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Abstract. The aim of this course is to present methods coming from quasiconformal geometry
in metric spaces which can be used to characterize conformal dynamical systems.

We will focus on some specific classes of rational maps and of Kleinian groups (semi-
hyperbolic rational maps and convex-cocompact Kleinian groups). These classes can be char-
acterized among conformal dynamical systems by topological properties, which will enable us
to define classes of dynamical systems on the sphere (coarse expanding conformal maps and
uniform convergence groups). It turns out that these topological dynamical systems carry some
non-trivial geometric information enabling us to associate a coarse conformal structure invariant
by their dynamics. This conformal structure will be derived from hyperbolic geometry in the
sense Gromov. We associate to this conformal structure a numerical invariant, the Ahlfors reg-
ular conformal dimension, which will contain the information that such topological dynamical
systems are conjugate to genuine conformal dynamical systems.

1. Introduction. We introduce the main objects of the course and the principal theorem
(Theorem 1.3) we wish to prove.

1.1. Classical conformal dynamical systems. In the early eighties, Sullivan estab-
lished a dictionary between different kinds of conformal dynamical systems [Sul3]. We
focus on particular subclasses of rational maps and of Kleinian groups.

1.1.1. Semi-hyperbolic rational maps. References on holomorphic dynamics include [CG,
Mil].
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Let f = P/Q be a rational map, where P and Q are relatively prime polynomials
in C[z]. Its degree is by definition max{deg P,deg Q}; it is the number of preimages of
a point counted with multiplicity. A rational map f acts on the Riemann sphere Ĉ by
iteration. A general goal is to understand the asymptotic behavior of its iterates

fn = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

.

If f has degree d ≥ 2, then the sphere can be decomposed into two totally invariant
sets

Ĉ = Jf t Ff

where

• Jf is the Julia set, where the action is chaotic,
• Ff is the Fatou set, where the action is equicontinuous.

More precisely, Ff is the set of points z that admit a neighborhood V such that {fn|V }n≥0
is equicontinuous. The Julia set is defined as its complement. It is also the closure of the
set of repelling cycles.

Its critical points consist of those points at which the rational map is not locally
injective, i.e., for which the derivative vanishes (in appropriate charts if the point at
infinity is involved). We say that f is semi-hyperbolic if Jf contains no recurrent critical
points and if every cycle is either attracting or repelling [CJY].

1.1.2. Convex-cocompact Kleinian groups. Background on Kleinian groups include [Mar,
Ser]. A Kleinian group is a discrete subgroup G of PSL2(C). It acts on the Riemann
sphere Ĉ by Möbius transformations.(

a b

c d

)
 z 7→ az + b

cz + d
.

As for rational maps, the action of a Kleinian group G decomposes the sphere into
two invariant sets:

Ĉ = ΛG t ΩG
where

• ΛG is the limit set, where the action is chaotic,
• ΩG is the ordinary set, where the action is properly discontinuous: for any compact
subsets K,L ⊂ ΩG, the set {g ∈ G, g(K) ∩ L 6= ∅} is finite.

More precisely, ΩG is the locus of points z ∈ Ĉ that admit a neighborhood V such that
{g|V }g∈G is equicontinuous. The limit set is defined as its complement. It is also the
cluster set of the orbit of any point.

Moreover, a Kleinian group G also acts properly discontinuously on H3 by isometries.
Identifying H3 with the Euclidean unit ball B3 ⊂ R3 and Ĉ with the Euclidean unit
sphere S2 ⊂ R3, one obtains an action of G on B3 ∪ S2, which is properly discontinuous
on B3 t ΩG.

When G is torsion-free, the quotient
MG = (B3 t ΩG)/G

defines the Kleinian manifold of G.
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Since the action of G preserves its limit set, it also preserves its convex hull Hull(ΛG)
⊂ H3. We say that the Kleinian group is convex-cocompact if Hull(ΛG)/G is compact.
Equivalently, MG is compact [Sul1].
1.1.3. Topological characterization. Semi-hyperbolic rational maps and convex-cocom-
pact Kleinian groups satisfy a conformal elevator principle. This means that the dynamics
enables us to go from small scales to large scales with bounded distortion (this implies
the self-similarity of the chaotic locus). This is expressed as follows.
• Let G be a convex-cocompact Kleinian group; there exist definite sizes r1 > r0 > 0
such that, for any x ∈ ΛG, for any r > 0, there is an element g ∈ G such that

B(g(x), r0) ⊂ g(B(x, r)) ⊂ B(g(x), r1).
• Let f be a semi-hyperbolic rational map: there exist a definite size r0 > 0 and a
maximal degree dmax <∞ such that, for any x ∈ Jf , for any r > 0, there is an iterate
n ≥ 0 such that

fn(B(x, r)) ⊃ B(fn(x), r0)
and the restriction fn|B(x,r) is at most dmax-valent.

This property characterizes these classes [Sul1, CJY].

1.2. Topological counterparts. In this section, we present the main problems tackled
in these lectures and we provide topological analogs for convex-cocompact Kleinian groups
and semi-hyperbolic rational maps.
Central problem: topological/dynamical characterization. An important theme
in hyperbolic geometry and conformal dynamics is to determine to which extent such
objects can be characterized topologically. In the realm of manifolds, this is the content
of uniformization theorems (uniformization of surfaces and 3-manifolds), and for ratio-
nal maps, an instance is provided by Thurston’s characterization of postcritically finite
rational maps. In these lectures, we will be concerned by the following questions.
• When is a group of homeomorphisms of the sphere conjugate to a (convex-cocompact)
Kleinian group ?
• When is a finite branched covering of the sphere conjugate to a (semi-hyperbolic)
rational map ?

1.2.1. Convergence groups. Let G be a group of orientation-preserving homeomorphisms
of the sphere. Following Gehring and Martin, G is a convergence group if its action
on the set of distinct triples is properly discontinuous [GM, Tuk2, Bow2].

As for Kleinian groups, we have the dynamical decomposition
S2 = ΛG t ΩG.

The action is uniform on ΛG if its action on the set of distinct triples is cocompact.
Theorem 1.1. A Kleinian group is convex-cocompact iff it is a convergence group, uni-
form on its limit set.

To each triple of distinct points of the Riemann sphere corresponds the incenter of
the ideal triangle in hyperbolic space they define: the discreteness of a Kleinian group
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is equivalent to the convergence property and the convex-cocompactness is equivalent to
the uniform property of the action on its limit set.

1.2.2. Topological cxc maps. This class of maps was introduced in [HP1] in a very general
setting. We focus on those which are defined on the sphere. Let f : S2 → S2 be an
orientation-preserving finite branched covering of the sphere of degree d ≥ 2, and let us
assume that X1 ⊂⊂ X0 ⊂ S2 are open subsets of the sphere such that f : X1 → X0 is also
a finite branched covering of degree d. Let X =

⋂
f−n(X0) denote the repellor of f .

Given a finite cover U of X by connected sets, one defines a sequence of covers {Un}
by letting Un denote the collection of connected components of f−n(U) for U ∈ U .

The map f : X1 → X0 is topologically coarse expanding conformal (top. cxc) if there
exists a finite covering U of X satisfying the following properties.

(1) [Irreducibility] For any open set U that intersects X, there is some iterate n ≥ 0 such
that X ⊂ fn(U).

(2) [Expansion]
lim
n→∞

max{diamW, W ∈ Un} = 0.

(3) [Degree] There is some maximal degree dmax ∈ N such that, for all n ≥ 1 andW ∈ Un,

deg(W fn

−−→ fn(W )) ≤ dmax.

Theorem 1.2 ([HP1, Cor. 4.2.2]). A rational map is top. cxc iff it is a semi-hyperbolic
map.

