
HAL Id: hal-01800674
https://hal.science/hal-01800674

Submitted on 27 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certainty Closure: Reliable Constraint Reasoning with
Incomplete or Erroneous Data

Neil Yorke-Smith, Carmen Gervet

To cite this version:
Neil Yorke-Smith, Carmen Gervet. Certainty Closure: Reliable Constraint Reasoning with Incomplete
or Erroneous Data. ACM Transactions on Computational Logic, 2009, �10.1145/1459010.1459013�.
�hal-01800674�

https://hal.science/hal-01800674
https://hal.archives-ouvertes.fr

ar
X

iv
:c

s/
06

01
10

9v
3

 [
cs

.A
I]

 3
0

N
ov

 2
00

6

Certainty Closure: Reliable Constraint Reasoning

with Incomplete or Erroneous Data

NEIL YORKE-SMITH and CARMEN GERVET

IC–Parc, Imperial College London

Constraint Programming (CP) has proved an effective paradigm to model and solve difficult com-
binatorial satisfaction and optimisation problems from disparate domains. Many such problems
arising from the commercial world are permeated by data uncertainty. Existing CP approaches

that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erro-
neous data, because they do not build reliable models and solutions guaranteed to address the
user’s genuine problem as she perceives it. Other fields such as reliable computation offer com-
binations of models and associated methods to handle these types of uncertain data, but lack an
expressive framework characterising the resolution methodology independently of the model.

We present a unifying framework that extends the CP formalism in both model and solutions,
to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty
closure framework brings together modelling and solving methodologies from different fields into
the CP paradigm to provide reliable and efficient approches for uncertain constraint problems.
We demonstrate the applicability of the framework on a case study in network diagnosis. We
define resolution forms that give generic templates, and their associated operational semantics, to
derive practical solution methods for reliable solutions.

Categories and Subject Descriptors: I.2.3 [ARTIFICIAL INTELLIGENCE]: Deduction and
Theorem Proving—Uncertainty, logic and constraint programming

General Terms: Algorithms,Reliability,Uncertainty

Additional Key Words and Phrases: incomplete and erroneous data, uncertain constraint satis-
faction problem, closure, reliable solutions

1. INTRODUCTION

Data uncertainties are inherent in the real world. They permeate many commer-
cial planning and resource management problems that can be cast as constraint
satisfaction and optimisation problems. Forms of data uncertainty are for instance:

(1) future events and changes (scheduling [Davenport and Beck 2000], restaurant
management [Vidotto et al. 2007])

(2) stochastic demand, cancellations (hotel reservation [Benoist et al. 2001])

(3) stochastic requests, anticipated changes (oil platform supply [Fowler and Brown
2000], vehicle routing [Bent and Hentenryck 2004])

First author’s address and current affiliation: Artificial Intelligence Center, SRI International,
Menlo Park, CA 94025, U.S.A., nysmith@ai.sri.com
Second author’s address: Imperial College London, SW7 2AZ, U.K. c.gervet@imperial.ac.uk
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2014 ACM 1529-3785/2014/0700-9999 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014, Pages 1–38.

http://arxiv.org/abs/cs/0601109v3

2 · N. Yorke-Smith and C. Gervet

(4) inadequate demand profiles due to market privatisation (energy portfolio man-
agement [Gervet et al. 1999])

(5) partial information, measurement errors (network optimisation [Medina et al.
2002], scene recognition [Dovier et al. 2005])

The data uncertainty can be due to (1) the dynamic and unpredictable nature
of the commercial world (first three examples), but also due to (2) the information
available to those modelling the problem (last two examples). In this article we are
concerned with the latter form of uncertainty, which can arise when the data is not
fully known, and also when it is erroneous. Justification of probabilistic modelling
in such problems is often lacking because data trends are obsolete, inexistent, or
inappropriate, or because scenario-based reasoning is not the desired methodology.

Our motivation to consider the second form of uncertainty above originated in
a Network Traffic Analysis Problem (NTAP). Given a known, fixed network with
incomplete and possibly erroneous traffic volume measurements at routers, the
objective is to determine the minimum and maximum traffic flow values between
any two end-point routers. This information, often stored in traffic flow matrices, is
valuable to optimise network usage and routing. However, due to the overwhelming
amount of information, in practice the data is partial; and due to practical mea-
surement difficulties (e.g. unrecorded packet loss), the data acquired in the problem
is frequently erroneous. The end user’s problem must be satisfiable, because the
network exists and is executing. For the NTAP, the existing approximation and
data correction methods were effective to derive solutions but could not guarantee
that the user’s problem was being addressed. We sought to diagnose whether this
was significant in practice.

To achieve this aim, we considered that the user’s perception of the constraint
problem is her genuine problem. Our aim was to provide a reliable and tractable
model that guarantees to contain the genuine problem, and then to derive reliable
solutions from this model.

Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial search and optimisation problems from disparate appli-
cation domains [Wallace 1996]. A combinatorial problem is modelled as a constraint
satisfaction problem (CSP). The modelling and solving of the problem are separ-
ated, allowing both expressive, generic modelling and powerful, specialised solving
techniques. Based in the CP paradigm, we defined a new concept of model for the
NTAP, and developed an efficient solving method to derive the desired solution. We
could then determine whether the existing approaches to the problem were reliable,
i.e. whether the solutions obtained are potential solutions to the genuine problem.
This experimental work is presented in depth in this paper.

The nature of the solution sought by the user to an ill-defined problem depends
on several factors: the nature of the data uncertainty, the modelling approach
taken, and the user’s requirements for the outcome. In the NTAP, for example, the
solution sought, bounds on the end-to-end flows, is the projection of the complete
solution set onto each flow.

Research to accommodate this type of uncertainty and solution in CP is still
sparse; as in the NTAP, the main existing approaches rely on approximation or er-
ror correction. Although stochastic approaches can be expressive, they exhibit fun-

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 3

damental difficulties because there is no principled basis in such problems to attach
probabilities to erroneous data, and if we could it would raise the computational
complexity of the solving. By contrast, commonly used in robust control, convex
modelling is a technique from reliable computation whereby uncertain quantities
are tractably enclosed with what is known about them. For example, a measured
value is enclosed by an interval. Convex modelling relates to some CP frameworks,
notably numerical CSPs but also continuous quantified CSPs. While these frame-
works could partially be applied for ill-defined problems, the development of this
idea has been limited, especially for discrete data, and the complexity of solving
the general quantified CSP problem is an obstacle.

Thus, on the one hand we have existing CP extensions that are inadequate to
solve our ill-defined problems (either due to the type of uncertainty in the problems,
the nature of the solution sought, or the level of generality of the frameworks); yet
the general CP paradigm is suitable to describe uncertainty semantics indepen-
dently of the underlying solving techniques. On the other hand, fields such as
operational research (OR) and reliable computation offer combinations of tractable
models and associated methods to handle incomplete and erroneous data uncer-
tainty (e.g. interval structures for real-valued data; other convex forms), but do
not have a framework characterising the solving methodology independently of the
model and techniques. There is a gap between suitable models and methods and a
generic, practical CP framework.

Our objective is to fill this gap, by defining a unifying framework that defines the
properties of an extension to the CP formalism for ill-defined problems with incom-
plete and erroneous data, as well as resolution forms that give generic templates
and associated operational semantics to derive efficient solution methods. This
framework shows how existing models and methods from different fields can be
brought together as a pragmatic means towards reliable reasoning in the presence
of incomplete and erroneous data.

This article presents the certainty closure framework by proposing a generic CSP
model and practical, constraint-based resolution forms to reason about such ill-
defined problems effectively. We give instances of the resolution forms that consti-
tute a first step towards an automatic tool for reliable constraint reasoning.

In this article we concentrate mainly on describing resolution forms and algo-
rithms for the complete solution set for ill-defined satisfaction problems. Instances
of the resolution forms for other types of solution, and extensions of our model for
optimisation problems, can be found in the PhD dissertation in [Yorke-Smith 2004],
upon which this work is mainly based.

Organisation. In Section 2 we survey related work in CP and other fields. In
Section 3 we give the essentials of our formal framework in terms of the uncertain
CSP and a closure as its solution. The application of the framework to the Net-
work Traffic Analysis Problem introduced above forms the extended case study of
Section 4. In Section 5 we study instances of the uncertain CSP model and their
properties, and set forth efficient generic means to solve the models. We conclude
and outline future work in Section 6.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

4 · N. Yorke-Smith and C. Gervet

2. RELATED WORK

Ill-defined combinatorial problems can not be formulated using probabilistic models
such as stochastic CSP [Tarim et al. 2006] when the necessary data trends are
either obsolete (e.g. market privatisation), inexistent, or inadequate (e.g. erroneous
measurements). Problems with incomplete or erroneous data often fall into this
category (e.g. [Gervet et al. 1999; Jaulin 2006]).

The simplest approach often used in CP to model such ill-defined problems is
deterministic. A single value is chosen for each uncertain data item (each parame-
ter). This selection might be done by using a data error correction model. Error
correction to a best deterministic approximation, while widely used as a pragmatic
approach, does not aim to ensure reliable solutions, in the sense that it aims primar-
ily to build a satisfiable model rather than to guarantee that the genuine problem
is being addressed. Nonetheless, such a model is often perceived as close enough to
the “true” model. One of our objectives in this paper is to derive a CP framework
and model to diagnose the reliability of such approaches.

Alternative CP approaches of relevance include mixed CSP, numerical CSP, and
quantified CSP. Recall that a CSP is a tuple 〈V ,D, C〉, where V is a finite set of
variables, D is the set of corresponding variable domains (classically finite), and C
is a finite set of constraints. A solution is a complete consistent value assignment.

Although not specified, the focus of the mixed CSP framework [Fargier et al.
1994] leans towards uncertainty due to incomplete knowledge or unobserved fu-
ture. The constraint model of a mixed CSP is restricted to the discrete case. The
outcome sought (when no further knowledge will be obtained about the param-
eter values) is a robust solution: one solution that satisfies all constraints under
as many realisations of the data (possible worlds) as simultaneously possible. The
mixed CSP framework introduces the idea of controllability into CP, by distinguish-
ing decision and non-decision variables. The first type of variables are controllable
by the agent: their values may be chosen. The second type, known in operational
research as parameters, are uncontrollable: their values are assigned by ‘Nature’,
i.e. extrogeneous factors. The model adds expressiveness to a classical CSP, but is
generally not suitable to our ill-defined problems because it does not consider also
continuous data, and does not consider different types of solutions beyond a robust
solution. In the case of erroneous data, one is certainly not looking for a solution
that satisfies as many erroneous models as possible.

Numerical or interval CSPs (NCSPs) extend the classical CSP with continuous
variables. In principle they can be used to approximate and reason with continuous
(but less readily discrete) uncertain data represented by intervals. We find the real
constant type in Numerica [Van Hentenryck et al. 1997] or the bounded real type
in ECLiPSe [Cheadle et al. 2003]. The solution typically derived by NCSP solvers
consists of intervals for the decision variables that contain solution points valid
for all values of the data within the input intervals. Semantically, this is a fully
robust solution. Specific methods to model data uncertainty with NCSPs have been
developed in scheduling (e.g. [Narin’yani et al. 2000]). The thrust of the work on
NCSPs, however, has been on efficient integration of interval computation methods
in CP [Benhamou 1995].

The few applications that use NCSP to model uncertainty (e.g. [Christie et al.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 5

2002]) do so as quantified CSPs (see below). This view is taken because the se-
mantics of a NCSP is not expressive enough to describe and handle uncertainty;
quantification is necessary to specify the nature of solution desired. For example,
the definition of a NCSP does not specify whether the solution should hold for at
least one, or for all, values of the interval coefficients. When we add semantics
to the NCSP model, in order to specify the desired solution, then the intervals for
uncertain real values in the syntax of a NCSP model describe a convex model of un-
certainty. Thus understood, the certainty closure framework can exploit techniques
from NCSP in the continuous case.

In a quantified CSP (QCSP), variables may be arbitrarily existentially (∃) and
universally (∀) quantified. As one consequence, a QCSP provides an expressive
way of describing uncertainty. The quantifiers allow the precise description of the
solution sought (e.g. a robust control policy that holds for all values of a parameter
[Zhou et al. 1996]). They allow also the natural expression of bounded uncertainty.
For example, existential quantification when some parameter can be chosen by the
user, and universal quantification when the exact value of a parameter is unknown
or arises in (infinitely) many similar versions [Halpern 2003]. Continuous QCSPs
have been applied to model uncertainty due to incomplete or erroneous real-valued
data. The uncertain CSP model we will define is an instance of the general QCSP
formalism. However, the expressive power of QCSPs means it may not always be
apparent to the problem modeller how best to represent the uncertainty. Further,
the complexity of solving the general QCSP problem is an obstacle. Only in re-
stricted constraint classes are there polynomial time algorithms [Benhamou and
Goualard 2000; Ratschan 2006].

Although there is promise in NCSPs and QCSPs for our objective of reliable
constraint reasoning, the ideas have yet to be brought together. We find that
techniques from other fields, outside CP, are suitable when seeking to achieve this
synthesis. Whilst our aim is to tackle ill-defined problems using the CP formalism,
researchers in operational research and in robust control in engineering have ad-
dressed similar problems. Indeed, the need for non-probabilistic models to address
feasibility of and optimality in problems with erroneous and incomplete data has
been recognised also in these fields.

