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Abstract. In this paper, we present a Particle-In-Cell algorithm based on semi-implicit/explicit
time discretization techniques for the simulation of the three dimensional Vlasov-Poisson sys-
tem in the presence of a strong external magnetic field. When the intensity of the magnetic
field is sufficiently large and for any time step, the numerical scheme provides formally a con-
sistent approximation of the drift-kinetic model, which corresponds to the asymptotic model.
Numerical results show that this new Particle-In-Cell method is efficient and accurate for large
time steps.
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1. Introduction

Magnetized plasmas are encountered in a wide variety of astrophysical situations, but also in
magnetic fusion devices such as tokamaks, where a large external magnetic field needs to be
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applied in order to keep the particles on the desired tracks. Such a dynamic can be described by
the Vlasov-Poisson equation, where plasma particles evolve under self-consistent electrostatic
field and the confining magnetic field.
We assume that on the time scale we consider, collisions can be neglected both for ions and
electrons, hence collective effects are dominant and the plasma is entirely modelled with kinetic
transport equations, where the unknown is the number density of particles f(t,x,v) depending
on time t ≥ 0, position x ∈ R3 and velocity v ∈ R3. Such a kinetic model provides an appropriate
description of turbulent transport in a fairly general context, but it requires to solve a six
dimensional problem which leads to a huge computational cost.
On the one hand, many asymptotic models with a smaller number of variables than the kinetic
description were developed. For instance, large magnetic fields usually lead to the so-called
drift-kinetic limit [19, 20, 12] and for a mathematical point of view [17, 27, 3, 4]. In this
regime, due to the large applied magnetic field, particles are confined along the magnetic field
lines and their period of rotation around these lines (called the cyclotron period) becomes
small. However, such a reduced model only valid with strong magnetic field assumption, hence
it could not describe all physics of magnetized plasma. On the other hand, in some recent
work [29, 26], numerical methods are developed for the full kinetic models, such as the Vlasov-
Maxwell equation. For example, in [26] and [24, 25], the authors have developed a symplectic
Particle-In-Cell method, which can preserve the geometrical structure of the system, hence this
property may help to preserve the accuracy for long time simulation. However, in our context,
this scheme is not necessarily efficient due to its complexity and the limitation on the time step
since it requires the time resolution of all time scales.
Another approach with similar advantages, developed in [6, 8, 9] and [7, 16], consists in explic-
itly doubling time variables and seeking higher-dimensional partial differential equations and
boundary conditions in variables (t, τ,x,v) that contains the original system at the ε-diagonal
(t, τ) = (t, t/ε) where ε represents for instance the ratio between the plasma and the cyclotron
frequencies. While the corresponding methods are extremely good at capturing oscillations
their design require a deep a priori understanding of the detailed structure of oscillations.
In the very recent works of Filbet and Rodrigues [13, 14], a new asymptotically stable Particle-
In-Cell methods are developed in the request of efficiency for full kinetic models. The numerical
methods are developed in the two-dimensional framework, where one restricts to the perpen-
dicular dynamics. On the one hand, this numerical methods contain the efficient property of
the Particle-In-Cell (PIC) method; on the other hand, this numerical method is free from the
stiffness of the full kinetic system. Moreover, up to third order method is also proposed, thus
this method is very accurate for long term simulations.
In this paper, we extend the asymptotically stable Particle-In-Cell methods for three dimen-
sional Vlasov-Poisson equation. For clarity, we first consider a cylindrical geometry with uni-
form external magnetic filed. Under this assumption, by following the main lines in [13], we
develop implicit numerical methods for the characteristic curve system. More precisely, though
the numerical methods are implicit, only the stiff terms (characterized by 1/ε) are implicitly
computed, and the other terms can be explicitly computed. Then by reformulating the numer-
ical methods and dropping the second order terms with respect to ε, we derive the numerical
methods for the characteristic curve system corresponding to the Drift-Kinetic model. We can
formally show the solutions of these two systems are second order consistent with respect to ε.
The rest of the paper is organized as follows. In Section 2, we derive the Vlasov-Poisson
equation in our interested scaling, and develop its second order consistent non-stiff model,
the drift-Kinetic model. In Section 3 we present several time discretization techniques based
on high-order semi-implicit schemes [2] for the Vlasov-Poisson system with a strong external
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magnetic field, and we prove consistency of the schemes even when the intensity of the magnetic
field becomes large with preservation of the order of accuracy (from first to third order accuracy).
Section 5 is then devoted to numerical simulations for one single particle motion and for the
Vlasov-Poisson model for various asymptotics, which illustrate the advantage of high order
schemes. Finally in Section 6, we conclude the paper and give the perspectives.

2. Mathematical models

In this section, we will introduce the models to describe the electrostatic perturbations of
spatially non-uniform plasmas. The Vlasov equation for the ion distribution function f in
standard form in standard notation is

(2.1)
∂f

∂t
+ v ⋅ ∇xf +

q

m
(E + v ∧Bext) ⋅ ∇vf = 0,

where t ∈ R+ is the time variable, x ∈ Ω ⊂ R3 is the space variable, v ∈ R3 is the velocity variable,
m is the ion particle mass, q is its charge, E = −∇xφ(t,x) is the electric field and Bext is the
external magnetic field. The potential φ is solution to the Poisson equation

(2.2) − ε0 ∆xφ = ρ,

where ε0 represents the permittivity of vacuum and ρ is the charge density

ρ(t,x) ∶= q ∫
R3
f(t,x,v)dv − ρ0,

with ρ0 the charge density of a fixed species. For practical applications, this model has to be
supplemented with suitable boundary conditions. Here we will consider a cylindrical domain of
the form

Ω = {(x, y, z) ∈ R3; (x, y) ∈D, 0 ≤ z ≤ Lz} ,

where D an arbitrary two dimensional domain (disk and D-shaped domain will be used). We
assume that the electric potential is periodic in the z variable and vanishes at the boundary
∂D

(2.3) φ(x) = 0, x ∈ ∂D × [0, Lz].

Furthermore, we assume that the plasma is well confined hence the distribution function also
vanishes on ∂D and is periodic in z.

2.1. Characteristic curves. Here, for simplicity we set all physical constants to one and
consider that ε > 0 is a small parameter related to the ratio between the reciprocal Larmor
frequency and the advection time scale. We refer to [12] for more details on the scaling issues
on this problem.
Let us now consider the magnetic field has a fixed direction Bext = ε−1 b(t,x⊥)ez, where the
vector ez stands for the unit vector in the toroidal direction. Then the characteristic curves
corresponding to the Vlasov equation (2.1) are given by

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= v,

dv

dt
= E(t,x) + v ∧Bext(t,x).

The goal is to identify the fast and slow variable, then to isolate the stiffest scale to keep only
the slow scale. Therefore, we introduce a decomposition according to the parallel direction to
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ez and its orthogonal direction

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v = ⟨v , ez⟩ = vz,

v⊥ = v − v ez = t(vx, vy,0),

where ⟨., .⟩ denotes the scalar product in R3 then we proceed similarly for the electric field
E = E⊥+E ez and the space component x = x⊥+x ez ∈ R3. Thus the system of the characteristic
curves now becomes

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx⊥
dt

= v⊥,

dx

dt
= v ,

dv⊥
dt

= E⊥(t,x) − b(t,x⊥)
v⊥⊥
ε
,

dv

dt
= E (t,x),

where we used the notation v⊥⊥ =
t(−vy, vx,0).

