]. The cardinality function is approximated by||. Intuitively we
have||(s) = [0, 2].

Definition 17.6. Let f : DS → Z. The functionf : ΩDS → ΩZ is derived fromf as
follows:

f([a, b]) = [f(a), f(b)]

Property 17.7. If x ∈ [a, b] thenf(x) ∈ f([a, b]).

This property guarantees that the output of the functionf applied to a set domain
contains the actual graduation value of the concerned set variable.

17.3.3 Local Consistency

Local consistency for the primitive constraints individually ensure that the set interval cal-
culus holds. This can be captured in the following definition of bound consistency for
constraints over combined domains [13].

Definition 17.8. A constraint is Bound Consistent (denoted BC), iff for each set (holds also
for multiset domain variables), itslub(s) (respectivelyglb(s)) is the union (respectively
intersection) of all the values fors that belong to a valid assignment, and for each integer
variable x there is a valid assignment that satisfies the constraint for the max and min
values in the domain ofx. An assignment is valid if the value given to each set (or multiset)
is within its domain bounds, and the value given to each integer variable is between the
min and max in its domain.

For the sole case of set and multiset variables, BC can be defined using the character-
istic function for each set variable (or occurrence representation for multiset variables). A
set constraint is BC if its characteristic function is bounds consistent in the common finite
domain terminology [93].

C. Gervet

17.3.4 Enforcing BC

The consistency notion defines conditions to be satisfied by set domain bounds, and integer
domains so that a set constraint is BC. If such conditions are not satisfied this means that
elements in the domain are irrelevant. BC can be inferred by moving such elements “out
of the boundaries of the domain” which means pruning the bounds of the domain. The
essential point is that a refinement of both bounds allows us to prune a domain. Reducing
the set of possible values a set could take can be achieved either by extending the collection
of definiteelements of a seti.e., adding elements to the glb of a set domain, or by reducing
the collection ofpossibleelementsi.e., removing elements from the lub of a set domain.
Both computations are deterministic. The inference rules are presented as deterministic
rewrite rules that operate when the conditions are met:

conditions
constraint store changes

For set constraints

Consider the constraints ⊆ s1 such thats ∈ [a, b], s1 ∈ [c, d]. Inferring its local consis-
tency amounts to possibly extending the lower bound of the domain ofs2 and to possibly
reducing the upper bound of the domain ofs1. This is depicted by the following inference
rule:

I1.
b′ = b ∩ d , c′ = c ∪ a

{s ∈ [a, b], s1 ∈ [c, d], s ⊆ s1} 7−→ {s ∈ [a, b′] , s1 ∈ [c′, d], s ⊆ s1}
Whens, s1 denote set expressions, the relational forms are created and the following

additional inference rule is necessary to deal with the projection functions. For each pro-
jection functionρi describing the domain of ansi appearing in a set expression, we have:

I2.
a′i = ai ∪ c , b′i = bi ∩ d

{ si ∈ [ai, bi], ρi = [c, d] } 7−→ { si ∈ [a′i, b
′
i]}

For primitive graduated constraints

The constraintf(s) ∈ [m,n] such thats ∈ [a, b] describes a mapping from an element
belonging to a partially ordered set to an element belonging to a totally ordered set. Con-
sequently, it might occur that two distinct elements in[a, b] have the same valuation in
[m,n]. This implies that inferring the local consistency of this constraint might require
refining[a, b] only if a single element in[a, b] satisfies the constraint. If this element exists,
it corresponds necessarily to one of the domain bounds since they are uniquely defined and
are strict subset (or superset), of any element in the domain. Thus, the value of the graded
function mapped onto them cannot be shared. The inference mechanism is depicted by
the following rules.min() andmax() are functions which take as input a collection of
integers and return respectively the minimal and maximal integer value of this collection.

I3.
[m′, n′] = [max(m, f(a)),min(n, f(b))]

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s ∈ [a, b] , f(s) ∈ [m′, n′] }

17. Constraints over Structured Domains

I4.
n = f(a)

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s = a }

I5.
m = f(b)

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s = b }
By their definition, the inference rules are correct (all possible solutions are kept), con-

tracting (final domains are subset of the initial domains), idempotent (the smallest domains
have been computed the first time) and inclusion monotone (smaller initial domains yield
smaller final domains). The consistency of a system of constraints results from the con-
sistency of each constraint appearing in it. A generic algorithm is used to call the relevant
inference rules dedicated to enforcing BC. It reduces the set bounds until a fixed point is
reached. In the case of set intervals, the algorithm resembles the relaxation algorithm used
by CLP(Intervals) systems [62] commonly referred to as fixed point algorithm [11], see
Chapter 16, “Continuous and interval constraints”.

17.3.5 Illustrative Model

We illustrate a 0-1 model versus a subset-bound set model of a simple bin packing problem
[39]. Bin packing problems belong to the class of set partitioning problems. A multiset
of n integers is given{w1, ..., wn} and specifies the weight elements to partition. Another
integerWmax is given and represents the weight capacity. The aim is to find a partition of
then integers into a minimal number ofm bins (or sets){s1, .., sk} such that in each bin
the sum of all integers does not exceedWmax. This problem is usually stated in terms of
arithmetic constraints over 0-1 variables and solved using MIP techniques or finite domain
constraint programming. It requires one matrix(aij) to represent the elements of each
set, one vectorxj to represent the selected subsetssk and one vectorwi to represent the
weights of the elementsaij . The set model uses aweight graded constraint that sums the
weights of the items in a set domain.

IP abstract formulation set abstract formulation

∑m
j=1 aij xj = 1 ∀i ∈ {1, .., n} s1 ∩ s2 = {}, s1 ∩ s3 = {}, .., sn−1 ∩ sm = {}

s1 ∪ s2 ∪ ... ∪ sm = {(1, w1), .., (n,wn)}
where:
xj = 0..1 (1 if sj ∈ {s1, .. , sk}) sj ∈ [{}, {(1, w1), .., (n,wn)}]
aij = 0..1 (1 if i ∈ sj) weight (i, wi) = wi;
∑n

i=1 aij wi ≤Wmax ∀j ∈ {1, ...,m} ∀sj ,
∑#glb(sj)
i=1 weight (i, wi) ≤Wmax

Under these assumptions, the program to solve is to minimize the number of bins:
min x0 =

∑m
j=1 xj min x0 = #{sj | sj 6= {}}

17.3.6 Multiset Domains

Multisets can also be used to model the bin packing problem by considering essentially the
weights and not the items. They were introduced in the previous section in the context of
constructed sets. We present here approaches towards introducing multiset objects that are
specified using domains, as they can be naturally seen as extensions to set domains where

C. Gervet

the occurrence needs to be taken into account. Multiset domains are not present in many
languages yet, but can be found in SOLVER under the namebags[50]. As described in
[54], the main difference between set and multiset domains in a Constraint Satisfaction
Problem sense lies in the maintenance of the occurrence functions. And in fact multisets
can be solely defined by means of the occurrence function. Letocc(m, s) be the number
of occurrences ofm in the multisets. Multiset operations such as union, intersection,
difference, etc, are defined by properties of the occurrence function. We have:

occ(m, s1 ∪ s2) = max(occ(m, s1), occ(m, s2))
occ(m, s1 ∩ s2) = min(occ(m, s1), occ(m, s2))
occ(m, s1 \ s2) = max(0, occ(m, s1)− occ(m, s2))
s1 = s2 iff ∀m, occ(m, s1) = occ(m, s2)
s1 ⊆ s2 iff ∀m, occ(m, s1) ≤ occ(m, s2)

Just like sets, different representations are possible for multiset domains. The subset
bound representation can be generalized to sets allowing multiple occurrence of elements,
and the characteristic function can be generalized to the occurrence vector. Also the list
of finite domain variables commonly used to represent sets in Finite Domain (FD) solvers
can be used for multisets with the difference that the variables are not constrained to be
distinct but each element should appear in a number of variables describing its occurrence.
We can compare the expressiveness of the different representations in terms of the multiset
values it represents. For instance, the occurrence representation is more expressive than
the bound representation (see proofs in [93]). The FD list, also referred to as cardinality
representation, is incomparable to either.

