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Abstract. Uncertain data due to imprecise measurements is commonly
specified as bounded interval parameters in a constraint problem. For
tractability reasons, existing approaches assume independence of the pa-
rameters. This assumption is safe, but can lead to large solution spaces,
and a loss of the problem structure. In this paper we propose to com-
bine the strengths of two frameworks to tackle parameter dependency
effectively, namely constraint programming and regression analysis. Our
methodology is an iterative process. The core intuitive idea is to ac-
count for data dependency by solving a set of constraint models such
that each model uses data parameter instances that satisfy the depen-
dency constraints. Then we apply a regression between the parameter
instances and the corresponding solutions found to yield a possible rela-
tionship function. Our findings show that this methodology exploits the
strengths of both paradigms effectively, and provides valuable insights to
the decision maker by accounting for parameter dependencies.
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1 Introduction

Data uncertainty due to imprecise measurements or incomplete knowledge is
ubiquitous in many real world applications, network design, renewable energy
investment planning, and inventory management, to name a few. Regression
analysis is one of the most widely used statistical techniques to model and rep-
resent the relationship among variables to describe or predict phenomena for a
given context. Recently, models derived from fuzzy regression have been defined
to represent incomplete and imprecise measurements in a contextual manner, us-
ing intervals [2]. Such models apply to problems in finance or complex systems
analysis in engineering whereby a relationship between crisp or fuzzy measure-
ments is sought.

Constraint Programming (CP) on the other hand, is a powerful paradigm
used to solve decision and optimization problems in areas as diverse as plan-
ning, scheduling, routing. The CP paradigm models a decision problem using
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constraints to express the relations between variables, and propagates any infor-
mation gained from a constraint onto other constraints. When data imprecision
is present, forms of uncertainty modeling have been embedded into constraint
models using bounded intervals to represent such parameters. For instance if we
model traffic in a network, the flow over links between two routers cannot be
measured with precision as it depends on the collected traffic volume data at each
router which cannot be synchronized. As a result, the data information obtained
is erroneous. We use the sigcomm4 network given in Fig. 1 as a running example
taken from [8]. On link A — C| for example, the traffic volume might measure as
565 at A and as 637 at C, whereas the true value, equal at both nodes, is presum-
ably somewhere in between. Thus, the flow between A and C will be specified by
565.0..637.0. The mean values are shown in the figure. Such models are used to
find the flow matrix between any pair of routers. Commonly flow distribution is
considered between 30 ad 70 percent. Thus on the link A — C the flow constraint
is specified by: 0.3..0.7% Fac +0.3..0.7% Fgc +0.3..0.7+« F4ap +0.3..0.7T% Fap =
565.0..637.0. A variable Fap denotes the traffic (unknonwn) from router A to
router D.

559 C 851

Fig. 1. Sigcomm4 network topology and mean values for link traffic

Traditional models either omit any routing uncertainty for tractability rea-
sons, and consider solely the shortest path routing or embed the uncertain pa-
rameters but with no dependency relationships. Values for the flow variables are
derived by computing bounded intervals, which are safe enclosing of all possible
solutions. Such intervals enclose the solution set without relating to the various
instances of the parameters. For instance, the traffic between A and C can also
pass through the link A — B. Thus the flow constraint on this link also contains
0.3..0.7 x F)4c. However, the parameter constraint stating that the sum of the
coefficients of the traffic F4¢ in both constraints should be equal to 1 should also
be present. Assuming independence of the parameters for tractability reasons,
leads to safe computations, but at the potential cost of a very large solution set,
even if no solution actually holds. The problem structure is lost. Also, there is
not insight as to how the potential solutions evolve given instances of the data.