2.2. Asymptotic analysis. In the sequel we replace the system (2.4) by an equivalent system
where we separate the fast variable v⊥ and the slow ones. Therefore we first set

(2.5) F(t,x) ∶=
E(t,x)

b(t,x⊥)

and using the third equation of (2.4), we may write it in a different manner as

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv⊥
dt

= E⊥(t,x) − b(t,x⊥)
v⊥⊥
ε
,

d

dt
(

v⊥⊥
b(t,x⊥)

) = (F⊥(t,x) −
∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
v⊥)

⊥

+
v⊥
ε
.

This last formulation will help us to separate the different scales.
On the one hand, we combine the first equation in (2.4) and the second equation in (2.6), which
gives

(2.7)
d

dt
(x⊥ − ε

v⊥⊥
b(t,x⊥)

) = −ε (F⊥(t,x) −
∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
v⊥)

⊥

.

On the other hand we define e⊥ as the local kinetic energy given by

(2.8) e⊥ =
∥v⊥∥

2

2
,

hence using the orthogonality between v⊥⊥ and v⊥, the kinetic energy variable e⊥ is solution to

de⊥
dt

= ⟨E⊥(t,x),v⊥⟩.

Then we use the second equation in (2.6) and substitute it into the equation for e⊥, it yields

de⊥
dt

= ε (
∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
) ⟨E⊥(t,x),v

⊥
⊥⟩ + ε ⟨E⊥(t,x),

d

dt
(

v⊥⊥
b(t,x⊥)

)⟩ ,
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which may be written as

d

dt
(e⊥ − ε ⟨F⊥(t,x),v

⊥
⊥⟩) = ε (

∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
) ⟨E⊥(t,x),v

⊥
⊥⟩

−ε ⟨∂tE⊥ + dxE⊥ v,
v⊥⊥

b(t,x⊥)
⟩

= −ε ⟨∂tF⊥ + dxF⊥ v,v⊥⊥⟩.(2.9)

Thus gathering (2.7) and (2.9), we get the following system of equations

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
(x⊥ − ε

v⊥⊥
b(t,x⊥)

) = −ε (F⊥(t,x) −
∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
v⊥)

⊥

,

d

dt
(e⊥ − ε ⟨F⊥(t,x),v

⊥
⊥⟩) = −ε ⟨∂tF⊥ + dxF⊥(t,x)v,v⊥⊥⟩.

This last system on the new variables x⊥−εv⊥⊥/b(t,x⊥) and e⊥−ε ⟨F⊥(t,x),v
⊥
⊥⟩ is an improvement

compared to the equations on (x⊥, e⊥) since it only contains terms of order ε in the right hand
side, hence it means that it evolves slowly. However the price to pay is that it now involves
bilinear terms with respect to the fast variable v⊥, which have to be controlled.

Proposition 2.1. For any T > 0, consider A ∈ W 1,∞(0, T ) with A(t) ∈ M3,3(R) for any
t ∈ [0, T ] and v⊥ the solution to (2.6). Then

⟨v⊥,A(t)v⊥⟩ = e⊥Tr⊥(A(t)) +
ε

2

d

dt
[

1

b(t,x⊥)
⟨v⊥,A(t)v⊥⊥⟩](2.11)

−
ε

2
[⟨F⊥,A(t)v⊥⊥⟩ + ⟨v⊥,A(t)F⊥⊥⟩]

−
ε

2 b(t,x⊥)
[⟨v⊥, (A

′
(t) − ∂t log(b)A(t))v⊥⊥⟩]

+
ε

2 b2(t,x⊥)
⟨∇x⊥b(t,x⊥),v⊥⟩ ⟨v⊥,A(t)v⊥⊥⟩,

where where Tr⊥ denotes the trace of the part on the plane orthogonal to ez, that is,

Tr⊥A(t) = ⟨ex,A(t)ex⟩ + ⟨ey,A(t)ey⟩

Proof. For any t ∈ [0, T ] we choose A(t) ∈ M3,3(R) a square matrix. On the one hand using
the two equations in (2.6), we get that

d

dt
[

ε

b(t,x⊥)
⟨v⊥,A(t)v⊥⊥⟩] = ⟨εF⊥ − v⊥⊥,A(t)v⊥⊥⟩ +

ε

b(t,x⊥)
⟨v⊥,A

′
(t)v⊥⊥⟩

+ ⟨v⊥,A(t) [ε(F⊥(t,x) −
∂tb + ⟨∇x⊥b,v⊥⟩

b2(t,x⊥)
v⊥)

⊥

+ v⊥]⟩ .

Then after reordering, it yields

d

dt
[

ε

b(t,x⊥)
⟨v⊥,A(t)v⊥⊥⟩] = ε [⟨F⊥,A(t)v⊥⊥⟩ + ⟨v⊥,A(t)F⊥⊥⟩]

+
ε

b(t,x⊥)
[⟨v⊥, (A

′
(t) − ∂t log(b)A(t))v⊥⊥⟩]

−
ε

b2(t,x⊥)
⟨∇x⊥b(t,x⊥),v⊥⟩ ⟨v⊥,A(t)v⊥⊥⟩

− ⟨v⊥⊥,A(t)v⊥⊥⟩ + ⟨v⊥,A(t)v⊥⟩.
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On the other hand, we observe by definition of Tr⊥

⟨v⊥,A(t)v⊥⟩ + ⟨v⊥⊥,A(t)v⊥⊥⟩ = ∥v⊥∥
2 Tr⊥(A(t)).

Recalling that e⊥ = ∥v⊥∥
2/2, a suitable reduction is thus

⟨v⊥,A(t)v⊥⟩ = e⊥Tr⊥(A(t)) +
ε

2

d

dt
[

1

b(t,x⊥)
⟨v⊥,A(t)v⊥⊥⟩]

−
ε

2
[⟨F⊥,A(t)v⊥⊥⟩ + ⟨v⊥,A(t)F⊥⊥⟩]

−
ε

2 b(t,x⊥)
[⟨v⊥, (A

′
(t) − ∂t log(b)A(t))v⊥⊥⟩]

+
ε

2 b2(t,x⊥)
⟨∇x⊥b(t,x⊥),v⊥⟩ ⟨v⊥,A(t)v⊥⊥⟩.

�

Let us now apply Proposition 2.1 to the system (2.10). For the first equation we choose A such
that

⟨v⊥,A(t)v⊥⟩ =
ε

b2(t,x⊥)
⟨∇x⊥b,v⊥⟩ ⟨v⊥,eα⟩,

with α ∈ {x, y}. Then there exist two bounded functions Θ1 and Σ1 such that

d

dt
(x⊥ − ε

v⊥⊥
b(t,x⊥)

+ ε2Θ1(t,x,v)) = −ε (F⊥(t,x) −
e⊥

b2(t,x⊥)
∇x⊥b)

⊥

(2.12)

+ ε
∂tb

b2
v⊥⊥ + ε

2 Σ1(t,x,v).

From the system (2.10) and using that v⊥ is uniformly bounded with respect to ε, we get that
v⊥ weakly converges to zero, for ε≪ 1. Therefore, removing high order terms (larger than one)
in (2.12), we get an approximated equation given by

(2.13)
dx⊥
dt

= −ε (F⊥(t,x) −
e⊥

b2(t,x⊥)
∇x⊥b(t,x⊥))

⊥

.