Example 17.9. A multisetms1 with possible values{{1, 1, 2}}, {{2, 2, 2}}can be repre-
sented by the “occurrence” vector of integer variables[x1, x2] with:

x1 = occ(1,ms) ∈ 0..2, and x2 = occ(2,ms) ∈ 1..3
The bound representation for this multiset domain is specified by:
ms1 ∈ [{1, 1, 2}..{2, 2, 2}]

The FD list representation for the same multiset variable is specified by:
[y1, y2, y3], y1 ∈ 1..2, y2 ∈ 1..2, y3 = 2

Enforcing BC is done by applying inference rules similar to the ones for set constraints
taking into account the semantics of the occurrence element (see [93]).

17.4 Influential Extensions to Subset Bound Solvers

Conjunto and its peers provide a natural and concise modeling facility for set-based
CSPs, space efficient in the representation of large domains, integrated with finite domain
solvers through graded function constraints. However, the growing use of such solvers
has raised some important shortfalls over the past years, the main ones being the loose
approximation of the subset bounds when the actual domains aresparse, and the passive
use of the cardinality information, ubiquitous in set-based combinatorial problems, and
the breaking of problem symmetries. We present the most influential approaches towards
improving finite set solvers.

17. Constraints over Structured Domains

So far, there has been four research directions to strengthen constraint propagation of
the first subset bound solvers, built uponConjunto inference rules. These comprise
(1) additional cardinality inferences to enrich a subset bound solver; (2) a hybrid set do-
main that complements the conventional subset domain with lexicographic bounds; (3) a
set solver based on a full domain representation using Reduced Ordered Binary Decision
Diagrams (ROBDD); (4) global constraint propagators over subset bounds. This section
surveys the four of them.

17.4.1 Cardinal

TheCardinal solver [3] is a finite set solver in theConjunto style (i.e. subset bound
solver) with enhancements to strengthen the use of the cardinality information.Conjunto
uses the cardinality (and other graded functions like weight) in a unidirectional way, mean-
ing that when a set domain gets refined its cardinality is pruned. The possible inferences
from the cardinality to the set have not been considered, mainly due to the practical ob-
jective of the language then to remain cost effective in addressing large set-based CSPs
(bin-packing, partitioning). However, finite set solvers have a wider applicability. In par-
ticular Azevedo applies subset bound solvers to tackle digital circuit diagnosis [4, 3]. For
such problems active use of the cardinality information is essential.

Conventional Boolean representations of digital signals consider a pair: a set of faults
on which the signal depends, and a Boolean value that the signal takes if there were no
faults at all. Both are variables. For instance,X = {{f/0, g/0}, {i/1}}− 0 means that
signalX is normally 0 but if both gatesf andg are stuck-at-0 or gatei is stuck-at-1, then
its actual value is 1. Thus∅-N represents a signal with constant valueN , independent of
any fault [4]. The idea of using sets to represent digital circuits is to join the two domains
in one by using a transformation, based on a single set domain that approximates both with
minimal loss of information. A set representing a pairS-0 is simply represented by the
setS, while the pairS-1 is represented by the setS. The setS can have values∅ or D
(known set) and is thus given a set interval domain[0, D] whose corresponding cardinality
should ideally have only the two possible values{0, |D|}. Such disjunctive cardinality
domains, mapped to sparse set domains, makes the subset bound approximation very loose
and ineffective.

New inferences rules are added to the solver to strengthen constraint propagation over
the cardinality information, and would benefit such combinatorial problems in particular
[4]. Additional cardinality inferences are associated with each basic set operation. To
illustrate the pruning power ofCardinal , we consider the set difference operation. The
following example shows the benefits of additional inference rules using the cardinality
information:

Example 17.10.Let s1, s2 ands3 be three set variables such that we have the following
system of constraints:

s1, s2 ⊆ {a, b, c, d}, |s1| = 2, s3 = s2 \ s1

While traditional subset bound solvers do not infer any information, theCardinal
system would infer that|s3| ≤ 2. Then any further constraint upon the cardinality ofs3
such as|s3| = 3 would lead to a failure.

C. Gervet

The inference rules defined to achieve bounds consistency for the cardinality variables
c1, c2, c3 amount to adding new constraints on the cardinality variables to the constraint
store. In the case of the set difference constraint we have:

c3 ≥ c1 − c2
c3 ≤ c1 − |glb(s1) ∩ glb(s2)|
c3 ≤ |lub(s1) ∪ lub(s2)| − c2

Note that theCardinal solver first infers arc consistency over the cardinality bounds,
at constraint set up which can be useful when cardinality domains are disjunctive like in
digital circuits models, but costly in the general case. Thus it maintains bounds consistency
over these bounds to remain effective while strengthening constraint propagation. For each
primitive set constraints as the set difference above, an inference rule leading to AC for the
cardinality domains is first applied.

c3 ∈ {n | ∃ i ∈ D1, j ∈ D2, max(i− j, i− |lub(s1) ∩ lub(s2)|) ≤ n
n ≤ min(i− |glb(s1) ∩ glb(s2)|, |lub(s1) ∪ lub(s2)| − j)}

Example 17.11([3]). Consider two setss1 ands2 that can only be∅ or {f, g, h, i} (i.e.
cardinality 0 or 4). To find the initial cardinality domain of their differences3 = s1 \ s2,
we examine cardinality pairs〈0, 0〉, 〈0, 4〉, 〈4, 0〉, 〈4, 4〉 and conclude that the set difference
cardinality is also the pair〈0, 4〉.

TheCardinal solver has been implemented atop ECLiPSe [86] and is fully described
in [3, 5]. This solver has shown how finite set solvers can be competitive on problems
which were the realm of Boolean algebra. It has demonstrated the expressiveness of finite
sets and their applicability to digital circuit design in particular.

17.4.2 Lexicographic Bounds

The ubiquity of the set cardinality information goes beyond digital circuit design and en-
compasses the large class of combinatorial design problems (e.g. see [19] for a survey)
for which set-based CSP models are ideally suited. Examples are sport scheduling, Steiner
systems, error-correcting codes. Traditional subset bound solvers have difficulty with such
problems as they do not make strong use of the set cardinality information.Cardinal
offers more in terms of cardinality inferences but such inferences do not propagate onto
the subset bounds except for instantiation. This issue is addressed in [84], by extending the
domain representation to more closely approximate the true domain of a set variable. This
is a complementary approach toCardinal that strengthens the propagation of finite set
constraints in a tractable way.

The idea is to consider a set domain ordering that better exploits the cardinality infor-
mation, and that is also effective at breaking symmetries (when using symmetry breaking
constraints) [85]. The new bound representation for set domains is based on an ordering
different from the set inclusion (subset order). It is a lexicographic ordering withlexico-
graphic boundsspecified by〈inf, sup〉. This ordering relation defines atotal order on sets
of natural numbers, in contrast to thepartial order⊆. We use the symbols� (and≺) to
denote a total strict (respectively non-strict) lexicographic order.

Definition 17.12. Let� be a total order on sets of integers defined as follows:

17. Constraints over Structured Domains

s1 � s2 iff s1 = ∅ ∨m1 < m2 ∨
(

m1 = m2 ∧ s1 \ {M1} � s2 \ {m2}
)

wherem1 = max(s1) andm2 = max(s2)

Example 17.13.Consider the sets{1, 2, 3}, {1, 3, 4}, {1, 2}, {3}, the list that orders these
sets w.r.t.� is [{1, 2}, {3}, {1, 2, 3}, {1, 3, 4}].