“We hope that future research will also address [in addition to incor-
porating risk] the issue of how to incorporate ... ‘fuzzy’ data, i.e., data
for which even the mean value is not known and for which one only has
range estimates of its value.” [Hoffman 2000]

Robust optimisation (RO) [Ben-Tal and Nemirovski 1999; El Ghaoui et al. 1998;
Hoffman 2000] treats uncertainty in the data as a deterministic, bounded, but
unknown quantity, in order to address data uncertainties from the perspective of
computational tractability. The outcomes sought from these closure-based models
include a robust solution, or a solution that trades-off optimality and reliability, e.g.
the best objective value (in the worst case) of all the fully robust solutions. Sharing a
similar spirit with RO is robust control [Zhou et al. 1996], a field of engineering that
aims to operate systems in a way insensitive to faults and measurement imprecision.

In both fields, the uncertain data is described by parameters, whose possible
values are captured completely by an uncertainty set. For the purpose of tractabil-

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

6 · N. Yorke-Smith and C. Gervet

ity of the resulting model, these uncertainty sets are often composed by means
of convex modelling, a well established technique whereby uncertain quantities are
enclosed with what is known about them: for example, a measurement is enclosed
by an interval. Convex modelling has shown its adequacy to lead to reliable solu-
tions [Chinneck and Ramadan 2000; Elishakoff 1995]; indeed, the field is known as
reliable computation. The most important property of convex modelling is the guar-
antee that the output contains the true solution or solutions, if any exist. That is,
whatever the true value of the data (among the possible realisations encompassed
by the model) if a solution exists then it lies within this complete solution set.

The closure paradigm thus found in reliable computation is potentially valuable
in solving models with incomplete and erroneous data. Reliable computation (of
which interval analysis over the reals is a concrete instance) is primarily interested
in the complete set of solutions. This outcome suits ill-defined problems where
the data results from inaccurate or rounded measurements, such as applications in
engineering and networking (e.g. [Dovier et al. 2005; Jaulin 2006; Ben-Ameur and
Kerivin 2005]). As our case study will show, it gives also valuable insight when
diagnosing the reliability of other approaches (see also [Jaulin 2006]).

In summary, the absence of a general framework with unified model and generic
resolution forms is problematic from a programming point of view. The user needs
to know how to model the problem, usually by choosing a CP versus an OR ap-
proach, and which solving method to use accordingly. Our unifying framework
aims ultimately at providing a generic modelling formalism, non-probabilistic and
tractable, that extends CP and allows one to formulate the ill-defined problem in-
dependently of the methods used. In addition to the model of the problem, the
framework encapsulates the various types of solution that can be sought, including
most robust and fully robust solutions and the complete solution set.

3. PRELIMINARY NOTIONS AND BASIC DEFINITIONS

Let C = {ci} be a finite set of constraints. We represent a solution or set of so-
lutions to a CSP 〈V ,D, C〉 by a conjunction of its constraints, e.g. unary equality
constraints. Uncertainty in the data is materialised by uncertainty in the constraint
coefficients. A coefficient in a constraint may be certain (its value is known) or un-
certain (value not known). In a classical CSP, of course, all the coefficients are
certain. We call an uncertain coefficient a parameter. A constraint with parame-
ters is an uncertain constraint. Under the closure paradigm, we suppose that the
uncertainty in the parameters can be enclosed with certainty, e.g. a set of possible
values, an interval. We call the set of possible values of a parameter λi its uncer-
tainty set, denoted Ui. We say that a realisation of the data is a fixing of all the
parameters to values; in related literature, the terms scenario, possible world, and
context space can also be found.

The notation ·̂ will denote certainty. For an uncertain CSP P (formally defined

below), we say that any certain CSP P̂ , corresponding to a realisation of the pa-

rameters of P , is a realised CSP, and write P̂ ∈ P . Each uncertain constraint is
made certain by a realisation; thus P̂ = 〈V ,D, Ĉ 〉, where Ĉ ∈ C denotes a set of
realised constraints. In the same way, a realisation of a constraint c will be denoted
ĉ ∈ c. It is worth noting that an uncertain constraint can have many realisations,

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 7

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

Fig. 1. For a solution set (the shaded polygon), three posited closures: respectively incorrect,
correct but not tight, and correct and tight.

as many as the size of the Cartesian product of uncertainty sets involved. Thus,
the space of possible realisations is our logical representation of uncertainty.

Finally, if r is a realisation and P̂ is a corresponding realised CSP, for a solution
s of P̂ , we say that the realisation r supports s, and s covers r. These records
of contributing realisations we call support information We say that a realisation
is feasible if the constraints of the problem permit it to ever occur (otherwise in-
feasible). A feasible realisation r is good if some solution s exists for the decision
variables, given that the parameters have taken their values under r (otherwise
bad); then of course s covers r.

3.1 Uncertain Constraint Satisfaction Problem

An uncertain CSP extends a classical CSP with an explicit description of the data:

Definition 3.1. An uncertain CSP (UCSP) 〈V ,D, Λ,U , C〉 is a classical CSP
〈V ,D, C〉 in which some of the constraints may be uncertain. The finite set of
parameters is denoted by Λ, and the set of corresponding uncertainty sets by U .

This definition resembles that of a mixed CSP [Fargier et al. 1994], extending it
to the case of continuous data and variables. Moreover, we will define a solution of
a UCSP appropriately for reasoning with incomplete and erroneous data.

An uncertain CSP model encompasses arbitrary data types (discrete and con-
tinuous) and does not impose a particular representation of the uncertainty set
U . How the uncertainty should be represented — a set of values, an interval, an
ellipsoid, or otherwise — is a question to be adapted for each computation domain
and problem instance. For discussion of the issue of uncertainty set construction,
which is outside the scope of this paper, we refer to [Hoffman 2000; Bertsimas and
Brown 2006].

Example 3.1. Let X and Y be variables with integer domains DX = DY =
[1, 5]. Let λ1 and λ2 be parameters with uncertainty sets U1 = {2, 3, 4} and U2 =
{2}. Let c1 be the constraint: X > λ1, c2 be the constraint: |X − Y | = λ2, and c3

be the constraint: Y −λ1 6= 1. Writing V = {X, Y }, D = {DX , DY }, Λ = {λ1, λ2},
U = {U1, U2}, and C = {c1, c2, c3}, then 〈V ,D, Λ,U , C〉 is a UCSP. Note that, since
λ2 has just one value in its uncertainty set, it is in fact a constant coefficient.
Hence, c2 is a certain constraint; c1 and c3 are both uncertain constraints.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

8 · N. Yorke-Smith and C. Gervet

3.2 Closures: The Solution to a UCSP

In concrete terms, the desired outcome to an ill-defined problem depends on two,
linked issues: the requirements of the user and the nature of the uncertainty. As
we saw in Section 2, a robust solution, one that holds for as many realisations as
possible, is common in CP and OR. However, when the data is uncertain due to
inaccurate measurements, for example, we do not want a solution that holds in as
many erroneous cases as possible. As another example, in a diagnosis problem, the
user simply might want to know whether there exist any realisations at all with
solutions (i.e. any good realisations).

A potential solution is a complete, consistent assignment to the decision variables
that holds for at least one realisation of the data. As such, a potential solution is
one possibility for a solution to the true problem as modelled by a UCSP. Formally:

Definition 3.2. A potential solution to a UCSP P is an instantiation to the
variables such that there exists a realisation of the parameters, such that all the
constraints of P hold. Thus a potential solution is a tuple ~v s.t. ∃ ~λv : C(~v; ~λv),

where C(~v; ~λv) denotes that the conjunction of constraints C =
∧

i ci is true under

the assignments V = ~v and Λ = ~λv.

Definition 3.3. The complete solution set of a UCSP P is the set of all potential
solutions to P . By abuse of language we sometimes omit ‘potential’ and just write
solution.

Example 3.2. In Example 3.1, one potential solution is X = 3∧Y = 1, because
this is a solution to the realised CSP corresponding to λ1 = 2.

Definition 3.4. The full closure Cl(P) of a UCSP P is the set of all solutions
such that each is supported by at least one realisation, i.e. the complete solution
set. A closure in general is a subset of the complete solution set, i.e. S ⊆ Cl(P).

Hence, for a UCSP, the notion of CSP solution is replaced by the notion of a
closure. We list various types of closures in Section 5.1. Being a set of solutions,
any closure can be described by constraints.

Example 3.3. Let P be the UCSP of Example 3.1, in which the variables X, Y ∈
Z have domains [1, 5]. The full closure Cl(P) is (X, Y) ∈ {(3, 1), (3, 5), (4, 2),
(5, 3)}. We can also write it as the disjunction of (X = 3 ∧ (Y = 1 ∨ Y = 5)),
(X = 4 ∧ Y = 2), and (X = 5 ∧ Y = 3).

In terms of set inclusion, if one closure encloses another, i.e. S ⊆ S′, then S′ is a
correct approximation of S: it is correct because no potential solution is omitted.
If further S′ = S, then we say that S′ is tight to S. Figure 1 illustrates.1

With the basic notions of the certainty closure framework defined, we next il-
lustrate the principles and value of the framework on the Network Traffic Analysis
Problem introduced in Section 1.

1In the terminology of numerical CSP solving, the concept of correctness is called ‘completeness’.
The dual property, ‘soundness’, which means only solutions are included, corresponds to our
notion of tightness. We do not adopt this terminology because ‘complete’ and ‘sound’ have
different meanings in classical CSP solving; and still different meanings in other fields.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 9

4. CASE STUDY: NETWORK TRAFFIC INFERENCE

In this section we present an uncertain CSP approach for the Network Traffic Ana-
lysis Problem (NTAP), and compare it against a prior data correction approach.
Given a network with incomplete and inaccurate traffic volume measurements at
routers, the NTAP is to determine the minimum and maximum values for each
end-to-end traffic flow [Gervet and Rodošek 2000; Rodošek and Richards 2003].
Knowing and managing such traffic flows is a key component to managing many
networking components, enabling for instance network performance optimisation
and differentiated services [Grossglauser and Rexford 2004]. Various techniques
have been proposed for flow profiling but are known to be unreliable unless com-
bined with alternative tools to define, parse, and analyse the flows [Estan and
Varghese 2003]. These are time consuming and require domain expertise.

Consider the fragment of a network shown in Figure 2. Four nodes, corresponding
to routers and designated A–D, are shown, together with the aggregated traffic
volume on each link. Links are represented by edges in the graph. Each router
makes decisions on how to direct traffic it receives, based on a routing algorithm
(e.g. OSPF) and local flow information. The routing determines that the traffic
flows bidirectionally on each link, apart from A→C. This network is taken from
[Medina et al. 2002]; we call it sigcomm4 and use it as a running example.

The traffic volume data is collected by reading router tables at each node over a
given time interval (e.g. 20 minutes). As a result, the data information obtained is
erroneous. On the link A→C, for example, the aggregated volume might measure as
565 at A and as 637 at C, whereas the true value, equal at both nodes, is presumably
somewhere in between. A common approach therefore is to use the median value.
Despite the erroneous nature of the problem as received by the network operator,
it is known that the true problem must be satisfiable, because the network exists
and is executing.

Our objectives are threefold: (1) to simulate the network behaviour in a reliable
manner, i.e. to build a model handling the data uncertainty such that a relevant
problem is solved; (2) to seek correct bounds tight enough to satisfy the user, i.e.
to enclose the true bounds with an outer approximation to the user’s satisfaction;
and (3) to achieve these first two objectives in a way that is effective in practice.

The initial approach to the problem [Gervet and Rodošek 2000] formulated it as
a numerical CSP. Using real-world data collected at routers (no approximation or
correction), this model was unsatisfiable. A second model was derived by selecting
representative values for the parameters using data correction methods to pre-
process the CSP, so ensuring satisfiability of the model. Because the model is
linear, a hybrid constraint and linear programming (LP) method was used to find
the bounds on the end-to-end traffic flows.

This approach is efficient because it solves a deterministic, well-structured model,
but it amalgamates the issues of constraint satisfiability and data errors. Further,
there is no indication that the resulting satisfiable model and its solution are reli-
able. We introduce an uncertain CSP model to investigate the integration of reliable
computation concepts in the CP paradigm. It will also enable us to diagnose the
actual insights gained by the initial approach, and to provide an alternative reli-
able approach that remains effective in the presence of uncertainty. For background

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

10 · N. Yorke-Smith and C. Gervet

559

1154

318

A

601

903

851
D

C
B

882

Fig. 2. Topology and traffic volumes in sigcomm4.

on the general traffic inference problem and data issues in networking, we refer to
[Grossglauser and Rexford 2004; Estan and Varghese 2003; Medina et al. 2002].

4.1 Data Correction Approach to the NTAP

4.1.1 Model. A network such as sigcomm4 can be modelled as a numerical CSP
as follows. The decision variables correspond to the traffic flow between designated
end-point routers. In Figure 2, all four routers are end-points; thus an example
of an end-to-end flow is the flow Fac between A and C. The variables (decision
variables in bold) and constants are:

—Traffic flow variables. Fij ∈ R+ is the volume of traffic flowing from node i
to node j. There are flow variables for each pair (i, j) of routers. Only those for
the end-point routers are decision variables.

—Traffic volumes. vk ∈ R+ is the measured volume of traffic on edge k. This
is the main data in the problem, assumed constant and known. In Figure 2, the
weights on the edges are the measured aggregated traffic volumes on the links.