This equation corresponds to the guiding center approximation.
Next we treat the second equation of (2.10) by applying Proposition 2.1 with A = dxF⊥, then
there exist two bounded functions Θ2 and Σ2 such that

d

dt
(e⊥ − ε ⟨F⊥(t,x),v

⊥
⊥⟩ + ε

2Θ2(t,x,v)) = εdivx⊥F
⊥
⊥(t,x) e⊥

− ε ⟨∂tF⊥ − vz∂zF⊥(t,x),v
⊥
⊥⟩ + ε

2Σ2(t,x,v).

Neglecting high order terms, it yields

(2.14)
de⊥
dt

= +εdivx⊥F
⊥
⊥(t,x) e⊥.
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Gathering the results and neglecting the terms of order larger than one, we get an approximation
to system of the characteristic curves (2.4),

(2.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx⊥
dt

= −ε (F⊥(t,x) −
e⊥

b2(t,x⊥)
∇x⊥b(t,x⊥))

⊥

,

dx

dt
= v ,

de⊥
dt

= εdivx⊥F
⊥
⊥(t,x) e⊥,

dv

dt
= E (t,x).

This systems only contains the information on slow scales and corresponds to the characteristic
curves of the drift-kinetic equation

(2.16)
∂F

∂t
+ Ugc

⋅ ∇xF + εdivx⊥F
⊥
⊥(t,x) e⊥

∂F

∂e⊥
+ E

∂F

∂v
= 0,

where the guiding center velocity Ugc is given by

(2.17)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ugc(t,x, e⊥, v ) ∶= v ez +Ugc
⊥ (t,x, e⊥),

Ugc
⊥ (t,x, e⊥) = − ε (F⊥(t,x) −

e⊥
b2(t,x⊥)

∇x⊥b(t,x⊥))

⊥

.

2.3. Reformulation of the model (2.4). The aim of the paper is to construct a particle
method which is stable and consistent for ε ≪ 1, that is, when the magnetic field becomes
large. Therefore, we need to ensure that the approximation of the velocity variable v⊥ tends
to zero when ε → 0 and also the modulus ∥v⊥∥

2/2 converges towards an approximation of e⊥
solution to the third equation in (2.15). Hence, we reformulate the initial problem (2.4) and
introduce an additional variable e⊥. More precisely, we replace (2.4) by an augmented system
as

(2.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= v,

de⊥
dt

= ⟨E⊥(t,x),v⊥⟩,

dv

dt
= H(t,x,v⊥, e⊥) − b(t,x⊥)

v⊥⊥
ε
,

where the force field is chosen as

(2.19) H(t,x,v⊥, e⊥) ∶= E(t,x) − χ(e⊥,v⊥)∇x⊥ ln b(t,x⊥)

and the function χ ∈W 1,∞
loc (R4) is such that for any e⊥ ∈ R and v⊥ = (vx, vy,0) ∈ R3,

(2.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ (∥v⊥∥
2
/2 , v⊥) = 0,

χ(e⊥,0R3) = e⊥,

0 ≤ χ(e⊥,v⊥) ≤ e⊥.

For concreteness, in the following, we actually choose χ as

(2.21) χ(e⊥,v⊥) =
e⊥

e⊥ + ∥v⊥∥2/2
(e⊥ −

∥v⊥∥
2

2
)

+

, ∀(e⊥,v⊥) ∈ R ×R3,
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where s+ = max(0, s).
Clearly, when we choose initially e⊥ = ∥v⊥∥

2/2, the second equation on e⊥ of (2.18) can be
deduced from the third by multiplying it by v⊥. Hence, the solution of the augmented system
(2.18) is also solution to the initial system of the characteristic curves (2.4). At the discrete
level, this last formulation (2.18) will be more suitable to construct a numerical approximation
which is consistent in the limit ε → 0, that is, the approximation v⊥ → 0 whereas (x, e⊥, v ) is
consistent with the solution of the asymptotic model (2.15), when ε≪ 1.
In the sequel, we assume that the electric field E is such that

(2.22) E = −∇xφ ∈W
1,∞

((0, T ) ×R3
)

and the intensity b of the magnetic field in the direction ez is such that

(2.23) b(t,x⊥) > b0 > 0, and b ∈W 2,∞
((0, T ) ×R3

).

We define the operator Rn such that v⊥⊥ ∶= R
nv⊥, that is,

R
n
∶= b(tn,xn⊥)

⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠
.

3. A particle method for Vlasov-Poisson system with a strong magnetic field

The numerical resolution of the Vlasov equation and related models is usually performed by
Particle-In-Cell (PIC) methods which approximate the plasma by a finite number of particles.
Trajectories of these particles are computed from characteristic curves (2.4) corresponding to
the the Vlasov equation (2.1), whereas self-consistent fields are computed on a mesh of the
physical space. We refer the reader to [1, 11] for a thorough discussion and other applications
to plasma physics, or to [13] for a brief review of particle methods.
Let us now develop a particle method for the Vlasov equation (2.1), where the key issue is to
design a uniformly stable scheme with respect to the parameter ε > 0, which is related to the
magnitude of the external magnetic field. Assume that at time tn = n∆t, the set of particles
are located in (xnk ,v

n
k)1≤k≤N , we want to solve the system (2.18) on the time interval [tn, tn+1],

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxk
dt

= vk,

de⊥,k

dt
= ⟨E⊥(t,xk),v⊥,k⟩,

dvk
dt

= H(t,xk,v⊥,k, e⊥,k) − b(t,x⊥,k)
v⊥k
ε
,

xk(t
n) = xnk , e⊥,k(t

n) = en⊥,k, vk(t
n) = vnk ,

where the electric field is computed from a discretization of the Poisson equation (2.2) on a
mesh of the physical space.
The numerical scheme that we describe here is proposed in the framework of Particle-In-Cell
method, where the solution f is discretized as follows

fn+1
N,α(x,v) ∶= ∑

1≤k≤N
ωk ϕα(x − xn+1

k )ϕα(v −wn+1
k ),

where (xn+1
k ,wn+1

k ) represents an approximation of the solution (xk(t
n+1),wk(t

n+1)) to (3.1),
with

wk(t) ∶=
√

2e⊥,k(t)
v⊥,k(t)

∥v⊥,k(t)∥
+ v ,k(t)ez,
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whereas the function ϕα = α
−3ϕ(⋅/α) is a particle shape function with radius proportional to α,

usually seen as a smooth approximation of the Dirac measure obtained by scaling a compactly
supported ”cut-off” function ϕ for with common choices include B-splines and smoothing kernels
with vanishing moments, see e.g. [5, 22].
When the Vlasov equation (2.1) is coupled with the Poisson equation (2.2), the electric field is
computed in a macro-particle position xn+1

k at time tn+1 as follows

● Compute the density ρ

ρnh,α(x) = ∑
k∈Z3

wk ϕα(x − xnk).

● Solve a discrete approximation to (2.2)

−∆hφ
n
(x) = ρnh,α(x).

● Interpolate the electric field with the same order of accuracy on the points (xnk)k∈Z3 .

To discretize the system (3.1), we apply the strategy developed in [2] based on semi-implicit
solver for stiff problems. In the rest of this section, we propose several numerical schemes to
the system (3.1) for which the index k ∈ {1, . . . ,N} will be omitted.

