
HAL Id: hal-01800625
https://hal.science/hal-01800625

Submitted on 27 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Rapid Prototyping for Real-Time Embedded
Heterogeneous Multiprocessors

Thierry Grandpierre, Christophe Lavarenne, Yves Sorel

To cite this version:
Thierry Grandpierre, Christophe Lavarenne, Yves Sorel. Optimized Rapid Prototyping for Real-Time
Embedded Heterogeneous Multiprocessors. the seventh international workshop, 1999, Rome, France.
�10.1145/301177.301489�. �hal-01800625�

https://hal.science/hal-01800625
https://hal.archives-ouvertes.fr


Optimized Rapid Prototyping for Real-Time Embedded Heterogeneous
Multiprocessors

CODES’99 7th International Workshop on Hardware/Software Co-Design, Rome, May 1999

T. Grandpierre, C. Lavarenne and Y. Sorel
INRIA-Rocquencourt Domaine de Voluceau B.P. 105 - 78153 Le Chesnay Cedex - France

{Thierry.Grandpierre,Christophe.Lavarenne,Yves.Sorel}@inria.fr

Abstract

This paper presents an enhancement of our “Algorithm Architec-
ture Adequation” (AAA) prototyping methodology which allows
to rapidly develop and optimize the implementation of a reactive
real-time dataflow algorithm on a embedded heterogeneous multi-
processor architecture, predict its real-time behavior and automat-
ically generate the corresponding distributed and optimized static
executive. It describes a new optimization heuristic able to sup-
port heterogeneous architectures and takes into account accurately
inter-processor communications, which are usually neglected but
may reduce dramatically multiprocessor performances.

1 Introduction

The increasing complexity of signal, image and control processing
algorithms in embedded applications, requires high computational
power to satisfy real-time constraints. This power can be achieved
by parallel multiprocessors which are often heterogeneous in em-
bedded system: they are made of different types of processors inter-
connected by different types of communication media. In these sys-
tems, communications are too often neglected although they may
decrease tremendously the actual performances of the aforemen-
tioned applications. In order to help the designer obtain rapidly an
efficient implementation (i.e. which satisfies real-time constraints
and minimizes the architecture size) of these complex algorithms,
and to simplify the implementation task from the specification to
the final prototype, we have developed the AAA1 rapid prototyp-
ing methodology[21].

The implementation of an algorithm on a architecture corre-
sponds to a resource allocation problem. As classified in [5] there
are two possible resource allocation policy : dynamic or static.

The dynamic policy is more efficient when the execution du-
ration depend on the processed data. The algorithm implementa-
tion is also apparently simplified because the dynamic executive
provides numerous services (task allocation, communication etc.).
But the price to be paid is the induced overhead [3, 1, 17] both
in program size and in execution time (mainly caused by expen-
sive context switching and dynamic communication routing). The

1AAA stands for Adequation Algorithm Architecture, “adequation” is a french
word meaning an efficient matching

difficulty to predict run-time execution durations, and run time be-
havior, forces the designer to insert (large and empirical) safety
margins which lead to resources waste, which must be added to the
resources consumed by the dynamic operating system itself.

On the other hand, static scheduling minimizes the overall ex-
ecution time by drastically reducing overheads [3, 7], but it does
not allow to implement as various application as the dynamic pol-
icy does, because all the properties of the application, including its
environment, must be known at compile time. Hence, the static
policy is appropriate [17] for the implementation of real-time re-
active [4] control, signal and image processing algorithms on em-
bedded machines, where resources and time are hardly limited, and
where the algorithm and its environment are well known. An im-
portant part of researches on static scheduling focus on minimiz-
ing the number of inter-processor communications [12, 25, 16] but
rarely on their optimization (scheduling, routing [24], parallelism)
which can be done statically but requires to be able to allocate the
communication sequencers usually ignored. This lack of control
induces inaccurate estimated communication delays and can cause
unpredictable performance degradations [1]. This paper addresses
this crucial issue, which has drawn too little attention in RTOS and
real-time executive researches [7].