1.3. Topological characterizations: an analytic approach. We propose an ap-
proach based on quasiconformal geometry in metric spaces. The basic steps are the
following:

(1) Find a coarse conformal structure preserved by the dynamics.
(2) Recognize the conformal structure of Ĉ.

Let D denote either the iterates of a topological cxc map or a convergence group that
has a uniform action on its limit set and let X denote either the repellor of the map or
the limit set of the group.

By a conformal structure, we will mean a family of metrics G(D) on X such that D
acts by conformal maps in a coarse sense. This roughly means that there exists a constant
H ≥ 1 such that, for any x ∈ X and g ∈ D, there is some definite size r0 > 0 with the
following property: for any r ∈ (0, r0), there is some size s > 0 such that

B(g(x), s) ⊂ g(B(x, r)) ⊂ B(g(x), Hs).

We will concentrate on the Ahlfors regular conformal gauge GAR(D), i.e., those metrics
of G(D) that are Ahlfors regular. A metric space X is Ahlfors regular, or Ahlfors Q-
regular to be more precise, if there is a Radon measure µ such that for any x ∈ X and
r ∈ (0,diamX], µ(B(x, r)) � rQ for some given Q > 01 [Mat]. The measure µ is then
equivalent to the Hausdorff measure on X of dimension Q. The Ahlfors regular conformal

1We write a � b for two positive quantities a and b if is there is a universal constant u ≥ 1
such that a/u ≤ b ≤ ua.
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dimension confdimARD of D is defined as the infimum over GAR(D) of every dimension Q
[MT, CP, Haï1]. This is a numerical invariant of D. It is a refinement due to Bourdon and
Pajot [BP] of Pansu’s notion of conformal dimension [Pan]. If there is a metric in GAR(D)
of minimal dimension, that is, of dimension confdimARD, then we say that confdimAR(D)
is attained.

We will prove that this numerical invariant suffices to characterize semi-hyperbolic
rational maps and convex-cocompact Kleinian groups.

Theorem 1.3. Let D denote either the iterates of a topological cxc map or a convergence
group that has a uniform action on its limit set and let X denote either the repellor of
the map or the limit set of the group. Assume that X is connected. If

(1) X = S2, confdimARD = 2 and is attained, or
(2) X  S2 and confdimARD < 2

then D is conjugate to a genuine conformal dynamical system.

Case (1) is due to Bonk and Kleiner when D is a group [BK2] and Haïssinsky and
Pilgrim when D is a map [HP2]; case (2) follows from [Haï3, Haï4]. Note that in case (1)
more is known [BK3, HP2]:

Theorem 1.4. Let D denote either the iterates of a topological cxc map with repellor S2

or a convergence group that has a uniform action on S2 and assume that the Ahlfors
regular conformal dimension is attained.

(1) If D is a group, then D is conjugate to a cocompact Kleinian group.
(2) If D is cxc, then D is conjugate to either a rational map, or to a real Lattès map

(with simple real eigenvalues).

1.4. Outline. To start with, we will show that the limit set of a convergence group or
the repellor of a topological cxc map carries a canonical coarse conformal structure as
above. This conformal structure is the trace at infinity of a hyperbolic space in the sense
of Gromov. From this structure, we will show how to embed these sets into a metric
sphere and how to extend the dynamics to this sphere in a conformal fashion. Assuming
a control on the Ahlfors regular conformal dimension, we will then be able to prove that
our dynamical system is conjugate to either a Kleinian group or a rational map.

The rest of the course is organized in four chapters. We will proceed backwards, and
explain how to conclude the proof.

(1) Quasiconformal geometry. We recall the basics on quasiconformal maps and qua-
siconformal geometry. We will state the theorems we wish to apply to establish that
coarse conformal dynamical systems are conjugate to genuine conformal dynamical
systems. This will provide us with an aim to achieve. We will also explain how to
construct a metric sphere from a metric compact planar set.

(2) Hyperbolic geometry. We introduce hyperbolic geometry in the sense of Gromov
and explain how this defines a canonical coarse conformal structure on a compact set,
once we are given a suitable sequence of finite open covers of a Hausdorff compact
space.
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(3) Convergence actions. In this chapter, we sketch the proof of Theorem 1.3 in the
group case. This situation is easier than for cxc maps because the topology of the
limit set is simpler.

(4) Cxc dynamics. We sketch here the proof of Theorem 1.3 in the non-invertible case.
We will emphasize on the differences from the group case.

2. Quasiconformal geometry. Quasiconformal geometry consists of those properties
of metric spaces that are preserved by quasiconformal maps and their variants. We first
review the theory of quasiconformal maps in metric spaces, before specializing ourselves
to maps on the plane. This will allow us to motivate the strategy of the proof of the
main theorem. We then explain how to construct metric spheres and how to control their
geometry.

2.1. Different classes of maps in metric spaces. Let (X, dX) and (Y, dY ) be two
metric spaces and let f : X → Y be a homeomorphism. For any x ∈ X, any R > 0 set

Lf (x,R) = sup{dY (f(x), f(y)) : dX(x, y) ≤ R},
`f (x,R) = inf{dY (f(x), f(y)) : dX(x, y) ≥ R},

Hf (x,R) = Lf (x,R)
`f (x,R) .

We say that f is

– quasiconformal (QC) if there exists H ≥ 1 so that lim supR→0Hf (x,R) ≤ H for any
x ∈ X;

– weakly quasisymmetric (WQS) if there exists H ≥ 1 so that Hf (x,R) ≤ H for any
x ∈ X and any R > 0;

– quasisymmetric (QS) if there exists a homeomorphism ηf = η : [0,+∞) → [0,+∞) so
that

dX(x, a) ≤ tdX(x, b)⇒ dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b))

whenever a, b x ∈ X and t > 0;
– quasi-Möbius (QM) if there exists a homeomorphism θf = θ : [0,+∞)→ [0,+∞) such

that, for any distinct points x1, x2, x3 and x4 in X,

[f(x1), f(x2), f(x3), f(x4)] ≤ θ([x1, x2, x3, x4]),

where [x1, x2, x3, x4] denotes the metric crossratio defined by

[x1, x2, x3, x4] = d(x1, x2)d(x3, x4)
d(x1, x3)d(x2, x4) .

Roughly speaking, QC homeomorphisms (respectively WQS homeomorphisms) dis-
tort the shape of infinitesimal balls (respectively every ball) by a uniformly bounded
amount. The (QS) condition is a scale-free condition, hence a priori more restrictive. The
(QM) condition appears naturally when looking at group actions.

For example, any bi-Lipschitz homeomorphism (with constant L) is QS (and in this
case η(t) = L2t). It is also easy to see that the inverse of a QS homeomorphism is QS
(ηf−1(t) = 1/η−1(t−1)) and that the composition of two QS homeomorphisms is QS
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(ηf◦g = ηf ◦ ηg). Note that these properties are not obvious for QC nor WQS homeomor-
phisms.

The basic distortion bound for quasisymmetric maps is given by the following lemma
[Hei, Prop. 10.8].

Lemma 2.1. Let h : X → Y be an η-quasisymmetric map between compact metric spaces.
For all A,B ⊂ X with A ⊂ B and diamB <∞, we have diam h(B) <∞ and

1
2η
(diamB

diamA

) ≤ diam h(A)
diam h(B) ≤ η

(
2 diamA

diamB

)
.

Another instance is the following precompactness result [TV, Thm3.4].

Theorem 2.2. Let η : R+ → R+ be a fixed distortion function, M <∞ and X,Y be two
metric spaces, x, x′ ∈ X. Then

{f : X → Y η-quasisymmetric such that d(f(x), f(x′)) ≤M}

is equicontinuous. Furthermore, any limit of such functions is either constant or η-
quasisymmetric.