3.1. A first order semi-implicit scheme. For a fixed time step ∆t > 0 and a given electric
field E and an external magnetic field Bext = ε

−1 b(t,x⊥)ez, we apply a semi-implicit scheme
for (3.1), which is a combination of backward and forward Euler scheme,

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= vn+1,

en+1
⊥ − en⊥

∆t
= ⟨E⊥(t

n,xn),vn+1
⊥ ⟩,

vn+1 − vn

∆t
= H(tn,xn,vn⊥ , e

n
⊥) − b(t

n,xn⊥)
(vn+1
⊥ )⊥

ε
,

where H corresponds to an approximation of the force field (2.19).
Note that only the third equation on vn+1

⊥ is fully implicit and requires the inversion of a linear
operator. Then, from vn+1 the first and the second equations give the value for the position
xn+1.
As in the continuous case we are interested in the behavior of the approximation (xε, e⊥ε, v ε)ε>0

when ε→ 0.

Proposition 3.1 (Consistency in the limit ε→ 0 for a fixed ∆t). Under the assumptions (2.20)-
(2.23), we consider a time step ∆t > 0, a final time T > 0 and the sequence (xnε ,v

n
ε , e

n
⊥,ε)0≤n≤NT

given by (3.2) with NT = [T /∆t], where the initial data (x0
ε,v

0
ε , e

0
⊥,ε) is uniformly bounded with

respect to ε > 0. Then,

● for all 0 ≤ n ≤ NT , (xnε ,v
n
ε , e

n
⊥,ε)ε>0 is uniformly bounded with respect to ε > 0 and ∆t > 0;

● for a fixed ∆t > 0, the sequence (xnε , e
n
⊥,ε, v

n
,ε)1≤n≤NT is a second order consistent ap-

proximation with respect to ε to the drift-kinetic equation provided by the scheme
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(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= Ugc

(tn,xn, en⊥, v
n+1

),

en+1
⊥ − en⊥

∆t
= ε en⊥ divx⊥F

⊥
⊥(t

n,xn),

vn+1 − vn

∆t
= E (tn,xn),

where F⊥(t,x) is defined in (2.5) and Ugc(t,x, e⊥, v ) is given by (2.17).

● the scheme (3.3) is a first order approximation in ∆t of the characteristic curves (2.15)
to (2.16).

Proof. For clarity reason, we drop the index ε and set λ0 = b0∆t/ε. For any n ∈ {0, . . . ,NT }, we
consider (xn, en⊥, vn)ε>0 given by (3.2). Thus we first have

vn+1
⊥ = (I3 −

∆t

ε
R
n
)

−1

(vn⊥ + ∆tH⊥(t
n,xn,vn⊥ , e

n
⊥)) ,

where H is given by (2.19). Then using the assumptions (2.20) on χ, (2.22) on E and (2.23)
on b, there exists a constant C > 0, such that,

∥vn+1
⊥ ∥ ≤

1
√

1 + λ2
0

(∥vn⊥∥ + C∆t (1 + ∣en⊥ ∣))

and

∣en+1
⊥ ∣ ≤ ∣en⊥ ∣ + C∆t ∥vn+1

⊥ ∥.

Thus, by induction and using that 0 < ∆t < T , it yields that there exists another constant C > 0,
independent of ε, such that for any n ∈ {0, . . . ,NT },

∥vn⊥∥ + ∣en⊥ ∣ ≤ (∥v0
⊥∥ + ∣e0

⊥∣ + C t
n) eC t

n

,

hence since the initial data (x0,v0, e0
⊥)ε is uniformly bounded with respect to ε > 0, we get for

any n ∈ {0, . . . ,NT }, a uniform bound on (vn)ε>0 and (en⊥)ε>0. Therefore, the uniform bound
on the space variable (xn)ε>0 also follows. Notice that this bound is also uniform with respect
to ∆t > 0.
Now let us fix ∆t > 0. Combining assumption (2.20) with the bound on (vn)ε>0, the third
equation of (3.2) can be written as

(vn+1
⊥ )⊥

ε
=

1

b(tn,xn⊥)
(−

vn+1 − vn

∆t
+ H(tn,xn,vn⊥ , e

n
⊥))

⊥
,(3.4)

=
1

b(tn,xn⊥)
[−(

vn+1 − vn

∆t
)
⊥
+ H⊥(t

n,xn,vn⊥ , e
n
⊥)] ,

hence it shows that, for any 1 ≤ n ≤ NT , (ε−1vn⊥)ε>0
is uniformly bounded with respect to ε (not

∆t) and in particular (vn⊥)ε>0 converges to zero and

(3.5) ∥vn⊥∥ ≤ C(∆t) ε, ∀n ∈ {1, . . . ,NT }.

Therefore we have

vn+1
⊥ = −

ε

b(tn,xn⊥)
H⊥⊥(t

n,xn,vn⊥ , e
n
⊥) +

ε

b(tn,xn⊥)
(

vn+1 − vn

∆t
)

⊥

⊥
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and substitute it in the first and second equation of (3.2). On the one hand, it yields for
n ∈ {1, . . . ,NT },

xn+1
⊥ − xn⊥

∆t
= −

ε

b(tn,xn⊥)
(E⊥(t

n,xn) − en⊥∇x⊥ ln b(tn,xn⊥))
⊥
+ Θ1(x,v, e⊥),

where Θ1 is given by

Θ1(x,v, e⊥) ∶=
ε

b(tn,xn⊥)
(

vn+1
⊥ − vn⊥

∆t
+ (χ(en⊥,v

n
⊥) − e

n
⊥) ∇x⊥ ln b(tn,xn⊥))

⊥

.

Using that χ(en⊥,0) = e
n
⊥ and since χ ∈W 1,∞

loc (R ×R3) combined with (3.5), we get that

∥Θ1(x,v, e⊥)∥ ≤ C(∆t) ε2.

On the other hand for the variable e⊥, we also have for n ∈ {1, . . . ,NT },

en+1
⊥ − en⊥

∆t
= en⊥

ε

b(tn,xn⊥)
⟨E⊥(t

n,xn),∇⊥x⊥ ln b(tn,xn⊥)⟩ + Θ2(x,v, e⊥),

where Θ2 is given by Θ2(x,v, e⊥) ∶= ⟨E⊥(t
n,xn),Θ1(x,v, e⊥)⟩, hence it satisfies

∣Θ2(x,v, e⊥)∣ ≤ C(∆t)ε2.

Observing that the electric field E derives from a potential φ, we have that divxE⊥⊥ = 0 and

ε

b(t,x⊥)
⟨E⊥(t,x),∇

⊥
x⊥ ln b(t,x⊥)⟩ = −

ε

b2(t,x⊥)
⟨E⊥⊥(t,x),∇x⊥b(t,x⊥)⟩,

= εdivx⊥F
⊥
⊥(t,x).

Finally gathering the previous results, we get that for n ∈ {1, . . . ,NT }, the solution (xn, en⊥, v
n)ε>0

to (3.2), is a second order approximation to (3.3) with respect to ε, that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1
⊥ − xn⊥

∆t
= −

ε

b(tn,xn⊥)
(E⊥(t

n,xn) − en⊥∇x⊥ ln b(tn,xn⊥))
⊥
+ Θ1(x,v, e⊥),

xn+1 − xn

∆t
= vn+1,

en+1
⊥ − en⊥

∆t
= ε en⊥ divx⊥F

⊥
⊥(t

n,xn) + Θ2(x,v, e⊥),

vn+1 − vn

∆t
= E (tn,xn),

where
∥Θ1(x,v, e⊥)∥ + ∣Θ2(x,v, e⊥)∣ ≤ C(∆t) ε2.