Based of these observations, AAA uses static scheduling (even
communications are routed and scheduled statically) and rapidly
leads to a debug-free optimized prototype which is consequently
reusable as we will see along this paper. In section 2, we present the
models used in AAA. In order to address the NP-complete [8, 19]
resource allocation problem, and because we aim rapid prototyp-
ing, section 3 presents a fast greedy list scheduling heuristic which
allows to rapidly predict and optimize the performances of differ-
ent kinds of algorithms on different kinds of architectures. Section
4 gives rules to automate the generation of the static executive cor-
responding to the chosen implementation. Section 5 presents both
the software tool SynDEx which implements AAA, and an appli-
cation designed and realized with it. Finally section 6 gives a brief
conclusion.

2 AAA Methodology

2.1 Architecture Model

The heterogeneous multiprocessor target architecture is specified as
a non oriented hypergraph of operators (graph vertices), that may
be of different types, connected through bidirectional communica-
tion media (non oriented graph edges), that may also be of different
types. A communication medium may connect two operators or
more. This graph (in the middle of figure 1) describes the available
parallelism of the architecture. Each operator is a finite state ma-
chine (programmable, with instruction and data memories) which



executes sequentially a subset of the algorithm’soperations(Cf.
next section). Each communication medium executes sequentially
communication operations(Cf. section 2.3). A medium includes
not only the wires needed to move data spatially between opera-
tors memories, but also thetransformatorunits (DMA or UART)
that sequences memory accesses on each side of the wires. Each
transformator is a finite state machine and consequently, a medium
which is composed of several communicating transformators is equi-
valent to a single finite state machine. On each side, the commu-
nication medium is able to synchronize with the operator in order
to access, in alternation (mutual exclusion), shared data buffers.
Since in general, atransformatorrequires the operator sequencer
(via short interrupts) for sequencing and executing operations that
it is not able to do itself, a processor (CISC, DSP, etc) usually in-
cludes not only one operator, but also a part of each connected me-
dia.

2.2 Algorithm Model

An algorithm, as defined by Turing and Post [23], is a finite se-
quence (total order) of operations directly executable by a finite
state machine. For a multiprocessor architecture, composed of sev-
eral finite state machines, algorithms must be specified with at least
as much parallelism as the architecture. Since we want to be able to
compare the implementation of an algorithm on different architec-
tures, the algorithm graph must be specified independently of any
architecture graph. Thus, we extend the notion of algorithm to an
oriented hypergraph of operations (graph vertices), which execu-
tion is partially ordered by their data dependences (oriented graph
edges). We need an hypergraph model (an example is given in
the top of figure 1) because each data dependence may have sev-
eral extremities but only one origin (diffusion). Thisdependence
graph, also called directed acyclic graph (DAG) [10, 20], exhibits a
potential parallelism: two operations which are not in data depen-
dence relation, may be executed in any order by the same operator
or simultaneously by two different operators. We deal with reactive
systems which are in constant interaction with the environment that
they control. This is why the algorithm operations needed to com-
pute the output event for the actuators, from the input event from
the sensors, are indefinitely repeated, once for each sampling of
the sensors. In other words, the algorithm is an infinitely wide,
but periodic, acyclic dependence graph, reduced by factorization to
its repetition pattern [15] (also called a dataflow graph), which is
executed for each input event.

In order to detect design mistakes as soon as possible in the de-
velopment cycle, algorithm graphs may be produced by the compil-
ers of high level specification languages, such as the Synchronous
Languages [9] (Esterel, Lustre, Signal), which perform formal ver-
ifications in terms of events ordering in order to prevent dead-locks.

2.3 Implementation Model

The prime assumption of our implementation model is that each
operation of the algorithm graph does not require more than one
operator for its execution, but there must be at least one operator of
the architecture graph, able to execute it. When several operators
are able to execute an operation, one of them must be chosen in
order to execute it.