All these notions of coarse conformality are related as follows.

Theorem 2.3. Let (X, dX) and (Y, dY ) be two metric spaces. Denote by (QC), (QS)
and (WQS) the class of injective maps from X to Y that are respectively quasiconformal,
quasisymmetric and weakly quasisymmetric. The following assertions are true.

(i) The following implications hold: (QS) ⇒ (WQS) ⇒ (QC).
(ii) If X is doubling and connected and Y is doubling, then (WQS) ⇒ (QS).

A metric space Z is doubling if there exists an integer N such that any set of finite
diameter can be covered by at most N sets of half its diameter.

We have the following relationships with quasi-Möbius maps:

Theorem 2.4. The relationships between quasi-Möbius maps and quasisymmetric maps
are as follows.

(i) A quasi-Möbius is uniformly locally quasisymmetric.
(ii) A quasisymmetric map is quasi-Möbius.
(iii) Let f : X → Y be a quasi-Möbius map between metric spaces. If X and Y are

unbounded, then f is quasisymmetric if and only if f(x) tends to infinity when x

tends to infinity. If X and Y are bounded, and if for three points z1, z2, z3 ∈ X, we
have |zi − zj | ≥ diamX/λ and |f(zi) − f(zj)| ≥ diamY/λ for some λ > 0, then f

is η-quasisymmetric, where η only depends λ and on the distortion of crossratios.

Notes. The literature on quasiconformal maps is plentiful. The classical references in-
clude [Ahl, LV, Väi1]; see also [AIM]. The definition of quasiconformal mappings given
here has been introduced by F. Gehring [Geh]. The notion of quasisymmetry is due to
P. Tukia and J. Väisälä [TV] while the notion of weak quasisymmetry goes back to
A. Beurling and L. Ahlfors [BA]. The theory of quasi-Möbius maps was developed by
J. Väisälä [Väi2].
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2.2. The planar case and the measurable Riemann mapping theorem. We spec-
ify the above discussion to the complex plane, where such maps were actually introduced.

Let U be an open set of the Riemann sphere Ĉ and f : U → Ĉ be a continuous, not
necessarily invertible, non-constant map. The map f is called quasiregular provided f

belongs to the Sobolev space W 1,2
loc (U), and, for some K <∞, satisfies

(2.1) |Df(x)|2 ≤ K · Jf (x) a.e.

where |Df(x)| is the spherical operator norm of the derivative and Jf (x) is the Jacobian
determinant. In this case we also say that f is K-quasiregular. If in addition f : U → f(U)
is a homeomorphism, f is said to be K-quasiconformal (in the analytic sense).

A quasiregular map is discrete and open. The branch set Bf is the set of points at
which f fails to be a local homeomorphism. The branch set Bf and its image f(Bf )
have measure zero. Moreover, f is differentiable almost everywhere and the Jacobian is
positive almost everywhere. Condition (2.1) implies that at almost every point x in U\Bf ,
the derivative sends round balls to ellipsoids of uniformly bounded eccentricity. The
composition of a K-quasiregular map with a conformal map is again K-quasiregular. The
inverse of a quasiconformal map is quasiconformal, and the composition of quasiregular
maps is quasiregular.

One characterization due to S. Kallunki and P. Koskela [KK, KR] is given in terms
of the asymptotic pointwise distortion of the roundness of balls as defined below.
Roundness. Let A be a bounded, proper subset of a metric space X with non-empty
interior. Given an interior point a ∈ int(A), define the outradius of A about a as

L(A, a) = sup{|a− b| : b ∈ A}
and the inradius of A about a as

`(A, a) = sup{r : r ≤ L(A, a) and B(a, r) ⊂ A}.
The roundness of A about a is defined as

Round(A, a) = L(A, a)/`(A, a) ∈ [1,∞).
Theorem 2.5. A non-constant mapping f : U → Ĉ is quasiregular if and only if
(1) f is continuous, orientation-preserving, discrete, and open;
(2) for every point x ∈ U outside a countable set, there exists a basis of open neighbor-

hoods (Un) such that
lim sup
n→∞

max{Round(Un, x),Round(f(Un), f(x))} <∞

and there exists a constant H <∞ such that
lim sup
n→∞

max{Round(Un, x),Round(f(Un), f(x))} ≤ H

almost everywhere.
In particular, the following conditions are equivalent for an orientation-preserving home-
omorphism f : Ĉ→ Ĉ:
(1) f is quasiconformal in the analytic sense;
(2) f is quasiconformal in the metric sense;
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(3) f is quasisymmetric;
(4) f is quasi-Möbius.

A variant of Stoïlow’s factorisation theorem implies that a quasiregular map f : Ĉ→ Ĉ
is the composition of a rational map and a quasiconformal map.

In complex notation, Condition (2.1) reads∣∣∣∣∂f∂z̄
∣∣∣∣ ≤ K − 1

K + 1

∣∣∣∣∂f∂z
∣∣∣∣ a.e.

Since the Jacobian is positive almost everywhere, it follows that |∂f/∂z| > 0 almost
everywhere as well. Therefore, we may associate its Beltrami coefficient

µf = ∂f/∂z̄

∂f/∂z

which defines an element in the open unit ball of L∞.
The measurable Riemann mapping theorem, specific to dimension 2, implies the con-

verse:

Theorem 2.6 (Measurable Riemann mapping theorem). Let U ⊂ Ĉ be an open set and
let µ ∈ L∞(U) with ‖µ‖∞ < 1. There exists a quasiconformal mapping f : U → f(U)
such that µ = µf almost everywhere.

If g : U → g(U) is an element of W 1,2
loc such that

∂g

∂z̄
= µ

∂g

∂z
a.e.,

then there exists a holomorphic map h : f(U)→ g(U) such that g = h ◦ f .

2.3. Geometric characterizations of conformal dynamical systems. The purpose
of this section is the following theorem due to Sullivan which is the basic result of surgery.

Theorem 2.7. Let D be a countable group of quasi-Möbius homeomorphisms of the
sphere or the iterates of a quasiregular map. If there is a constant K such that g is
K-quasiregular for all g ∈ D, then D is quasiconformally conjugate to a collection of
rational maps.

Its proof is oultined in [Sul2, Sul4]. We sketch P.Tukia’s approach [Tuk1] adapted by
A.Hinkkanen [Hin]. The main idea is to find an invariant Beltrami form under D and
to apply the measurable Riemann mapping theorem. A Beltrami form can be seen as a
measurable section of Ĉ to the bundle of conformal structures, which are identified with
the Poincaré disk. The action of a quasiregular map is a hyperbolic isometry between
fibers. Thus, since the action of D is uniformly quasiregular, we may find a bounded set
on almost each fiber that is invariant under D. Since the curvature of H2 is non-positive,
such sets are contained in unique hyperbolic disks of minimal radius. These disks are
invariant under D and their centers define the invariant Beltrami form that was looked
for.

Remark 2.8. Theorem 2.7 does not hold for arbitrary semigroups, as was shown by
A. Hinkkanen. The simplest counterexample is certainly the following. Let h be a quasi-
conformal map with its support in (0, 1)× iR and set f1(z) = z+ 1 and f2 = f1 ◦h. Then
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the semigroup generated by {f1, f2} is uniformly quasiconformal but not conjugate to a
semigroup of Möbius transformations as soon as h is not conformal.