This proves that (xn, en⊥, v
n)1≤n≤NT is a second order consistent approximation to the scheme

(3.3).
Finally the scheme (3.3) is a combination of first order in ∆t implicit and explicit Euler scheme,
hence the last item is obvious. �

Remark 3.2. The consistency provided by the latter result is far from being uniform with respect
to the time step. However though we restrain from doing so here in order to keep technicalities
to a bare minimum, we expect that an analysis similar to the one carried out in [13, Section 4]
could lead to uniform estimates, proving uniform stability and consistency with respect to ∆t
and ε > 0.
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Of course, such a first order scheme is not accurate enough to describe correctly the long time
behavior of the numerical solution, but it has the advantage of the simplicity. Now, let us see
how to generalize such an approach to second and third order schemes.

3.2. Second order semi-implicit Runge-Kutta schemes. Now, we come to second-order
schemes with two stages. The scheme we consider is a combination of a Runge-Kutta method
for the explicit part and of an L-stable second-order SDIRK method for the implicit part.
We first choose γ > 0 as the smallest root of the polynomial γ2 − 2γ + 1/2 = 0, i.e. γ = 1− 1/

√
2,

then the scheme is given by the following two stages. First, we compute an approximation of
the velocity variable v(1) by using an semi-implicit approximation

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(1) − vn

∆t
= γF(1),

F(1) ∶= H(tn,xn,vn⊥ , e
n
⊥) − b(t

n,xn⊥)
(v(1))

⊥

ε
,

where the force term H is given by (2.19). For the second stage, we first define t̂(1) ∶= tn+∆t/(2γ)

and by using an explicit procedure we compute (x̂(1), v̂
(1)
⊥ , ê

(1)
⊥ ) as

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(1) − xn

∆t
=

1

2γ
v(1),

ê
(1)
⊥ − en⊥

∆t
=

1

2γ
⟨E⊥(t

n,xn),v
(1)
⊥ ⟩,

v̂(1) − vn

∆t
=

1

2γ
F(1),

then the solution vn+1 is given by

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vn+1 − vn

∆t
= (1 − γ)F(1) + γF(2),

F(2) ∶= H(t̂(1), x̂(1), v̂
(1)
⊥ , ê

(1)
⊥ ) − b(t̂(1), x̂

(1)
⊥ )

(vn+1)⊥

ε
.

Finally, the numerical solution at the new time step is

(3.9)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= (1 − γ)v(1) + γ vn+1,

en+1
⊥ − en⊥

∆t
= (1 − γ) ⟨E⊥(t

n,xn),v
(1)
⊥ ⟩ + γ⟨E⊥(t̂

(1), x̂(1)),vn+1
⊥ ⟩.

Proposition 3.3 (Second order consistency with respect to ε for a fixed ∆t). Under the
assumptions (2.20)-(2.23), we consider a time step ∆t > 0, a final time T > 0 and the sequence
(xnε ,v

n
ε , e

n
⊥,ε)0≤n≤NT given by (3.6)-(3.9) with NT = [T /∆t], where the initial data (x0

ε,v
0
ε , e

0
⊥,ε)

is uniformly bounded with respect to ε > 0. Then,

● for all 0 ≤ n ≤ NT , (xnε ,v
n
ε , e

n
⊥,ε)ε>0 is uniformly bounded with respect to ε > 0 and ∆t > 0;

● for a fixed ∆t > 0, the sequence (xnε , e
n
⊥,ε, v

n
,ε)1≤n≤NT is a second order consistent ap-

proximation with respect to ε to the drift-kinetic equation provided by the scheme
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v
(1)

− vn

∆t
= γE (tn,xn),

and

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(1) − xn

∆t
=

1

2γ
Ugc

(tn,xn, en⊥, v
(1)

),

ê
(1)
⊥ − en⊥

∆t
=

ε

2γ
en⊥ divx⊥F

⊥
⊥(t

n,xn),

with Ugc given by (2.17), whereas the second stage (xn+1, en+1
⊥ , vn+1) is given by

vn+1 − vn

∆t
= (1 − γ)E (tn,xn) + γ E (t̂(1), x̂(1)),

together with

(3.11)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= (1 − γ)Ugc

(tn,xn, en⊥, v
(1)

) + γUgc
(t̂(1), x̂(1), ê

(1)
⊥ , vn+1

),

en+1
⊥ − en⊥

∆t
= ε [(1 − γ) en⊥ divx⊥F

⊥
⊥(t

n,xn) + γ ê
(1)
⊥ divx⊥F

⊥
⊥(t̂
(1), x̂(1))] .

● the scheme (3.10)-(3.11) is a second order approximation in ∆t of the characteristic
curves (2.15) to (2.16).

Proof. We mainly follow the lines of the proof of Proposition 3.1. We set λ0 = b0∆t/ε and for
any n ∈ {0, . . . ,NT }, we consider (xn, en⊥, v

n)ε>0 given by (3.6)-(3.9). We first get from (3.6),

∥v
(1)
⊥ ∥ ≤

1
√

1 + λ2
0

(∥vn⊥∥ + C∆t (1 + ∣en⊥ ∣)) ,

whereas from (3.8), we have

∥vn+1
⊥ ∥ ≤

1
√

1 + λ2
0

[
2γ − 1

γ
∥vn⊥∥ +

1 − γ

γ
∥v
(1)
⊥ ∥ + C∆t (1 + ∣ê

(1)
⊥ ∣)] .

Furthermore, using (3.7) on ê
(1)
⊥ and the last stage (3.9) on en+1

⊥ , we obtain

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e
(1)
⊥ ∣ ≤ ∣en⊥ ∣ + C∆t ∥v

(1)
⊥ ∥,

∣en+1
⊥ ∣ ≤ ∣en⊥ ∣ + C∆t (∥v

(1)
⊥ ∥ + ∥vn+1

⊥ ∥) .

Thus, by induction and using that 0 < ∆t < T , it yields that there exists another constant C > 0,
independent of ε, such that for any n ∈ {0, . . . ,NT },

∥vn⊥∥ + ∣en⊥ ∣ ≤ (∥v0
⊥∥ + ∣e0

⊥∣ + C t
n) eC t

n

,

hence since the initial data (x0,v0, e0
⊥)ε>0 is uniformly bounded with respect to ε > 0, we get

for any n ∈ {0, . . . ,NT }, a uniform bound on (vn)ε>0 and (en⊥)ε>0, then also on (xn)ε>0.
Now we fix ∆t > 0 and combining assumption (2.20) with the bound on (vn)ε>0, the first stage
(3.6) and can be written as

(v
(1)
⊥ )⊥

ε
=

1

b(tn,xn⊥)
(−

vn+1
⊥ − vn⊥

∆t
+ H⊥(t

n,xn,vn⊥ , e
n
⊥)) ,
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hence, (ε−1v
(1)
⊥ )

ε>0
is uniformly bounded with respect to ε (not ∆t). Furthermore, we observe

that (v̂(1), ê
(1)
⊥ ) are also bounded since v(1) is bounded and v̂(1) a combination of vn and v(1).

Then the second stage (3.8) also gives that

(vn+1
⊥ )⊥

ε
=

1

b(t̂(1), x̂
(1)
⊥ )

⎛

⎝
−

vn+1
⊥ − αv

(1)
⊥ + (1 − α)vn⊥
∆t

+ H⊥(t̂
(1), x̂(1), v̂

(1)
⊥ , ê

(1)
⊥ )

⎞

⎠
,

with α = (1 − γ)/γ, thus (ε−1vn+1
⊥ )

ε>0
is also uniformly bounded with respect to ε (not ∆t). In

particular (vn⊥)ε>0 converges to zero and

(3.12) ∥vn⊥∥ + ∥v
(1)
⊥ ∥ ≤ C ε, ∀n ∈ {1, . . . ,NT }.