—External traffic volumes. T in
i ∈ R+ and T out

i ∈ R+ are the measured volume
of traffic respectively entering and leaving the network at end-point node i.

—Traffic routing. Aijk ∈ [0, 1] ⊂ R is the proportion of the flow Fij that uses
link k. This data is assumed a priori known from the routing.

The constraints in the network problem form a linear flow model. They state
conservation of flow at each router (the volume of traffic through each link in each
direction is the sum of the traffic entering the link in that direction), plus side
constraints. The constraints are of four types:

—Link traffic constraints. There is one link traffic constraint on each edge k,
stating the sum of traffic using the link is equal to the measured volume:

∑

ij∈k

AijkFij = vk ∀k (1)

where the left-hand summation is over all flows Fij that use edge k, i.e. flows
i→j with Aijk = 0 may be omitted.

—Traffic conservation constraints. There are two traffic conservation con-
straints for each end-point router, stating that the traffic entering the network
must equal the traffic originating at the router, and the traffic leaving must equal

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 11

the traffic whose destination is the router.
∑

j

Fij = T in
i ∀i

∑

i

Fij = T out
j ∀j

(2)

—Flow conservation constraints. In the basic form of the NTAP, there is one
flow conservation constraint at each node j, of the form:

∑

k∈e+(j)

vk −
∑

k∈e−(j)

vk = T in
j − T out

j ∀j (3)

where e+(j) denotes the incoming edges to node j, and e−(j) the outgoing edges.
These constraints are redundant due to (1) and (2).

We omit discussion of the side constraints, since, although significant in general,
they do not arise for the sigcomm4 instance of NTAP. The objective functions in
the NTAP are to find the min and max of Fij for each i 6= j.

Example 4.1. The NCSP for sigcomm4 has link traffic constraints:

A→B FAB = vAB

B→A FBA + FCA + FDA = vBA

A→C FAC + FAD = vAC

B→C FBC + FBD = vBC

C→B FCA + FDA + FCB + FDB = vCB

C→D FCD + FAD + FBD = vCD

D→C FDC + FDA + FDB = vDC

(4)

where we have written the vk as vij to explicitly name which routers i→j the link
k is between; and traffic conservation constraints:

A origin FAD + FAC + FAB = T in

A

A dest. FDA + FCA + FBA = T out

A

B origin FBD + FBC + FBA = T in

B

B dest. FDB + FCB + FAB = T out

B

C origin FCB + FCA + FCD = T in

C

C dest. FBC + FAC + FDC = T out

C

D origin FDB + FDA + FDC = T in

D

D dest. FBD + FAD + FCD = T out

D

(5)

For simplicity, we use none of the redundant flow conservation constraints.

If the data (vk, T in
i and T out

i) is measured correctly, as in the second column
of Table I below, then the NCSP of Example 4.1 is consistent. In fact, there are

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

12 · N. Yorke-Smith and C. Gervet

many solutions for the flows Fij satisfying the constraints since the NTAP is under-
constrained in its basic form [Goldschmidt 2000].2

4.1.2 Data/Error Correction and Problem Solving. The above model was used
in the initial approach to the NTAP. It incorporates directly the measured traffic
volumes. Since the measured data led to an inconsistent model, a data correction
procedure was used (minimising deviation on the link volumes) in order to reach a
satisfiable, deterministic model.

The data correction is performed using a Gaussian error model. It operates in two
stages to obtain a single value designed to approximate the true value. Each item of
data is considered to be perturbed by two error terms, gross and minor error. The
gross error models entirely fallacious measurements, such as when a router reports
0 but the traffic is non-zero. The minor error models smaller perturbations of the
true value by a stochastic ±N(0, σ2) term. In the data correction, first the global
gross error is minimised, then the global minor error.

Empirical studies show that the gross error can be effectively eliminated, provided
it occurs rarely [Simonis and Hansen 2002; Feldmann and Rexford 2001; Zhang
et al. 2003]. In contrast, minor errors, which tend to be endemic across the data,
are nearly impossible to correct systematically.

The corrected model was solved using linear programming. The objective of
the NTAP was for bounds for the traffic flows. The bounds, if correctly enclosing
the true flows, would indicate the network bottlenecks (close bounds) or sparsity
of traffic through the different links (broad bounds). LP was used to derive two
bounds per flow: for each flow variable Fij , two LPs were solved, with objectives
respectively min Fij and maxFij .

4.1.3 Simulating Data Errors. To be able to run experimental studies to assess
reliability, we need to be able to simulate the NTAP data uncertainty in a realistic
and generic manner. Table I gives one data set for the NTAP. In the table, the
‘true values’ for the data (second column) were simulated exactly from artificially
generated demands. The demands are given by [Medina et al. 2002]. From the de-
mands, we calculate simulated traffic flows. From the flows, we calculate the traffic
volume measurements. The ‘measured’ values (third column) are these ‘true values’
perturbed according to a Gaussian minor error term ±N(0, 10). For example, on
the link A→B, suppose the volume measures as 312 at A and 324 at B. Thus we have
two measurements, say 312 ± N(0, σ2) and 324 ± N(0, σ2), of the true value.

The measured values are the input to the NTAP; they correspond to the genuine
problem perceived by the user. Despite the true values for the flows being unknown
to the user, of course, we can use them in our simulations to evaluate approaches
to the problem by comparing the output of the NTAP against them.

Example 4.2. Consider the sigcomm4 problem. We perturb the true data to
the values in the third column of Table I, to simulate ‘measured’ values. The re-
sulting NCSP is inconsistent; there are no solutions for the flows. We apply error
correction to the data in Table I. There are no gross errors, so we use a linear

2The essential reason is that the number of flows is quadratic in the size of the network, but the
number of constraints (and the number of items of data) is linear.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 13

Quantity True Value Measured Corrected Bounded

vAB 318 319.67 319.9 [309.98, 327.82]
vBA 882 886.20 600.97 [876.39, 894.35]
vAC 601 600.08 886.2 [591.93, 612.34]
vBC 559 551.45 555.51 [543.30, 562.61]
vCB 1154 1151.42 1151.42 [1143.27, 1161.06]
vCD 903 904.26 904.01 [896.11, 913.98]
vDC 851 853.20 853.2 [842.09, 861.35]
T in

A
919 920.87 886.2 [912.72, 929.02]

T out
A

882 882.85 883.32 [874.70, 891.00]
T in

B
853 853.71 870.68 [845.56, 861.86]

T out
B

884 892.64 904.01 [884.49, 900.79]
T in

C
918 916.43 920.87 [908.28, 924.58]

T out
C

872 870.68 853.71 [862.53, 878.83]

T in
D

851 850.85 916.43 [842.70, 859.00]
T out

D
903 899.24 853.2 [891.09, 907.39]

Table I. Data in the sigcomm4 instance of the NTAP. The ‘true values’ are the traffic volumes
generated by the simulated demands. The ‘measured’ values are those received as input to the
NTAP: perturbed from the true values. The ‘corrected’ values are the results of the data correction
procedure on the measured volume values; they should be contrasted with the ‘bounded’ values

obtained by enclosing the uncertainty of the measured values.

correction term of the sum of the minor errors. The ‘corrected value’ column shows
the result. Observe that in general the correction does not yield values close to the
true traffic volumes in the second column. In some cases, such as vBA, it ‘corrects’
in the wrong direction, i.e. away from the true value. Nonetheless, after the data
correction, the ‘corrected values’ make the NCSP of Example 4.1 consistent.

4.2 Certainty Closure Approach to the NTAP

We now explain our uncertain CSP model of the Network Traffic Analysis Problem
and specify the outcome we seek as a solution. The initial data correction model
makes two approximations. First, for each parameter it takes one value derived
by the error correction. Second, the model assumes simplified routing by equal
splitting of traffic, in order, again, to allow its modelling by a single value. In
contrast, we seek to simulate the actual network behaviour more closely. We adopt
essentially the same constraint model in order to focus on the issues raised by the
data uncertainty.

The initial model, being built from the corrected data, is deterministic and
tractable, but it does not guarantee to derive correct flow bounds. Moreover, the
extent of its unreliable nature and the degree to which the solution can misinform
the user are unknown. The key modelling and operational decisions we wanted
to investigate were: by bringing reliable computation models in CP, how does it
alter a classical CSP model and solution sought? what does it mean in terms of
tractability of the constraint model and efficient solving?

4.2.1 Enclosing the Parameter Uncertainty. Given the absence of data trends,
we seek a non-probabilistic model. We adopt an interval representation for un-
certainty sets to enclose the uncertainty in the parameter values. The task of
enclosing the uncertainty is an important step in the modelling approach of the

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

14 · N. Yorke-Smith and C. Gervet

closure paradigm. It assumes that the modeller can enclose to her satisfaction the
data uncertainty with definite knowledge, using past data and the user’s knowledge
of the problem [Bertsimas and Brown 2006]. For the NTAP, we proceed as follows.

Since gross errors can be effectively eliminated by automated analysis, we focus
on minor errors. Suppose we take two measurements X and Y (at two different
routers) for the traffic volume on a link, X ≤ Y (without loss of generality), and
suppose we adopt an error model N(0, σ2) for the minor errors. Take bounds that
encompass the probability mass of the error to a given confidence, defined as 99.5%.
This yields intervals for the measurements, [X, X] and [Y , Y]. Then let [X, Y] be
the bounds we use for the traffic volume. As shown in Table I, all true values but
one (T out

B is slightly below the lower bound) lie inside the bounds. The confidence
is considered reasonable by the end-user; a higher confidence could be reached with
more emphasis on data analysis (beyond the scope of this paper).3

4.2.2 Constraints. In the uncertain CSP model of the NTAP the decision vari-
ables are the Fij as before; their domains are the non-negative reals. The data,
however, is modelled by parameters rather than constants; there are three types:

—Traffic volume parameters vk. The uncertainty sets are the bounds given by
the above convex closure procedure.

—External traffic volume parameters T in
i and T out

i : similar to the traffic
volumes.

—Traffic splitting parameters Aijk. For flows with a single path (and for links
on a flow with multiple paths where there is only a single choice), the parameters
are constants: the uncertainty sets are singleton values 0 or 1. For flows where
splitting occurs between two paths, the uncertainty sets are the intervals [0.3, 0.7];
in general, for r paths, the uncertainty sets are [0.6

r
, 1.4

r
]. Although there is little

empirical knowledge of the exact distribution, it is considered safe to suppose
that, when not split equally, traffic splits between 30% and 70% [Simonis 2003]4.

Thus, the constraints are (1)–(3), as in the error correction model, but vk, T in
i

and T out
i , and Aijk are now parameters. Observe that some constraints, such as (1)

are now non-linear (quadratic, due to the products of variables and parameters).

4.2.3 Full Closure. The outcome sought from the UCSP model, like in the data
correction model, describes bounds for the traffic flow values. We obtain an interval
for each variable that describes an approximation of the complete solution set,
i.e. an approximation of the full closure. We call such an outcome to the UCSP
model the projected full closure (onto the domains of the decision variables). If the
(projected) full closure is non-empty, we can advise the user that there is a solution
to the problem corresponding to at least one possible realisation of the data. If,
on the other hand, the full closure contains empty intervals for some variables, we
know that the constraint model itself is inconsistent.

3Note that a 100% confidence level would lead to infinite bounds.
4The distribution of split traffic depends on a number of factors, including the duration of traffic
sampling, the configuration of the routers, and the routing protocol itself.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 15

4.2.4 Model Approximation. The quadratic nature of the uncertain constraints
in the UCSP model means that we can no longer apply LP directly to derive the
sought bounds. Given the complexity of the problem, while investigating methods
to its solving we considered an approximation to the model that retains correctness
while reducing the computational complexity: namely, independence of the param-
eters. In the NTAP, the parameters are independent except for those that model
the traffic routing (i.e. the [0.3, 0.7]): if 40% of traffic goes one way at a two-way
junction, 60% must go the other way, by flow conservation. Besides independence,
the initial approach assumed equal splitting of traffic, which is certainly a false
assumption. As we see later, for the NTAP assuming independence (only) proved
pragmatic and reasonable. It results in less tight but still correct intervals for the
traffic flows. Tractably addressing parameter dependency is a challenging research
topic in all forms of data uncertainty and is part of our future work.

4.3 Solving the UCSP for the Projected Full Closure

We investigated a number of different approaches to solve the UCSP, determining
how they differ in their computational complexity and tightness of the solution
bounds. These methods include directly applying NCSP and QCSP algorithms,
and applying reliable computation techniques. Since the uncertain constraints are
well-structured and the closure does not require support information, the latter
proved to be the most adequate to derive the projected full closure effectively. It
is presented first. This approach seeks a transformation of the UCSP model to an
equivalent certain CSP, and solves the latter using LP.

The main insight is that the UCSP is an instance of an interval linear system:

Definition 4.1. Let V be a set of n variables over R, and C be a set of m linear
constraints (equalities or inequalities) for V . Writing each constraint in normal
form, let A ∈ Rm×n be the matrix of left-hand sides, and b ∈ Rm be the vector of
right-hand sides. Let R be the list of m relations, one for each constraint; Ri ∈ {<
, ≤,=, ≥, >}, i = 1, . . . , m. Then an interval linear system (ILS) [Neumaier 1990]
induced by C on V is a tuple 〈A, R,b〉, where A ∈ IRm×n is an interval matrix
[A, A] with A ∈ A, and b ∈ IRm is an interval vector [b, b] with b ∈ b.

