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Abstract: In this paper, a new model reduction method is proposed to further reduce the
structural model obtained by classical model reduction techniques. The reduction is in the
frequency domain and is able to obtain a reduce-order model that is close to the initial model
in a specified frequency range. The reduced-order model keeps the poles of the initial model
in the frequency range of interest. LMI is used to minimize the relative error. This method
is effective on both single-input single-output (SISO) system and multi-input multi-output
(MIMO) system. The application on a beam-piezo model with multiple actuators and sensors
validates its effectiveness.
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1. INTRODUCTION

Light structure has attracted increasing attentions for
many applications. The light weight and low production
cost are the main advantages. However, the disadvantage is
that it is always flexible thus more susceptible to vibration
problem. Active vibration control with smart materials
becomes an objective of crucial economic importance.
With the development of optimal control theories, more
and more efficient controller synthesis methods have been
applied to solve active vibration control problems, for
example LQR control in Wang (2016), H2 control in
Stavroulakis et al. (2005), H∞ control in Zhang et al.
(2016), etc. In order to obtain a low-order controller, a
low-order model is necessary.

In actual applications, the controller is always designed
to reject the excitation in a specific frequency range
that covers a finite number of vibration modes. The
controller design methods are frequency based approaches.
The quality of a low-order model in frequency response is
critical to obtain an effective design. Therefore, a low-order
model should refer to a model whose frequency response
is close, which means the correspondence around both
resonance responses and anti-resonance responses, to the
full system only in the frequency range of interest that
covers the modes to be controlled. To obtain a low-order
model, an initial full-order model of the structure should
be first built.

The actual smart structure has an infinite number of
physical Degree of Freedom (DOF) and dimension. Finite
element method (FEM) is always applied to discretize the
structure and gives a mathematical expression with infinite
DOF and very large dimension. Then, it is simplified by

classical model reduction techniques. Modal Displacement
Method, presented by Besselink et al. (2013), is based on
the free vibration modes, only the first several modes that
correspond to the lowest eigenfrequencies are kept while
higher modes are truncated. There are also projection-
based model reduction techniques. They are variations
of Petrov-Galerkin Projection, see Antoulas et al. (2010),
where it is aimed to find two modeling subspaces used as
the base change of the initial modal. For example Krylov
Subspace Projection in Liew and Pinsky (2010) and Ratio-
nal Interpolation in Beattie and Gugercin (2014). Balanced
Truncation, see Heinkenschloss et al. (2008), reduces the
model by neglecting the states with low controllability
and observability. Rayleigh-Ritz Method, see Seuaciuc-
Osório and Daqaq (2009), approximates the solution of the
eigenfunctions with infinite DOF by the sum of a finite set
of orthogonal functions. The common point of the above
mentioned classical model reduction techniques is that
they focus on the global behavior of the structure. They
are able to approximate the actual system with infinite
DOF and large dimension by a model with finite DOF
and low dimension in form of state-space representation or
transfer function. It makes possible to design the controller
because usual controller synthesis methods cannot be ap-
plied on an infinite DOF system and a large dimensional
model needs high computing cost. However, none of them
are able to obtain a low-order model by flexibly specifying
a certain frequency range. For example, although Modal
Displacement Method truncates the higher order modes
which implies the ignorance of high frequency dynamics,
the low frequency dynamics are still kept which should also
be neglected. Therefore, new method should be developed
to further reduce the model obtained by these classical



model reduction methods, considered as initial full-order
model, by considering frequency range.