Now we can substitute v
(1)
⊥ and vn+1

⊥ in (3.7) and (3.9) and get

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂
(1)
⊥ − xn⊥

∆t
=

1

2γ
Ugc
⊥ (tn,xn, en⊥) + Θ1(x,v, e⊥),

ê
(1)
⊥ − en⊥

∆t
=

ε

2γ
en⊥ divx⊥F

⊥
⊥(t

n,xn) + Θ2(x,v, e⊥),

with
∥Θ1(x,v, e⊥)∥ + ∣Θ2(x,v, e⊥)∣ ≤ C(∆t) ε2,

whereas in the parallel direction the scheme remains the same,

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂
(1)

− x̂n

∆t
=

1

2γ
v
(1)
,

v
(1)

− vn

∆t
= γ E (tn,xn).

Then we define x̂(1) = (x̂
(1)
⊥ , x̂

(1)
) and apply the second stage, (xn+1

⊥ , en+1
⊥ ) is given by

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn+1
⊥ − xn⊥

∆t
= (1 − γ)Ugc

⊥ (tn,xn, en⊥) + γUgc
⊥ (t̂(1), x̂(1), ê

(1)
⊥ ) +Θ3(x,v, e⊥),

en+1
⊥ − en⊥

∆t
= ε [(1 − γ) en⊥ divx⊥F

⊥
⊥(t

n,xn) + γ ê
(1)
⊥ divx⊥F

⊥
⊥(t̂
(1), x̂(1))] + Θ4(x,v, e⊥),

where
∥Θ3(xε,vε, e⊥,ε)∥ + ∣Θ4(xε,vε, e⊥,ε)∣ ≤ C(∆t) ε2,

whereas in the parallel direction we have no consistency error

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= (1 − γ) v

(1)
+ γ vn+1,

vn+1 − vn

∆t
= (1 − γ)E (tn,xn) + γ E (t̂(1), x̂(1)).

To prove the last item we observe that the scheme (3.10)-(3.11) is the stiffly accurate semi-
implicit Runge-Kutta scheme [2], which is a second order explicit scheme for the variable
(x⊥, e⊥, v ) and implicit for x . This approximation is then second order with the characteristic
curves (2.15). �

The present scheme is L- stable, which means uniformly linearly stable with respect to ∆t.
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3.3. Third order semi-implicit Runge-Kutta schemes. A third order semi-implicit scheme
is given by a four stages Runge-Kutta method introduced in the framework of hyperbolic
systems with stiff source terms [2]. First, we set α = 0.24169426078821, β = α/4 and η =

0.12915286960590 and γ = 1/2 − α − β − η. Then we construct the first stage as

(3.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(1) − vn

∆t
= αF(1),

F(1) ∶= H(tn,xn,vn⊥ , e
n
⊥) − b(t

n,xn⊥)
(v(1))

⊥

ε
,

with H given by (2.19). For the second stage, we have

(3.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(2) − vn

∆t
= −αF(1) + αF(2),

F(2) ∶= H(tn,xn,vn⊥ , e
n
⊥) − b(t

n,xn⊥)
(v(2))

⊥

ε
.

Then, for the third stage we set

(3.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(2) − xn

∆t
= v(2),

ê
(2)
⊥ − en⊥

∆t
= ⟨E⊥(t

n,xn),v
(2)
⊥ ⟩,

v̂(2) − vn

∆t
= F(2),

and we compute a new approximation v(3) as

(3.16)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v(3) − vn

∆t
= (1 − α)F(2) + αF(3),

F(3) ∶= H(tn+1, x̂(2), v̂
(2)
⊥ , ê

(2)
⊥ ) − b(tn+1, x̂

(2)
⊥ )

(v(3))⊥

ε
.

Finally, for the fourth stage we set

(3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(3) − xn

∆t
=

1

4
(v(2) + v(3)) ,

ê
(3)
⊥ − en⊥

∆t
=

1

4
(⟨E⊥(t

n,xn),v
(2)
⊥ ⟩ + ⟨E⊥(t

n+1, x̂(2)),v
(3)
⊥ ⟩) ,

v̂(3) − vn

∆t
=

1

4
(F(2) + F(3))

and we compute a new approximation v(4) as

(3.18)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v(4) − vn

∆t
= βF(1) + ηF(2) + γF(3) + αF(4),

F(4) ∶= H(tn+1/2, x̂(3), v̂
(3)
⊥ , ê

(3)
⊥ ) − b(tn+1, x̂

(3)
⊥ )

(v(4))⊥

ε
,
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where tn+1/2 = tn +∆t/2. Finally, the numerical solution at the new time step is
(3.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
=

1

6
(v(2) + v(3) + 4v(4)) ,

en+1
⊥ − en⊥

∆t
=

1

6
(⟨E⊥(t

n,xn),v
(2)
⊥ ⟩ + ⟨E⊥(t

n+1, x̂(2)),v
(3)
⊥ ⟩ + 4 ⟨E⊥(t

n+1/2, x̂(3)),v
(4)
⊥ ⟩) ,

vn+1 − vn

∆t
=

1

6
(F(2) + F(3) + 4F(4)) .

As for the previous schemes, under uniform stability assumptions with respect to ε > 0, we
prove the following Proposition

Proposition 3.4 (Second order consistency with respect to ε for a fixed ∆t). Under the
assumptions (2.20)-(2.23), we consider a time step ∆t > 0, a final time T > 0 and the sequence
(xnε ,v

n
ε , e

n
⊥,ε)0≤n≤NT given by (3.13)-(3.19) with NT = [T /∆t], where the initial data (x0

ε,v
0
ε , e

0
⊥,ε)

is uniformly bounded with respect to ε > 0. Then,

● for all 0 ≤ n ≤ NT , (xnε ,v
n
ε , e

n
⊥,ε)ε>0 is uniformly bounded with respect to ε > 0 and ∆t > 0;

● for a fixed ∆t > 0, the sequence (xnε , e
n
⊥,ε, v

n
,ε)1≤n≤NT is a second order consistent approx-

imation with respect to ε to the drift-kinetic equation provided by the scheme v
(2)

= vn,
with

(3.20)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂(2) − xn

∆t
= Ugc

(tn,xn, en⊥, v
(2)

),

ê
(2)
⊥ − en⊥

∆t
= ε en⊥ divx⊥F

⊥
⊥(t

n,xn).

The next stage is given by

v
(3)

− vn

∆t
= (1 − α)E (tn,xn) + αE (tn+1/2, x̂(2)),

and

(3.21)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂(3) − xn

∆t
=

1

4
[Ugc

(tn,xn, en⊥, v
(2)

) + Ugc
(tn+1/2, x̂(2), ê

(2)
⊥ , v

(3)
)] ,

ê
(3)
⊥ − en⊥

∆t
=
ε

4
[ en⊥ divx⊥F

⊥
⊥(t

n,xn) + ê
(2)
⊥ divx⊥F

⊥
⊥(t

n+1/2, x̂(2))] .