Conformal gauge revisited. Let (X, dX) be a metric space. Its conformal gauge
G(X, dX) is the set of metrics d on X such that the identity map id : (X, dX)→ (X, d) is
quasisymmetric [Hei, Chap. 15]. Its Ahlfors regular conformal gauge GAR(X) is the subset
of metrics of G(X) that admit an Ahlfors regular measure (such a space may be empty;
it is not if X is connected and doubling). We may then define the conformal dimension
confdimX and the Ahlfors regular conformal dimension confdimARX as the infimum of
the Hausdorff dimensions of (X, d) over d ∈ G(X) and d ∈ GAR(X) respectively. The
following relationships generally hold

dimtopX ≤ confdimX ≤ confdimARX.

Examples with strict inequalities exist. The description of the conformal gauge of a com-
pact metric space is done in [CP]; more information on conformal dimension can be found
in [MT].

We go one step further to characterizing conformal dynamical systems among maps
acting on metric spaces by first providing a characterization of the Riemann sphere up
to quasisymmetry.

Theorem 2.9 (Bonk and Kleiner [BK1]). A metric 2-sphere is quasisymmetrically equiv-
alent to the Riemann sphere if it is linearly locally connected and Ahlfors 2-regular.

A metric space Z is linearly locally connected if there is a constant λ ≥ 1 such that,
for all z ∈ Z and R > 0,

(LLC1) for all x, y ∈ B(z,R) there is a continuum E ⊂ B(z, λR) that contains {x, y};
(LLC2) for all x, y /∈ B(z,R), there is a continuum E ⊂ Z \ B(z, (1/λ)R) that contains

{x, y}.

Combining Theorems 2.3, 2.9 and 2.7 provides us with the following corollary.

Corollary 2.10. Let X be an LLC metric sphere, H > 0 a constant and D a group or
the semi-group induced by a map acting on X. Let us assume that, for all g ∈ D, for all
x ∈ X, there is a neighborhood V such that g|V is H-weakly quasisymmetric. If GAR(X)
contains an Ahlfors 2-regular metric, then there exists a quasisymmetric map f : X → Ĉ
such that f ◦ D ◦ f−1 is a collection of rational maps.

2.4. Construction of metric spheres. The purpose of this section is to explain how
to define a metric on a sphere from a collection of metric planar continua which are
pieced together. The general setting is a collection of metric spaces (Xα, dα)α∈A together
with gluing instructions which can be described by an equivalence relation on the disjoint
union Y =

⊔
Xα. The most natural way is to define, for points x, y ∈ Y ,

(2.2) δ(x, y) def.= inf
n∑
j=1

dαj
(xj , yj)

where the infimum is taken over all finite chains {xj , yj}1≤j≤n such that x1 = x, yn = y,
xj , yj belong to the same space Xαj

for each index j and yj is equivalent to xj+1 for
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j = 1, . . . , n − 1. If no such chain exists, one sets δ(x, y) = ∞. This provides us with a
semi-metric which takes its values in [0,∞]; cf. [BBI, Chapter 3] for a general discussion
on this topic.

We are interested in a much more constrained setting that we describe now. We
assume that X ⊂ S2 is a compact, connected and locally connected subset of S2. Let us
denote by C(X) the collection of components of S2 \ X. Each one is simply connected,
and, for any δ > 0, the collection of components of diameter at least δ is finite, and the
boundary of each component is locally connected according to [Why, Thm.VI.4.4]. Thus,
if Ω ∈ C(X), there exists a surjective continuous map ϕΩ : D → Ω that is one-to-one
on D, with totally disconnected fibers. These maps give rise to the equivalence relation
generated by {(x, ϕΩ(x)) : x ∈ S1,Ω ∈ C(X)} on the disjoint union of X with a collection
of closed disks D in bijection with C(X).

We make the following assumptions.

• The space X is endowed with a metric dX .
• For every element Ω ∈ C(X), we assume that we are given a metric dΩ on D such that
ϕΩ : (S1, dΩ) → (∂Ω, dX) is 1-Lipschitz and that there is a constant ∆ > 0 such that
diamdΩ D ≤ ∆ diamdX

∂Ω.

This enables us to replace the fornula (2.2) by the following two-step construction.
We first define a metric on the closure of each Ω, Ω ∈ C(X).

Fact 2.11. Define mΩ : Ω× Ω→ R+ as follows:

– If y, y′ ∈ ∂Ω, let mΩ(y, y′) = dX(y, y′).
– If z ∈ Ω and y ∈ ∂Ω, let

mΩ(z, y) = mΩ(y, z) = inf{dΩ(ϕ−1
Ω (z), x) + dX(ϕΩ(x), y) : x ∈ S1}.

– If z, z′ ∈ Ω, let

mΩ(z, z′) = min{dΩ(ϕ−1
Ω (z), ϕ−1

Ω (z′));
inf{dΩ(ϕ−1

Ω (z), x) + dX(ϕΩ(x), ϕΩ(x′)) + dΩ(x′, ϕ−1
Ω (z′)) : x, x′ ∈ S1}}.

Then (Ω,mΩ) is a metric space, the map ϕΩ : D → Ω becomes a 1-Lipschitz map, the
restriction ϕΩ : B(z, dΩ(z,S1)/2) → B(ϕΩ(z),mΩ(ϕΩ(z), ∂Ω)/2) is an isometry for all
z ∈ D and mΩ(x, ∂Ω) = dΩ(ϕ−1

Ω (x),S1) for any x ∈ Ω.

Patchwork metric. We may then define the patchwork metric d on S2 as follows: let
Ω,Ω′ ∈ C(X) be two distinct components of S2 \ X; set, given z, w ∈ Ω, z′ ∈ Ω′, and
y, y′ ∈ X,

d(y, y′) = dX(y, y′);
d(z, w) = mΩ(z, w);
d(z, z′) = inf{mΩ(z, x) + dX(x, x′) +mΩ′(x′, z′) : x ∈ ∂Ω, x′ ∈ ∂Ω′};
d(z, y) = d(y, z) = inf{mΩ(z, x) + dX(x, y) : x ∈ ∂Ω}.

One may check that the identity map id : (S2, d) → S2 is a homeomorphism since
diamdΩ D ≤ ∆ diamdX

∂Ω.
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2.5. Geometric properties. We keep the same notation as above. The collection P =
{∂Ω, Ω ∈ C(X)} denotes the boundary components of X.

We now define regular maps in the sense of David and Semmes [DS, Chap. 12], which
will be used to establish geometric properties inherited by the patchwork metric.

Definition 2.12 (regular maps). Let X, Y be metric spaces and p : X → Y be a con-
tinuous map. Given N,L > 0, we say that p is (L,N)-regular if p is L-Lipschitz and, for
any y ∈ Y and r > 0, the preimage p−1(B(y, r)) can be covered by at most N balls of
radius Lr.

We note that such maps have bounded multiplicity hence are light. From now on,
we will always assume that they are surjective. Moreover, if Z ⊂ X is connected then
diamZ � diam p(Z).

The main result of this section is the following (the terminology is given later on):

Theorem 2.13. Let X ⊂ S2 be a compact, connected and locally connected subset en-
dowed with a metric dX and let us assume that there are constants (L,N) such that,
for every component Ω ∈ C(X), we are given a metric dΩ on D and an (L,N)-regular
1-Lipschitz map ϕΩ : (S1, dΩ)→ (∂Ω, dX). We make the following additional assumptions.

• (X, dX) satisfies the (BT)-property, is Ahlfors Q-regular for some Q < 2, relatively
doubling and porous with respect to its boundary components.

• The spaces (D, dΩ) are uniformly Ahlfors 2-regular, LLC, the subspaces (S1, dΩ) are
uniformly porous in (D, dΩ) and there is a constant ∆ > 0 such that diamdΩ D ≤
∆ diamdΩ S

1.

If the patchwork sphere (S2, d) is λ-LLC at every point of X ⊂ (S2, d) for some λ ≥ 1,
then (S2, d) is quasisymmetric to Ĉ.