This paper proposes two steps to solve the above problem.
First, truncate the poles outside the frequency range of
interest. This can be achieved by applying the Aggrega-
tion Technique, see Singh (1979), where the reduced-order
model is obtained in the way that its poles belongs to
a subset of the poles of the initial model, which allows
us to choose the modes to be controlled. In this way,
the reduced-order model will have the same resonance
responses as the initial model in the frequency range of
interest. Second, modify the reduced-order model such
that the relative error between the initial model and the
reduced-order model in the frequency range of interest is
minimized. Although the truncation keeps the resonance
responses, it introduces errors around anti-resonance re-
sponses. Minimizing the relative error helps match the
anti-resonance responses because relative error allows us to
capture the difference around anti-resonance responses. In
addition, the reduced-order model based controller should
also be able to stabilize the initial model, which is referred
to as robust stability. In robust control, the error between
two systems is always considered as an uncertainty and
the Small Gain Theorem, see Zhou et al. (1995), is applied
where the upper bound of the uncertainty in the frequency
range of interest must be limited to ensure the existence
of the robust controller. In the case when the resonance
responses are already kept, the precision of anti-resonance
responses becomes critical. However, it is not easy to
match the anti-resonance responses with the poles already
been fixed. In case of a multi-input multi-output (MIMO)
system, it is even more difficult.

The specialty of the relative error minimization problem
is that only the error over a specific frequency range is
minimized. Instead of using weighting functions with a
result very sensible to their choices, an extension of the
so-called KYP lemma, see Popov and Georgescu (1973),
and Loop-shifting, see Desoer and Vidyasagar (1975), is
applied to transform this problem into Linear Matrix
Inequality (LMI) constraints. The proposed method is
effective on both single-input single-output (SISO) system
and multi-input multi-output (MIMO) system.

The outline of this paper is as follows. Section 2 points out
the model reduction problem. Section 3 explains the basic
theory of the proposed model reduction method. Section 4
applies this method on the model of a smart structure.
The conclusion is in Section 5.

Notation: Let us denote Λ(A) and σ(A) respectively the
set of the eigenvalue and the maximum singular value of a
matrix A, as well as |λ| the norm of a complex number λ.

2. PROBLEM STATEMENT

Let us consider an initial MIMO system, denoted G, in the
following state-space representation:{

ẋ(t) = A · x(t) +B · u(t)

y(t) = C · x(t) +D · u(t)
(1)

with A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu .
u(t) is the actuation input vector, y(t) the sensing output

vector, and x(t) the state vector. Define the frequency
range of interest, denoted Ω, as Ω = {ω|0 < ω 6 ω 6 ω}.
The problem is to compute a reduced-order model Gr in
the following state-space representation:{

ẋ(t) = Ar · x(t) +Br · u(t)

y(t) = Cr · x(t) +Dr · u(t)
(2)

with A ∈ Rnr×nr , B ∈ Rnr×nu , C ∈ Rny×nr , D ∈
Rny×nu , and nr < n, such that:

Λ(Ar) ⊂ Λ(A) and ∀λ ∈ Λ(Ar), |λ| ∈ Ω. (3)

and the relative error ∆(jω), defined as:

∆(jω) = G(jω)−1(G(jω)−Gr(jω)),

satisfies:
min
Gr

γ

such that ∀ω ∈ Ω, σ(∆(jω)) < γ
(4)

3. MAIN RESULT

Conditions (3) and (4) are satisfied in two steps. First, the
poles in the frequency range of interest, which correspond
to the vibration modes to be controlled, are kept in Gr
while all the other poles are truncated. Ar and Br can
be obtained with Ar satisfying (3). Second, Cr and Dr

are modified to minimize the relative error defined in
(4). A new theorem is proposed to transform (4) into
LMI constrains. Cr and Dr are the solutions of the LMI
problem.

3.1 Pole truncation

The idea of pole truncation comes from the Aggregation
Technique, see Singh (1979). In order to truncate the
specified poles, they must first be represented indepen-
dently. Therefore, base change is done on the state space
representation (1) to transform it into a modal form, equiv-
alently named Diagonal Canonical Form in Williams and
Lawrence (2007). The modal form of G in the shorthand
for state-space representation is:

G =

[
Â B̂

Ĉ D̂

]
=



Â1 B̂1

. . .
...

Âp B̂p
. . .

...

Âq B̂q
. . .

...

Ân B̂n

Ĉ1 · · · Ĉp · · · Ĉq · · · Ĉn D̂


(5)

where the dynamic matrix Â is block-diagonal and Λ(Â) =

Λ(A). Each block Âi for i = 1, 2, · · · , n is either a 1 × 1

scalar or a 2 × 2 matrix. Denote Âj for j = p, · · · , q with

1 6 p < q 6 n such that ∀λ ∈ Λ(Âj), |λ| ∈ Ω, then Ar and
Br are in the form below:



Ar =

Âp . . .