A common use of this ordering is in search problems to break symmetries (e.g. [21] on
SAT clauses or [33, 36] on vectors of FD variables). However, this is not the use to which
this ordering is put here. It is used ongroundsets as a means to approximate the domain
of a finite set variable by upper and lower bounds w.r.t. this order.

A lex bound domain overcomes one major weakness of the subset bounds, in that the
lex bounds denote possible solution sets that satisfy the cardinality restrictions imposed on
the set variable.

Example 17.14.Consider a variableX ranging over a subset domain[{1, 2}, {1, 2, 3, 4}],
such thatX is of size3. The subset bounds are not a possible instance forX as the domain
cannot be pruned to satisfy the cardinality restriction. The lexicographic bounds on the
other hand are[{1, 2, 3}, {1, 2, 4}], denoting the min and max sets of size 3 (w.r.t. to the
ordering) containing{1, 2}.

Despite its success allowing cardinality constraint to filter the domain more actively, the
lex bound representation is unable to always represent certain critical constraints. Primary
amongst these constraints is the inclusion or exclusion of a single element. Such constraints
are not always representable in the domain because the lex bounds represent possible set
instances and not definite and potential elements of a set. In the example above there are
sets in between the lex bounds that do not contain{1, 2}, such as{4, 1}. It is the inability
to capture such fundamental constraints efficiently in the domain which lead to a hybrid
domain of both subset and lexicographic bounds.

The lexicographic ordering for sets is not the only possible definition, nor is it, perhaps,
the most common when talking about sets. Its use comes from two reasons: 1) for sets of
cardinality 1 it is equivalent to the≤ ordering of FD variables and 2) usefully, it extends
the⊆ ordering and we have:

Theorem 17.15.[84] ∀s1, s2 ∈ P(U) : s1 ⊆ s2 ⇒ s1 � s2

Theorem 17.15 is used in the hybrid domain to make inferences between the two
bounds representations for set variables.

A collection of inference rules have been defined to propagate primitive set constraints
with respect to the lex bounds, subset bounds and cardinality bounds. A prototype hy-
brid solver has been implemented in ECLiPSe atop theic_sets library. First results
showed spectacular improvements over traditional subset bound solvers, on the network
design SONET problem [85] and more pruning but at a substantial computational cost on
some combinatorial design problems such as the Steiner triple problems and binary error
correcting codes. The main novelty of the approach is the introduction of a new domain
representation whose bounds account for the cardinality restrictions and can be used for
effective symmetry breaking (using symmetry breaking constraints).

C. Gervet

17.4.3 ROBDDs

The problem of efficient finite set reasoning in a constraint logic programming context
can also be addressed from a radically different perspective as described in [60]. The idea
was first motivated by rejecting the belief that the very large number of values of a finite
set domain precludes a precise and un-approximated representation, and instead to show
how Reduced Order Binary Decision Diagrams (ROBDDs) can be used to represent full
set domains and set constraints in a compact manner. Using existing efficient libraries to
represent and manipulate these compact data structures, Lagoon and Stuckey demonstrate
techniques for combining ROBDDs in ways that correspond to basic finite set constraints
(e.g.\, ∩, ∪, ||) which minimize the size of the resulting ROBDD [60]. An ROBDD is a
canonical function representation (up to reordering)of a Binary Decision Diagram which
permits and efficient implementation of many Boolean function operations [16].

Let s be a set variable, and let{1, .., N} be its domain of possible values. The ROBDD
domain representation makes use of the characteristic function that defines the one-to-one
correspondence between a subsets of a known setS and a Boolean algebra:

f : xi → {0, 1} such thatf(xi) = 1 iff i ∈ s

Hence a set variables is represented by a vector of Boolean variables< x1, .., xN >.
Now if we consider an assignmentA of values to variables, eachxi will take value one if
and only ifi ∈ s. Thei’s are first drawn from a universe of discourse. Such an assignment
can be represented as a Boolean formulaB(A):

B(A) =
∧

i∈U

yi whereyi =

{

xi if i ∈ A
¬xi otherwise

Each known set can be seen as an assignment, hence the full domain of a set variable
D(s) can itself be represented by a Boolean formulaB(D(s)). This formula is a disjunc-
tion ofB(A) over all possible setsA in D(s) [45]:

B(D(s) =
∨

A∈D(s)

B(A) whereB(A)is defined above

Example 17.16.Let U = {1, 2, 3} and lets be a set variable withD(s) = {{1}, {1,3},
{2,3}}. We associate Boolean variables{v1, v2, v3} with s givenU . D(s) is the Boolean
formula(v1 ∧¬v1 ∧¬v3)∨ (v1 ∧¬v2 ∧ v3)∨ (¬v1 ∧ v2 ∧ v3). The three solutions to this
formula correspond to the elements of D(s).

While such a formula can be constructed using an ROBDD, in practice the approach
only ever constructs the ROBDD for a domain implicitly through constraint propagation.
The ROBDDs are used to model the constraint themselves. Indeed any set constraint can
be converted to a Boolean formula.

Example 17.17.LetU = {1, 2, 3}, and the constraints1 ⊆ s2. Assume that the Boolean
variables associated withs1 and s2 respectively arev1, v2, v3 andw1, w2, w3. The in-
clusion constraint can be represented by the Boolean formula:(v1 → w1) ∧ (v2 →
w2) ∧ (v3 → w3). This formula can be represented by two different ROBDDs depending
on the variable ordering.

17. Constraints over Structured Domains

ROBDDs are ordered and thus require an ordering of the Boolean variables used. The
order can have a drastic effect on the size of the ROBDDs when constraints are represented,
i.e. when there is a specific relationship between elements of the universe.

The Boolean approach allows the ROBDD-based modeling to be extended to handling
integer and multiset constraint problems as well as some global set constraints (compre-
hensive description in [45]). While initially motivated by using a full set domain repre-
sentation that do not approximate the possible set values, ROBDD have also been used
to model less strict consistency notions and domain approximations, such as set bounds,
cardinality bounds and lexicographic bounds consistency; with a thorough comparative
evaluation of the different domain representations [44, 45].

The ROBDD-based solver offers a flexible modelling facility and has shown high per-
formance results on several standard combinatorial design constraint problems. However,
it does require the use of Boolean formula and variables to model such problems.

17.4.4 Global Set Constraints

The above works strengthen constraint propagation in complementary ways by revising the
concept of set domain or enriching the local inference rules. A more traditional approach in
constraint programming to offer a better tradeoff “natural formulation”/efficiency consists
in deriving global propagators for a class of symbolic constraints, see Chapter 7, on Global
Constraints. This was not considered in finite set solvers till recently, at least in published
academic articles, but is now contributing interesting results.

Global reasoning on a class of symbolic set constraints, first considered somen-ary
constraints like theatmost1 (sets intersecting pairwise in atmost one element), or its
complement, thedistinct constraint (sets that differ pairwise in atleast one element)
over sets of fixed cardinality [82]. Such constraints and other n-ary constraints likeunion
anddisjoint have been used in set-based constraint languages but essentially as syntac-
tic abstractions of collections of binary or ternary constraints, solved with local consistency
techniques. The ubiquity of set intersection in conjunction with cardinality restrictions in
set-based combinatorial problems drove the research agenda towards more efficient prop-
agators.