Ahlfors regularity and the LLC property have already been defined previously. We say
that a metric space Z is λ-LLC at a point z if both conditions (LLC1) and (LLC2) hold
at the point z with constant λ. A metric space Z satisfies the bounded turning property
(BT) if there is a constant C ≥ 1 such that any pair of points {x, y} in Z are contained
in a continuum L ⊂ X such that diamL ≤ Cd(x, y). Let us note that if X is LLC, then
the patchwork sphere is LLC at every point of (S2, d).

A metric space Z is doubling if there exists an integer N such that any set of finite
diameter can be covered by at most N sets of half its diameter. This implies that, for all
ε > 0, there exists Nε such that any set E of finite diameter can be covered by Nε sets
of diameter bounded by ε diamE. We propose a relative notion of doubling:

Definition 2.14 (Relative doubling condition). Let X be a metric continuum embedded
in S2 with boundary components P. Then X is doubling relative to P if, for any ε > 0,
there is some Nε such that, for any x ∈ X and r > 0, there are at most Nε components
K ∈ P such that B(x, r) ∩K 6= ∅ and diam(K ∩B(x, r)) ≥ εr.

A subset Y of a metric space Z is said to be porous if there exists a constant p > 0
such that any ball centered at a point of Y of radius r ∈ (0,diamZ] contains a ball of
radius pr disjoint from Y . We propose a relative notion of porosity:
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Definition 2.15 (Relative porosity). Let X be a metric continuum embedded in S2

with boundary components P. Then X is porous relative to P if there exist a constant
pX > 0 and a maximal size r0 > 0 such that, for any x ∈ X and r ∈ (0, r0), there is at
least one subcontinuum K ′ of a boundary component K ∈ P such that K ′ ⊂ BX(x, r),
K ′ ∩BX(x, r/2) 6= ∅ and diamX K

′ ≥ pXr.

Let us sketch the proof of Theorem 2.13. The idea is to check the assumptions of
Theorem 2.9. The regularity of ϕΩ|S1 will force the global regularity of ϕΩ. From this,
the bounded turning property follows. For the LLC property of the patchwork sphere,
we combine the local LLC property of the domains Ω—which follows from the regular-
ity of ϕΩ—together with the LLC at the points from X. Now, let us explain where the
Ahlfors 2-regularity comes from. We need to control the 2-Hausdorff measure H2. The
relative doubling and porosity assumptions with their uniform counterparts in X and
in the different disks imply that the patchwork sphere is doubling, and that the embed-
ded X ↪→ S2 is porous. Since Q < 2, all the mass is concentrated on S2 \ X, which
is locally uniformly Ahlfors 2-regular by construction. The doubling condition and the
diameter bounds imply that there are not too many holes: this observation enables us
to obtain controlled upper bounds on the mass of balls. For the lower bound, we use
the porosity to ensure that there is at least one ball in some component Ω with definite
mass.

2.6. A word on regular maps. Regularity enables to pull-back the (BT) property
quantitatively under injectivity assumptions:

Lemma 2.16. Let f : X → Y be a regular map between metric spaces X and Y . Let
L ⊂ X be connected, and assume that f : L → f(L) = K is injective and that K is
λ-(BT). Then L satisfies the (BT) property and f : L→ K is bi-Lipschitz quantitatively.

Controlling the bounded turning property under regular maps can be an issue. There
are examples of surjective regular maps f : A → B between compact connected metric
spaces with the following properties:

(1) The space B is a (BT)-space, but A is not locally connected.
(2) The map f is injective but not bi-Lipschitz.
(3) The space A is a (BT)-space, but B is not, even if f is injective.
(4) The space B is a (BT)-space, but A is not, even if it is locally connected.

3. Hyperbolic geometry. Background on hyperbolic metric spaces include [Gro,
GdlH, BH, KB].

Let X be a metric space. It is geodesic if any pair of points {x, y} can be joined by
a (geodesic) segment, i.e., a map γ : [0, d(x, y)] → X such that γ(0) = x, γ(d(x, y)) = y

and d(γ(s), γ(t)) = |t− s| for all s, t ∈ [0, d(x, y)]. The metric space X is proper if closed
balls of finite radius are compact.

A triangle ∆ in a metric space X is given by three points {x, y, z} and three segments
joining them two by two. Given a constant δ ≥ 0, the triangle ∆ is δ-thin if any side of
the triangle is contained in the δ-neighborhood of the two others.
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Definition 3.1 (Hyperbolic spaces and groups). A geodesic metric space is hyperbolic
if there exists δ ≥ 0 such that every triangle is δ-thin. A group G is word hyperbolic if it
acts geometrically on a proper, geodesic hyperbolic metric space.

A geometric action of a group on a metric space is an action by isometries that
is properly discontinuous and cocompact. Basic examples of hyperbolic spaces are the
simply connected Riemannian manifolds Hn of sectional curvature (−1) and R-trees.
In particular since the action of a convex-compact Kleinian group G is cocompact on
HullΛG, it is a word hyperbolic group.

Given any finitely generated group G with a finite generating set S, we define the
Cayley graph C(G,S) as the graph whose vertices are given by all the elements of the
group G and edges are of the form (g, gs), g ∈ G and s ∈ (S ∪ S−1). We endow C(G,S)
with the length metric so that each edge is isometric to the segment [0, 1]. The action
of G on itself by left-translation gives rise to a geometric action of G on C(G,S).

A quasi-isometry between metric spaces X and Y is a map ϕ : X → Y such that there
are constants λ > 1 and c > 0 such that:
• (quasi-isometric embedding) for all x, x′ ∈ X,

1
λ
dX(x, x′)− c ≤ dY (ϕ(x), ϕ(x′)) ≤ λdX(x, y) + c,

• the c-neighborhood of the image f(X) covers Y .
This defines morally an equivalence relation on metric spaces.2. Note that any two locally
finite Cayley graphs of the same group are quasi-isometric. This enables us to discuss
the quasi-isometry class of a finitely generated group (through the class of its locally
finite Cayley graphs). More generally, Švarc-Milnor’s lemma asserts that there is only
one geometric action of a group on a proper geodesic metric space up to quasi-isometry
[GdlH, Prop. 3.19].

3.1. Basic properties. We briefly review properties of hyperbolic geodesic spaces rel-
evant to these lectures.
Approximation by trees. Let k ≥ 1 and Z be the union of k segments or rays con-
taining a common point w. There is a (1, c)-quasi-isometry of Z into a tree T where c
only depends on δ and k. For a proof, see for instance [GdlH, Theorem 2.12]
Shadowing lemma. A quasigeodesic is the image of an interval by a quasi-isometric
embedding; we speak of a (λ, c)-quasigeodesic if the constants of the quasi-isometric
embedding are λ and c. The shadowing lemma asserts that, given δ, λ and c, there is
a constant H = H(δ, λ, c) such that, for any (λ, c)-quasigeodesic q in a proper geodesic
δ-hyperbolic metric space X, there is a geodesic γ at Hausdorff distance at most H. A
proof can be found in [GdlH, Chap. 5].

It follows from the shadowing lemma that, among geodesic metric spaces, hyperbol-
icity is invariant under quasi-isometry: if X, Y are two quasi-isometric geodesic metric
spaces, then X is hyperbolic if and only if Y is hyperbolic.

2To be correct, we should restrict ourselves to separable metric spaces or work with classes
instead of sets.
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Compactification. A proper geodesic hyperbolic space X admits a canonical compact-
ification X t∂X at infinity, see the survey [KB]. This compactification can be defined by
looking at the set of rays, i.e., isometric embeddings r : R+ → X, up to bounded Haus-
dorff distance. The topology is induced by the uniform convergence on compact subsets
of R+. The boundary can be endowed with a family of visual distances dv compatible
with its topology, i.e., that satisfy

dv(a, b) � e−εd(w,(a,b))

where w ∈ X is any choice of a base point, ε > 0 is a visual parameter chosen small
enough, and (a, b) is any geodesic asymptotic to rays defining a and b.

