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Abstract

An autoregressive filter is defined either by the components of the regression vector or by the reflection

coefficients appearing in its lattice representation. The mathematical expression of the regression vector

in terms of the reflection coefficients is very complex but many structural properties can be obtained

without this exact expression. In this paper, we present some examples of such structural properties, and

we apply these results to prove some extrema1 properties of stable filters such as the maximum value of

the components of the regression vector or the maximum value of its norm. Moreover, some properties

of the boundary of the stability domain are discussed.

I. INTRODUCTION

An autoregressive (AR), or recursive, discrete time filter is a filter deduced from the difference equation

yk −
n∑

i=1

aiyk−i = uk, (1)

Manuscript received

B. P. and M. B. are with the Laboratoire des Signaux et Systèmes (L2S), a joint laboratory of the C.N.R.S. and the École
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where uk, yk, and ai are the input, output, and the components of a vector a, respectively. This vector

is called the regression vector because when uk is a white noise the linear prediction of yk in terms of

all its past is

ŷk =
n∑

i=1

aiyk−i, (2)

which is a linear regression. The transfer function of the causal filter defined by (1) is, of course,

H(z) =
zn

zn −
∑n

i=1 aiz
n−i , (3)

which clearly introduces the equivalent terminology of an all poles filter.

It is well known that the regression vector a can be expressed in terms of the so-called reflection

coefficients k by using the Levinson recursion [ l , p . 271, [ 2 ] , which allows us to calculate a

regression vector of order m, am in terms of am−1 by

amm−1 = am−1 − kma
(−)
m−1 (4)

amm = km. (5)

In these equations, amm is the last component of am and amm−1 is a vector of order (m − 1) deduced

from am by suppressing its last component. Moreover, a(−)m−1 is deduced from am−1 by inversion of the

order of the components Then using recursively (4) and (5) from 1 to n, we deduce the vector an in

terms of the set of reflexion coefficients ki , 1 ≤ i ≤ n.

Unfortunately, the explicit expression of the components of an in terms of ki is not simple and, as an

example, we give the first three vectors

a1 = k1 (6)

a2 = [k1 − k1k2, k2]T (7)

a3 = [k1 − k1k2 − k2k3, k2 − k1k3 + k1k2k3, k3]
T . (8)

Finally, another way to represent the transfer function is to use a sequence of polynomials defined by

Pm(z) = 1− aTmZm, (9)

where Zm is the vector

Zm = [z, z2, z3, . . . , zm]T . (10)

Of course, the transfer function (3) is given by

H(z) = [Pn(z
−1)]−1, (11)

and it is equivalent to study the polynomial Pn(z) or the transfer function H(z).
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As a consequence, it appears that if the roots of Pn(z) are zk, 1 ≤ k ≤ n, then the poles of Hn(z)

are z−1k and, in particular, the stability condition for the AR filter is that the roots zk are outside the unit

circle.

The purpose of this paper is the following one. In Section I1 we present some general properties

of the regression vector a which are direct consequences of the Levinson recursion and then obtained

without calculating the components of this vector. In Section III we introduce the stability condition and

we deduce some properties of the regression vector of stable filters. In particular, we give the expression

of the vector a of maximum norm for a stable filter. This question was motivated by an interpolation

problem appearing in estimation theory [4]. In Section IV we present some simple sufficient conditions

for stability of an AR filter. The conditions are particularly important in an adaptive filtering context where

the coefficients ai’s are time varying. In these cases, it is important to secure the stability with conditions

involving almost no calculations. In Section V, the stability problem is considered more carefully and

we specify the limits of the stability domain in the space of the regression vector a. This problem was

partially considered in [5]. More precisely we give some geometrical properties of the boundary of the

stability domain in the a domain. For the points belonging to this boundary, we give the structure of the

transfer function which allows us to indicate which poles are on the unit circle. Finally, Section VI is

devoted to some general expressions of the regression vector in terms of the reflection coefficients.

II. SOME STRUCTURAL PROPERTIES

In this section we present a sequence of properties directly deduced from the Levinson recursion and

interpreted in the lattice representation.