The execution of each operation by an operator consists in read-
ing the operation’s input data from the operator memory, then in
combining them to compute the output data which are finally writ-
ten into the operator memory. Therefore, when two operations in
data-dependence relation are executed by the same operator, the
operation producing the data must be executed in sequence before
the operation consuming the data. When two data-dependent op-
erations are executed by two different operators, the data must be

: computing operation scheduled on operator
:precedence between write and read accesses to the operators memories

: communication operation inserted on the algorithm graph, and scheduled on media

Opr4Opr1

A

t t t tt

: media: operator

Architecture graph:

Algorithm graph:

Implementation:

Opr2 Opr3

B

C D

E

A

Opr4Opr1 Opr3

B

D E

Opr2

t tt

C

: operation

: data-dependence

M4

M1 M2 M3

M1 M2 M3 M4

Opr5

Figure 1: Example of implementation

transferred, from the memory of the operator executing the produc-
ing operation (after its execution), into the memory of the operator
executing the consuming operation (before its execution). Such a
data dependence is called aninter-operator data dependence. In
order to support it, aroute (path in the architecture graph) must
be chosen between the two operators. For each communication
medium composing that route, one communication operation (ex-
ecuted by the corresponding medium) must be inserted in the al-
gorithm graph between the producing and the consuming opera-
tions. When the route is composed of more than one intermedi-
ate medium, the data must be temporarily stored in the memory of
each intermediate operator. The implementation requires not only
to choose, for each operation, the operator by which it will be exe-
cuted, but also to choose, for each inter-operator data dependence,
the media that will execute communication operations to route the
data. These choices correspond to a spatial allocation of the archi-
tecture resources, usually called partitioning or placement, called
hereafterdistribution. Since operators (resp. media) are finite state
machines, the implementation also requires to choose, for each op-
erator (resp. medium), an execution order between the operations
(resp. communication operations) assigned to it, compatible with
the precedences required by the data dependences. These choices
correspond to a temporal allocation of each architecture resource,
called hereafterscheduling.

Distribution and scheduling of operations, as well as their opti-
mization in the case of homogeneous architectures, have been for-
malized in terms of graph transformations in [21]. Here, we take
into consideration heterogeneous architectures (see section 3), and
we improve two routing aspects of the implementation. In [21],
all data dependences between two operators are routed through the
same path, arbitrarily chosen among the shortest ones. We reexam-
ine the route choice for each inter-operator data dependence, such
that two simultaneous ones may be parallelized on different routes
instead of being sequenced on the same arbitrary chosen route as
in [21]. Moreover in [21], data diffusion is implicitly allowed only
in the operators at either extremities of a route. Whereas here, we
allow diffusion in each intermediate operator on the route, so that,
for example, diffused data, instead of being communicated once
through each route, i.e. twice through each medium shared by the



two routes, will be transferred only once through each medium of
either route.

Figure 1 shows a simple example of implementation with com-
munication optimization based on parallel routing and diffusion:
operations (A,B), (C,D), and E are assigned respectively to opera-
tors Opr1, Opr2, and Opr3. The two data dependences between A
and E are communicated simultaneously on the two (same length)
parallel routes M1-M2 and M4-M3. The data produced by A on
Opr1 is first transferred to Opr2 (by the communication operation
executed by M1), where it is diffused to C and to the communica-
tion operation executed by M2, by which it is transfered to Opr3
for E. In parallel, the second data produced by A, is transfered to C
by another route made of M4, Opr4, and M3.

3 AAA Optimization Heuristic

For a given pair of algorithm and architecture graphs, there is a
large but finite number of possible implementations, among which
we need to select the most efficient one, i.e. which satisfies real-
time constraints and minimizes architecture resources. This opti-
mization problem, as most resource allocation problems [8, 19] is
known to be NP-complete, and its size is usually huge for real ap-
plications. This is why we use heuristics. Since experience shows
that the algorithm graph and the architecture graph are modified
several times before a satisfying result is obtained, and because we
aim rapid prototyping, we need a fast but efficient heuristic with a
graphical global view of the results (Gantt chart) where the user
may easily find out critical paths or bottlenecks. Hence, if the
rapidly predicted execution time does not match the real-time con-
straint, the user can either modify the algorithm graph to offer more
parallelism, or add distribution constraints (in order to work around
singular aberrant results inherent to any heuristic). Then the user
applies the heuristic again. On the contrary, if the real-time con-
straint is met, the user can try to reduce the architecture graph and
applies the heuristic again.

In order to reach the above requirements, our heuristic is based
on a fast and efficient greedy list scheduling algorithm [18, 2, 25],
with a cost function that takes into account the execution durations
of operations and of communications. These durations are obtained
by a preliminary step of characterization.