If Φ: X → Y is a quasi-isometry between two geodesic hyperbolic spaces, then the
shadowing lemma implies that Φ induces a homeomorphism φ : ∂X → ∂Y . This means
that a word hyperbolic group G admits a topological boundary ∂G defined by considering
the boundary of any proper geodesic metric space on which G acts geometrically.

In the case of a convex-compact Kleinian group K, a model for the boundary ∂K is
given by its limit set ΛK .

3.2. Analytic aspects. A general principle asserts that a geodesic hyperbolic group is
determined by its boundary. More precisely, Paulin proved that the quasi-isometry class
of a word hyperbolic group is determined by its boundary equipped with its quasicon-
formal structure [Pau]. This was later generalized by Bonk and Schramm to a broader
context [BS].

The boundary ∂X of a proper geodesic metric space X is endowed with the conformal
gauge defined by visual distances.

Quasi-isometries provide natural examples of quasi-Möbius maps:

Theorem 3.2 ([Pau, Prop. 4.5]). A (λ, c)-quasi-isometry between proper, geodesic, metric
spaces extends as a θ-quasi-Möbius map between their boundaries, where θ only depends
on λ, c, the hyperbolicity constants and the visual parameters.

A pointed geodesic metric space (X,w) is quasi-starlike if there is some constant K
such that any point x ∈ X lies at distance at most K of a ray emanating from w.

Bonk and Schramm’s result reads

Theorem 3.3 (Bonk and Schramm [BS]). Two proper quasi-starlike geodesic hyperbolic
metric spaces are quasi-isometric if and only if there is quasi-Möbius homeomorphism
between their boundaries.

As a byproduct, one obtains:

Theorem 3.4 (Paulin [Pau]). Two non-elementary word hyperbolic groups are quasi-
isometric if and only if there is quasi-Möbius homeomorphism between their boundaries.

This implies that the conformal gauge of the boundary at infinity is a quasi-isometric
invariant of a quasi-starlike geodesic, proper, hyperbolic space.

3.3. Geometrization of compact spaces. We provide a criterion for hyperbolicity
of a metric space following Bowditch [Bow3, Prop. 3.1] and apply it to define a metric
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on a compact Hausdorff space endowed with a sequence of covers. This construction is a
model for the dynamical settings.

We assume that X is endowed with a sequence of finite covers (Un)n≥0 by non-empty
open sets that forms a basis for the topology of X. We define a graph Γ with vertex set⋃
n Un ∪ {X}. For a vertex W , let |W | = n if W ∈ Un. An edge (W,W ′) is a pair of

vertices such that ||W | − |W ′|| ≤ 1 and W ∩W ′ 6= ∅.
We wish to add conditions to this sequence to ensure that Γ is hyperbolic and that

its boundary is homeomorphic to X with some control on its geometry. Let k0 ≥ 1 and
let us consider the following properties.
(C1) For any n and k ≥ k0, if W,W ′ ∈ Un+k intersect, then we may find V ∈ Un which

contains W ∪W ′;
(C2) For every n ≥ 1, for every W ∈ Un, there is some 1 ≤ k ≤ k0, V, V ′ ∈ Un+k, such

that V ∩ V ′ = ∅ and V ∪ V ′ ⊂W .
(C3) For every n ≥ 1, every W ∈ Un contains some W ′ ∈ Un+k, 1 ≤ k ≤ k0, such that,

whenever V ∈ Un+k intersects X \W , then V ∩W ′ = ∅.
(C4) For any n ≥ 0, an element W ∈ Un can be covered by at most k0 elements of Un+1.
Theorem 3.5. If (Un) satisfies the properties (C1)–(C3) then Γ is hyperbolic and its
boundary is homeomorphic to X. Moreover, if dv is a visual distance of parameter ε > 0,
there exists C ≥ 1 such that, for any n ≥ 1 and any W ∈ Un, there is a point x ∈ W
such that

B

(
x,

1
C
e−εn

)
⊂W ⊂ B(x,Ce−εn).

If (C4) holds, then ∂X is doubling.
Condition (C1) will ensure that the graph is hyperbolic. Conditions (C2) and (C3)

are used to control the boundary of the graph and the shape and size of the elements of
the different coverings with respect to a visual distance. The criterion for hyperbolicity
is the following:
Theorem 3.6 (Bowditch [Bow3]). Let X be a geodesic metric space. We assume the
existence of a constant h ≥ 0 and of an assignment of a connected set L(x, y) for each
couple of distinct points that enjoy the following properties.
(1) L(x, y) = L(y, x) holds for each x, y ∈ X.
(2) L(x, y) is contained in the h-neighborhood of L(x, z) ∪ L(z, y) for all distinct x, y, z.
(3) If d(x, y) ≤ 1, then diamL(x, y) ≤ h.
Then X is hyperbolic and there is a constant H < ∞ such that dH(L(x, y), [x, y]) ≤ H

for all x, y ∈ X.

4. Convergence actions. This notion was first introduced by Gehring and Martin on
spheres [GM]. Let Z be a compact metrizable space with at least three points. The
action of a group G is a convergence action if its diagonal action on the set of triples
is properly discontinuous. Equivalently, given any infinite sequence (gn)n, we may find
a subsequence (nk) and points a, b ∈ Z such that (gnk

)k tends uniformly on compact
subsets of Z \ {a} to b. Such a sequence is called a collapsing sequence.
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The action is uniform if its action is also cocompact on the set of distinct triples. As
for Kleinian groups, the limit set ΛG is by definition the unique minimal closed invariant
subset of Z. It is empty if G is finite. These properties characterize word hyperbolic
groups and their boundaries:
Theorem 4.1 (Bowditch [Bow1]). Let G be a convergence group acting on a perfect
metrizable space X. The action of G is uniform on ΛG if and only if G is word hyperbolic
and there exists an equivariant homeomorphism between ΛG and the boundary at infinity
∂G of G.

The original proof consists in establishing that the space of triples is a coarse hyper-
bolic space on which G acts geometrically. In [GP], the authors provide an alternative
proof closer to the point of view developed in Theorem 3.5; see also [Ger1, Ger2].
Corollary 4.2. Let G be a uniform convergence group acting on Z. The following
statements are true.
(1) The group G is finitely generated.
(2) Each non-trivial connected component of Z is locally connected with no cut point

[Swa].
(3) There is a natural conformal gauge on ΛG such that G acts by uniform quasi-Möbius

maps.
By Theorem 4.3 below, the metrics of this conformal gauge are exactly those metrics

compatible with the topology of ∂G for which the action of G is uniformly quasi-Möbius,
meaning that the distortion control θ is independent of g ∈ G. Visual distances are
examples of metrics of the gauge. For the sake of simplicity, we will always assume that
G is one-ended and torsion-free. This will in particular imply that ∂G is connected [GdlH,
Prop. 7.17].
Theorem 4.3. Let X and X ′ be two perfect compact metric spaces. We are given a
group G that acts on X and X ′ as a uniform convergence group by uniformly quasi-
Möbius maps.
(1) Any conjugacy between the actions is quasisymmetric.
(2) The spaces X and X ′ are quasisymmetrically equivalent.

A similar result appears in [Tuk2].

4.1. Topological facts on convergence actions on the sphere. We assume
throughout this section that G is a convergence group on S2, uniform on its limit set,
torsion-free and one-ended. Properties of the limit set are first given and then we focus
on the ordinary set.