Example 4.3. This system of constraints A·V Rb describes an ILS:

A =

[−2, 2] [1, 2]

[−2,−1] −1
6 [1.5, 3]

, V =

(
V1

V2

)
, R =

≤

=

=

, and b =

[3, 4]

[−5, 5]
[4, 15]

The key observation that enabled us to solve our UCSP model effectively, unlike
the general case, is that the variables are all non-negative; hence their values all lie
in the positive orthant.5 This special case of an ILS is called a POLI system:

Definition 4.2. A positive orthant interval linear system is an interval linear
system in which the natural domain of the variables are non-negative. Thus, the
solution set lies within the positive orthant of Rn.

5The positive orthant is the intersection of the non-negative halfspaces. In 2D, for instance, the
positive orthant is the upper-right quadrant.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

16 · N. Yorke-Smith and C. Gervet

Several robust optimisation approaches exist for interval linear systems. Two
are the robust counterpart (RC) methodology [Ben-Tal and Nemirovski 1999] and
interval linear programming (ILP) [Chinneck and Ramadan 2000]. In both, the
solution sought is a bound on the objective function. In RC, the solution describes
the best worst-case objective that satisfies all realisations of the constraints. In
ILP, best and worst optima values for the objective function are found, together
with a witness realisation under which they occur.

The NTAP, however, is a pure satisfaction problem, and the solution we seek
is different to that of both RC and ILP. Moreover, we have a restricted form of
ILS which the solving method should exploit. Thus neither approach is directly
suitable. However, we observe that both find their sought solution by transforming
the uncertain problem to an auxiliary equivalent problem, and solving the latter.

4.3.1 Algorithm. Since the outcome sought for the NTAP is bounds on the
traffic flows, it suffices to compute the interval hull ✷Σ (A,b) (the projected full
closure for an ILS). There are three steps to the algorithm. First, equalities are
rewritten as pairs of inequalities. Second, a transformation is applied that results
in an equivalent CSP, equivalent in terms of the solution set sought. Third, the
interval hull of the equivalent CSP is derived. Note that the intervals throughout
and the solution set itself may be unbounded.

Step 1: Rewrite equalities. The required form is to have linear constraints
with interval uncertainty. Thus, each equality constraint is to be replaced by a pair
of inequalities as illustrated below.

Example 4.4. Consider the concrete NTAP link traffic constraint A→C in (4),
with flow splitting parameters. It is transformed from:

FAC + [0.3, 0.7]FAD = [591, 613] (6)

into the pair of constraints

FAC + [0.3, 0.7]FAD ≥ [591, 613] ∧
FAC + [0.3, 0.7]FAD ≤ [591, 613]

(7)

and step 2 will further derive (by Proposition 4.3) the constraints:

FAC + 0.7FAD ≥ 591 ∧ FAC + 0.3FAD ≤ 613 (8)

Step 2: Transformation of UCSP to an equivalent CSP. The transfor-
mation replaces the matrix AAA and vector bbb by non-interval versions.

Proposition 4.3. The full closure of a POLI system L = 〈AAA, R,bbb〉 is the
complete solution set of the numeric linear inequality system A′ x ≤ b′, where
A′ ∈ Rm×n, x ∈ Rn, and b′ ∈ Rm are given by the following.

((A′)i, b
′

i) =

{
(AAAi, bbbi) if {<, ≤}∈Ri

(−AAAi,−bbbi) if {>, ≥}∈Ri

(9)

Proof. We suppose {<, ≤} ∈ Ri. The {>, ≥} ∈ Ri case is similar, and the
statement for it follows because −1 × (Ax ≤ b) = −Ax ≥ −b.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 17

Let S1 = Σ (A,b) be the complete solution set of L, and let S2 be the complete
solution set of A′ x ≤ b′, where A′ = AAA and b′ = bbb. We show that the two solution
sets coincide: i.e. x ∈ S1 iff x ∈ S2. Since L is a POLI system, xi ≥ 0 ∀i.

First, suppose x ∈ S2. Since A′ ∈ AAA and b′ ∈ bbb, by the definition of Σ (A,b),
x ∈ S1. Second, suppose x ∈ S1. This means ∃A ∈ AAA, b ∈ bbb such that Ax ≤ b for
x ≥ 0. Now each row of this numeric linear inequality system, Aix ≤ bi, is a n-ary
monotone constraint [Zhang and Yap 2000]. The inequality holds true if the LHS
is decreased or if the RHS is increased, or both. Observe that bi ≤ bbbi and Ai ≥ AAAi.

Moreover, for fixed x, since x ≥ 0, Aix ≥ AAAix. Hence AAAix ≤ bbbi, and so x ∈ S2.
Since the same holds for each row of the matrix A′, this completes the proof.

Thus the transformation produces an equivalent model, i.e. whose solution set is
the full closure to the POLI system.

Example 4.5. Continuing Example 4.3, the initial ILS is transformed into the
equivalent CSP P ′ with the same complete solution set, with constraints A′·V ≤ b′,

A′ =

−2 1
−2 −1
1 1
−6 −3
6 1.5

and b′ =

4
5
5
−4
15

(10)

The first constraint, for instance, is transformed from [−2, 2]V1 +[1, 2]V2 ≤ [3, 4] to
−2V1 + V2 ≤ 4. The decision variables remain unchanged. Observe the increase in
the number of constraints (from three in P to five in P ′), the result of Step 1.

Step 3: Derive the interval hull. The full closure of an ILS can be represented
precisely as a halfspace description of a polytope. The action of the constraints
on the variable domains is equivalent to the projection of the convex hull of the
polytope onto each axis [Oettli 1965].

In practice we can use linear programming to find the interval hull directly. We do
not calculate the exact form of the full closure (as a convex hull), but go straight
to the approximation of the outer hyperbox. This corresponds to the projected
full closure. For each variable Vj , j = 1, . . . , n, we solve two LPs which differ
only in their objectives, minVj and maxVj , subject to the constraints given by the
equivalent problem. With 2n applications of simplex we have tight, reliable bounds.
For Example 4.5, this gives Cl(P) ⊂ ([0, 2.5], [0, 4.67]), shown in Figure 3.

This use of LP to find bounds is the same as the initial data correction approach
to the NTAP. The difference is that LP is applied to a NCSP obtained from a
reliable UCSP model, rather than from data correction.

4.3.2 Correctness

Proposition 4.4. Transformation and repeated LP computes the tightest cer-
tain bounds possible, and does so in worst case time O(mn3).

Proof. The transformation from the uncertain CSP, or ILS, to the equivalent
CSP can be done in O(2mn) operations, and its correctness follows from Prop. 4.3.
The constraints derived are linear and the solution space of their conjunction inter-
sected with the positive orthant is a convex polytope, possibly unbounded [Aberth

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

18 · N. Yorke-Smith and C. Gervet

−1
−1

0

4.67

6

0 2.5 4

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Fig. 3. Tight and certain bounds: the full closure is the shaded region. We compute the tight
outer box shown: [0, 2.5] × [0, 4.67].

1997]. Projection onto each normal axis immediately gives the interval hull. The
bounds so obtained are tight to the solution set since the maximum and minimum
possible value of each variable are found by the simplex iterations. The projection
can be done with 2n iterations, at expected cost O(3mn2) each [Schrijver 1986].

Note that the bounds are as tight as possible as far as interval bounds as sought
for the NTAP. Were it required, we could seek alternative representations of the
full closure, other than its projection on the variable domains — for instance, a
union of intervals. The trade-off of the greater fidelity of such representations, i.e.
the tightness of the representation of the closure, is a higher computational cost.

4.3.3 Evaluation of CP Solving Methods. We briefly describe alternative ap-
proaches to derive the projected full closure to the NTAP modelled as a UCSP.
Two sources of approaches to such a POLI system are from numerical CSP and
quantified CSP.

A numerical, continuous-data CSP attaches real intervals to the variables. Hence,
NCSP programming systems that admit the use of interval coefficients can be used
to derive the UCSP model; one of these is the ic library of ECLiPSe [Cheadle et al.
2003]. However, the default inference rules in such systems typically derive boxes
(i.e. Cartesian products of intervals) that are true for all values of the parameters
within their intervals. This corresponds to a fully robust solution, whereas we
seek the complete solution set, where each point is true for some values of the
parameters. However, we can benefit from the interval methods embedded within
NCSP solvers by modelling the parameters with existentially quantified variables
rather than with interval coefficients. To derive a box that encloses the complete
solution set requires search (here, domain splitting) as well as interval narrowing.
The main drawbacks are the worst case computational cost (exponential in time
when performing search), and the loose bounds when search is omitted.

We also investigated solvers for quantified NCSPs. General analytic solvers for
quantified NCSPs are too restricted in the classes of constraints they can handle,
or too inefficient, to solve sizable POLI systems. One exception is the approximate
solver AQCS [Ratschan 2000]. Because it gives up the demand for an exact solution,
and imposes certain (weak) conditions on the CSP, it is effective enough to be used

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 19

Problem End points Routers Links Links/router

toy2 2 5 12 2.40
sigcomm4 4 4 7 1.75
dexa 24 51 118 2.31
as3967 22 79 294 3.72
as1755 23 87 322 3.70
as3257 49 161 656 4.07

Table II. Problem instances of academic and real-world networks.

for ILS problems. It combines propagation over real first-order constraints with
search. However, the output of AQCS on the NTAP was coarse, even when the
accuracy is set to the maximal floating-point representation available. On such a
well-structured problem, we concluded that a dedicated solving method is preferable
to a general purpose solver.

4.4 Implementation and Empirical Evaluation

We assessed the benefits of a UCSP model with uncertainty sets against the prag-
matic data correction approach. For both approaches, the modelling and solving
used the ECLiPSe CLP platform. The experiments were conducted on a 2GHz
Linux PC with 1GB of memory, using ECLiPSe version 5.6; timings are in seconds.
The linear solver was the primal simplex of Xpress-MP version 14.21.

The UCSP model was implemented using the ic interval computation library,
which provides a bounded real datatype for coefficients: an interval representing
an unknown real value. Using ic, we can model constraints such as the link traf-
fic constraint A→C in (4) simply by: FAC + FAD = 591__613. That is, uncertain
parameters are written naturally; explicit naming is unnecessary unless desired.

4.4.1 Methodology. We studied six benchmark networks, in order to evaluate
the insights gained by our approach to the NTAP in terms of solution quality and
practicality of the approach. We generated simulated data according to the process
described in Section 4.3. The results are averaged over 100 runs.

The benchmarks are characterised as follows:

—Topology. toy2 and sigcomm4 are small test networks; sigcomm4 from [Medina
et al. 2002] was shown in Figure 2. The other problem instances are real-life
networks. dexa is the topology of a global ISP.6 The networks denoted as are
also operational ISP networks, obtained by using the rocketfuel inference tool
[Spring et al. 2002].

—Routing. Traffic is routed according to a known algorithm7; routing information
is known, fixed input data to the NTAP.

—Traffic. For each network, we generated a set of random demands. From the
demand and the routing, traffic volume measurements were calculated for each
link. The measurements were then perturbed and some were discarded, resulting
in an inconsistent and incomplete data set. This was the input to the NTAP.

6Due to commercial confidentiality, we cannot report the exact topology of dexa.
7The details are not important for us here.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

20 · N. Yorke-Smith and C. Gervet

No Uncertainty Perturbed Data

Flow true flows LP bounds full initial method initial method full
closure (single value) (bounds) closure

A→B 318 [318, 318] [309, 327] 319.9 [319.90,319.90] [309, 328]
A→C 289 [22, 581] [2, 609] 577.48 [21.97, 577.48] [1, 608]
A→D 312 [20, 579] [0, 591] 23.49 [23.49, 579.00] [4, 591]
B→A 294 [294, 294] [277, 311] 298.20 [298.2,298.20] [282, 315]
B→C 292 [0, 559] [0, 568] 0.0 [0.0, 555.51] [0, 563]
B→D 267 [0, 559] [0, 568] 555.51 [0.0, 555.51] [0, 563]
C→A 305 [305, 305] [285, 325] 305.0 [305.0, 305.0] [285, 325]
C→B 289 [289, 289] [264, 314] 286.42 [286.42,286.42] [271, 316]
C→D 324 [324, 324] [304, 344] 325.01 [325.01,325.01] [305, 340]
D→A 283 [283, 283] [274, 292] 283.0 [283.0, 283.0] [274, 292]

D→B 277 [277, 277] [268, 286] 277.0 [277.0, 277.0] [268, 286]
D→C 291 [291, 291] [266, 316] 293.20 [293.20,293.20] [266, 316]

Table III. Bounds for the flows in the sigcomm4 instance of the NTAP. The perturbed data is
that in Table I. Almost all single flows obtained by the initial method differ from the true flows.
Even if bounds are sought with the initial method, some do not enclose the true flows (these are
shown in bold). In contrast, the reliable bounds from the UCSP always enclose the true flows.

—Errors. The data errors were created with our error model explained earlier;
recall that the minor errors thus have a Gaussian N(µ, σ2) distribution.