Example 17.18.
[s1, s2, s3] ∈ {{}..{a, b, c, d}}
|s1| = |s2| = |s3| = 2
disjoint ({s1, s2, s3}

BC on this system of constraints does not detect inconsistency. However, if the cardi-
nality constraints are combined with the disjointness constraint one can see that there are
no solutions by doing a simple pigeon hole test. This can be deduced if we consider the
set of constraints globally. In fact, the representation of sets within powersets specified as
set intervals can be used to derive some global inferences based on combinatorial analysis
formulas. A simple satisfiability test can first be checked (ie. pigeon hole test), determin-
ing whether a set of 4 elements can be partitioned into 3 sets of 2 which fails (4

3 6= 2).
A more elaborate test that does not require the sets to have same cardinalities derives an
upper bound on the number of possible partitions of 4 elements into 3 sets of cardinality 2.
Such numbers are known as a Stirling number4!(2!)3(3!) = 1

2 [12]. If it is less than one, the

C. Gervet

problem is unsatisfiable since there isn’t a single possible partition. However if the number
is greater than one we would know how many different partitions there are.

There exist some counting functions that determine the maximum number of configu-
rations allowed in a supersetS, given some shared properties, see [82]. When considering
the values of these functions on can then investigate how and when they can be used ef-
fectively, first to detect unsatisfiability but also to prune further irrelevant set values in an a
priori manner. The counting functions provide a mathematical information that is not eas-
ily deducible in logic. They enable the definition of a set of inference rules to strengthen
propagation on global constraints such asatmost1 ,distinct over fixed cardinality sets.
Such rules do not infer BC but are tractable.

Decomposition and complexity

The problematic of deriving inference rules without a clear idea of how much we do or
can infer, and how far we can go towards global reasoning raises fundamental theoretical
issues. This lead to a systematic study of several aspects of global constraints and global
set and multiset constraints in particular. The approach determined whether decomposition
hinders Bounds Consistency (BC), and when it does whether there exists a polynomial
algorithm to infer BC on the considered global constraint [93, 13].

For instance, BC on the n-arydisjoint is equivalent to BC on its decomposition
into binary constraints (pairwise empty intersection). Basically, this holds because any
set can be assigned the empty set. However, when the set cardinalities are constrained
(and not zero), –which is frequent in combinatorial design problems for example– the
equivalence no longer holds. It was also proved that decomposition of theatmost1
constraint hinders propagation and that enforcing BC on this constraint is NP-hard.

We summarize the complexity results in Table 17.1. Decomposable implies polyno-
mial, since existing algorithms to infer BC on a set of binary or ternary set constraints are
indeed polynomial. Results hold for both set and multiset domains unless specified other-
wise. The acronyms stand for: NE (non empty), FC (fixed cardinality). The constraints are
classified in terms of the intersection constraints and cardinality restrictions involved. For
example theatmost1 constraint corresponds to pairwise intersect in at most one element
(k = 1) for fixed cardinality sets, which is the second column of first table.

If now we add the union constraint (
⋃

i si = s) to the intersection ones we obtain
covering problems. The first left column above becomes a partition constraint for which
results are known. The other columns are yet open problems.

|si ∩ sj | = 0 Partition is decomposable andpolynomial
+ ∀k, |sk| > 0, NEpartition is not decomposable butpolynomial
+ ∀k, |sk| = ck, FCpartition also referred to aspartition
is not decomposable and ispolynomial on sets, NP-hard on multisets

It is important to note that the global constraints applied to multisets versus sets diverge
on the two most important constraints (from an application point of view): fixed cardinality
disjoint and partition constraints. We describe below the existing algorithms to infer BC
when the constraints apply to sets, however doing so over multisets has been proved to be
NP-hard [13].

17. Constraints over Structured Domains

Table 17.1: Summary of complexity results (based on [13]).

∀k... |si ∩ sj | = 0 |si ∩ sj | ≤ k |si ∩ sj | ≥ k |si ∩ sj | = k

- Disjoint Intersect≤k Intersect≥k Intersect=k

decomposable decomposable decomposable not decomp.
polynomial polynomial polynomial NP-hard

|sk| > 0 NEdisjoint NEintersect≤k NEintersect≥k NEintersect=k

not decomposable decomposable decomposable not decomp.
polynomial polynomial polynomial NP-hard

|sk| = ck FCdisjoint FCintersect≤k FCintersect≥k FCintersect=k

disjoint atmost1
not decomposable not decomposable not decomposable not decomp.
polynomial on sets NP-hard NP-hard NP-hard
NP-hard on multisets

Algorithms for the disjoint and partition constraints

The basic case of disjoint and partition is decomposable for the reasons we gave above.
However, when sets have fixed cardinality, decomposition of these constraints hinders con-
straint propagation and thus deriving a global propagator is necessary to ensure BC. We
describe how these constraints have been solved in the literature. Two lines of work have
been undertaken to derive similar algorithms for the globaldisjoint andpartition .

Based upon counting functions from design theory, the first approach derived four
global conditions which must hold for disjoint sets of fixed cardinality [83]. Using an
extension of Hall’s theorem [43], the authors proved that these conditions, if satisfied,
were sufficient to ensure BC. The actual proof procedure constitutes the basis of the al-
gorithm which actually corresponds to an augmenting network in a max-flow problem,
and is similar to a combination of a flow/matching and a Strongly Connected Compo-
nent (SCC) algorithm (see [83]). Interestingly this implementation corresponds closely
to the GAC algorithm for the Global Cardinality Constraint (GCC) [79], see chapter 7,
“Global Constraints”, and we show the reasons why below. This algorithm also holds for
thepartition constraint since the only pruning achievable on the disjoint is when one
can identify minimal partitions within the constraint (i.e strongly connected components).
So one needs to identify partitions in order to do any global pruning on the disjoint con-
straint.

Using the GCC constraint. The GCC constraint applies to a family of finite domain
variables with set of values inB. It constrains the number of times (cardinality) an element
of B can be assigned among the different variables.

The use of the GCC constraint to resolve thedisjoint andpartition constraints
is offered in ILOG solver and Configurator [50, 51] and has been recently described in [13].

C. Gervet

The main idea is to formulate each of the two global set constraint with adual FD model
based upon the GCC constraint. The semantics of the disjoint constraint is as follows.
Let disjoint (s1, .., si, .., sm) constrains the set variablessi such that∀i ∈ B, si ∈
A, |si| = c. The disjointness constraint ensures that no element of A (domain of thesi) is
added to two different set variables.

This constraint has an equivalent formulation in the language of finite integer variables
where one seeks to assign a set identifier to a FD variable. This formulation is called dual
because the initial set variables become values and the set elements become variables. The
equivalent dual formulation uses the GCC constraint, as presented below.

Consider theGCC({y1, .., yj , .., yn}, B′, C) constraint such that∀j ∈ A, yj ∈ B′ (with
B′ = B ∪ ε with ε being a dummy value for the case wherej is unassigned). The global
cardinality constraint limits toC[j] = 1 in the disjoint case, the number of times an element
i fromB′ is assigned to a variableyj (ranges between0..∞ for the dummy variable). We
haven = m × c FD variables. The dummy value is necessary since there might be some
values inA that don’t belong to any set at all. The set model and dual FD model with GCC
constraint are equivalent. A solution to the first model can be mapped to a solution of the
second model and vice versa by applying the following one-to-one mapping:

for i ∈ A : yj = i iff j ∈ si

Thus a solution is consistent with the set model if and only if its dual FD representa-
tion is consistent with the GCC model. The complexity of both the GCC and set based
algorithm is inO(m2c), withm the number of sets andc their cardinality [83, 13].

Further remarks.

• Note that the equivalence between the two models holds because the constraints
represent an injective mapping from a set of elements into a set of sets (each element
belongs to at most one set). As soon as an element can belong to more than one set
we have a surjective mapping and the dual approach based on bipartite graph, and
network flow model would not apply.

• This dual approach also holds for thepartition constraints over fixed cardinality
sets with the only difference that all elements must be assigned and thus the dummy
value is removed.