The lack of cutpoints provides us with the following properties of limit sets.
Proposition 4.4 ([Haï3, Prop. 5.10]). Let G be a one-ended convergence group acting
on S2, uniform on its limit set. The limit set is connected and locally connected. Either
∂G is homeomorphic to the sphere or each component of S2 \ ∂G is a Jordan domain.

We now turn to the ordinary set. The cocompact action on the set of triples provides
us with this Ahlfors finiteness property (cf. [Haï3, Prop. 5.2 and 5.11]).
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Proposition 4.5. Let G be a one-ended torsion-free convergence group, with a uniform
action on its limit set. Then

(1) the quotient ΩG/G is a finite union of closed connected surfaces.
(2) the stabilizer of each component is isomorphic to a cocompact Fuchsian group.

4.2. Geometry behind uniform convergence actions. Let G be a one-ended, con-
vergence group acting on S2 whose action is uniform on its limit set. We fix a metric dΛ
on ΛG from the gauge of G. The geometric properties of (S2, d) are established using the
dynamics.

Proposition 4.6. Let G be a one-ended convergence group on S2, with a uniform action
on its limit set. Let us denote by P the collection of boundary components of its ordinary
set and let us endow ΛG with a metric from its gauge. The following statements are true.

(a) The limit set ΛG is LLC and doubling.
(b) The limit set ΛG is doubling and porous relatively to P.

The LLC property is due to Bonk and Kleiner [BK4] and the doubling property to
Coornaert [Coo]. This shows in particular that the gauge admits Ahlfors regular metrics
assuming the limit set is connected. These properties may be essentially established with
the conformal elevator principle [Haï1, Prop. 4.6]:

Proposition 4.7 (Conformal elevator principle). Let G be a non-elementary hyperbolic
group and consider its boundary ∂G endowed with a metric from its gauge. Then there
exist definite sizes r0 ≥ δ0 > 0 and a distortion function η such that, for any x ∈ X,
and any r ∈ (0,diam ∂G/2], there exists g ∈ G such that g(B(x, r)) ⊃ B(g(x), r0),
diamB(g(x), r0) ≥ 2δ0 and g|B(x,r) is η-quasisymmetric.

We now check that we may build a sphere quasisymmetrically equivalent to the Rie-
mann sphere, cf. Theorem 2.13.

Proposition 4.8. Assume (ΛG, dΛ) is Ahlfors Q-regular with Q < 2. For every compo-
nent Ω of ΩG, there exists a metric dΩ on D in the Ahlfors regular conformal gauge of
the closed unit disk such that

• (D, dΩ) is uniformly 2-regular, S1 is uniformly porous and there is a constant ∆ > 0
such that diamdΩ D ≤ ∆ diamdΛ ∂Ω;

• there is a homeomorphism ϕΩ : D→ Ω such that

(1) the restriction ϕΩ : (S1, dΩ)→ (∂Ω, dΛ) is uniformly bi-Lipschitz;
(2) if Ω and Ω′ belong to the same orbit, then there exists g ∈ G such that ϕΩ′ = ϕΩ◦g.

The proof relies on the following Ahlfors-Beurling type theorem (a more precise state-
ment appears in [Haï2]).

Proposition 4.9. Let (X, dX) and (Y, dY ) be connected compact metric spaces. Let
us assume that there is an η-quasisymmetric embedding f : Y → X with diamY Y =
diamX f(Y ). Then there is a metric d̂ on X such that

(1) id : (X, dX)→ (X, d̂) is η̂-quasisymmetric;
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(2) f : (Y, dY ) → (X, d̂) is bi-Lipschitz onto its image: there exists L ≥ 1 such that, for
all y1, y2 ∈ Y ,

1
L
dY (y1, y2) ≤ d̂(f(y1), f(y2)) ≤ dY (y1, y2).

If we assume that X and Y are QX- and QY -regular respectively with QY < QX and
that f(Y ) is porous in X, then d̂ is QX-regular.

All the constants involved and η̂ only depend on η.

4.3. Characterization of convex-cocompact Kleinian groups. We sketch the
proof of Theorem 1.3 in the group case.

If ΛG = S2, then Proposition 4.6 implies with the fact that ΛG is Ahlfors 2-regular that
S2 is quasisymmetrically equivalent to Ĉ and that the action is uniformly quasi-Möbius
on Ĉ. So the group is Kleinian cocompact, cf. Theorem 2.7.

We now assume that ΛG is a proper subset of the sphere and we apply the construction
made above, thanks to Proposition 4.8. Renormalizing the metrics dΩ, we may assume
that ϕΩ : (S1, dΩ) → (∂Ω, dΛ) is 1-Lipschitz so we may consider the patchwork metric d
obtained from § 2.4.

We check that the assumptions of Theorem 2.13 hold: this follows from Proposition
4.8 together with Proposition 4.6. The patchwork sphere (S2, d) is quasisymmetric to the
Riemann sphere. Let us conjugate the action of G to Ĉ.

From our constructions, we know that the action of G is uniformly quasi-Möbius

• restricted to X and
• restricted to each connected component of S2 \X.

Thus, one needs to check that the map is uniformly locally weakly quasisymmetric in S2

for points on X. To obtain the necessary estimates, we combine the controls obtained in
the closures of the components Ω and on X to see that they match to provide uniform
global bounds on S2. We may then conclude the proof by invoking Corollary 2.10.

5. Cxc dynamics. This section is based on [HP1, Haï4]. Let f : S2 → S2 be an
orientation-preserving finite branched covering of the sphere of degree d ≥ 2, and let
us assume that X1 ⊂⊂ X0 ⊂ S2 are open subsets of the sphere such that f : X1 → X0 is
also a finite branched covering of degree d. Let X =

⋂
f−n(X0) denote the repellor of f .

Given a finite cover U of X by open connected sets of X0, one defines a sequence of
covers {Un} by letting Un denote the collection of connected components of f−n(U) for
U ∈ U .

The map f : X1 → X0 is topologically coarse expanding conformal (top. cxc) if there
exists a finite covering U of X such that

(1) [Irreducibility] For any open set U that intersects X, there is some iterate n ≥ 0 such
that X ⊂ fn(U).

(2) [Expansion]
lim
n→∞

max{diamW, W ∈ Un} = 0.
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(3) [Degree] There is some dmax ∈ N such that, for all n ≥ 1 and W ∈ Un,

deg(W fn

−−→ fn(W )) ≤ dmax.

Planar finite branched coverings have the following additional property.

Fact 5.1. Let f : U → V be a finite branched covering where V is a topological disk and
such that V has at most one singular value. Then each connected component W of U is
simply connected and there is a point w ∈W such that df (w) = deg(W f−→ V ).

It follows from the above fact that we may choose a finite cover U defining the cxc
property that also satisfies the following condition:

[Planar] For all n ≥ 1 and all W ∈ Un, W is simply connected and W contains at most
one critical value, and, in this case, it belongs to W ∩X.

Theorem 3.5 proves the following:

Theorem 5.2 (Canonical Gauge). Given a topologically cxc map as above, we may en-
dow X with a distance dv with the following properties.

(1) There exist constants θ ∈ (0, 1) and r0 > 0 such that, for any x ∈ X and any iterate
k ≥ 1, fk(Bv(x, rθk)) = Bv(fk(x), r) for any r < r0.

(2) For any n ≥ 1 and any W ∈ Un, there is a point x ∈ W such that (W ∩ X) �
Bv(x, θn).

(3) The metric is Ahlfors regular of dimension log d/ log(1/θ) and the map is absolutely
continuous with respect to the corresponding Hausdorff measure.

Furthermore, if d is another metric sharing these properties, then there is some positive
number α > 0 such that d � dαv . In particular, the identity map between (X, dv) and
(X, d) is quasisymmetric.