3.1 Characterization

As mentioned in section 2.1, each operator can execute its own
operation set. It is characterized by a lookup table that associates
an execution duration to each operation of this set. The first way
to obtain characteristics is based on duration estimation: an oper-
ation is coded by a sequence of CPU instructions, so its duration
depends on the number of clock cycles needed for each instruction,
and on the clock period, but also on the peculiarities of the operator
(cache management, instruction pipeline). This method is man-
ageable only for simple operators or as a rapid first approximation
when the operator is not yet available. The other way is based on
duration measurement: each operation may be timed in situ, with
the help of an executive automatically generated with chronometric
logging operations, inserted between other operations [6].

Every data dependence may happen to be inter-operator, this is
why the execution duration of communication operations, for each
data type (int, float. . . ) used in the algorithm, have to be charac-
terized for each communication medium used in the chosen archi-
tecture. At this point there are usually two subsets of data types
to consider, basic scalar types and composite types. It is not al-
ways possible to extrapolate the transfer duration of a composite
type from the transfer durations of its components, whereas it is
always possible to measure the duration of the transfer of each data

type (including composite types) for each medium, and to store the
result in a lookup table characterizing the medium.

3.2 Definitions

The greedy list scheduling algorithm used in our heuristic, is based
on a cost function defined in terms of the start and end dates of the
operations executions, themselves expressed recursively from the
execution durations of operations and communications. Whereas
in [21] the architecture graph is assumed homogeneous, i.e. the
execution duration∆(o) of an operation (resp. communication op-
eration)o is the same on each operator (resp. medium), here we
consider heterogeneous architectures where the execution duration
of an operation (resp. communication operation)o executed by an
operator (resp. medium)p in Gar (the architecture graph) is de-
fined by ∆p(o) (this value is found inp’s characteristics lookup
table). As in [21], the set of successors (resp. predecessors) of
an operationo in Gal (the algorithm graph) is denotedΓ(o) (resp.
Γ̄(o)), and its “earliest start from start” dateS(o), its “earliest end
from start” dateE(o), its “latest end from end” datēE(o), its “latest
start from end” datēS(o), the makespan (algorithm graph critical
path length)R, and its “schedule flexibility”F(o), are defined by2:

S(o) = max
x∈Γ̄(o)

E(x) (or 0 if Γ̄(o) = /0)

E(o) = S(o)+∆p(o)

Ē(o) = max
x∈Γ(o)

S̄(x) (or 0 if Γ(o) = /0)

S̄(o) = Ē(o)+∆p(o)

R = max
o∈Gal

E(o) = max
o∈Gal

S̄(o)

F(o) = R−S(o)−∆p(o)− Ē(o)

When the heuristic cost function considers an operationo, all o’s
predecessors are already scheduled (the operators or media that will
execute them have already been chosen), but no successor ofo’s is
yet scheduled, so in the computation ofĒ andS̄, ∆ has to be defined
independently of any operator. We define the execution duration of
an operationo not yet scheduled by the average execution duration
of o on all operators able to execute it:

Gar/o = {p∈ Gar|∆p(o) is defined}

∆(o) =
∑

p∈Gar/o
∆p(o)

Card(Gar/o)

As soon as an operationo is scheduled on an operatorp, its duration
changes from∆(o) to ∆p(o), and for each predecessoro′ of o’s
not scheduled onp, communication operations have to be inserted
betweeno′ and o, and to be scheduled on media. Consequently,
S(o) may change to a bigger valueS′(o), and the makespanR may
also change to a bigger valueR′. As in [21], our cost functionσ(o),
called theschedule pressure, is the difference between theschedule
penaltyP(o) = R′ −R(critical path increases due to this scheduling
step) and the schedule flexibilityF(o) = R′ −S′(o)−∆p(o)− Ē(o)
(schedule margin before a critical path increase), which gives:

σ(o) = S′(o)+∆p(o)+ Ē(o)−R

σ(o) is an improved version of the often usedF(o), because
wheno becomes critical,F(o) stops decreasing and remains null,
whereasP(o) starts increasing from 0, i.e.σ(o) continues to in-
crease; moreover the comparison between the schedule pressures
of two operations eliminatesRand its expensive computation.