Property 2.1 : Each component of an is a polynomial in ki with a degree smaller or equal to n.

Proof: The property is true until the order 3, from (6) to (8). If it is true at the order m, we deduce

immediately from (4) that it is also true at the order m+ 1.

Property 2.2 : The powers of ki in the polynomials introduced by 2.1 are either 0 or 1.

Proof: The property is true for ai, i ≤ 3. If it is true for an, it is also true for an+1 because in (4) an

and a
(−)
n do not depend on kn+1.

Property 2.3 : The polynomials introduced in 2.1 are sums of products of ki with the signs + if the

number of ki is odd and − if it is even.

Proof: It is also by induction, and a direct consequence of the multiplication by −kn+1 in (4).

Property 2.4 : If the reflection coefficients are negative, the components of a are also negative.

Proof: It is a direct consequence of 2.3.
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Property 2.5 : If Sg(ki) = (−1)i+1, 1 ≤ i ≤ n, then Sg(ai) = (−1)i+1, 1 ≤ i ≤ n, where Sg(f) is

the sign of f .

Proof: The property is true for a1, a2, and a3, from (6) to (8). Let us suppose that the signs of the

componentsof am−1 are

am−1 : [+,−,+,−, . . . , (−1)m]. (12)

For a(−)m−1 we obtain similarly

a
(−)
m−1 : (−1)

m[+,−,+,−, . . . , (−1)m]. (13)

Then as km = (−1)m+1|km|, we deduce that the signs of −kma
(−)
m−1 appearing in (4) are

−kma
(−)
m−1 : [+,−,+,−, . . . , (−1)

m]. (14)

and by using (4), the property is true for amm−1. As it is true for the last component given by (5), it is

true for ai, 1 ≤ i ≤ n.

Property 2.6 : The number of terms appearing in the polynomials introduced in 2.1 is for each

component [C1
n, C

2
n, . . . , C

n
n ].

Proof: These coefficients, often denoted (nr ), are the binomial coefficients. The property is true for a1,

a2, and a3. If it is true for n, the number of terms appearing in an+1 is from (1-4)

[C1
n+, C

n
n , C

2
n+, C

n−1
n , . . . , Ci

n+, C
n−i+1
n , . . . , Cn

n , C
n
n ]

Indeed an and kn+1a
(−)
n cannot have common terms because kn+1 is not present in the expression of

the components of an. But as Cp
n = Cn−p

n and

Cp−1
n + Cp

n == Cp
n+1, (15)

we deduce immediately

Ci
n + Cn−i+1

n = Ci
n+1. (16)

As the last component of an+1 is kn+1, if the property is true for an, it is also true for an+1.

Property 2.7 : The total degrees of the polynomials appearing in the components of an, are

[2, 4, 6, . . . , 2n, 2n− 1, 2n− 3, . . . 3, 1] (17)

for a2n, and

[2, 4, 6, . . . , 2n, 2n+ 1, 2n− 1, 2n− 3, , . . . 3, 1] (18)

for a2n+1.
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Proof: f we consider a3 given by (8), we see that the three components are polynomials in ki ,

respectively, with degrees 2, 3, 1. Let us suppose that (17) is true. The degrees of the components of

k2n+1a2n(−) are, becauseof the multiplication by k2n+1

k2n+1a
(−)
2n : [2, 4, . . . , 2n− 2, 2n, 2n+ 1, 2n− 1, . . . , 5, 3].

As the last component of a2n+1 is of degree 1, we deduce that the degree of a2n+1 is given by (18).

By the same procedure, if a2n+1 has the property (18), a2n+2 has the property (17).

III. SOME CONSEQUENCES OF STABILITY

All the properties indicated in Section II are direct consequences of the Levinson recursion (4)-(5),

without any consideration of stability problems. In this section, we will discuss some consequences on

the regression vector deduced from the stability condition |ki| < 1, 1 ≤ i ≤ n.

Consequence 3.1: If an AR filter is stable, then the components of the regression vector satisfy |ai| <

Ci
n.

Proof: It is a direct consequence of 2.6. Indeed, ai is a polynomial with Ci
n terms which are product

of reflection coefficients ki. As |kj | < 1, the absolute values of these terms are also smaller than 1 which

gives immediately |ai| < Ci
n.