The fourth stage is

v
(4)

− vn

∆t
= (β + η)E (tn,xn) + γ E (tn+1/2, x̂(2)),
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and finally

(3.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 − xn

∆t
= Ugc

f ,

en+1
⊥ − en⊥

∆t
= uf ,

vn+1 − vn

∆t
=

1

6
[E (tn,xn) + E (t̂(2), x̂(2)) + 4E (t̂(3), x̂(3))] ,

with Ugc
f and uf given by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ugc
f ∶=

1

6
[Ugc

(tn,xn, en⊥, v
(2)

) + Ugc
(tn+1/2, x̂(2), ê

(2)
⊥ , v

(3)
) + 4Ugc

(tn+1, x̂(3), ê
(3)
⊥ , v

(4)
)] ,

uf ∶=
ε

6
[en⊥ divx⊥F

⊥
⊥(t

n,xn) + ê
(2)
⊥ divx⊥F

⊥
⊥(t

n+1/2, x̂(2)) + 4 ê
(3)
⊥ divx⊥F

⊥
⊥(t

n+1, x̂(3))] ;

● the scheme (3.20)-(3.21) is a third order approximation in ∆t of the characteristic
curves (2.15) to (2.16).

We skip the proof of Proposition 3.4 since it follows the same arguments as in Proposition 3.1
and Proposition 3.3.

4. Discretization of the Poisson equation

Thanks to periodic boundary condition in z-direction, the 3D Poisson equation (2.2)-(2.3) can
be decomposed into a series of 2D Poisson equations by applying Fourier transform. Then we
use a classical five points finite difference approximation to discretize the 2D Poisson equations.
So it remains to treat the Dirichlet boundary conditions on ∂D.
Johansen et al. [21] have proposed an embedded boundary approach for the Poisson’s equation,
which uses a finite-volume discretization which embeds the domain in a regular Cartesian grid.
It provides a conservative discretization for engineering problems, such as viscous fluid flow
or heat conduction, on irregular domains. However, for the Vlasov-Poisson system, a classical
finite difference method is usually used and is proven to be efficient and accurate [15, 18, 28].
By following this direction, we thus propose a finite difference discretization which embeds the
domain in a regular Cartesian grid.
To discretize the Laplacian operator ∆x⊥φ near the physical boundary, some points of the usual
five points finite difference formula can be located outside of interior domain. For instance,
Figure 1 illustrates the discretization stencil for ∆x⊥φ at the point (xi, yj). We notice that the
point xg = (xi, yj−1) is located outside of interior domain. Let us denote the approximation of
φ at the point xg by φi,j−1. Thus φi,j−1 should be extrapolated from the interior domain.
We extrapolate φi,j−1 on the normal direction n

(4.1) φi,j−1 = w̄p φ(xp) + w̄h φ(xh) + w̄2h φ(x2h),

where xp is the cross point of the normal n and the physical boundary D. The points xh and
x2h are equal spacing on the normal n, i.e. h = ∣xp−xh∣ = ∣xh−x2h∣, with h = min(∆x,∆y), ∆x,
∆y are the space steps in the directions x and y respectively. Moreover, w̄p, w̄h, w̄2h are the
extrapolation weights depending on the position of xg, xp, xh and x2h. In (4.1), φ(xp) is given
by the boundary condition (2.3), whereas φ(xh), φ(x2h) should be determined by interpolation.

For this, we first construct an interpolation stencil E , composed of grid points of D. For
instance, in Figure 1, the inward normal n intersects the grid lines y = yj , yj+1, yj+2 at points
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◆
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P ∗2

⊡

i − 2 i − 1 i i + 1 i + 2

j − 2

j − 1

j

j + 1

j + 2

⊙ xh

⊙
x2h

Figure 1. Spatially two-dimensional Cartesian mesh. ● is interior point, ◾ is
ghost point, ⊡ is the point at the boundary, ◯ is the point for extrapolation,
the dashed line is the boundary.

P ∗
0 , P ∗

1 , P ∗
2 . Then we choose the three nearest points of the cross point P ∗

l , l = 0,1,2, in each
line, i.e. marked by a large circle. From these nine points, we can build a Lagrange polynomial
q2(x) ∈ Q2(R2). Therefore, we evaluate the polynomial q2(x) at xh and x2h, i. e.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(xh) =
8

∑
`=0

wh,` φ(x`),

φ(x2h) =
8

∑
`=0

w2h,` φ(x`),

with x` ∈ E . We thus have that φi,j−1 is approximated from the interior domain.
However, in some cases, we can not find a stencil of nine interior points. For instance, when
the interior domain has small acute angle sharp, the normal n can not have three cross points
P ∗
l , l = 0,1,2 in interior domain, or we can not have three nearest points of the cross point
P ∗
l , l = 0,1,2, in each line. In this case, we alternatively use a first degree polynomial q1(x)

with a four points stencil or even a zero degree polynomial q0(x) with an one point stencil. We
can similarly construct the four points stencil or the one point stencil as above.

5. Numerical simulations

5.1. One single particle motion in 3D. Before simulating at the statistical level, we inves-
tigate on the motion of individual particles in a given magnetic field the accuracy and stability
properties with respect to ε > 0 of the semi-implicit algorithms presented in Section 3.
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Numerical experiments of the present subsection are run with an electric field E = −∇xφ, with

φ ∶ R3
→ R , x = (x, y, z) ↦ 20

√
x2 + y2 + 0.5 cos(2π z)

and a time-independent external magnetic field corresponding to

b ∶ R3
→ R , x⊥ = (x, y,0) ↦

1

102 − (x2 + y2)

Moreover we choose for all simulations the initial data as x0 = (5,0,0), v0 = (4,3,2), whereas
the final time is T = 10. In this case, the asymptotic drift velocity predicted by the limiting
model (2.15) is explicitly given by Ugc.
First, for comparison, we compute a reference solution (xε,vε, eε⊥)ε>0 to the initial problem (2.4)
thanks to an explicit fourth-order Runge-Kutta scheme used with a very small time step of the
order of ε and a reference solution (x, e⊥, v ) to the (non stiff) asymptotic model (2.15) obtained
when ε≪ 1. Recall that the derivation of (2.15) also shows that vε is second order consistent
to Ugc ≡ Ugc(x, e⊥, v ) when ε≪ 1. Then we compute an approximate solution (xε∆t,v

ε
∆t, e

ε
⊥∆t)

using either (3.6)–(3.9) or (3.13)-(3.19), and compare them to the reference solutions.
In Figures 2 and 3, we present trajectory on space variables between the reference solution for
the initial problem (2.4) and the one obtained with the third-order scheme (3.13)-(3.19). As
expected for a fixed time step ∆t = 0.1, the scheme is quite stable even in the limit ε≪ 1 and
the error on the space variable is uniformly small. In contrast, for a fixed time step, the error
on the velocity variable is small for large values of ε, but gets very large when ε≪ 1 since the
scheme cannot follow high-frequency time oscillations of order ε−1 when ε≪ ∆t (not presented).

5.2. The Vlasov-Poisson system. We now consider the Vlasov-Poisson system (2.1), then
ignoring the contribution of boundary conditions or assuming that the density is concentred far
from the boundary, the total energy E(t) is given by

E(t) ∶= ∬
Ω×R3

f ε(t,x,v)
∥v∥2

2
dxdv +

1

2
∫

Ω
∥Eε

(t,x)∥2dx

and is conserved with time. Observe for the asymptotic model (2.16), the same energy can be
defined as

E(t) ∶= ∬
Ω×R3

F ε(t,x, e⊥, v ) (e⊥ +
∣v ∣2

2
) dxde⊥dv +

1

2
∫

Ω
∥Eε

(t,x)∥2dx.