2Note the symmetry of formulas: “From start” and “From end” are relative to
opposite time directions and origins; min

o∈Gal
S(o) = 0 = min

o∈Gal
Ē(o) by definition. In the

literature [13],ASAP= SandALAP= R− S̄.



OPR1 OPR1 OPR2 OPR3 OPR4 OPR5
M1 × ×
M4 × × ×

Route’s length 0 1 2 1 1

Table 1: Route table of OPR1

3.3 Operations Scheduling

The heuristic iterates on a setOs of “schedulable” operations. An
operation not yet scheduled is schedulable when all its predeces-
sors are already scheduled. At each main step of the heuristic, one
schedulable operationo is elected, and scheduled on its best op-
erator (see details hereunder), then becauseo becomes scheduled,
some of its successors may become schedulable on their turn. This
main step is repeated untilOs is empty, which happens only after a
full exploration of the “successor” partial order relation, i.e. after
all operations are scheduled, in an order compatible with that partial
order. The best operator for a schedulable operationo is either the
one whereo is constrained by the user to be executed, or the one for
whicho has the lowest schedule pressureσ(o). In order to compare
schedule pressures, a schedulable operation is tentatively scheduled
on each operator able to execute it. Each operatorp has an associ-
ated ordered set of operations, called itsschedule: to be scheduled
on p, an operationo is first appended to the end ofp’s schedule, and
then, for each predecessoro′ of o’s, which is scheduled onp′ 6= p,
communication operations are inserted betweeno′ ando and sched-
uled on the media of a chosen route connectingp andp′. All com-
puted values corresponding to the best operator (Sbest(o), Ebest(o),
σbest(o), pbest(o)) are associated with the operationo, in order to
be easily retrieved later. In order to fill-up the resources as much as
possible,Os is restricted toO′

s = {o ∈ Os|Sbest(o) < Ebest(omin)}
whereomin is such thatSbest(omin) = min

o∈Os

Sbest(o). In this sub-

set, the operation having the highestσbest (i.e. the most critical)
is elected, removed fromOs, and definitely scheduled on its best
operator. The successors of this scheduled operation that become
schedulable (because all of their predecessors are now scheduled)
are added toOs. The next heuristic main step is then ready to begin
on this newOs.

3.4 Communications Scheduling

When an operationo is scheduled on an operatorp, for each inter-
operator data dependence (betweeno and ano’s predecessoro′
which is not scheduled onp), a route must be chosen to transfer
the data from the producer operationo′ to the consumer operation
o. For each medium of that route, a communication operationc
must be inserted (betweeno′ and o) and scheduled. The choice
of the route is incremental. It starts from the operator executing
o′, and is simplified by the use of pre-computed routing tables. In
each operatorp, this table provides for each other operatorp′ the
medium connected top that allows to reachp′ through a minimum
number of intermediate media (table 1 gives the routing tables of
the Opr1 in the example of the figure 1). At each incremental step
of this scheduling procedure a communication operationc is sched-
uled on a medium. Among the media which connectp to a next op-
erator belonging to one of the shortest route towardsp′, one elects
the medium that induces the minimum execution end dateE(c).
Each mediumm has an associated ordered set of communication
operations, called itsschedule: to be scheduled onm, c is sim-
ply appended to the end ofm’s schedule, except ifm’s schedule
contains a previous communication operationc′ transferring the
same data (diffusion), in which caseE(c′) is considered instead.
This incremental step is repeated until the destination operatorp′ is

reached. So, at each step of the heuristic, communications are eval-
uated on each medium of the shortest routes to the destination op-
erator. Thereby, the load of each medium is balanced, the available
communication parallelism offered by the hardware architecture is
then exploited.

4 Executive Generation

We give here the main ideas about the rules that allow to generate
automatically the application-specific executive corresponding to
the implementation of a given algorithm on a given architecture.