4.4.2 Results.

Effect of UCSP model. We first investigated the initial approach and the UCSP
approach with respect to the reliability of the model and solution produced. The
projected full closure for sigcomm4, for the data in Table I, is shown as the final
column of Table III. Although calculations are performed on reals, we sometimes
show the bounds as integers (rounding bounds outward), for ease of presentation.

The table reports six columns of values or bounds for the flows. The first three
columns of data report hypothetical approaches to the NTAP, where we assume
there is no data uncertainty: they are based on the true values for the traffic
volumes as first introduced in Table I. With uncertainty removed, the results of
this part of the experiment evaluate the bounds derived by both the initial and
UCSP approaches.

The ‘true flows’ column are the generated flows from [Medina et al. 2002], rep-
resenting values for the flows without data uncertainty. The ‘LP bounds’ column
shows the bounds produced by LP, indicating the tightest possible bounds that
LP can produce from the deterministic model without uncertainty. The bounds
describe a single value in some cases and are loose approximations in others. This
reflects upon the under-constrained nature of the problem as specified (recall there
are many more end-to-end flows than constraints) [Goldschmidt 2000].

The next column, ‘full closure’, shows the results of applying the certainty closure
to the model without data uncertainty. The difference between the ‘LP bounds’
and the ‘full closure’ column, a slight broadening of the bounds, comes from LP
solving a UCSP where equalities have been rewritten into inequalities, and further
transformed to a linear form. The widening is marginal. The full closure bounds
enclose the ‘LP bounds’.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 21

Initial Method Certainty Closure

Variance Error % % valid (bounds) lower bound upper bound

0 0 100 67.84 132.28
0.1 0.03 58.33 67.24 132.96
0.5 0.17 58.33 67.01 133.20
1 0.34 58.33 66.16 134.18
5 1.69 58.33 62.20 140.15
10 3.39 58.33 61.85 140.65
20 6.78 58.33 61.37 141.37
50 16.94 58.33 60.39 142.78
100 33.89 58.33 59.32 144.38
200 67.78 53.67 57.77 146.59
500 169.45 26.83 54.73 150.98

Table IV. Error analysis for sigcomm4. ‘error %’ is the magnitude of the mean perturbation relative
to the mean flow size.

The last three columns of Table III are based on the actual erroneous input to
the NTAP: the perturbed data (the ‘measured’ traffic volume values in Table I).
The column ‘single value’ shows the single flow values derived from the corrected
data (the ‘corrected’ values in Table I). The reason why flow bounds are sought is
seen in the ‘single value’ column. When a single LP is solved for each flow with the
objective to minimise (globally) the error according to the data correction model,
the derived solution is wrong. The values do not match the true flow values in
most cases (comparing columns 2 and 5): in 75% of cases, in fact. The values
correspond to one extremum in the bounds approach because the global objective
seeks a satisfiable solution to an under-constrained problem.

The sixth column shows traffic flow bounds, based on the corrected data accord-
ing to the error correction model. For five flows shown in bold, the true flow value
is not contained in the bounds. Further, the equal upper and lower bounds falla-
ciously suggest a definite value. In contrast, the closure bounds, derived from the
‘bounded’ values in Table I and shown in the final column, always enclose the true
flow values.

Effect of uncertainty. Table III shows that the flows derived by the UCSP ap-
proach in the presence of perturbed data are reliable and comparable in tightness
to those derived without uncertainty. Our second experiment investigated in more
detail the effect of inaccuracy in the data on the tightness of the solution bounds.
For both models, do the bounds get looser as the uncertainty grows; and if so, how
does it impact the meaningfulness of the bounds?

Table IV evaluates variance of flow tightness with the amount of uncertainty. We
specified the data uncertainty by the stochastic minor error ±N(µ, σ2). The mean
µ is zero; the variance σ increases from 0 (no perturbation) to 500. Since the 95%
percentiles of the normal distribution lie at ±1.96

√
σ, the latter rows in the table

exhibit substantial minor error, verging on gross error. The second column shows
the magnitude of the mean error relative to the mean flow size.

The ‘% valid’ column is for flow bounds derived by the data correction method. It
is the proportion of bounds that contain the true flow values. With no uncertainty

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

22 · N. Yorke-Smith and C. Gervet

Problem Lower Bound Upper Bound Time

toy2 100% 100% 0.06
sigcomm4 17% 184% 0.16
sigcomm4’ 68% 132% 0.13

dexa 2.8% 26062% 53.4
as3967 0% 2454% 224

Table V. Results on academic and real-world networks. The bounds are given as the percentage
of the true flow values (averaged over all flows); 100% is perfect.

(first row), the bounds always contain the true value, as expected. However, with
any uncertainty, the validity of the flow bounds falls to just under 60%. The validity
is constant whether there is modest or large amounts of uncertainty. Only when the
magnitude of uncertainty becomes very great (more than 50% of the true data in
magnitude) does the validity fall further. It seems that data correction can produce
a ‘corrected’ data set that is a fixed error distance from the true data, until the
point when it is overwhelmed by the uncertainty. Beyond this point, there is no
distinction between minor and gross errors.

The last two columns give the lower and upper bounds of the certainty closure, as
a percentage of the true flow values. They show that the certainty closure produces
bounds that widen monotonically as the uncertainty increases. However, they widen
much more slowly than the increase in uncertainty, showing that the certainty
closure produces solutions relatively insensitive to the magnitude of uncertainty.

Indicators of model constrainedness. Finally, we evaluated our transformation-
based solving approach on different networks characterised by their topology, size
and traffic. Table V shows the results for the four problem instances defined in
Table II above, and one additional network we describe below. The bounds are
shown as the percentage of the values of the true flows (for no data uncertainty).
Thus 68% indicates the derived flow value is about 0.7 of the true flow value. As
in Table IV, the closer to 100%, the tighter the bounds.

Table V indicates how the UCSP model gives insightful results on real world
networks involving more than 50 routers, 300 links, and 20 end-points. CPU times,
given in seconds, account for the transformation step and the two LP runs for each
decision variable. Experiments showed that the bulk of the time reported is spent
in garbage collection, indicating the present implementation is space-bound, not
time-bound; a more efficient implementation of our current prototype is expected
to substantially reduce the runtime.

Observe that the bounds vary tremendously: tight for toy2 and much less tight
for dexa and as3967. We infer that (1) the model as specified is under-constrained
and thus either more data or network information is required to derive informed
bounds, (2) some links are under-used (suggesting potential for redesigning the
network topology), or (3) there are no clear bottlenecks (saturated links).

Since an overwhelming amount of information is available from different sources
and network devices (e.g. routers), a complex task when dealing with network design
is to identify relevant data that will add useful information to the model, without
being overwhelmed with an excessive volume of data. This is a research field in its

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 23

own right [Grossglauser and Rexford 2004].
The data correction model did not consider such additional data. However, we

discovered that the bounds can be tightened by improving the constraint model, for
example by adding constraints from LSP counters [Davie and Rekhter 2000]. LSP
counters provide additional information about the traffic flows, making the model
less under-constrained, and so leading to tighter bounds. We used these additional
LSP constraints for sigcomm4 to illustrate on our running example, leading to the
bounds shown on the third row sigcomm4’. The tighter bounds with the LSP
constraints lead to a more informative discussion.

4.5 Discussion

Our certainty closure approach adopts a reliable model and leads to reliable solu-
tions. We have diagnosed that the model of the initial approach did not capture
the genuine problem. In contrast, the certainty closure presents a satisfiable model
(provided, of course, that solutions exist to the true problem) that is also a reli-
able model. Compared to the initial approach to the NTAP, our approach leads to
guaranteed quantitative results. Section 5 will formalise and generalise the solving
method of our UCSP model into a transformation resolution form.

Second, our approach extends a classical CSP by accounting for data uncertainty
while at the same time preserving the properties of a deterministic model deprived of
uncertainty. It separates data and constraint issues. When the interval found for a
flow variable is empty, we can infer that the UCSP model is unsatisfiable, implying
that the constraint model is unsatisfiable not due to inaccurate data values. In
comparison, data correction is designed to always produce a satisfiable model; it
finds a solution whether or not one exists to the true problem.

Third, our approach enables insight into the sources of bottlenecks in the network
at no extra computational cost. For instance, tight bounds for a flow indicate that
in all possible solutions the traffic behaves in a similar way, while broad bounds
indicate a volatile flow. Knowledge of this kind is sought by network operators
[Feldmann et al. 2001]. Likewise, a lower bound on a link close to its capacity
indicates a critical, saturated link. The bounds arising from the initial approach
do not reliably support such inferences. Finally, if all the bounds are broad, this
can imply that the current data is insufficient, and thus the constraint model is
under-constrained, or that the network is under-used.

As an extension of CSP models, inspired by models and techniques from reliable
computation, the model and operational behaviour we have presented for the NTAP
problem are not defined within the CP framework. Thus in the following section
we introduce the remainder of our generic formal framework that defines a UCSP
model, and give the operational semantics independently of a specific method but
rather in terms of algorithmic properties.

5. THE CERTAINTY CLOSURE FRAMEWORK

The certainty closure framework is composed of two main elements: (1) an extension
of the CSP formalism to represent ill-defined constraint problems with incomplete
or erroneous data, and (2) the solving of such models for a suitable outcome, by
means of resolution forms. The NTAP case study presented in the last section
illustrated the closure paradigm. The main objective of the framework is to offer

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

24 · N. Yorke-Smith and C. Gervet

a reliable, tractable, and non-probabilistic approach to constraint reasoning under
uncertainty. The certainty closure framework achieves this objective by extending
the CP formalism with the closure paradigm.

Complexity. An uncertain CSP is a restriction of a general quantified CSP if
we view parameters as existentially quantified variables. Recall that the decision
problem for a general QCSP is PSPACE-complete, and for many constraint classes
where a CSP is tractable, a QCSP is not [Boerner et al. 2003]. Fortunately, the
quantifiers in a UCSP are not arbitrary but are restricted to an existential pair:
the question ‘Does there exist a potential solution to a UCSP?’ is:

∃~v ∃ ~λv : C(~v; ~λv) (11)

as we saw in Definition 3.2.
Further, provided we retain the ordering in the sentence (11), logically we can

abolish the distinction between parameters and variables. That is, letting x and y
be variables, (11) is equivalent to:

∃x∃y : C(x; y) ⇐⇒ ∃x, y : C(x; y) ⇐⇒ ∃z : C(z) (12)

and, changing variables to z, this is the decision problem for a classical CSP. This
shows that the decision problem for a UCSP is NP-complete. Taking the idea of
treating the parameters as variables, we can find a potential solution by solving the
resulting CSP. However, it does not necessarily follow that, operationally, this is
the best means to find potential solutions.

A second problem of interest to us is the complexity of finding the complete
solution set of a UCSP, i.e. finding all potential solutions. Finding all solutions
to a classical CSP does not fit into a complexity class in the traditional sense; its
characterisation depends on how the output is returned.

One way to characterise the enumeration problem is as a function problem, i.e.
a function that, given the formula as an input, produces the list of solutions. Since
the output list is of exponential size (in the input), in general, we can say that the
problem is FEXPTIME (functional EXPTIME). For a more precise characteri-
sation, we refer to [Schnoor and Schnoor 2006].

5.1 Other Closures

In the NTAP case study we were concerned with the full closure. This outcome
fitted the desire of the user for bounds on the possible traffic flows. However,
depending on the user requirements, alternative solutions might be sought as the
outcome to a UCSP. In our formalism, such solutions are specified by properties on
individual elements of a set of potential solutions (i.e. closure), or by properties on
the whole closure. In summary we have:

—Full closure. The set of all solutions that each cover at least one realisation.
Example usage: behaviour guarantee across all possible solutions; diagnosis of
the reliability of approximation methods.

—Robust set. A set of solutions such that each cover all realisations (not just
at least one). A robust set closure is maximal if the cardinality of this set is
maximal among all such sets. Example usage: conformant planning.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 25

⊤

nnnnn

PPP
PPP

mrs

A
A

A
A

A
A

A
cs

rs mcs

nnnnn

⊥

Fig. 4. Simple hierarchy of closures. At the top of the lattice is
the full closure, at the bottom the empty closure. Illustrated in
the middle are a covering set (cs), a minimal covering set (mcs),
a robust set (rs), and the most robust solution (mrs).

bP1 a b d
bP2 a c
bP3 b e
bP4 b c

Fig. 5. Realised CSPs (de-
noted bP1– bP4) and their feas-
ible solutions (denoted a–e).

—Most robust solution. A single solution that covers the maximal number of
realisations, of all single solutions. Example usage: robust solution that must
be a single solution and not a set of solutions, e.g. schedule for a staff roster
[Manandhar et al. 2003].

—Covering set. A set of solutions that together cover all realisations. A covering
set closure is minimal if the cardinality of this set is minimal among all such
sets. Example usage: robust solution covering every eventuality, as in contingent
planning [Yorke-Smith and Guettier 2003].

To illustrate how they relate in terms of sets of potential solutions, a simple
hierarchy of those closures is shown in Figure 4. They form a lattice under set
inclusion. The full closure is the top of the lattice, and the empty closure (the
empty set) is the bottom.

Example 5.1. Consider the abstract UCSP depicted in Figure 5. There are four
realised CSPs, denoted P̂1–P̂4, and five potential solutions, denoted a–e. The top
of the lattice hierarchy is the set ⊤ = {a, b, c, d, e}. The most robust solution is b;

while uniquely maximal, it does not cover all realisations (P̂2 is uncovered). Since
there is no solution that covers all realisations, the (maximal) robust set is empty.
However, there are two covering sets of minimal cardinality, {a, b} and {b, c}.