Comment: It is clear that this condition does not ensure that the AR filter is stable. Indeed, it is

well known that the stability condition cannot be expressed as a condition on each component, but is a

condition on all the ai together. On the other hand, if one ai is greater than Ci
n, the filter is certainly

unstable.

Consequence 3.2: If an AR filter is stable, then we have
∑
|ai| < 2n − 1.

Proof: It is a direct consequence of 3.1. Indeed, we deduce from it that∑
|ai| <

∑
Ci
n = 2n − 1. (19)

Comments: As for 3.1, this condition is a necessary condition for stability of an AR filter, but does

not secure this stability.

Consequence 3.3: If an AR filter is stable, then the magnitude of the regression vector is smaller than

[Cn
2n − 1]1/2.

Proof: We deduce that the square of the square of the magnitude of an satisfies

||ai||2 <
n∑

i=1

(Ci
n)

2 =
n∑

i=0

(Ci
n)

2 − 1. (20)

In order to calculate this term, we write two expansions of (a+ b)2n

(a+ b)2n =
2n∑
k=0

Ck
2na

2n−kbk, (21)
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[(a+ b)n]2 =
∑
i

∑
j

Ci
nC

j
na

2n−i−jbi+j , (22)

By identification we deduce immediately

Cn
2n =

n∑
i=0

Ci
nC

n−i
n =

n∑
i=0

[Ci
n]

2, (23)

and with (20) we deduce

||ai||2 < Cn
2n − 1. (24)

Consequence 3.4: If an AR filter is stable, then the maximum of the magnitude of the regression vector

is reached for two vectors corresponding to ki = −1 and to ki = (−1)i−1, 1 ≤ i ≤ n, respectively, and

its value is [Cn
2n − 1]1/2.

Proof: For ki = −1 we deduce from 2.3, 2.4, and 2.6 that the components of an, are

aTn = −[C1
n, C

2
n, , . . . , C

n
n ], (25)

which means that for this vector the upper bound given by (20) is reached.

For ki = (−1)i−1 we will prove that the corresponding vector is

aTn = [C1
n,−C2

n, , C
3
n . . . , (−1)n−1Cn

n ]. (26)

Let us suppose that this property is true for n, and let us calculate an+1 with kn+1 = (−1)n. We

deduce that

−kn+1a
(−)T
n = [Cn

n ,−Cn−1
n , Cn−2

n , . . . , (−1)n−1C1
n], (27)

and applying (4) and (5), we deduce that

anTn+1 = [C1
n+1,−C2

n+1, C
3
n+1, . . . , (−1)n−1Cn

n+1], (28)

As the last component of an+1 is kn+1 = (−1)n = (−1)nCn+1
n+1 , we see that an+1 has the structure

of an given by (26). Of course, the upper bound of (20) is reached for this vector.

Comment: This property is important in some interpolation problems. Indeed it has been shown in

another paper [4] that if we consider the signal yk defined by (1) where uk is a white noise of variance

ε2, the interpolation of yn in terms of all its past and future can be obtained with an error given by

η2 = ε2[1 +
∑

a2i ]
−1 = ε2[1 + ||an||2]−1. (29)

For a given value of ε2 this error is minimum |an| is maximum, provided that the AR filter is stable.

Using (24) we see that this minimum error is

η2min = ε2(n!)2/(2n)!. (30)
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Consequence 3.5: The two regression vectors of 3.4 correspond to two AR filters with poles of order

n located in +1 and -1.

Proof: The denominator of H(z) defined by (3) is

D(z) = zn −
∑

aiz
n−i. (31)

If the regression vectors are an given by (25) or (26), we obtain, respectively,

D+(z) = (z + 1)n (32)

D−(z) = (z − 1)n. (33)

IV. SIMPLE SUFFICIENT CONDITIONS FOR STABILITY

All the properties indicated in Section I11 are consequences of the stability and are then necessary

conditions for stability. But conversely they can be satisfied for unstable filters and are then not sufficient

conditions for stability.