The question remains as to how can this information be embedded in a
constraint model that would remain tractable. To our knowledge this issue has
not been addressed in the general case. It is the purpose of this work.
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In this paper we propose a new methodology and efficient process to account
for data dependency constraints in decision problems. We aim to more closely
model the actual problem structure, refine the solutions produced and add ac-
curacy to the decision making process. We use regression analysis to show the
relationship among various instances of the uncertain data parameters and the
solutions produced. The basic process is to extract the parameter constraints
from the model, solve them to obtain tuple solutions over the parameters. Then
we run simulations on the constraint models using the parameter tuples as data
instances that embed the dependencies. In the example above this would imply
for the two constraints given, that if one parameter takes the value 0.3, the other
one would take the value 0.7. A set of constraint models can thus be solved ef-
ficiently, matching a tuple of consistent parameters to a solution, to determine
whether there are solutions once dependencies are taken into account or not.
Finally, we run a regression analysis between the parameter values and solutions
produced to determine the regression function, i.e. see how potential solutions
relate to parameter variations.

The paper is structured as follows. Section 2 summarizes the related work
and gives a small illustrative case study. Section 3 describes the approach and
algorithms, and Section 4 gives an application study. A conclusion is given in
Section 5.

2 Background and case study

The fields of regression analysis and constraint programming are both well es-
tablished in computer science. While we identified both fields as complementary,
there has been little attempt to integrate them together to the best of our knowl-
edge. The reason is, we believe, that technology experts tackle the challenges in
each research area separately. However, each field has today reached a level of
maturity shown by the dissemination in academic and industrial works, and
their integration would bring new research insights and a novel angle in tack-
ling real-world optimization problems with measurement uncertainty. There has
been some research in Constraint Programming (CP) to account for data uncer-
tainty, and similarly there has been some research in regression modeling to use
optimization techniques. We give an account of the state of the art against our
main objective to integrate both paradigms.

CP is a paradigm within Artificial Intelligence that proved effective and suc-
cessful to model and solve difficult combinatorial search and optimization prob-
lems from planning and resource management domains [9]. Basically it models a
given problem as a Constraint Satisfaction Problem (CSP), which means: a set
of variables, the unknowns for which we seek a value, the range of values allowed
for each variable , and a set of constraints which define restrictions over the vari-
ables. Constraint solving techniques have been primarily drawn from Artificial
Intelligence (constraint propagation and search), and more recently Operations
Research (graph algorithms, Linear Programming). A solution to a constraint
model is a complete consistent assignment of a value to each decision variable.
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In the past 15 years, the growing success of constraint programming tech-
nology to tackle real-world combinatorial search problems, has also raised the
question of its limitations to reason with and about uncertain data, due to in-
complete or imprecise measurements, (e.g. energy trading, oil platform supply,
scheduling). In the past 10 years, the generic CSP formalism has been extended
to account for forms of uncertainty: e.g. numerical, mixed, quantified, fuzzy, un-
certain CSP and CDF-interval CSPs [3]. The fuzzy and mixed CSP [7] coined
the concept of parameters, as uncontrollable variables, meaning they can take a
set of values, but their domain is not meant to be reduced to one value during
problem solving (unlike decision variables). Constraints over parameters, or un-
controllable variables, can be expressed and thus some form of data dependency
modeled. However, there is a strong focus on discrete data, and the consistency
techniques used are not always effective to tackle large scale or optimization
problems.

Frameworks such as numerical, uncertain, or CDF-interval CSPs, extend the
classical CSP to approximate and reason with continuous uncertain data repre-
sented by intervals; see the real constant type in Numerica [11] or the bounded
real type in ECLiPSe [4]. Our previous work introduced the uncertain and CDF-
interval CSP [12,10]. The goal was then to derive efficient techniques to compute
reliable solution sets that ensure that each possible solution corresponds to at
least one realization of the data. In this sense they compute an enclosure of the
set of solutions. Even though we identified the issue of having a large solution set,
the means to relate different solutions to instances of the uncertain data param-
eters and their dependencies were not thought of. On the other hand, in the field
of regression analysis, the main challenges have been in the definition of opti-
mization functions to build a relevant regression model, and the techniques to do
so efficiently. Regression analysis evaluates the functional relationship, often of a
linear form, between input and output parameters in a given environment. Here
we are interested in using regression to seek a possible relation between uncer-
tain constrained parameters in a constraint problem, e.g. distribution of traffic
among two routers on several routes and the solutions computed according to
the parameter instances. We note also that methods such as sensitivity analysis
in Operations Research allow to analyze how solutions evolve relative parameter
changes. However, such models assume independence of the parameters. In the
following case study we show how our approach can establish relationships with
the solutions and uncertain parameters while accounting for dependencies.