Âq

 , Br =

B̂p...
B̂q

 (6)

with Λ(Ar) ⊂ Λ(A).

Ar has smaller dimension implies that Gr has lower order.

Remark 1. Pole truncation also allows us to obtain Cr =
[Ĉp, · · · , Ĉq] and Dr = D̂ which gives us Gr =
(Ar, Br, Cr, Dr). We can call this method the Modal Form
Truncation (MFT). However, such Cr and Dr can not
assure a minimum relative error.

3.2 Relative error minimization

In this part, Cr and Dr will be modified while Ar and Br
stay unchanged. Condition (4) is reformulated as:

min
Cr,Dr

γ

such that ∀ω ∈ (ω, ω), σ
(
G(jω)−1(G(jω)−Gr(jω))

)
< γ
(7)

The major difficulty of this problem is the infinite number
of constraints as it considers every frequency in a specific
frequency range. Nevertheless, by introducing new matrix
variables, this infinite number of constraints can be trans-
formed into a finite number of constraints which defines a
Linear Matrix Inequality (LMI) constraint.

Theorem 2. Let be G, an LTI continuous system with the
state-space representation (1), Gr, a reduced model of
G with the state-space representation (2), and γ a real
positive number. The solution of (7) is obtained by solving
the following LMI problem:

min
Cr,Dr,P∈Cna×na

γ2

such that P + P ∗ < 0, K +K∗ > 0
(8)

where na = n+ nr and:

K = XN +Q,

X =

 P 0

0
Cr Dr 0
0 0 γ2I

 , N =


Ã B̃

0 −Erδ 0 Frδ
0 0 0 −I
0 0 0

I

2

 ,

Q =

BδB
∗
δ/2 0 0 0

0 0 0 0
DδB

∗
δ 0 DδD

∗
δ/2 Dδ

B∗δ 0 0 0

 ,
Ã =

[
A∗δ 0
0 Arδ

]
, B̃ =

[
C∗δ 0
0 Brδ

]
,

Erδ = (I +
j

ω
Ar)
−1, Frδ =

j

ω
ErδBr

(9)

Aδ = −ωI − j(1− ω

ω
)A(I +

j

ω
A)−1,

Bδ = −j(1− ω

ω
)(I +

j

ω
A)−1B,

Cδ = C(I +
j

ω
A)−1,

Dδ = D − j

ω
C(I +

j

ω
A)−1B,

Arδ = −ωI − j(1− ω

ω
)Ar(I +

j

ω
Ar)
−1,

Brδ = −j(1− ω

ω
)(I +

j

ω
Ar)
−1Br,

Crδ = Cr(I +
j

ω
Ar)
−1,

Drδ = Dr −
j

ω
Cr(I +

j

ω
Ar)
−1Br.

(10)

Problem (8) is a linear cost minimization problem. There
exist efficient algorithms to solve this problem, see Boyd
et al. (1994).

Remark 3. The order of the model is in fact reduced by
MFT who selects the poles. Relative error minimization
modifies the reduced-order model without changing the
order. The controller synthesis methods used in active
vibration control always lead to a controller who has the
same order with the model. As a result, a low-order model
leads to a low-order controller.

Proof.

The constraint in (7) can be interpreted as below:

∀ω ∈ (ω, ω),
σ
(
G(jω)−1(G(jω)−Gr(jω))

)
< γ

⇔
(

(G(jω)∗ −Gr(jω)∗)G(jω)−∗
)(

G(jω)−1(G(jω)−Gr(jω))
)
< γ2

⇔ γ2I −
(
G(jω)−Gr(jω)

)∗(
G(jω)G(jω)∗

)−1(
G(jω)−Gr(jω)

)
> 0

⇔
[

G(jω)G(jω)∗ G(jω)−Gr(jω)
G(jω)∗ −Gr(jω)∗ γ2I

]
> 0

(11)
by using the Schur complement, see Boyd et al. (1994).