More recently, the application of existing global constraints over finite domain vari-
ables to other domains has been considered. For instance, theall-different and
GCCglobal constraints have been extended to variables whose values are multisets, sets
or tuples [78]. Note that a tuple is represented as a list of finite domain variables as op-
posed to having a tuple domain with tuples as elements. The issue for such domains is the
large domain size. A binomial representation is proposed to address this aspect. Existing
global propagators are used in combination with efficient enumeration algorithms for large
domains.

17. Constraints over Structured Domains

17.5 Constraints over Maps, Relations and Graphs

17.5.1 ALICE Legacy

As mentioned earlier, the seminal work of Laurière was motivated by a need tostate com-
binatorial problems simply by constraining relation and graph objects over finite sets[61].
It aimed at clearly separating the problem statement from its solving. The motivation was
to allow a combinatorial search problem to be formulated in the most concise and natural
manner.

The constrained object was not associated with a domain (set of values the relation
can take) and was not “pruned” using consistency techniques, rather it was mapped to an
internal representation based on a bipartite graph structure. Operations were performed on
this structure.

In ALICE, constraints are expressed in a mathematical language based on relation the-
ory and some notions of graph theory. The searched objects are functions which should
satisfy a set of constraints. The solver combines a depth-first search method with sophis-
ticated constraint manipulation techniques and a set of powerful heuristics. The lack of
flexibility of this seminal system both in the language representation and the solving strat-
egy motivated the design and implementation of CHIP.

It has also motivated numerous works in the development of high level specification
languages for combinatorial problems. Such proposals have been revived in the past years
and we can now see two clear trends in the design of high level constraint languages over
maps, relations and graphs objects:

• a class ofprogramming languagesover new constraint domains, where functions
relations or graphs become constrained objects. The resolution algorithms depend
then upon the representation of the new constrained objects. Most of these works
are still novel and currently mapped down to finite set solvers as we will see below.

• a class ofmodeling languagesoffering high level constructs such as functions, maps
and sequences to model combinatorial problems in a concise manner. Such ap-
proaches do not reason directly about the constrained object to solve the specified
problem. Instead, the formulation is compiled into a lower language benefiting usu-
ally from existing solvers.

17.5.2 Constraint Programming Beyond Sets

The extension of constraint solvers with high modelling and programming facilities has
lead to the definition of new constraint domains over binary relations, graph and maps
essentially. We will present their main components.

Relation variables. When dealing with sets, it sounds quite natural to deal with relations
as well. TheConjunto language —mainly designed to handle finite set constraints—
also provides relations at the language level to extend the expressive power of the language
when dealing for example with circuit problems and matching problems originating from
Operations research. Relation terms are basically built using set terms.

C. Gervet

A relationR is commonly represented as a set of ordered pairs(xi, yj) such thatxi
belongs to the DS-domaind ofR andyj to its AS-range1 a. In other words, a relationR on
two ground setsd anda is a subset of the Cartesian productd× a. Keeping this represen-
tation to deal with relations as specific set terms containing pairs of elements can be very
costly in memory. Indeed, the statement of the Cartesian product referring to a relation
requires us to consider explicitly a huge set of pairs. This is very inconvenient. Instead,
a relation inConjunto is represented as a specific data structure which is characterized
by two ground sets (DS-domain and AS-range) and a list containing the successor sets
attached to each element of DS-domain.

Considering one successor set per element splits the domain of a relation into a collec-
tion of set domains. The resulting value of a relation is clearly the union of the successor
sets. This approach is close to the one introduced in ALICE which dealt essentially with
functions. However, in ALICE there is no explicit notion of set domain.

Definition 17.19. Let a relation ber ⊆ d× a. The successor sets of an elementx ∈ d is
the sets = {y ∈ a | (x, y) ∈ r}.

The definition of constraints applied to relation variables abstracts from stating directly
constraints over the set DS-domain and AS-range or over the successor sets. The following
injection, map, surjection, bijection constraints over a relationr have been embedded in
Conjunto . We illustrate some of them below. They are represented using the cardinality
operation||, the usual set operation symbols (∪,∩) and the arithmetic inequality (≥).

Constraints Interpretation

r bin_r d --> a r = birel (l, d, a) wherel = {si | ∀i ∈ d, si ∈ {}..a}
(i, j) in_r r if i ∈ d, j ∈ a thenj ∈ si
funct (r) ∀i ∈ d, |si| = 1
inj (r) |d| ≤ |a|, |d| = n

s1 ∩ s2 = ∅, s1 ∩ s3 = ∅, ..., sn−1 ∩ sn = ∅
∀i ∈ d, |si| = 1

surj (r) |d| ≥ |a|, |d| = n
s1 ∪ s2... ∪ sn = a
∀i ∈ d, |si| = 1

These constraints do not require any specific solver since thereasoning is based on the
successor set variables. Such constraints were used to prototype partitioning problems.

Graph and map variables. In the same line of work, theCP(Graph) language has
been designed to tackle combinatorial problems involving “subgraph findings” common in
the fields of communication networks, route planning and more recently bio-informatics
[24].

CP(Graph) deals more specifically with graphs and graph constraints and represents
a graph domain by considering its nodes and arcs, that is a graphg = (sn, sa) is defined
by a set of nodessn and a set of arcssa ⊆ sn×sn. It handles both directed and undirected
graphs and offers a set of kernel constraints used to derive other graph constraints.

Similarly to subset bound solvers,CP(Graph) builds upon a partial ordering among
graphs to reason upon graph domains. We have, giveng1 = (sn1, sa1) andg2 = (sn2, sa2):

1DS-domain and AS-range stand respectively for departure and arrival sets

17. Constraints over Structured Domains

g1 ⊆ g2 iff sn1 ⊆ sn2 ∧ sa1 ⊆ sa2

Graph domains are represented by the lattice of graphs partially ordered by set inclu-
sion and specified by a graph interval[gL, gU] such thatgL is the greatest lower bound and
gU the least upper bounds of the lattice. It also considers the arcs and nodes as set vari-
ables. The use of additional node and arc variables adds expressiveness to the language
when describing complex graph constraints.

Dooms et al. show that any complex graph constraint can be expressed using a combi-
nation of the following kernel graph constraints:

• Arcs(g, sa) ∈ [saL, saU] wheresa describes the set of arcs ofg that range over
the subset bound domain

• Nodes(g, sn) ∈ [snL, snU] wheresn describes the set of nodes ofg that range
over a subset bound domain

• ArcNode(a, n1, n2) states that the arc variablea is an arc between
two nodesn1 andn2

A set of propagation rules allows to infer arc consistency over these constraints. The
expressiveness of the constraints allowsCP(Graph) to define more complex graph con-
straints based upon the kernel constraints. We illustrate some of them. The functional form
of the kernel constraints is used to ease readability.

TheSubGraph(g1, g2) constraint can be specified by:

SubGraph(g1, g2) ≡ Nodes(g1) ⊆ Nodes(g2) ∧Arcs(g1) ⊆ Arcs(g2)

TheInNeighbors(g, n, sn) constrainssn to be the nodes ing for which an inward arc
incident ton is present.

InNeighbors(g, n, sn) ≡ sn ⊆ Nodes(g) ∧ (|sn| > 0⇔ n ∈ Nodes(G)
∧∀i ∈ Nodes(gU) : n ∈ sn⇔ (i, n) ∈ Arcs(G)

Clearly even tough the kernel allow us to express any graph constraints, such formula-
tions might not be effective. Thus CP(Graph) also offers global graph constraints based on
existing results from literature in the field, see Chapter 7, “Global Constraints”.