The executive is generated into several source files, one for each
operator, and one for automating the architecture specific compila-
tion chain. Each file contains an intermediate code composed of a
list of macro-calls, which will be translated by a macro-processor
into a source code in the preferred compilable language for each
target operator. Executive macros generate either the desired in-
structions inline, or a call to a separately compiled operation. They
may be classified into two sets. The first one is a fixed set of
system macros, which support code downloading, memory man-
agement, sequence control, inter-sequence synchronization, inter-
operator transfers, and runtime timing (in order to characterize al-
gorithm operations and to profile the application as in [6, 1]). The
second one is an extensible set ofapplication specific macros, which
support the algorithm operations.

For each operator, the generated list of macro-calls is com-
posed, in order, of macros describing a tree covering the architec-
ture graph and rooted on a “host” operator (used for downloading
application code, and for collecting runtime timings), of macros
allocating memory buffers (for data dependences), of one com-
munication sequence for each medium connected to the operator
(built from the medium’s schedule), and of one computation se-
quence (built from the operator’s schedule). In this executive, con-
text switches only occur between the communication sequences
(which are composed of system macros only) and the computation
sequence, then only a few registers need to be saved and restored.
For example, on an architecture based on TMS320C40 DSPs, the
CPU overhead for each communication is only 56 instruction cy-
cles, including “data ready” synchronization, DMA programming,
end of transfer interrupt, and “buffer free” synchronization between
communication and computation sequences. In order to avoid the
overheads of usual communication protocols (such as data transfers
between protocol layers, or the addition of routing informations)
these sequences share the memory buffers of communicated data,
and include synchronization macros to access these buffers in the
order required by the data dependences, in a way that this order is
satisfied at runtime independently of the operations execution du-
rations. Therefore the implementation optimization, even if it may
be biased by inaccurate architecture characteristics, is safe in the
sense that it cannot induce runtime synchronization errors (such as
deadlocks, or lost data) or an inefficient schedule of communicated
data. This certitude allows big savings in application coding and
debugging times. Once the executive libraries has been developed
for each type of processor, it takes only a few seconds to automat-
ically generate, compile and download the deadlock free code for
each target processor of the architecture. It is then easy to experi-
ment different architectures with various interconnection schemes.

5 Related Work

The whole methodology is implemented in the system level CAD
software SynDEx3[22, 14]. Its Graphical User Interface allows the
user to specify both the algorithm and the architecture graphs, to

3http://www-rocq.inria.fr/syndex



execute the aforementioned heuristic and then to display the result-
ing distribution and scheduling on a temporal diagram (the bottom
of figure 1 presents such a diagram where the vertical size of the
operations are proportional to their duration). When the user is
satisfied by the predicted timing, SynDEx can automatically gen-
erate the dead-lock free executive for the real-time execution of
the algorithm on the multiprocessor. Real-time distributed exec-
utive libraries have been developed for networks based on DSPs
(TMS320C40, ADSP21060), Transputers, microcontrollers, and ge-
neral purpose processors (PC and UNIX workstations). SynDEx
has been used to develop several real-time heterogeneous applica-
tions, among which [11]: a new urban electric vehicle controlled
by a distributed embedded computer system (based on the CAN
bus and five MC68332, one i80c196, one i80486) providing fea-
tures such as autonomous driving and route planning.

6 Conclusion

The global approach of the AAA methodology aims to rapidly pro-
totype real-time embedded applications. It is based on a static
scheduling policy to minimize execution time and program size
overheads. AAA uses a fast heuristic which accurately takes into
consideration the heterogeneous characteristics not only of oper-
ators (computations) but also of media (communications). More-
over, this heuristic optimizes inter-processor communications by
exploiting thecommunication parallelismoffered by the architec-
ture, and by balancing the load of each communication medium.
Finally, the automatically generated executive allows to rapidly car-
ry out an optimized prototype without wasting the user’s time in
multiprocessor programming and debugging. Presently, we are
working on the optimization heuristic in the case of conditioned
operations, and on an extension of the AAA methodology for con-
figurable circuits (FPGA) to allow future co-design optimization.

References

[1] Behrooz A. Shirazi, A. Hurson, and Krishna M. Kavi.
Scheduling and load balancing in parallel and distributed
system. IEEE Computer Society Press, 1995.

[2] I. Ahmad and Y. K. Kwok. Analysis, evaluation, and com-
parison of algorithms for scheduling task graphs on parallel
processors. InInt. Symp. on Parallel Architecture, Algorithms
and Networks, pages 207–213, Beijing China, June 1996.