As far as smooth solutions are concerned, the total energy is preserved by both the original
ε-dependent model and by the asymptotic model (2.16). One goal of our experimental obser-
vations is to check that despite the fact that our scheme dissipates some parts of the velocity
variable to reach the asymptotic regime corresponding to (2.16) it does respect this conserva-
tion.
Furthermore, assuming that b does not depend on time, we define the adiabatic variable given
by

µ(t) = ∫
Ω
∫
R3
f ε(t,x,v)

∥v⊥∥
2

2b(x⊥)
dxdv .

In contrast to the energy, an essentially exact conservation of the adiabatic variable is a sign
that we have reached the limiting asymptotic regime since it does not hold for the original
model but does for the asymptotic (2.16) as b is time-independent and E is curl-free. Observe
that, since b is not homogeneous, even in the asymptotic regime the kinetic and potential parts
of the total energy are not preserved separately, but the total energy corresponding to the
Vlasov-Poisson system is still preserved.
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Figure 2. One single particle motion without electric field. Space
trajectory (a) in three dimension, (b) x− y two dimensional projection obtained
with fixed time steps ∆t = 0.1 with third-order scheme (3.13)-(3.19), plotted as
functions from top to bottom as ε = 10−1 and 10−2.

Diocotron instability in a cylinder. Here we choose Ω = D × (0, Lz) with D = D(0,6) the disk
centered at the origin with radius 6 and Lz = 1. Our simulations start with an initial data that
is Maxwellian in velocity and whose macroscopic density is the sum of two Gaussians, explicitly

f0(x,v) =
n0(x)

(2π)3/2 exp(−
∥v∥2

2
) ,

where n0 is chosen as

n0(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n0 (1 + α(cos(θ) + 5 cos(2π kz z))) if 6 ≤ r⊥ ≤ 7,

0 else,
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Figure 3. One single particle motion without electric field. Space
trajectory (a) in three dimension, (b) x− y two dimensional projection obtained
with fixed time steps ∆t = 0.1 with third-order scheme (3.13)-(3.19), plotted as
functions from top to bottom as ε = 10−3 and 10−4.

with r⊥ = ∥x⊥∥, θ = arctan(y/x), n0 = 4000, kz = 3 and α = 0.001. Moreover, in the Poisson
equation (2.2) we take ρ0 = 0. The parameter ε is chosen as ε = 0.05, where the asymptotic
regime is relevant. We compute numerical solutions to the Vlasov-Poisson system (2.1) with
the third-order scheme (3.13)-(3.19) and time step ∆t = 0.1. We first run one set of numerical
simulations homogeneous magnetic field b = 1.
In Figure 4 we present the time evolution of the relative variation of energy and adiabatic
variable. For instance,

∆Eα =
Eα(t) − Eα(0)

Eα(0)
, α ∈ {k, p, t},
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Figure 4. Diocotron instability in a cylinder. Time evolution of total
energy and adiabatic invariant with ε = 0.05 obtained using (3.13)-(3.19) with
∆t = 0.5.

where k denotes the kinetic energy, p is the potential energy and t is the total energy. Notice that
total energy is conserved at the continuous level but not with our numerical scheme. However,
we show that all these features are captured satisfactorily by our scheme even on long time
evolutions with a large time step and despite its dissipative implicit nature in the asymptotic
regime when ε = 0.05.
In Figure 5 we visualize the corresponding dynamics by presenting some snapshots of the time
evolution of the macroscopic charge density. We take ε = 0.05 such that the magnetic field is
sufficiently large to provide a good confinement of the macroscopic density. Here, we expect
similar results as for the two dimensional diocotron instability where seven vortices are generated
[13, 14].

Fusion of vertices in a D-shaped domain. We consider now a D-shaped domain in the plane
orthogonal to the magnetic field D presented in Section IV of [23] and depicted in Figure 6
(a). The mapping from curvilinear coordinates ξ = (ξ1, ξ2) to physical coordinates x⊥ = (x, y)
is given by

⎧⎪⎪
⎨
⎪⎪⎩

x = xc + ξ1 cos (ξ2 + arcsin(0.416) sin(ξ2)) ,

y = yc + 1.66 ξ1 sin(2πξ2),

for 0 ≤ ξ1 ≤ R0 and 0 ≤ ξ2 ≤ 2π with (xc, yc) = (0,0) and R0 = 10.
Our simulations start with an initial data that is Maxwellian in velocity and whose macroscopic
density is the sum of two Gaussians in the perpendicular plane to the magnetic field and a
perturbed constant homogeneous density in the parallel direction to the magnetic field, explicitly

f0(x,v) =
n0(z)

8π2r2
0

[exp(−
∥x⊥ − x0⊥∥

2

2r2
0

) + exp(−
∥x⊥ + x0⊥∥

2

2 r2
0

)] exp(−
∥v∥2

2
) ,

with x0⊥ = (3/2,−3/2,0), r0 = 3 and the density n0(z) = 5000 (1 + α cos(kz z)) with kz = 2π/Lz.
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t = 000 t = 040

t = 080 t = 120

t = 140 t = 200

Figure 5. Diocotron instability in a cylinder. Snapshots of the time
evolution of the macroscopic charge density ρ when ε = 0.05, obtained using
(3.13)-(3.19) with ∆t = 0.5 .

We choose a time-independent inhomogeneous magnetic field

b ∶ R2
→ R , x ↦

20
√

202 − ∥x⊥∥2
,

that is, radial increasing with value one at the origin.
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Figure 6. D-shaped domain [23]. (a) Constant lines in coordinates ξ = (ξ1, ξ2);
(b) D-shaped domain embedded in Cartesian mesh.
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Figure 7. Fusion of vertices in a D-shaped domain. Time evolution of
(a) total energy, kinetic energy and potential energy (b) adiabatic invariant with
ε = 0.01 obtained using (3.13)-(3.19) with ∆t = 0.5.

In Figure 7 we present again the time evolution of the relative variation of energy and adiabatic
variable. In this regime, the limit model (2.16) makes sense and it is expected that both the
total energy E and the adiabatic invariant µ are conserved. Once again the numerical results
are satisfactory since even for large times, the relative variations are of order 10−3.
In Figure 8 we visualize the corresponding dynamics by presenting some snapshots of the time
evolution of the macroscopic charge density. We take ε = 0.01 such that the magnetic field is
sufficiently large to provide a good confinement of the macroscopic density. At time t = 30,
some filament structures can be identified. These filaments are observed more clearly for larger
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times. Since the intensity of the magnetic field is sufficiently large, the plasma is well confined
and the two vertices merge, whereas some the filaments persist and generate a “halo” which
propagates in the domain.

6. Conclusion and perspective

In the present paper we have proposed a class of semi-implicit time discretization techniques for
particle-in cell simulations of the three dimensional Vlasov-Poisson system. The main feature
of our approach is to guarantee the accuracy and stability on slow scale variables even when the
amplitude of the magnetic field becomes large including cases with non homogeneous magnetic
fields and coarse time grids. Even on large time simulations the obtained numerical schemes
also provide an acceptable accuracy on physical invariants (total energy for any ε, adiabatic
invariant when ε≪ 1) whereas fast scales are automatically filtered when the time step is large
compared to ε.
As a theoretical validation we have proved that the discrete trajectories remain bounded for
the semi-implicit schemes and for ε ≪ 1, the schemes is consistent with the asymptotic model
and preserve the order of accuracy with respect to ∆t. From a practical point of view, the
next natural step would be to consider the genuinely three-dimensional Vlasov-Poisson system
taking into account curvature effects.
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