Case study We present a small case study to give the intuition of our approach.
The core element is to go around the solving of a constraint optimization problem
with uncertain parameter constraints by first solving the parameter constraints
alone. This way we handle uncertainty in an efficient and tractable manner.
We then substitute solution tuples of these parameters to solve a set of con-
straint optimization problems (now without parameter constraints). Finally to
provide insight to the solutions to the uncertain constraint problem, we run a re-
gression between the solutions produced and the corresponding parameter tuple
instances.
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Consider the following fictitious constraint between two unknown positive
variables, X and Y ranging in 0.0..1000.0, with uncertain data parameters A, B
taking their values in the real interval [0.1..0.7]:

Ax X +BxY =150

The objective is to compute values for X and Y in the presence of uncertain
parameters (A, B). Without any parameter dependency a constraint solver based
on interval propagation techniques with bounded coefficients, derives the ranges
[0.0..1000.0] for both variables X and Y [4]. Let us add to the model a parameter
constraint over the uncertain parameters A and B: A = 2 x B. Without adding
this parameter constraint to the model, since it is not handled by the solver, we
can manually refine the bounds of the uncertain parameters in the constraint
model such that the parameter constraint holds over the bounds, thus accounting
partially for the dependency. We obtain the constraint system:

0.2..0.7] % X + [0.1..0.35] % Y = 150

The solution returned to the user is a solution space: X € [0.0..750.0],Y €
[0.0..1000.0]. The actual polyhedron describing the solution space is depicted in
Fig. 2.

Y Y

1000 1000

750

600

500

428.5 428.5
0 214 750 X 0 214 250 300 375 500 750 X

A=0.7 A=0.6,A=05 A=0.4,A=0.3 A=0.2
B=0.358=03 B=0.258=0.2 B=0.15 B=0.1

Fig. 2. Left: Solution space. Tight and certain bounds for the decision variables: [0,
750] [0, 1000]. Right: Solutions vectors of problem instances with consistent parameter
solutions

We now give the intuition of our approach. The idea is to first solve the
parameter dependency constraints alone to obtain solution tuples, not intervals.
To do so we use a traditional branch and bound algorithm. We obtain a set of
tuples for A and B such that for each tuple the constraint A = 2 % B holds.
The idea is to have a well distributed sample of solutions for this parameter
constraint.
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We obtain a set of tuples that satisfy the parameter constraint, in this case for
instance (0.2,0.1), (0.3,0.15), (0.4,0.2), (0.5,0.25), (0.6,0.3), (0.7,0.35). We then
substitute each tuple in the uncertain constraint model rendering it a standard
constraint problem, and solve each instance. We record the solution matching
each parameter instance. The issue now is that we have a set of solutions for each
tuple of paramers. There is no indication how the solutions are related and evolve.
The idea is to apply a regression analysis between both. The regression function
obtained includes the solution bounds obtained by the standard approach, but
mainly shows the trends between the data parameters and the solutions. In this
small example we can visualize how the solution evolves with the data, see Fig. 2
on the right. In the case of much larger data sets, a tool like Matlab can be used
to compute the regression function and display the outcome. The algorithm and
complexity analysis are given in the next section.

3 Process and algorithms

Our methodology is a three-steps iterative process: 1) Extract the uncertain pa-
rameter constraints from the uncertain optimization problem and run branch
and bound to produce a set of tuple solutions, 2) solve a sequence of stan-
dard constraint optimization problems where the tuples are being substituted
to the uncertain parameters. This is a simulation process that produces, if it
exists, one solution per tuple instance. And finally, 3) run a regression analysis
on the parameter instances and their respective solution, to identify the rela-
tionship function showing how the solution evolves with consistent parameter
constraints. The overall algorithmic process is given in Fig. 3, where the out-
comes at each step are highlighted in italic bold. A constraint satisfaction and
optimisation problem, or CSOP, is a constraint satisfaction problem (CSP) that
seeks complete and consistent instantiations optimizing a cost function. We use
the notion of uncertain CSOP, or UCSOP first introduced in [12]. It extends a
classical CSOP with uncertain parameters.