Recent advances in CP(Graph) include its extension to manipulatemapterms as well
in CP(Graph + Map)[22]. The main application of CP(Map) is for graph pattern problems.
The language extends the relation terms ofConjunto (built upon domain and range lim-
ited to ground sets) where domain and range become variables. As the departure set of the
map is not a ground set, instead of using a list of successor sets,CP(Map) uses an indexed
array. As maps are functions and not general relations, the domain variables stored in this
indexed array are not finite sets but finite domain variables.

17.5.3 High Level Modeling/Specification Languages

Recent proposals have considered Map variables as high level type constructors, simplify-
ing the modeling of combinatorial optimization problems, which would then be compiled
into another programming language. We outline recent results in this related area of con-
straint modeling. The languageASRAdefines a relation or map variable from a setv to a

C. Gervet

setw, where supersets ofv andw must be known [32]. While the map variables and con-
straints are used to model a constraint problems, the resolution of the model is handled by
another system. In this proposal, the derived model are compiled into OPL[91]. This idea
can also be found in the languageL wherev andw are ground sets[48]. Finally, relation
and map variables are also described in [35] as a useful abstraction in constraint modelling.
Rules are proposed for refining constraints on these complex variables into constraints on
finite integer and set variables.

17.6 Constraints over Lattices and Hierarchical Trees

Proposals for higher computation domains have been made recently which deserve atten-
tion. These include the generalization of existing interval based approaches to propose a
generic framework for defining and solving interval constraints on any set of domains (fi-
nite or infinite) that are lattices [30]. The approach is based on the use of a single form of
constraint similar to that of an indexical used by Constraint Logic Programming for finite
domains and on a particular generic definition of an interval domain built from an arbi-
trary lattice. They provide the theoretical foundations for this framework and a schematic
procedure for the operational semantics. Examples are provided that illustrate how new
(compound) constraint solvers can be constructed from existing solvers using lattice com-
binators and how different solvers (possibly on distinct domains) can communicate and
hence, cooperate in solving a problem.

Another challenging domain is that of order-sorted domains and ontologies. Both pro-
posals are driven by industrial needs. The first one shows how constraint satisfaction tech-
niques can be extended to address order-sorted domains, from class taxonomies with an
object oriented perspective [17]. The use of ontologies, is itself motivated by applications
for the configuration of product and services, for instance in the e-commerce [59]. This
second approach defines a constraint domain where all values that a variable may take are
organized into a hierarchy. Such hierarchies are often called ontologies or thesauri in Ar-
tificial Intelligence. Both approaches are quite close. The objective is to define a system
that would allow the use of order-sorted domains in constraint programming for model-
ing purposes. The outlined algorithmic approach to reason about ontologies follows the
bound and convex interval reasoning of finite set intervals. Other approaches to deal with
hierarchies have essentially used the standard CSP formalism and constrain the values of
properties as opposed to the entities in a hierarchy itself [34].

17.7 Implementation Aspects

We present some of the core implementation issues mainly relating to subset bound solvers
since they are the main practical language implementations and are used by higher level
constructs as well. For example theCP(Graph) prototype is built over the FD and finite
set solver ofOZ.

17.7.1 Existing Subset Bound Solvers

Subset bound solvers can be found atop different types of kernel languages such as Prolog
enriched with constraint solving and replacing the standard Prolog variable by an attributed

17. Constraints over Structured Domains

variable [52] subject to a dedicated unification algorithm. Prolog based set solvers can be
found in ECLiPSe, B-Prolog andCardinal for instance. Other kernel systems are
based on object oriented language such as C++(SOLVER), concurrent object-oriented lan-
guage like OZ (MOZART), a functional languageOCaml (FACILE), and java (the open
sourceChoco system) to name the main ones. Each offers different modeling and resolu-
tion facilities.

17.7.2 Set Data Structures

Most existing finite set solvers make use of the subset bound representation for space and
computational efficiency reasons. The ROBDD proposal investigates the use of binary
decision diagram to represent set domains, allowing for full domains as well as intervals.

The internal representation of sets plays a role in the time complexity of the different
set operations on the domains since such operations cannot be considered constant unlike
arithmetic operations over integers. For the bound representation we can use 2 sorted lists
one for each bound, an array of 0-1 variables (both bounds in a single array) or bitmaps
representing the characteristic function of the set. The same structures can be used for
ground set representations if the two bounds are stored separately as well as more elaborate
ones such as binomial trees or binary trees.

Since set operations on domains are performed by reasoning on either or both bounds
we give hereafter the time complexity for basic set operations on ground sets. When one
structure is used to embed both bounds the same reasoning applies. Lets be the set with
largest domain such thatd = |lub(s)| + |glb(s)|. The cardinality information is usually
maintained dynamically as part of the set variable data structure.

ROBDDs correspond to directed acyclic graphs. Recall that the ROBDD approach
transforms set constraints into Boolean operations and can model domain reasoning as
well as interval reasoning. The complexity of basic set operations depends on the ordering
of the Boolean variables. For a given constraint we can generate an exponential as well as
a linear representation in a Boolean formula. We considerN as the size of the set domain
which can potentially correspond to2lub(s). The main thing is that each basic set operation
generates an ROBDD. So the complexity issue relates to the size of the generated ROBDD.

17.7.3 Complexity of Set Operations

For bound domains the corresponding initial ROBDD corresponds to the size of the lower
bound independent of the upper bound size and any update can be represented in O(|
glb(s) | +N− | lub(s) |). For an extensive domain representation the size of the ini-
tial ROBDD is linear relative toN [60]. The size of the ROBDD for the different basic set
operations is given below whereN is the size of the largest set domain andk a bound on
the cardinality. The cardinality constraint is quite tricky to express in Boolean formula and
requires a quadratic number of formula defined recursively hence the complexity results.

The strength of hash tables is the constant time on average to retrieve information. “+”
represents the “capacity” of the backing (the number of buckets).

Alternative approaches exist based on the representation of a ground set. They are
used mainly for dynamic set operations (add, remove, and sometimes union) and corre-
spond to tree structures (B-tree, binary search tree, binomial tree). The worst case time
complexity for ground sets operations is usually measured by the height of the tree. For

C. Gervet

sets of cardinalityc we have: h = log c whereh is the height of the tree. For such
structures the efficiency lies in the membership testO(log c), union is inO(c log c).

= ⊆ ∪ ∩ \ ∈ ||

sorted list O(d) O(glb(s)) O(d) O(d) O(d) O(| glb(s) |) O(1)
0-1 array (1) (d) O(d) O(d) O(d) O(1) O(1)
hash table O(1) O(k+) O(k+) O(k+) O(k+) O(1) O(1)
ROBDD O(N) O(N) O(N) O(N) O(N) O(1) O(k(N − k))

17.8 Applications

Each structured domain was developed to address particular application needs. For in-
stance, the graph domain was motivated by a problem for biochemical network analysis
[24]. The order-sorted and ontology domains were driven by industrial problems, for in-
stance in the area of e-commerce for ontologies.

The structured domain which has been the most widely developed and used is certainly
that of finite sets. The reason is probably that sets are the underlying structured objects for
the other domains. Set solvers have been used to tackle small and large size benchmark
and “real-world” problems ranging from bin packing ([39]), set partitioning ([40, 70, 68]),
digital circuit and warehouse location [3], combinatorial design ([8, 60, 45]), and network
design ([29, 88, 85]) among others. Recently, combinatorial designs have shown to have
a wide applicability in error-correcting codes, sport scheduling, Steiner systems and more
recently networking and cryptography (e.g. see [19] for a survey). Set constraints have
shown their adequacy for such problems, and powerful models have been derived com-
bined with symmetry breaking techniques and heuristic techniques. We draw particular
attention, to the solving of the challenging Kirkman school girl problem in few seconds,
with an elaborate approach which uses a set model extended with redundant constraints and
symmetry breaking techniques[8]. More discussions on symmetry breaking and modeling
aspects can be found respectively in chapter 10, “Symmetry in Constraint Programming”,
and chapter 11 “Modelling”.