If we define:

Φ(jω) =


G(jω)∗ I

0 Gr(jω)

0 (γ2 − 1)
I

2
I 0
0 I

 , H =


I 0 0 0 0
0 0 0 −I 0
0 0 0 0 I
0 −I 0 0 0
0 0 I 0 0

 ,
(12)

then:

Φ(jω)∗HΦ(jω) =

[
G(jω)G(jω)∗ G(jω)−Gr(jω)

G(jω)∗ −Gr(jω)∗ γ2I

]
.

(13)

As a result, (11) is equivalent to:



∀ω ∈ (ω, ω),Φ(jω)∗HΦ(jω) > 0. (14)

A lemma developed in Rossignol et al. (2001), which is
deduced from Loop-shifting, see Desoer and Vidyasagar
(1975), and KYP lemma, see Popov and Georgescu (1973),
allows us to transform (14) into LMI constrains. This
lemma is recalled below:

Lemma 4. Consider Ψ(δ) = δI ?

[
Aψ Bψ
Cψ Dψ

]
and H (an

hermitian matrix), the two following propositions are
equivalent:

(i)
∀δ ∈ (0,+∞),Ψ(δ)∗HΨ(δ) > 0 (15)

(ii) There exists a complex matrix P such that P +
P ∗ < 0 and:[
C∗ψ
D∗ψ

]
H [Cψ Dψ] +

[
A∗ψP

∗ + PAψ PBψ
B∗ψP

∗ 0

]
> 0 (16)

By introducing a finite matrix variable P , the infinite
dimensional constraint on δ is transformed into a finite
dimensional LMI constraint. However, this lemma can not
be directly applied because Φ is defined on ω ∈ (ω, ω)
while Ψ on δ ∈ (0,+∞). In order to apply this lemma,
variable substitution must be done to transform Φ(jω)
into Ψ(δ). As Φ is computed by G and Gr, the objective
is to transform G(jω)|ω∈(ω,ω) and Gr(jω)|ω∈(ω,ω) into
G(δ)|δ∈(0,+∞) and Gr(δ)|δ∈(0,+∞). The transformation can
be done through state-space representation.

The state-space representation of G(s) with s the Laplace
operator can be presented in block diagram as shown in
Fig. 1a. Replacing s by jω and then removing j from the
upper block, we have Fig. 1b. The expression of G(jω)
becomes:

G(jω) =
1

ω
I ?

[
−jA −jB
C D

]
(17)

Variable substitution is done to
1

ω
I by defining

1

ω
I = δI ?

TΩ as shown in Fig. 1c. Then G(jω) becomes:

G(δ) = δI ?

(
TΩ ?

[
−jA −jB
C D

])
= δI ?

[
Aδ Bδ
Cδ Dδ

]
. (18)

Fig. 1d shows the block diagram of G(δ). Aδ, Bδ, Cδ, and
Dδ are complex matrices. Similarly, the reduced model
Gr(s) also has the same form:

Gr(δ) = δI ?

(
TΩ ?

[
−jAr −jBr
Cr Dr

])
= δI ?

[
Arδ Brδ
Crδ Drδ

]
.

(19)

To transform ω ∈ (ω, ω) into δ ∈ (0,+∞), TΩ is chosen as:

TΩ =

−ωI (1− ω

ω
)I

I
1

ω
I

 , (20)

then:

Fig. 1. Block diagram of G in state-space representation

1

ω
I = δI ?

−ωI (1− ω

ω
)I

I
1

ω
I


=

1

ω
+ δ(1 + δωI)−1(1− ω

ω
)I

=
1 + δω

ω(1 + δω)
I.

(21)

δ ∈ (0,+∞) exactly implies ω ∈ (ω, ω). In this way, we
transform the system G(jω) and Gr(jω) with ω ∈ (ω, ω)
into G(δ) and Gr(δ) with δ ∈ (0,+∞). By substituting TΩ

into (18) and (19), we exactly obtain (10) in Theorem 2.