3.1 Uncertain CSOP and uncertain parameter constraints

Recall that a CSOP is commonly specified as a tuple (X, D,C, f), where X is a
finite set of variables, D is the set of corresponding domains, C = {cy,..., ¢} is
a finite set of constraints, and f is the objective function (min or max of a given
expression over a subset of the variables).

Definition 1 (UCSOP). An uncertain constraint satisfaction and optimisa-
tion problem is a classical CSOP in which some of the constraints may be uncer-
tain, and is specified by the tuple (X,D,Cx, A,U, f). The finite set of parameters
1s denoted by A, and the set of ranges for the parameters by U. A solution to a
UCSOP is a solution space enclosing safely the set of possible solutions.
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Fig. 3. Process

Ezample 1. Let X; € D; and X5 € Dy both have domains Dy = Dy = [1.0..7.0].
Let A\ and Ay be parameters with uncertainty sets Uy = [2.0..4.0] and Uy =
[1.0..6.0] respectively. Consider three constraints:

011X1>)\1, C22X1:X2+)\2, C32X2>27 C42)\2:>\1+3

and the objective function to maximize f(X;,X2) = X; + Xo. Writing X =
{X17X2}, D= {Dl,DQ}, A= {)\1,>\2}, U = {Ul,UQ}7 and C)( = {01,02703},
then (X,D,Cx, A, U, f) is a UCSOP. Note that Cj is a certain constraint; Cy and
Cs are both uncertain constraints because they contain uncertain parameters.
Ca = {C4} is the set of parameter constraints.

3.2 Constraint simulation

We now account for the parameters constraints by transforming the UCSOP into
a set of tractable CSOPs instances. More formally, consider a UCSOP (X', D, CxU
CAa Aa Z/[7 f)

Definition 2 (instance of UCSOP). We denote n the number of variables,
m the number of uncertain parameters, p the number of parameter constraints,
and inst(U;) a value within the range of an uncertainty set. An instance of an
UCSOP is a certain CSOP (X,D,Cx) such that for each uncertain constraint
Ci(X1..Xm, My Am), we have \j = inst(U;), such that Yk € {1,..,p}, the pa-
rameter constraint C (A1, .. \py) s satisfied.
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Ezample 2. Continuing example 1, the UCSOP has two possible instances such
that the parameter constraint Ao = A\; 4+ 3 holds, given that \; € Uy, A\ € Us.
The valid tuples (A1, A2) are (2,5), and (3,6). The CSOP instances are:

Ci:X1>2,Cy: X1 =X9+5,C3:X9>2

and
Ci:X1>3,C: X1 =X0+4+6,C3: Xg>2

with the same objective function to maximize f = X; + Xs.

The generator of CSOP instances extracts the parameter constraints, poly-
nomial in the number of constraints in the worst case, then produces a set of
parameter tuples that satisfy the parameter constraints. We can use a branch and
bound search on the parameter constraints of the UCSOP. The constraint simu-
lation then substitutes the tuple solutions onto the original UCSOP to search for
a solution to each optimization problem, that is each CSOP. This is polynomial
in the complexity of the UCSOP. The process is depicted in Algorithm 1.

Algorithm 1: Generate and solve CSOPs from one UCSOP
Input: A UCSOP (X,D,Cx UCa, AU, f)
Output: Solutions to the CSOPs
SolsTuples + )
extract(Ca)
Tuples <+ solve BB(A,U,Cx)
for T; € Tuples do
substitute A with T; in (X, D,Cx, A, f)
S; « solveOpt(X,D,Cx,T;, f)
SolsTuples < SolsTuples U {(S;,T;)}

B =L BNV VR

®

return SampleSols

4 Application

We illustrate the benefits of our approach by solving an uncertain constraint
optimization problem, the traffic matrix estimation for the sigcomm4 problem,
given in Fig. 1. The topology and data values can be found in [8, 12]. Given traffic
measurements over each network link, and the traffic entering and leaving the
network at the routers, we search the actual flow routed between every pair of
routers. To find out how much traffic is exchanged between every pair of routers,
we model the problem as an uncertain optimization problem that seeks the min
and max flow between routers such that the traffic link and traffic conservation
constraints hold. The traffic link constraints state that the sum of traffic using
the link is equal to the measured flow. The traffic conservation constraints, two
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per router, state that the traffic entering the network must equal the traffic
originating at the router, and the traffic leaving the router must equal the traffic
whose destination is the router.