Another application area of increasing interest for constraint practitioners, is network
design. Various successful set-based models have been proposed to tackle the network de-
sign SONET problem from a constraint programming perspective [88, 85]. They demon-
strate the strength of applying dual models, redundant constraints and symmetry breaking
techniques to set models.

17.9 Further Topics

Constraint reasoning over structured domains has mainly been motivated by the devel-
opment of high level modeling and specification languages that ease the formulation of
complex combinatorial problems while retaining efficiency.

Research on high level specification languages has long existed but is now growing in
constraint programming [32, 48, 15]. Many constraint programming languages –both in
academia and industry– utilizing structured domains have been proposed, demonstrating

17. Constraints over Structured Domains

important progress (e.g. graphs [24], order-sorted domains [17], ontologies [59], multi-
sets [93], and lattices [30]). Much progress has also been made on improving language
effectiveness, in particular with respect to set solvers (e.g. cardinality inferences [5], the
use of ROBDDs [45], more expressive domain representations [84, 41], global propagators
[82, 13, 51]). This research area is extremely active.

Finally, a programming language that allows practitioners to state the problem in a nat-
ural and concise form without needing to worry about the solution method does not yet
exist. However, certain steps have been taken towards this goal. In particular, a high level
problem formulation allows language designers and programmers, to see the actual prob-
lem structure and components, and consequently to identify combinations of constraints
that best exploit the problem structure.

Acknowledgements

The author is thankful to Jean-François Puget for his comments during the preparation of
this chapter. The author was partially supported by the Royal Academy of Engineering, on
a Global Research Award.

Bibliography

[1] J-R. Abrial. The B Book - Assigning Programs to Meanings.Cambridge University
Press, ISBN = 0521496195, 1996.

[2] A. Aiken. Set Constraints: Results, Applications andFuture Directions. InProceed-
ings of PPCP’04, 1994.

[3] F. Azevedo. Constraint Solving over Multi-Valued Logics. Application to Digital
Circuits. Frontiers in Artificial Intelligence and Applications, 2003.

[4] F. Azevedo and P. Barahona. Cardinal: an extended set solver. inProceedings of
Computational Logic, 2000.

[5] F. Azevedo. Cardinal: A Finite Set Constraints Solver. In Constraint journal, (to
appear), 2006.

[6] L. Bachmaier, H. Ganzinger, and U. Waldmann. Set Constraints are the Monadic
Class. InProceedings of LICS-1993.

[7] N. Barnier and P. Brisset. Facile: A Functional Constraint Library. InCICLOPS’01
workshop, help alongside with CP-2001.

[8] N. Barnier and P. Brisset. Solving the Kirkman’s Schoolgirl Problem in a Few Sec-
onds. In M. Wallace, editor,Proceedings of CP-2004.

[9] P. Baptiste, B. Legeard, and H. Zidoum. Sequence Constraint Solving in Constraint
Logic Programming. InICTAI-1994.

[10] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set constructors in a logic database
language. InJournal of Logic Programming, pages 181–232, 1991.

[11] F. Benhamou. Interval Constraint Logic Programming. In A. Podelski, editor,Con-
straint Programming: Basics and Trends, LNCS 910, 1995.

[12] C. Berge. Principle of combinatorics. Volume 72 of Mathematics in science and
engineering. Academic Press, 1971.

C. Gervet

[13] C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. Disjoint, Partition and Intersection
Constraints for Sets and Multiset Variables. In M. Wallace, editor,Proceedings of
CP-2004, LNCS 3258.

[14] C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. The Tractability of Global Con-
straints. In M. Wallace, editor,Proceedings of CP-2004, LNCS 3258.

[15] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A Constraint Solver to Animate
a B Specification.International Journal on Software Tools for Technology Transfer,
STTT. 6:2, pp 143–157, Springer Verlag, 2004.

[16] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv., 24(3), 293–318, 1992.

[17] Y. Caseau and J.-F. Puget. Constraints on Order-Sorted Domains. InECAI workshop,
1996.

[18] J.G. Cleary. Logical arithmetic.In Future Generation Computing Systems, chapter
2(2),1987.

[19] Colbourn, Dinitz, and Stinson. Applications of Combinatorial Designs to Communi-
cations, Cryptography, and Networking. InSurveys in Combinatorics, London Math-
ematical Society Lecture Note Series 187. Cambridge University Press, 1999.

[20] A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, bases théoriques et
développements actuels.T.S.I. (Techniques et Sciences Informatiques), 2(4),1983.

[21] J. Crawford, M. Ginsberg, E.M. Luks, and A. Roy. Symmetry breaking predicates
for search problems. InFifth Int. Conf. on Knowledge Rep. and Reasoning, 1996.

[22] Y. Deville, G. Dooms, S. Zampelli, and P. Dupont. CP(Graph + Map) for Approx-
imate Graph Matching. InProceedings of BeyondFD’05, First International Work-
shop on CP beyond FD, held alongside CP-2005.

[23] M. Dincbas, H. Simonis, and P. Van Hentenryck et al. The Constraint Logic Pro-
gramming Language CHIP. InProceedings of FGCS-1988.

[24] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a Graph Computation
Domain in Constraint Programming. InProceedings of CP-2004.

[25] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi.{log}: A Logic Programming
Language with Finite Sets. InProceedings of ICLP-1991.

[26] A. Dovier. Computable Set Theory and Logic Programming. PhD Thesis TD-1/96,
Universitàdegli Studi di Pisa, dip. di Informatica, March 1996.

[27] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi.{log}: A Language for Pro-
gramming in Logic with Finite Sets.In Journal of Logic Programming, 28(1), 1996.

[28] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and Constraint Logic Program-
ming. In ACM Transaction on Programming Language and Systems, 22(5) 2000.

[29] A. Eremin, F. Ajili, and R. Rodosek . A Set-based Approach to the Optimal IGP
Weight Setting Problem. InProceedings of INOC-2005.

[30] A.J. Fernandez and P.M. Hill. An Interval Constraint System for Lattice Domains.in
ACM Transactions on Programming Languages and Systems (TOPLAS), 26(1), ACM
Press, 2004.

[31] R. E. Fikes. Ref-arf: A system for solving problems stated as procedures.Artificial
Intelligence, 1:27–120, 1970.

[32] P. Flener, B. Hnich, Z. Kiziltan. Compiling high level type constructors in constraint
programming. InProceedings of PADL-2001, LNCS 1990.

[33] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. InProceedings of CP-2002,

17. Constraints over Structured Domains

LNCS.
[34] D. W. Fowler, D. Sleeman, G. Wills, T. Lyon, and D. Knott The Designers’ Work-

bench: Using Ontologies and Constraints for Configuration. In24th International
Conference on Innovative Techniques and Applications of AI, 2004.

[35] A.M. Frisch, C. Jefferson, B.M. Hernandez, and I. Miguel. The Rules of Constraint
Modelling. InProceedings of IJCAI-2005.

[36] I.P. Gent, P. Prosser, and B.M. Smith. A 0/1 encoding of the gaclex for pairs of
vectors. InECAI/W9 Modelling and Solving Problems with Constraints, 2002.

[37] C. Gervet. New Structures of Symbolic Constraint Objects: Sets and Graphs. In
Third Workshop on Constraint Logic Programming (WCLP’93), 1993.

[38] C. Gervet. Sets and Binary Relation Variables Viewed as Constrained Objects. In
Workshop on Logic Programming with Sets, held alongside ICLP-1993.

[39] C. Gervet. Conjunto : Constraint Logic Programming with Finite Set Domains. In
M. Bruynooghe, editor,Proceedings of ILPS-1994.

[40] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation
of a Practical Language.In Constraints journal1(3), 1997.