[3] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-
Vincentelli. Scheduling for embedded real time systems.
IEEE Design and Test of Computers, pages 71–82, January-
March 1998.

[4] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. InProc. of the IEEE, volume
79(9), pages 1270–1282, 1991.

[5] T.L. Casavant and J.G. Kuhl. A taxonony of scheduling in
general-purpose distributed computing systems.IEEE Trans.
Software Eng., 14, No. 2:141–154, 1988.

[6] F. Ennesser, C. Lavarenne, and Y. Sorel. M´ethode
chronométrique pour l’optimisation du temps de r´eponse des
exécutifs syndex. InINRIA Research Report, vol. 1769. 1992.

[7] R. Ernst. Codesign of embedded systems: Status and trends.
IEEE Design and Test of Computers, pages 45–53, April-June
1998.

[8] Garey and Johnson.Computers and intractability : a guide to
the theory of NP-completeness. W.H. Freeman, 1979.

[9] N. Halbwachs. Synchronous programming of reactive sys-
tems. Kluwer Academic Publishers, Dordrecht Boston, 1993.

[10] A.R. Hurson. A program allocation scheme for data flow
computers. InProc. Int. Conference on Parallel Processing,
volume 1, pages 415–422, University Park, Peen, 1990. Penn-
sylvania State Univ.

[11] R. Kocik and Y. Sorel. A methodology to design and
prototype optimized embedded robotic systems. InProc.
of the Computational Engineering in Systems Applications
CESA’98, Tunisia, April 1998.

[12] Y. Kopidakis, M. Lamari, and V. Zissimopoulos. On the task
assignment problem: Two new efficient heuristic algorithms.
J. of Parallel and Distributed Computing, 42:21–29, 1997.

[13] Y. K. Kwok and I. Ahmad. Dynamic critical-path scheduling :
An effective technique for allocating task graphs to multipro-
cessors. IEEE Trans. on Parallel and Distributed Systems,
7(5):506–521, May 1996.

[14] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The
syndex software environment for real-time distributed sys-
tems design and implementation. InProc. of the European
Control Conference, 1991.

[15] C. Lavarenne and Y. Sorel. Mod`ele unifié pour la concep-
tion conjointe logiciel-mat´eriel. Revue Traitement du Signal,
14(6), 1997.

[16] B. Lee, A.R. Hurson, and T.-Y. Feng. A vertically layered
allocation scheme for data flow systems.Parallel and Dis-
tributed Computing, 11(3):175–187, 1991.

[17] E.A. Lee and J.C. Bier. Architectures for statically scheduled
dataflow. J. of Parallel and Distributed Computing, 10:333–
348, 1990.

[18] Z. Lui and C. Corroyer. Effectiveness of heuristics and simu-
lated annealing for the scheduling of concurrent task. an em-
pirical comparison.Proc. of PARLE’93, 5th Int. PARLE con-
ference, Munich, Germany, June 14-17, pages 452–463, Nov.
1993.

[19] V. Sarkar.Partitioning and scheduling parallel programs for
multiprocessors. MIT press, 1989.

[20] V. Sarkar and J. Hennessy. Compile-time partioning and
scheduling of parallel programs. In New York ACM Press,
editor,Symp. Compiler Construction, pages 17–26, 1986.

[21] Y. Sorel. Massively parallel computing systems with real time
constraints, the algorithm architecture adequation methodol-
ogy. In Proc. of the Massively Parallel Computing Systems,
May 1994.

[22] Y. Sorel. Real-time embedded image processing applications
using theA3 methodology. InProc. of the IEEE Int. Confer-
ence on Image Processing, November 1996.

[23] A.M. Turing. On computable numbers, with an application
to the entscheindungs problem. InProc. London Math. Soc.,
1936.

[24] M. Wang. Accurate communication cost estimation in static
task scheduling. In Calif. IEEE CS Press, Los Alamitos, edi-
tor, Proc. 24th Ann. Hawaii Int. Conference System Sciences,
volume I, pages 10–16, 1991.

[25] T. Yang and A. Gerasoulis. List scheduling with and with-
out communication delays. Parallel Computing Journal,
19:1321–1344, 1993.