These types of closure suit satisfaction problems. When the ill-defined problem
includes an objective function, additional types of closures can be defined. For
instance, in robust optimisation, the best worst-case solution (a compromise be-
tween optimality and reliability) is sought. In this article we focus on satisfaction
problems; the extension of the certainty closure framework to uncertain constraint
optimisation problems defines new types of closures [Yorke-Smith and Gervet 2005].

5.2 Deriving Closures of a UCSP

A UCSP adds expressive power and flexibility to a CSP but, depending on the
closure demanded, is harder to solve. We now present means to derive different
types of closures of a UCSP. We show how existing suitable algorithms from dif-
ferent fields are valuable within the unifying framework we present. Our aim is for
polynomial methods, and, secondarily, for tight approximations that preserve the
closure (recall Figure 1). Where possible, we would like to exploit existing methods
for CSP solving, and leverage concepts and algorithms for general QCSPs.

Even though UCSPs are a restricted form of QCSP, our objective of deriving
a closure effectively has lead us to consider dedicated techniques with greater ef-

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

26 · N. Yorke-Smith and C. Gervet

ficiency than general QCSP solving. This does not exclude the use of generic
methods where advantageous. For instance, we can use quantified arc consistency
[Bordeaux and Monfroy 2002; Mamoulis and Stergiou 2004; Gent et al. 2005] as a
preprocessing step.

In the next two sections we define two resolution forms — two possibilities to move
from a UCSP to a closure. We say ‘resolution form’ rather than ‘algorithm’ because
we seek generic approaches to: (1) confront both discrete and continuous UCSPs;
(2) accommodate broad, heterogeneous classes of constraints and uncertain data;
and (3) leverage a range of solving methods from disparate fields. The resolution
forms provide templates, showing how to derive closures; we instantiate them for a
selection of application domains, and tractable constraint classes. Given the high
complexity of finding a closure to a UCSP, we assume independence of parameters
when we present tractable instances of the resolution forms, but emphasise that
neither the UCSP model nor the resolutions forms themselves require parameter
independence. Section 5.5 returns to the issue of approximation.

Briefly, the first resolution form is to transform the UCSP: we find and then
solve an equivalent certain CSP with respect to the solution sought. The second
form, enumeration, applies when there are a finite number of realisations. Each
realisation gives rise to a certain CSP, which we solve, and a closure is then formed
from all the solutions to the satisfiable CSPs.

5.2.1 Comparing Constraints. The foundation of both resolution forms is rea-
soning about uncertain constraints in terms of certain constraints. The idea behind
such reasoning is that it abstracts us away from the computation domain (i.e. the
types of constraints and their representation) and the uncertainty sets (i.e. the
nature of the parameters, discrete or continuous, and the representation of the un-
certainty sets). We thus require a notion of equivalence between the solutions of
uncertain and certain constraints. The central idea — allowing us to compare the
solutions sets of UCSPs (which we seek) and CSPs (which we use to describe a
closure) — is the observation that uncertain constraints, with suitable operations,
form an algebraic structure. The ordering relation and operations in this structure
will enable us to compare sets of constraints.

Conjunction, disjunction and implication are defined for certain constraints in
the usual way. We extend those definitions to uncertain constraints and define
implication between uncertain and certain constraints.

Proposition 5.1. Let C be the set of all constraints, certain and uncertain
that define a UCSP. With conjunction and disjunction as meet and join, C is a
distributive lattice. With logical implication of constraints, C has a natural partial
order. Let Ĉ ⊂ C be the subset of certain constraints; then Ĉ forms a sublattice.
In C and Ĉ, the top ⊤ is the always-true universal constraint, the bottom ⊥ the
always-false empty constraint.8

Crucially, the notion of implication in C takes into account potential realisations
of the constraints. We say that an assignment to its variables satisfies an uncertain

8To be precise, elements of C, and top and bottom in particular, are equivalence classes [·] under
constraint implication. That is, the top is in fact the class [⊤]. We will not need to account
further for this subtlety.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 27

constraint if it satisfies at least one of its realised constraints. This ensures that,
whatever the true realisation of the parameters, no solution to that realised CSP
is a priori excluded.

Working within this algebraic structure, we can encapsulate the solving process
using mappings from C to itself. Reliable solutions in the framework will be guar-
anteed by properties of the mappings, and correctness can be proved independently
of the constraint and data representations. Second, knowledge of the uncertain
data can be seen in terms of a subsumed-by order on constraints, e.g. should we
learn more about the data, the revised closure will be subsumed by the old.

For certain constraints, we have the subsumed-by order [Tsang 1993]. We extend
this order to C by defining an uncertain constraint c2 to subsume a constraint c1 if
the complete solution set of c2 contains that of c1:

Definition 5.2. Let � be an extension of the subsumed-by partial order on Ĉ to
C such that c2 ∈ C subsumes c1 ∈ C, written c1 � c2, iff Cl(c2) subsumes Cl(c1).

This partial order is well-defined because Cl(c) is always a certain constraint. We

will write � for the subsumed-by orders both on Ĉ alone and on C, differentiating
the two only if required. For UCSPs, � is a formal definition of ‘enclosing solution’;
it also provides the notion of equivalence we seek:

Definition 5.3. Let c1, c2 ∈ C be uncertain constraints. We say that c1 and c2

are equivalent iff c1 =� c2, i.e. iff c1 � c2 and c2 � c1.

Example 5.2. Consider the constraints c1: X > {2, 3, 4} and ĉ1: X > 2. We
have both c1 � ĉ1 and ĉ1 � c1. Thus c1 and ĉ1 are equivalent under � (note ĉ1 is
the full closure of c1): they describe the same set of potential solutions for X.

Thus with � on C we have a means of deciding when two constraints are equiv-
alent, in terms of their solution sets. We can now give the operational semantics
for UCSP solving. Note that the notion of equivalence defined here is for sat-
isfaction problems. Our results extend directly to optimisation UCSPs, once we
define the equivalence notion to include a notion of optimality as well as reliability
[Yorke-Smith and Gervet 2005].

5.2.2 Solution Operators. A classical CSP is solved by propagation and search:
one calculates the fixed-point of some local consistency operators and (if necessary)
explores the search space. Until we come to a specific application domain, the
specific methods used to solve CSPs are not relevant: the essential point is to
guarantee correct and tight inference.

Since we are not committed to techniques from one paradigm, we choose to ab-
stract from the algorithms of CSP solving and encapsulate the operational semantics
by a solution operator. We have seen that a CSP P̂ is described by an element of
a certain constraint lattice Ĉ and, likewise, so is every solution to P̂ . Hence we
define a solution operator as a map from Ĉ to itself that provides the conjunction
of a set of solutions to a CSP P̂ . The conjunction may be empty, indeed must be
if P̂ is inconsistent. Clearly, a solution operator obeys the properties expected of
CSP solving [Apt 1999]:

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

28 · N. Yorke-Smith and C. Gervet

Definition 5.4. Let P̂ be a certain CSP. Let φ : Ĉ → Ĉ be a map such that φ(C)

describes a set of solutions to P̂ . If φ obeys:

1. Contraction The final state is a subset of the initial state: φ(C) � C
2. Monotone Order respected: C1 � C2 =⇒ φ(C1) � φ(C2)

3. Idempotence Further application of φ yields no further solutions

then we say that φ is a solution operator. If further φ(C) describes the set of all

solutions to P̂ , we say φ is complete for P̂ .

Example 5.3. Consider two solution operators for finite domain CSPs. Let φ1

be a map that corresponds to naive backtrack search. If we insist that the whole
search tree be explored, then φ1 will give all solutions; this makes it complete. Let
φ2 be a map that corresponds to search with forward checking. Operationally, φ2

would be expected to be more efficient than φ1, i.e. find solutions in less time, but
declaratively the two operators serve the same purpose for the class of CSPs.

Similarly, a solution operator for an uncertain CSP is a map that yields a closure
when given a UCSP P . A complete uncertain solution operator is one that yields
the full closure Cl(P). An uncertain solution operator is formally defined as a

mapping from C to Ĉ:

Definition 5.5. Let P be a UCSP. An uncertain solution operator is a map
ρ : C → Ĉ such that ρ(C) � Cl(P). An uncertain solution operator ρ must obey
the contraction, monotone and idempotence properties. If further ρ(C) = Cl(P),
we say ρ is complete for P .

Example 5.4. Over the computation domain of Example 3.1, consider the map
ρ that takes the (disjunction of the) constraints of the UCSP P in the example, and
returns constraint X = 3∧Y = 1. ρ is an uncertain solution operator; it is not
complete because it does not describe all of Cl(P).

5.3 Transformation Resolution Form

Transformation to an equivalent certain CSP is one way to build an uncertain
solution operator; enumeration is another. The idea behind transforming the UCSP
is simple: whereas it might be difficult to directly solve the UCSP, there exist
efficient means of solving classical CSPs (besides various extensions of them). We
would like to take advantage of these powerful solving techniques.

We saw the transformation resolution form in the earlier NTAP case study. In
general, it consists of the same two steps. The first step is to transform the UCSP P
to an equivalent certain CSP τ(P). The second step is to find the sought closure of
this latter CSP. The practical issues related to this approach are thus also twofold:
finding a CSP equivalent to the UCSP, i.e. one whose complete solution set coincides
with the sought closure to the original problem; and then solving it efficiently. We
achieve the first part by seeking a transformation operator from UCSP to CSP that
satisfies specific properties. We achieve the second part by using existing techniques
appropriate to the computation domain.

In the scope of this article, we concentrate the discussion of this resolution form
to the case of the full closure.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 29

The equivalent CSP is found using a map from the space of UCSPs to the space
of CSPs, which, viewed as constraints, corresponds to a map from C to Ĉ. We call
a suitable map a certain equivalence transform (CET):

Definition 5.6. A lattice homomorphism τ : C → Ĉ is a certain equivalence
transform if it preserves certainty and is monotone and idempotent:

1. Preserves certainty τ(ĉ) = ĉ ∀ĉ ∈ Ĉ

2. Increasing c � τ(c) ∀c ∈ C

3. Monotone c1 � c2 ⇒ τ(c1) � τ(c2) ∀c1, c2 ∈ C

4. Idempotence9 τ2(c) = τ(c) ∀c ∈ C

These properties of τ are enough to prove that a certain CSP is found and to
guarantee the correctness of an uncertain solution operator based on τ . Together,
the properties of a CET ensure that the complete solution set of the equivalent
CSP contains the full closure to the original problem.

Further, if the full closure to the original problem contains the complete solution
set to the equivalent CSP, then τ is a tight CET and the solutions sets of P and
τ(P) are equivalent.

Proposition 5.7 sums up the result: an uncertain solution operator ρ can be
defined as the composition of a tight CET τ and a certain solution operator φ. We
can think of ρ as first finding an equivalent certain problem, then applying a certain
solution operator to it.

A tight CET thus gives a correct and tight closure. If τ is a non-tight CET,
we can obtain only an outer approximation to the full closure, as shown earlier in
Figure 1. In practice, such approximations to the closure are often valuable for
their reduced computational or representational cost, as Section 5.5 will discuss.

Proposition 5.7. Let P be a UCSP. If τ is a tight CET and φ is a certain
solution operator complete for τ(C), then ρ = φ◦τ is an uncertain solution operator,
complete for P .

Proof. Let 〈V ,D, Λ,U , C〉 = P and C =
∧

i ci. Suppose τ is a tight CET,
and φ is a complete solution operator for τ(C). We show that ρ = φ ◦ τ satisfies

Definition 5.5. First, since τ maps C → Ĉ and φ maps Ĉ → Ĉ, then ρ maps C → Ĉ.
We show that the set of all solutions to the equivalent CSP coincides with the

full closure of the original UCSP. That is, ρ(P) = Cl(P). We prove correctness,
then tightness.

From the closure properties of τ , we have for all c ∈ C, c � τ(c) ⇒ Cl(c) �bC

Cl(τ(c)) (where �bC
is the subsumed-by order over Ĉ; we will omit the subscript

from now on). This holds for all c ∈ C; in particular for C. Thus we have Cl(C) �
Cl(τ(C)). By the properties of τ , τ(C) is a certain constraint. Since φ is complete
for τ(C), Cl(τ(C)) = φ(τ(C)) by construction. This gives Cl(C) � φ(τ(C)).

The converse, φ(τ(C)) � Cl(C), follows at once from the tightness of τ . Hence,
since P is given by the conjunction of its constraints C, we have ρ(P) = Cl(P).

9Observe that property 4 (idempotence) follows from property 1 (preservation of certainty).

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

30 · N. Yorke-Smith and C. Gervet

It remains to prove ρ satisfies the contraction, monotone and idempotence prop-
erties. The latter two (monotone and idempotence) follow at once from the same
properties of τ and φ, and because τ preserves certainty.

Contraction follows because τ is tight, φ is idempotent, and because of the defi-
nition of �:

Cl(ρ(C)) = Cl(φ ◦ τ(C)) since ρ(P) = Cl(P),

and Cl(P) = φ ◦ τ(P) by above

= φ ◦ φ ◦ τ(C) φ complete solution operator,

and φ ◦ τ(C) ∈ Ĉ

= φ ◦ τ(C) φ idempotent

⊆ Cl(C) τ tight

whence ρ(C) � C by the definition of �.