Taking H in (12) and defining Ψ(δ) as:

Ψ(δ) =


G(δ)∗ I

0 Gr(δ)
0 (γ2 − 1)

I

2
I 0
0 I

 , (22)

we find equivalence between (14) and (15), and thus equiv-
alence between the constrain in (7) and (15). According to
Lemma 4, (15) is equivalent to (16) with P + P ? < 0.
By substituting (22), (18) and (19) into (16), we obtain
K +K∗ > 0 with K defined exactly by (9) in Theorem 2.
2

4. APPLICATION ON BEAM-PIEZO SYSTEM

We consider an experimental benchmark which is com-
posed of a thin beam with piezoelectric patches. Two
patches are used as actuators and another two as sen-
sors. The objective is to compute a feedback controller
that reduces the vibration of the beam under a force
disturbance who has high Power Spectrum Density in
(600, 3200)rad/s. In order to know the number of modes to
be controlled, a frequency analyzer is used to measure the



frequency response between the actuators and the sensors.
The result shows that (600, 3200)rad/s covers from the 9th

mode to the 20th mode. The initial model is obtained by
COMSOL who performs FEM and Modal Displacement
Method which gives a model containing the first 20 modes.
Then, the model parameters are optimized by identifica-
tion techniques to make sure that the frequency response of
the initial model matches the actual setup. Fig. 2 presents
the frequency response of the initial model with order
42. The two vertical lines line out the frequency range of
interest. The objective of model reduction is to obtain a
reduced-order model which is close to the initial model in
(600, 3200)rad/s, which means neglecting the modes lower
than 600rad/s.

Fig. 2. Frequency response from actuators to sensors,
model of the first 20 modes

According to Section 3, MFT is first applied. The initial
model is transformed into modal form and the 2×2 blocks
corresponding to the first 8 modes are truncated. There
are also 1×1 blocks corresponding to the patches. As their
poles are outside (600, 3200)rad/s, they are also truncated.
The order is reduced from 42 to 24. Fig. 3 compares the
frequency response of the initial model and the reduced-
order model by MFT. The reduced-order model already
has good quality except for the response from the 2nd

input to the 1st output at about 900rad/s as marked
by red ellipse. This large difference around anti-resonance
responses can be clearly seen from the blue line in Fig. 4
where the singular values of ∆(jω) is presented. At several
frequencies, σ(∆(jω)) exceeds 0dB and the maximum
value is over 20dB at right about 900rad/s. Then, the
relative error is minimized by applying Theorem 2 with
G the initial model and Gr the obtained reduce-order
model by MFT. The LMI constrains are programmed
in Matlab and a solution is computed. The red line in
Fig. 4 shows the reduction of the maximum relative error
which proves the statement in Remark 1. In fact, the
maximum singular values decreases while the minimum
singular values increase, which means that LMI balances
the errors at different frequencies so that the overall error
is reduced. This phenomenon can be also seen in Fig. 5
where the initial model and the reduced-order model after
relative error minimization are compared. Thanks to the
fact that σ(∆(jω)) of the new optimized reduced-order
model over (600, 3200)rad/s is less than 1, it was possible
to compute a controller that ensures robust stability by
Small Gain Theorem. Indeed, when applied to the full-
order model and even to the benchmark, the system is

stable and the vibrations are reduced in the frequency
range of interest.

Fig. 3. Frequency response from actuators to sensors:
Initial model vs Reduced-order model by MFT

Fig. 4. Singular values of ∆(jω): Reduced-order model by
MFT vs Reduced-order model by MFT+LMI

Fig. 5. Frequency response from actuators to sensors:
Initial model vs Reduced-order model by MFT+LMI

5. CONCLUSION

This paper presents a new model reduction method used
for active vibration control of flexible structure. It can be
applied on the model obtained by classical model reduction
techniques. This method allows us to flexibly choose the
modes according to control objective and obtain a further
reduced-order model. This is achieved by Pole truncation
and relative error minimization. Pole truncation eliminates



the poles outside the frequency range of interest. The
order is thus reduced. Relative error minimization optimize
the reduced-order model without changing the poles in
order to match the anti-resonance responses. A numerical
example demonstrated that this method was effective
and a reduce-order model close to the initial model in
the frequency range of interest was obtained. By using
this reduced-order model, a low-order controller could be
computed that ensures the robustness.
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