Of course such necessary and sufficient conditions do exist and are well known [6], [7]. But, in general,

they are very complicated to check and require a lot of calculation. In practice, they are equivalent to

the calculation of all the reflections coefficients ki from a given regression vector in order to check that

|ki| < 1.

In many problems, and particularly in an adaptive context, it is necessary to have simple conditions

securing the stability of the filter. By simple we mean conditions which can be verified almost without

calculation.

Starting from the idea that if |a| is small, the kis also are small and the filter is stable, we will introduce

some very simple sufficient conditions for stability.

For this purpose, let us associate to any vector a the functions

Sn(a)
4
=

n∑
i=1

|ai| (34)

Tn(a)
4
=

n∑
i=1

a2i = ||a||2 (35)

An(a)
4
= max1≤i≤n(|ai|). (36)

These functions have been considered in Section III, and, in particular, their upper bounds for stable

filters have been obtained.

In this section we are interested in some sufficient conditions on these functions which secure the

stability of the corresponding AR filter. Of course it is obvious that these functions are very simple, .in

terms of calculation from the components of the regression vector.
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At first let us recall a known result.

Result 4. I: If Sn < 1, then the corresponding AR filter is stable.

Proof: We have to prove that if Sn < 1, the polynomial Pn(z) defined by (9) has all its roots outside

the unit circle. Let us suppose the contrary and consider a root z0 such that |z0| < 1. As z0 is a root we

have, from (9),
n∑

i=1

aiz
i
0 = 1, (37)

which gives

1 =

∣∣∣∣∣
n∑

i=1

aiz
i
0

∣∣∣∣∣ ≤
n∑

i=1

|ai||zi0| ≤ Sn, (38)

because |z0| < 1. Thus, Sn ≥ 1 which is in contradiction with the initial condition. Then all the roots

are outside the unit circle.

Comment: We deduce from 3.2. and 4.1. that if Sn < 1, the AR filter is stable, and if Sn > 2n − 1, it

is unstable. It is clear that if 1 < Sn < 2n − 1, it can be either stable or unstable, as we will see now.

Result 4. 2: For every s > 1 it is possible to find an unstable AR filter with regression vector a such

that Sn(a) = s..

Proof: Let us suppose that a1 = a2 = . . . = an−1 = 0. Then s = |an| = |kn−1|, and as s > 1 this

particular AR filter is unstable.

Result 4. 3: If Tn < l/n , then the corresponding AR filter is stable.

Proof: From.the Schwarz inequality we deduce that

S2
n(a) =

[
n∑

i=1

|ai|
]2
≤ n

n∑
i=1

a2i = nTn(a), (39)

and if Tn < 1/n, then Sn < 1, which secures the stability.

Result 4. 4: For every t > 1/n it is possible to find an unstable AR filter with regression vector a

such that Tn(a) > t.

Proof: Let us consider the filter such that ai = a > 0,∀i. For this filter Tn = na2, and as t > 1/n,

then a > 1/n, or can be written 1/n + ε, ε > 0. It is possible to calculate the reflection coefficients of

this filter, using (4) and (5). For example, we obtain easily

k1 =
1 + nε

1− nε(n− 1)
, (40)

if ε < [n(n− 1)]−1, which proves that this filter is unstable.

Result 4. 5: If An < l/n, then the corresponding AR filter is stable.

Proof: This condition means that |ai| < 1/n, 1 ≤ i ≤ n, and it results that Sn < 1, which gives the

stability.

DRAFT May 25, 2018



PICINBONO AND BENIDIR: LATTICE AUTOREGRESSIVE FILTERS 9

Result 4. 6: If An > l/n, then the AR filter may be unstable.

Proof: It is the same as for 4.4. By taking all the ai’s equal to a, the condition means that a may be

greater than l/n and, in this case, the filter is unstable.

Finally, it is worth noticing that .the condition An < 1/n implies Tn < 1/n which also implies Sn < 1.

In other words, the simplest condition (An < 1/n), which needs absolutely no calculation, is also the

most restrictive.

These sufficient stability conditions are generalizations to all orders of a well-known conditions for

second-order filters [8, p. 211].
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