Metrics that satisfy the conclusions of Theorem 5.2 are called visual distances.
We recall [HP1, Prop. 3.3.2 and 3.3.3] which provides us with some control on the

distortion of the dynamics.

Proposition 5.3. Fix (f,X1,X0, X) and we assume that X is endowed with a visual
metric.

(1) There is some constant C > 1 such that, for any level n ≥ 0 and any W ∈ Un, there
is a point ξ ∈ X so that

Bv(ξ, (1/C)θn) ⊂W ∩X ⊂ Bv(ξ, Cθn).

(2) A maximal radius r0 > 0 exists such that, for any r ∈ (0, r0) and any ξ ∈ X, there
exist levels n,m ≥ 0, W ∈ Un and W ′ ∈ Um such that |n−m| = O(1),

W ′ ∩X ⊂ Bv(ξ, r) ⊂W,

and
max{Round(W ∩X, ξ),Round(W ′ ∩X, ξ)} = O(1).
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5.1. The topology of X. We start by studying the global structure of the repellor
which is built in the definition. Let C(X) denote the set of connected components of Ĉ\X.
Proposition 5.4. Either X has no interior, or X = S2. In the former case, the elements
of C(X) are all preperiodic and form a finite set of orbits.

We now give the main dynamical properties of such maps.
Theorem 5.5. Let f : X1 → X0 be a planar top. cxc map with connected repellor X 6= S2.
Then X is locally connected, and, for any connected component Ω of Ĉ \X, there exists
a continuous map pΩ : S1 → ∂Ω, such that, for any x ∈ S1, f ◦ pΩ(x) = pΩ(xdΩ) where
dΩ = deg(Ω f−→ f(Ω)).

The local connectedness is established from Whyburn’s criterion [Why, Thm.VI.4.4]:
one shows that (a) the components C(X) form a null sequence, i.e., given any metric
compatible with the topology of the sphere, only finitely many components have diameter
at least δ for any δ > 0, and (b) each component has locally connected boundary. The
former follows from the [Expansion] assumption and the latter from the existence of the
maps pΩ. The existence of such maps is first established for the periodic components,
and then spread out by the dynamics. Given a periodic component Ω of period k, we
combine the [Expansion] axiom with a pull-back argument a la Douady-Hubbard to show
the uniform convergence of maps pn : S1 → Ω that satisfy fk ◦ pn+1(z) = pn(zdΩ) where
dΩ = deg(Ω fk

−→ Ω) and z ∈ S1 (cf. [DH, Prop. III.3 and III.4]).

5.2. The geometry of X. We now state the geometric properties of the repellor that
will enable us to construct a metric sphere. The LLC property will follow once we con-
struct the sphere and extend the dynamics.
Theorem 5.6. Let f : X1 → X0 be a planar top. cxc map with connected repellor X. Let
us endow X with a visual distance dv The following properties hold.
(1) The space X is (BT), doubling and porous relative to C(X).
(2) There exist a power α ∈ (0, 1) and constants σΩ for each Ω ∈ C(X) so that

pΩ : (S1, σΩd
α
e ) → (∂Ω, dv) are surjective 1-Lipschitz uniformly regular maps and

the boundaries ∂Ω are uniformly (BT), where de stands for the Euclidean metric.
Since the repellor is known to be locally connected, one obtains the bounded turning

property by picking suitably the initial cover. The relative properties follow from a com-
bination of the [Expansion] and the [Degree] axioms. The proofs of the uniform regularity
and of the uniform (BT) conditions are more delicate to establish. One difficulty comes
from the fact that the restriction of the dynamics to the boundary of a component need
not be a finite branched covering so the effect of pulling back components is not that
clear. We first deal with periodic components, then with preperiodic components that
contain critical orbits (there are only finitely many of them). We obtain uniform bounds
for all the rest thanks to Lemma 2.16.

5.3. Construction of a sphere and extension of the dynamics. Let f : X1 → X0
be a planar topological cxc map with connected repellor X and let us assume that U
is a finite cover by disks that satisfies the axioms [Irred], [Exp], [Deg] and [Planar]. We
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consider a visual metric dv on X given by Theorem 5.2. According to Theorem 5.6, X
has the bounded turning property, and, for any connected component Ω of Ĉ \X,

(1) the boundary ∂Ω is uniformly (BT) and
(2) there exists a 1-Lipschitz regular map pΩ : S1 → ∂Ω when S1 is equipped with an

appropriate metric dΩ of its gauge, such that, for any x ∈ S1, f ◦ pΩ(x) = pΩ(xdΩ)
where dΩ = deg(Ω f−→ f(Ω)).

Let us extend dΩ using Proposition 4.9 so that (D, dΩ) is uniformly locally Ahlfors 2-
regular. We may then construct the patchwork metric, see § 2.4. We conclude from above
that X is porous in S2 and S2 is a doubling and (BT) metric space. We write (Σ, dΣ) for
this new metric sphere.

We extend f : X → X to F : Σ→ Σ as follows. Let Ω be a component of S2 \X; since
for x ∈ S1, f ◦ pΩ(x) = pΩ(xdΩ) holds, where dΩ = deg(Ω f−→ f(Ω)), we set F (z) = zdΩ

for z ∈ Ω (identified to D via the homeomorphism between Ω and D/pΩ).
We note that F is a well-defined finite branched covering of the sphere since X is an

E-set i.e, for any δ > 0, C(X) has only finitely many component of diameter at least δ.
We obtain the following properties.

Proposition 5.7. There exists a cover V of X in Σ so that the map F is top. cxc
(including the [Planar] axiom) and satisfies the following properties.

– [Diam] For any V ∈ Vn, diamVn � θn.
– [Round] For any K, there exists K ′ such that, for n, k ≥ 0 V ∈ Vn+k and x ∈ V , if

Round(V, x) ≤ K then Round(fk(V ), fk(x)) ≤ K ′ and if Round(fk(V ), fk(x)) ≤ K

then Round(V, x) ≤ K ′ .

This implies the LLC property since elements of Vn are Jordan domains that behave
like balls of radius θn in the patchwork metric. Moreover, we may also deduce that F is
uniformly quasiregular in a metric sense.

Corollary 5.8. We have the following properties.

(1) The sphere (Σ, dΣ) is LLC, doubling, X ↪→ (S2, d) is porous, d|X = dv and there is
some constant c > 0 such that, for any x /∈ X and r < cd(x,X), H2(B(x, r)) � r2.

(2) The map F is uniformly quasiregular and F |X = f |X .

5.4. Characterization of semi-hyperbolic rational maps. We now want to con-
clude the proof of Theorem 1.3 in the cxc setting. First, if X = S2, then covering as
above S2 with Jordan domains, we obtain the LLC property. Thus, we may conclude
with Corollary 2.10 by picking an Ahlfors 2-regular metric in its gauge.

If X is a proper subset of S2, then we have shown above how to construct a metric
sphere (Σ, dΣ) that is LLC together with some uniformly quasiregular dynamics F ex-
tending f , cf. Corollary 5.8. We further know that the sphere is doubling and that X is
a porous subset. But, since we started with a visual distance, there is no reason why the
dimension of X should be less than two.

Thus, let us consider an Ahlfors Q-regular metric dX in X in the gauge of f with
Q < 2. We may apply Proposition 4.9 to (X, dX) ↪→ Σ. We note that since dΣ was locally
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Ahlfors 2-regular in Σ \ X and X is Q-regular and porous, we may conclude that this
new sphere is LLC and 2-regular, hence quasisymmetric to S2 according to Theorem 2.9.
Thus, F is conjugate to a rational map since it is uniformly quasiregular, cf. Theorem 2.7.
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