Example 5.5. Consider linear arithmetic constraints over two variables V1 and
V2 with domains in R

+. Suppose uncertain constraints of the form a1V1 + a2V2 ≤
a3, where ai = [ai,ai] are real, closed intervals. Then consider an operator that
transforms each constraint separately in the following way:

a1V1 + a2V2 ≤ a3 → a1V1 + a2V2 ≤ a3 (13)

This CET τils for the full closure was presented in the NTAP case study. We
now prove that it actually defines a tight CET. Note that in Section 4, from the
equivalent CSP τils(C) we computed a projection of the full closure, i.e. the final
outcome for the problem was an approximation (correct but not tight) of the full
closure, despite the CET being tight.

Proof. By construction, the transformation given in Section 4 defines a map-
ping from a UCSP P to a CSP P ′. It maps the conjunction of constraints C =∧

i ci ∈ C to a conjunction of constraints τils(C) =
∧

i τils(ci) ∈ Ĉ.
To show that this map is a CET for the full closure, we must show it satisfies

the properties of Definition 5.6 and is increasing. Observe that τils leaves a cer-
tain constraint unchanged; thus we have preservation of certainty (and so idempo-
tence also). The increasing and monotone properties relate to the interaction of τils
with the subsumed-by order �. They follow from the statement of the last theorem.
Proposition 4.3 states the equivalence of τils(P) and P in terms of complete solution
sets. Thus, if A′ x ≤ b′ is the transformed system corresponding to a single con-
straint c ∈ C, then Cl(c) �bC

Σ (A′, b′) ⇐⇒ Cl(c) �bC
Cl(τils(c)) ⇐⇒ c � τils(c).

Monotonicity is similar.

The main strength of the transformation resolution form is that only one deter-
ministic CSP needs to be solved to find the closure, and existing algorithms can be
leveraged to provide a practical algorithm for deriving the sought closure from the
equivalent CSP. However, a suitable transformation does not necessarily exist for
every UCSP instance or constraint class. We outline existing suitable constraint
classes and present a new class based on properties on uncertain constraints.

5.3.1 Practical Instances of Transformation. We would like to have a ‘black-
box’ process to derive the sought closure, given an input UCSP. As a step towards

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 31

0

1

2

3

4

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

−4

−3

−2

−1

21.510.5−0.5−1 0

3−4*x
−3+4*x

Fig. 6. Polynomial inequality CET described by two constraints. The upper and lower shaded
areas denote the two constraints; it can be verified that the solution to every realised constraint
lies in one of them.

this, we present existing and identify new tractable instances of UCSPs suitable to
the transformation resolution form that satisfy the operational semantics we de-
fined. For each UCSP instance, we show how the transformation resolution form
can be instantiated to a polynomial time algorithm. We specify (1) how to trans-
form the problem by a CET, and (2) how to solve the equivalent CSP effectively.

D = Rm, U = Rℓ, and C = {{{n-ary linear, arithmetic constraints}}}.
Example constraint: [16, 20.5]X + Y − Z ≤ [−2, 5].

A continuous UCSP with n-ary linear arithmetic constraints can be solved ef-
ficiently by transformation. When the constraints are restricted to polynomial
inequalities, a tight CET is obtained by examining the bounds on the parame-
ters (a description and proof for the case of non-negative variables were given in
Section 4). Note the result holds for both discrete and continuous UCSPs. The re-
sulting equivalent CSP, a system of polynomial inequalities over the reals, is easily
solvable with classical computational algebra, or with linear programming.

Example 5.6. Consider the UCSP with real variables X, Y ∈ R (note the vari-
able domains here are not non-negative: the UCSP is an ILS but is not a POLI
system), and the single constraint:

λ1X + λ2Y ≤ µ (14)

where the uncertainty sets for the parameters are real intervals: Uλ1
= [4, 5], Uλ2

=
[−1, 1], Uµ = [2, 3]. The CET described above transforms (14) into a classical
constraint according to:

{
Y ≥ −3 + 4X if Y ≥ 0

Y < 3 − 4X if Y < 0
(15)

The transformed constraint is depicted in Figure 6.

D = Rm/Zm, U = Rℓ/Zℓ, and C = {{{simple temporal constraints}}}.
Example constraint: |Y − X | ≤ [10, 20].

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

32 · N. Yorke-Smith and C. Gervet

Simple Temporal Problems with Uncertainty (STPUs) [Vidal and Fargier 1999]
feature simple temporal constraints over continuous or discrete time-point variables,
some of which may have uncontrollable durations. At a conceptual level, existing
algorithms to solve a STPU (e.g. fastDCcheck [Morris 2006]) can been seen as
instances of the transformation resolution form. They transform P into a STP P ′

which describes the minimal network for the time-points. Since P ′ is already in
solved form, φ is trivial. P ′ represents the full closure of the STPU, since every
solution that could occur under one or more realisations is in the minimal network;
in fact, since only solutions are in the network, it is a tight representation of the
closure. The complexity of the complete process is polynomial in the size of the
temporal network [Morris 2006].

Uncertain simple temporal constraints are instances of a more general constraint
class we call (binary) parameter monotone constraints with one parameter. A STPU
with independent parameters is a UCSP with constraints of this form.

D = Zm, U = Zℓ, and C = {{{n-ary parameter monotone constraints}}}.
Example constraint: {−3, 0, 3}X ≤ 2Z + {2, 3, 5}.

With parameter monotone constraint we extend the concept of a monotone (cer-
tain) constraint [van Beek and Dechter 1995] to uncertain constraints, by defining
a structural property of parameter monotone. We define the simple case of a binary
constraint but it can be generalised to n-ary constraints [Yorke-Smith 2004].

Definition 5.8. Let c ∈ C be an uncertain constraint with two discrete variables
and one discrete parameter. If there exists an ordering of the uncertainty set of the
parameter such that:

∀λ ∈ U, ĉ(x, y; λ) ⇒ ĉ(x, y; λ′) ∀λ′ > λ (16)

we say that c is parameter monotone.

In the case of binary constraints, there exists a simple test for the parameter
monotone property. The CET for parameter monotone constraints works on the
extremal values of the uncertainty sets. When the constraints are binary, it trans-
forms a parameter monotone, basic, monotone constraint into a binary monotone
constraint. The complete solution set of the latter can be found in linear time
(in the number of variables) with 2D integer hull algorithms [Harvey 1999]. For
example, {−3, 0, 3}X ≤ 2Z + {2, 3, 5} is transformed to −3X ≤ 2Z + 5, for X ≥ 0.

Remark 5.9. We highlight that the transformation resolution form extends to
optimisation problems. RO seeks transformation of well-structured optimisation
UCSPs (with complex forms of uncertainty sets) to a robust counterpart, in order
to inherit the computational complexity of the equivalent optimisation CSP (CSOP)
[Hoffman 2000]. The robust counterpart is an equivalent CSOP with respect to the
optimality of the solution sought.

We also note that the transformation resolution form applies to other types of
closure beyond the full closure. For instance, in Example 5.6, if the user desires the
robust closure rather than the full closure, the CET obtains the intersection rather

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 33

than the union of the transformed constraints:{
Y < 3 − 4X if Y ≥ 0

Y ≥ −3 + 4X if Y < 0
(17)

5.4 Enumeration Resolution Form

Seeking a CET is possible when the uncertain problem is well-structured. It has the
main advantage of benefiting from the computational complexity of the equivalent
deterministic CSP. However, depending on the constraint class, it might not always
be possible to find a CET, and depending on the problem, the user might want
to know which solution supports which realisation. This support information is
not guaranteed to be preserved by a CET. A second and complementary means to
derive closures is by enumeration. Clearly, as an essentially exhaustive technique,
enumeration requires operationally there be only finitely-many, M < ∞, realisa-
tions of the data. We generate and solve each realised CSP, forming the closure
from the solutions to all the good realisations.

Contrasted with transformation, the cost of enumerating and solving M possibly
similar CSPs grows with M , which can be exponential in the size of the UCSP. This
said, there are three mitigating factors. First, in a given computation domain, it is
important to exploit knowledge of the structure of the realised problems. Second,
it may be possible to solve one realised CSP based on the experience of solving
the previous ones, using specific dynamic CSP techniques (see the survey [Verfaillie
and Jussien 2005]). Third, the solving of the realised CSPs can in principle be
parallelised.

Straight-forward enumeration can be polynomial in space, if each realised CSP is
in PSPACE, but is usually exponential in time. For practical use, the challenge (as
hinted earlier) is to provide efficient operational semantics in specific cases. Two
ways to reduce the time complexity are (1) solve each realised CSP more efficiently
(as noted above); and (2) solve only a subset of the realised CSPs.

5.4.1 Instances of the Enumeration Form for Different Closures. We sketch how
existing solution methods can be leveraged to provide algorithms for deriving dif-
ferent types of closures.

Full closure with continuous data. If reals are finitely represented (e.g. as in
floating point arithmetic), enumeration is commonly used to derive the complete
solution set of NCSPs. The branch-and-prune methodology [Benhamou 1995] is
such an instance allowing us to solve a UCSP with continuous data and variables,
provided all the constraints are negatable (e.g. [15, 25]X + sin(Y) 6= XZ2 + 1). It
has been extended to classes of constraints including one equality [Ratschan 2003].

Besides branch-and-prune, other instances exist such as symbolic quantifier elimi-
nation methods (expensive but exact), and Monte Carlo estimation with application
to arbitrary n-ary polynomial inequalities over the reals.

Full closure with discrete data. The general CSP algorithm constructive disjunc-
tion (CD) [Van Hentenryck et al. 1998] can be used seen as an instance of the
enumeration form to derive the full closure. Indeed, if we consider a UCSP P as
a disjunction of its realised CSPs,

∨
i P̂i, then Cl(P) is a constraint implied by

the disjunction. In constructive disjunction one eliminates all domain values not

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

34 · N. Yorke-Smith and C. Gervet

supported in at least one of the disjuncts (i.e. not supported by at least one reali-
sation). This is exactly what is required to derive the full closure. The improved
algorithm for CD from [Lhomme 2003] can be made incremental by storing supports
for each satisfiable realisation. Techniques for discrete QCSPs, such as quantified
arc consistency, can also be used as preprocessing steps.

Most robust solution and covering set closures with discrete data. CSP algorithms
extended for mixed CSPs [Fargier et al. 1996] are instances of the enumeration
resolution form. These essentially enumerative algorithms apply directly to the
discrete data case of UCSPs over finite domains, with the uncertainty represented by
subsets of Z. They are efficient when there is at most one parameter per constraint
and the data is independent.

There are two algorithms for mixed CSP solving, depending on whether further
knowledge about the realisations will be acquired. If not, the no observability case,
a most robust solution closure (in our terminology) is sought by branch-and-bound
search with forward checking. If instead the true state of the world will become
known to us in the future, the full observability case, a covering set closure (in our
terminology) is sought by decomposing the space of realisations.

5.5 Approximation

Studies in OR demonstrate that approximation can be the only tractable way to
solve certain problems, and that in practice the information obtained often suffices.
The main reasons we consider approximations in the certainty closure framework
are at heart operational. Seeking tractable models can lead us to trade-off tightness
of the closure and efficiency in deriving or representing it. Approximation must not
impair correctness but may forgo tightness: for the full closure, for instance, it must
not exclude any potential solutions but may include unsupported ‘solutions’.

To reduce the computational complexity, we can choose to approximate the
model, the solution sought, or its representation (approximating the model leads
to approximating the solution but not necessarily the reverse) [Yorke-Smith 2004].
First, as in the NTAP case study of Section 4, we can approximate the UCSP
model. For the NTAP, we made an approximation by assuming independence of
the traffic splitting parameters, i.e. we omitted some constraints from the UCSP.
Second, we can seek an outer approximation of the closure, i.e. deliberately derive
a non-tight set. This is a common choice in reliable computation. For instance, we
can approximate the uncertain solution operator by an outer-enclosing operator,
such as that derived from a non-tight CET (recall Section 5.3). Third, we can
choose a constraint class that can express only an inexact representation of the
closure [Maher 2003]. For the NTAP, we used the class of axis-parallel hyperboxes
rather than general affine constraints (recall Figure 3), i.e. we projected the full
closure onto the variables.

6. CONCLUSION

In this paper we defined the certainty closure framework, by introducing a generic
UCSP model to represent constraint problems with incomplete and erroneous data,
and a closure as the sought outcome. Our framework demonstrates how existing
models and methods from different fields such as reliable computation and op-

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 35

erational research can be brought together as a tractable means towards reliable
reasoning in the presence of incomplete and erroneous data. It constitutes a first
step towards automating the solving of UCSPs using a generic, non-probabilistic
model that encloses data uncertainty within convex uncertainty sets. We have
given specific instances of two resolutions forms, and defined new constraint classes
suitable for the transformation resolution form to derive the full closure.

Summarised, the benefits of the certainty closure framework include:

—Generic. The framework is defined at an abstract level. Thus it is widely ap-
plicable across diverse application domains. It can be instantiated to a concrete
form in each case.

—Reliable. The closure paradigm ensures that each uncertain CSP is a reliable
model of the ill-defined constraint problems. Properties of the framework guar-
antee that reliable solutions are obtained from the model.

—Practical. The approach seeks efficient algorithms to solve the model, as instances
of the resolution forms.