[41] C. Gervet and P. Van Hentenryck. A New Set Domain Representation Using Length-
Lex Ordering. Technical Report, TR-06-02, Brown University, 2006.

[42] K. Golden and W. Pang. Constraint Reasoning over Strings. InProceedings of CP-
2003.

[43] P. Hall. On Representatives of Subsets.Journal of London Mathematical Society, 10,
1935.

[44] P. Hawkins, V. Lagoon, and P.J. Stuckey. Set bounds and (split) set domain propa-
gation using ROBDDs. In G. Webb and X. Yu, editors,Proceedings of AI’04: Aus-
tralian Joint Conference on Artificial Intelligence, LNCS 3339, 2004.

[45] P. Hawkins, V. Lagoon, and P. Stuckey. Solving Set Constraint Satisfaction Problems
using ROBDDs.Journal of Artificial Intelligence Research24, 2005.

[46] N. Heintze and J. Jaffar. A Decision Procedure for a Class of SetConstraints. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
1990.

[47] M. Hibti, H. Lombardi, and B. Legeard. Deciding in HFS-Theory via Linear Integer
Programming with Application to Set Unification. InProceedings of LPAR-1993.

[48] B. Hnich. Function variables for Constraint Programming. PhD thesis, Uppsala
University,Department of Information Science, 2003.

[49] J. Hopcraft and J. Ullman.Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, Philippines, 1979.

[50] Ilog. User’s manual. ILOG Solver 6.0 Sept., 2003.
[51] Ilog. User’s manual. ILOG Configurator 2.3, 2004.
[52] S. Le Huitouze. A New Datastructure for Implementing Extensions to Prolog. In

Proceedings of PLILP-1990, LNCS 456.
[53] D. Kapur and P. Narendran. NP-completeness of the set unification and matching

problems. InProceedings of CADE, 1986.
[54] Z. Kiziltan and T. Walsh. Constraint Programming with Multisets. InProceedings of

the SymCon-02 workshop, held alongside CP-2002.
[55] D. Knuth. The Art of Programming, Volume 4, Pre-Fascicle 2a: Generating all tuples.
[56] R.A. Kowalski. Predicate Logic as a Programming Language. InProceedings of

IFIP-1974.

C. Gervet

[57] G. Kuper.Logic Programming with Sets, volume 41 of1, Academic Press, 1990.
[58] F. Laburthe. CHOCO: Implementing a CP Kernel. http://www.choco-constraints.net/,

2000. InProceedings of TRICS, held alongside CP-2000.
[59] F. Laburthe. Constraints over Ontologies. In F. Rossi, editors,Proceedings of CP-

2003.
[60] V. Lagoon and P.J. Stuckey. Set domain propagation using ROBDDs. In M. Wallace,

editor,Proceedings CP-2004, LNCS 3258.
[61] J. L. Laurière. A Language and a Program for Stating and Solving Combinatorial

Problems.Artificial Intelligence, 10, 1978.
[62] J.H.M. Lee and H. van Emden. Interval Computation as Deduction in CHIP. In

Journal of Logic Programming, 16 (3-4), Elsevier, 1993.
[63] B. Legeard and E. Legros. Short overview of the CLPS System. InProceedings of

PLILP-1991.
[64] C.C. Lindner and A. Rosa.Topics on Steiner Systems, volume 7 ofAnnals of Discrete

Mathematics. North Holland, 1980.
[65] M. Livesey and J. Siekmann. Unification of Sets and Multisets. Memo seki-76-ii,

University of St. Andrews (Scotland) and Universitât Karlsruhe (Germany) Depart-
ment of Computer Science, 1976.

[66] A. K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 1977.
[67] Mozart/Oz,http://www.moxart-oz.org/ .
[68] T. Müller. Constraint Propagation in Mozart. PhD dissertation, Universität des

Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik,
Saarbr̈Aucken, Germany, 2001.

[69] T. Müller and M. Müller. Finite Set Constraints in Oz. InWorkshop Logische Pro-
grammierung, Burkhard Freitag and Dietmar Seipel, editors, 13, 1997.

[70] T. Müller. Solving Set Partitioning Problems with Constraint Programming. InPro-
ceedings of PAPPACT-1998.

[71] W. Older and A. Vellino. Constraint Arithmetic on Real Intervals. In F. Benhamou
and A. Colmerauer, editors,Constraint Logic Programming: Selected Papers. MIT
Press, 1993.

[72] L. Pacholski and A. Podelski. Set Constraints: a Pearl in Research and Constraints.
Tutorial at CP-1997.

[73] K. J. Perry, K. V. Palem, K. MacAloon, and G. M. Kuper. The Complexity of Logic
Programming with Sets.Computer Science, 1986.

[74] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. InProceedings of CP-2004.

[75] J-F. Puget. PECOS a High Level Constraint Programming Language InProceedings
of Spicis, 1992.

[76] J-F. Puget. Set Constraints and Cardinality Operator: Application to Symmetri-
cal Combinatorial Problems. InThird Workshop on Constraint Logic Programming
(WCLP’93), 1993.

[77] J.F. Puget. Finite set intervals. InWorkshop on set constraints, held alongside CP-
1996.

[78] C.-G. Quimper and T. Walsh. Beyond Finite Domains: the All Different and Global
Cardinality Constraints. inProc. of CP-2005, 2005.

[79] J.C. Régin. Generalized arc consistency for global cardinality constraints. InPro-
ceedings of AAAI-1996, AAAI Press/The MIT Press.

17. Constraints over Structured Domains

[80] J.C. Régin and J.-F. puget. A Filtering Algorithm for Global Sequencing Constraints.
In Proceedings of CP-1997, LNCS.

[81] J.C. Reynolds. Automatic Computation of Data Set Definitions.In Information Pro-
cessing, 68, 1969.

[82] A. Sadler and C. Gervet. Global Reasoning on Sets. InFORMUL’01 workshop on
modelling and problem formulationheld alongside CP-2001.

[83] A. Sadler and C. Gervet. Global Filtering for the Disjointness Constraint on Fixed
Cardinality Sets. Technical report ICPARC-04-02, March 2004.

[84] A. Sadler and C. Gervet. Hybrid Set Domains to Strengthen Constraint Propagation
and Reduce Symmetries. In M. Wallace, editor,Proceedings of CP-2004, LNCS.

[85] A. Sadler. Strengthening Finite Set Constraint Solvers through Active Use of Prob-
lem Structure, Symmetries and Cardinality Information. PhD thesis, University of
London, Imperial College, April 2005.

[86] J. Schimpf, A. Cheadle, W. Harwey, A. Sadler, K. Shen, and M. Walllace.
ECLiPSe Technical report 03-1, IC-Parc, Imperial College London, 2003.

[87] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of set terms in the logic data
language (LDL).The Journal of Logic Programming, 12(12):89–119, 1992.

[88] B. M. Smith. Symmetry and Search in a Network Design Problem. InProceedings
of CP-AI-OR-2005, LNCS 3524, Springer, 2005.

[89] F. Stolzenburg. Membership-constraints and complexity in logic programming with
sets. In Franz Baader and Klaus U. Schulz, editors,Frontiers in Combining Systems,
Kluwer Academic, 1996.

[90] P. Van Hentenryck.Constraint Satisfaction in Logic Programming. Logic Program-
ming Series. The MIT Press, 1989.

[91] P. Van Hentenryck.The OPL Optimization Programming Language. The MIT Press,
1999.

[92] C. Walinsky. CLP(Σ∗): Constraint Logic Programming with Regular Sets. InPro-
ceedings of ICLP-1989.

[93] T. Walsh. Consistency and Propagation with Multiset Constraints: A Formal View-
point. InProceedings of CP-2003, LNCS.

[94] N.F. Zhou. B-Prolog http://www.probp.com/.