We compare three models. The first one does not consider any uncertain
parameters and simplifies the model to only the variables in bold with coeffi-
cient 1. The traffic between routers takes a single fixed path, as implemented
in [8]. The second model extends the first one with uncertain parameters but
without the parameter dependency constraints. The third one is our approach
with the parameter dependency constraints added. A parameter constraint, over
the flow Fap, for instance, states that the coefficients representing one given
route of traffic from A to B take the same value; and the sum of coefficients
corresponding to different routes equals to 1. Note that the uncertain parameter
equality constraints are already taken into account in the link traffic constraints.
The uncertain parameters relative to flow distributions are commonly assumed
between 30 and 70 % [12].

Link traffic constraints:

[)\1AB7>\1AC7)\1AD7>\2AB’)\2AC7>\2AD] € 0.3..0.7

A—=B M g*Fas+ A, *Fac+ i, p*xFap = 309.0..328.0

B — A Fsa+Fca+Fpa+ iy xFse = 876.39..894.35
A—C )‘2AC * Fac + )\2AD * Fap + )\QAB * Fap + )\130 * Fge = 591.93..612.34
B —C )\QBC *FBC+FBD+A1AC *FAC+)‘1AD * Fap = 543.30..562.61
C—B X,;*Fap+Fcs+Fca+Fpa+Fps =1143.27..1161.06
C—D Fcp+Fep+Fap = 896.11..913.98
D —+C Fpc+Fpe+Fpa = 842.09..861.35

Parameter constraints
Map + A2, =L A1ae + X200 =LA, +A2,p =L Aige +A2p0 =1

Traffic conservation constraints

A origin Fap + Fac + Fap = 912.72..929.02
A destination Fpa+ Foa+ Fga = 874.70..891.00
B origin Fpp + Fpc + Fpa = 845.56..861.86
B destination Fpp+ Focp+ Fap = 884.49..900.79
C' origin Fep +Fep + Foca = 908.28..924.58
C destination Fpc + Fpc + Fac = 862.53..878.83
D origin Fpc+ Fpp+ Fpa = 842.0..859.0

D destination Fep + Fpp +Fap = 891.0..908.0

We first run the initial model and reproduced the results of [12] in constant
time. By adding the uncertain prameters the solution bounds got much larger as
the space of potential solutions expanded. However when we run simulations us-
ing our approach and the linear EPLEX solver, and we were not able to find any
solution to the model with dependency constraints. This shows the importance of
taking into account such dependencies, indicating that the data provided match
a single path routing algorithm for the sigcomm4 topology. After enlarging the
interval bounds of the input data we were able to find a solution with a 50
% split of traffic, but none with 40 — 60 or other combinations. Our approach
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showed the effectiveness and strong impact of taking into account dependency
constraints with simulations.

5 Conclusion

In this paper we introduced an approach to account for dependency constraints
among data parameters in an uncertain constraint problem. The approach fol-
lows an iterative process that first satisfies the dependency constraints using a
branch and bound search. The solutions are then embedded to generate a set
of CSPs to be solved. However this does not indicate the relationship between
the dependent consistent parameters and possible solutions. We propose to use
regression analysis to do so. The current case study showed that by embedding
constraint dependencies only one instance had a solution. This was valuable
information on its own, but limited the use of regression analysis. Further ex-
perimental studies are underway with applications in inventory management,
problems clearly permeated with data uncertainty. Even though our approach
has been applied to traditional constraint problems in mind, its benefits could
be stronger on data mining applications with constraints [6].
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