—Unifying. Ideas and methods from different fields are brought together by the
framework: described in a common language and embedded in the CP formalism.

In the Network Traffic Analysis Problem case study, we addressed a real-life
problem in networking, driven by the user’s requirement for reliable bounds on
traffic flows. Solving the NTAP as a UCSP for its full closure produced guaran-
teed bounds, at a computational cost comparable to the initial deterministic, data
correction approach. In terms of insights gained, we could diagnose the lack of
reliability of the initial approach, and could provide informed feedback to the end
user regarding the network behaviour.

Future work. This paper has concentrated on developing and illustrating the
framework, and in particular the resolution forms, for the full closure. Section 5.1
listed other types of closures to a UCSP. Part of our future is to seek tractable
instances for such alternative closures. One aspect related to tractability is ap-
proximation. In addition, we are interested in identifying constraint classes and
uncertainty set representations for which accounting for data dependency does not
render the problem intractable.

Regarding the NTAP application, our implementation in ECLiPSe automatically
transformed the initial UCSP model into an equivalent certain CSP, then solved
by LP. The next challenge is to build a system that detects the UCSP problem
structure (constraint and data types) and identifies the most effective instance of a
resolution form, based first on the instances presented in this paper.

The UCSP model is extensible to optimisation problems with various optimisa-
tion criteria. We recently introduced the uncertain CSOP model [Yorke-Smith and
Gervet 2005], which opens many fruitful research directions, including defining a
suitable notion of optimality with respect to a closure or set of closures, adapting
work found in robust optimisation.

ACKNOWLEDGMENTS

The authors thank many for helpful discussions during the development of this work, in
particular our former colleagues at IC–Parc. We are grateful to the reviewers for their

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

36 · N. Yorke-Smith and C. Gervet

suggestions that substantially aided the organisation of this paper. This work was partially
supported by the EPSRC under grant GR/N64373/01.

REFERENCES

Aberth, O. 1997. The solution of linear interval equations by a linear programming method.
Linear Algebra and its Applications 259, 271–279.

Apt, K. R. 1999. The essence of constraint propagation. Theoretical Computer Science 221, 1–2,
179–210.

Ben-Ameur, W. and Kerivin, H. 2005. Routing of uncertain demands. Optimization and
Engineering 3, 283–313.

Ben-Tal, A. and Nemirovski, A. 1999. Robust solutions of uncertain linear programs. Operations
Research Letters 25, 1–13.

Benhamou, F. 1995. Interval constraint logic programming. In Constraint Programming: Basics
and Trends. LNCS 910. Springer, 1–21.

Benhamou, F. and Goualard, F. 2000. Universally quantified interval constraints. In Proc. of
CP-2000. LNCS 1894. Singapore, 67–82.

Benoist, T., Bourreau, E., Caseau, Y., and Rottembourg, B. 2001. Towards stochastic
constraint programming: A study of online multi-choice knapsack with deadlines. In Proc. of
CP’01. LNCS 2239. Paphos, Cyprus, 61–76.

Bent, R. and Hentenryck, P. V. 2004. Regrets only! online stochastic optimization under time
constraints. In Proc. of AAAI-04. San Jose, CA, 501–506.

Bertsimas, D. and Brown, D. 2006. Constructing uncertainty sets for robust linear optimization.
Submitted .

Boerner, F., Bulatov, A., Jeavons, P., and Krokhin, A. 2003. Quantified constraints: algo-
rithms and complexity. In Proc. of 17th Intl. Workshop on Computer Science Logic (CSL’03).
Vienna, Austria, 58–70.

Bordeaux, L. and Monfroy, E. 2002. Beyond NP: Arc-consistency for quantified constraints.
In Proc. of CP’02. LNCS 2470. Ithaca, NY, 371–386.

Cheadle, A. M., Harvey, W., Sadler, A. J., Schimpf, J., Shen, K., and Wallace, M. G.
2003. ECLiPSe: An Introduction. Tech. Rep. IC-Parc-03-1, IC–Parc, Imperial College London.

Chinneck, J. W. and Ramadan, K. 2000. Linear programming with interval coefficients. J.
Operational Research Society 51, 2, 209–220.

Christie, M., Languénou, E., and Granvilliers, L. 2002. Modeling camera control with
constrained hypertubes. In Proc. of CP’02. LNCS 2470. Ithaca, NY, 618–632.

Davenport, A. J. and Beck, J. C. 2000. A survey of techniques for scheduling with uncertainty.
http://tidel.mie.utoronto.ca/pubs/uncertainty-survey.ps.zip.

Davie, B. and Rekhter, Y. 2000. MPLS Technonlogy and Applications. Morgan Kaufmann.

Dovier, A., Farenzena, M., and Fusiello, A. 2005. Interval modelling with constraint prop-
agation. In Proc. of CP’05 Workshop on Interval Analysis and Constraint Propagation for
Applications (IntCP 2005). Sitges, Spain.

El Ghaoui, L., Oustry, F., and Lebret, H. 1998. Robust solutions to uncertain semidefinite
programs. SIAM J. Optimization 9, 1, 33–52.

Elishakoff, I. 1995. Convex modeling — a generalization of interval analysis for nonproba-
bilistic treatment of uncertainty. In Proc. of the Intl. Workshop on Applications of Interval
Computations (APIC’95). El Paso, TX, 76–79.

Estan, C. and Varghese, G. 2003. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems 21, 3
(Aug.), 270–313.

Fargier, H., Lang, J., Martin-Clouaire, R., and Rellier, J.-P. 1994. Uncertainty and flex-
ibility in constraint satisfaction: A case study and an application to agricultural planning. In
ECAI-94 Workshop on Constraint Satisfaction Issues Raised by Practical Applications (Aug.),
T. Schiex and C. Bessière, Eds. Amsterdam.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

Certainty Closure: Reliable Constraint Reasoning with Uncertain Data · 37

Fargier, H., Lang, J., and Schiex, T. 1996. Mixed constraint satisfaction: A framework for

decision problems under incomplete knowledge. In Proc. of AAAI-96. Portland, OR, 175–180.

Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., and True, F. 2001.
Deriving traffic demands for operational IP networks: Methodology and experience. IEEE/ACM
Transactions on Networking , 265–279.

Feldmann, A. and Rexford, J. 2001. IP network configuration for intradomain traffic engineer-
ing. IEEE Network 15, 5 (Sept./Oct.), 46–57.

Fowler, D. W. and Brown, K. N. 2000. Branching constraint satisfaction problems for solutions
robust under likely changes. In Proc. of CP-2000. LNCS 1894. Singapore, 500–504.

Gent, I., Nightingale, P., and Stergiou, K. 2005. QCSP-Solve: A solver for quantified con-
straint satisfaction problems. In Proc. of IJCAI’05. Edinburgh, UK, 138–143.

Gervet, C., Caseau, Y., and Montaut, D. 1999. On refining ill-defined constraint problems: A
case study in iterative prototyping. In Proc. of PACLP’99. London, 255–275.

Gervet, C. and Rodošek, R. 2000. RiskWise-2 problem definition. IC–Parc Internal Report.

Goldschmidt, O. 2000. ISP backbone traffic inference methods to support traffic engineering.
In Proc. of Internet Statistics and Metrics Analysis Winter 2000 Workshop. San Diego, CA.

Grossglauser, M. and Rexford, J. 2004. Passive traffic measurement for IP operations. In The
Internet as a Large-Scale Complex System, K. Park and W. Willinger, Eds. Oxford University
Press.

Halpern, J. Y. 2003. Reasoning About Uncertainty. MIT Press, Cambridge, MA.

Harvey, W. 1999. Computing two-dimensional integer hulls. SIAM J. Computing 28, 6, 2285–
2299.

Hoffman, K. L. 2000. Combinatorial optimization: Current successes and directions for the
future. J. Computational and Applied Mathematics 124, 341–360.

Jaulin, L. 2006. Localization of an underwater robot using interval constraints propagation. In
Proc. of CP’06. Nantes, France.

Lhomme, O. 2003. An efficient filtering algorithm for disjunction of constraints. In Proc. of
CP’03. LNCS 2833. Kinsale, Ireland, 904–908.

Maher, M. J. 2003. A synthesis of constraint satisfaction and constraint solving. In Proc. of
CP’03. LNCS 2833. Springer, Kinsale, Ireland, 525–539.

Mamoulis, N. and Stergiou, K. 2004. Algorithms for quantified constraint satisfaction problems.
In Proc. of CP’04. LNCS 3258. Toronto, Canada, 752–756.

Manandhar, S., Tarim, A., and Walsh, T. 2003. Scenario-based stochastic constraint program-
ming. In Proc. of IJCAI’03. Acapulco, Mexico, 257–262.

Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., and Diot, C. 2002. Traffic mat-
rix estimation: existing techniques and new directions. In Proc. of the ACM SIGCOMM’02.
Pittsburgh, PA, 161–174.

Morris, P. 2006. A structural characterization of temporal dynamic controllability. In Proc. of
CP’06. Nantes, France, 375–389.

Narin’yani, A., Hoffman, J., Inishev, D., and Banasyukevich, D. 2000. Time-EX as
an application of constraint programming based on subdefinite models. In Proc. of
ERCIM/CompulogNet 2000 Workshop on Constraints. Padova, Italy.

Neumaier, A. 1990. Interval Methods for Systems of Equations. Cambridge University Press,
Cambridge, UK.

Oettli, W. 1965. On the solution set of a linear system with inaccurate coefficients. J. SIAM:
Series B, Numerical Analysis 2, 1, 115–118.

Ratschan, S. 2000. Approximate quantified constraint solving (AQCS). www.risc.uni-linz.

ac.at/research/software/AQCS. Software Package.

Ratschan, S. 2003. Solving existentially quantified constraints with one equality and arbitrary
many inequalities. In Proc. of CP’03. LNCS 2833. Kinsale, Ireland, 615–633.

Ratschan, S. 2006. Efficient solving of quantified inequality constraints over the real numbers.
ACM Transactions on Computational Logic. To appear.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

38 · N. Yorke-Smith and C. Gervet

Rodošek, R. and Richards, E. B. 2003. Traffic flow optimisation system. European Patent No.

EP1332583.

Schnoor, H. and Schnoor, I. 2006. Enumerating all solutions for constraint satisfaction prob-
lems. Technical report, Institut für Theoretische Informatik, Universität Hannover.

Schrijver, A. 1986. Theory of Linear and Integer Programming. Wiley, Chichester.

Simonis, H. 2003. Route splitting. Private communication.

Simonis, H. and Hansen, J. 2002. Evaluating traffic inference: Experimental set-up and first
results. Parc Technologies Internal Report.

Spring, N., Mahajan, R., and Wetherall, D. 2002. Measuring ISP topologies with rocketfuel.
In Proc. of the ACM SIGCOMM’02. Pittsburgh, PA.

Tarim, A., Manandhar, S., and Walsh, T. 2006. Stochastic constraint programming: A scenario-
based approach. Constraints 11, 1, 53–81.

Tsang, E. 1993. Foundations of Constraint Satisfaction. Academic Press, London.

van Beek, P. and Dechter, R. 1995. On the minimality and global consistency of row-convex
constraint networks. J. ACM 42, 543–561.

Van Hentenryck, P., Michel, L., and Deville, Y. 1997. Numerica: A Modeling Language for
Global Optimization. MIT Press, Cambridge, MA.

Van Hentenryck, P., Saraswat, V. A., and Deville, Y. 1998. Design, implementation, and
evaluation of the constraint language cc(FD). J. Logic Programming 37, 1–3, 139–164.

Verfaillie, G. and Jussien, N. 2005. Constraint solving in uncertain and dynamic environments
– a survey. Constraints 10, 3, 253–281.

Vidal, T. and Fargier, H. 1999. Handling contingency in temporal constraint networks: From
consistency to controllabilities. J. Experimental and Theoretical Artificial Intelligence 11, 1,
23–45.

Vidotto, A., Brown, K. N., and Beck, J. C. 2007. Managing restaurant tables using constraints.
Knowledge-Based Systems. To appear.

Wallace, M. G. 1996. Practical applications of constraint programming. Constraints 1, 1/2,
139–168.

Yorke-Smith, N. 2004. Reliable constraint reasoning with uncertain data. Ph.D. thesis, IC-Parc,
Imperial College London.

Yorke-Smith, N. and Gervet, C. 2005. Uncertain constraint optimisation problems. In CP’05
Workshop on Preferences and Soft Constraints (Soft’05). Sitges, Spain, 147–161.

Yorke-Smith, N. and Guettier, C. 2003. Towards automatic robust planning for the discrete
commanding of aerospace equipment. In Proc. of 18th IEEE Intl. Symposium on Intelligent
Control (ISIC’03). Houston, TX, 328–333.

Zhang, Y., Roughan, M., Lund, C., and Donoho, D. 2003. An information-theoretic approach
to traffic matrix estimation. In Proc. of ACM SIGCOMM’03. Karlsruhe, Germany, 301–312.

Zhang, Y. and Yap, R. H. C. 2000. Arc consistency on n-ary monotonic and linear constraints.
In Proc. of CP-2000. LNCS 1894. Singapore, 470–483.

Zhou, K., Doyle, J. C., and Glover, K. 1996. Robust and Optimal Control. Prentice Hall,
New Jersey.

...

ACM Transactions on Computational Logic, Vol. V, No. N, January 2014.

