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Some Properties of Lattice Autoregressive Filters

An autoregressive filter is defined either by the components of the regression vector or by the reflection coefficients appearing in its lattice representation. The mathematical expression of the regression vector in terms of the reflection coefficients is very complex but many structural properties can be obtained without this exact expression. In this paper, we present some examples of such structural properties, and we apply these results to prove some extrema1 properties of stable filters such as the maximum value of the components of the regression vector or the maximum value of its norm. Moreover, some properties of the boundary of the stability domain are discussed.

I. INTRODUCTION

An autoregressive (AR), or recursive, discrete time filter is a filter deduced from the difference equation

y k - n i=1 a i y k-i = u k , (1) 
where u k , y k , and a i are the input, output, and the components of a vector a, respectively. This vector is called the regression vector because when u k is a white noise the linear prediction of y k in terms of all its past is

ŷk = n i=1 a i y k-i , (2) 
which is a linear regression. The transfer function of the causal filter defined by ( 1) is, of course,

H(z) = z n z n -n i=1 a i z n-i , (3) 
which clearly introduces the equivalent terminology of an all poles filter.

It is well known that the regression vector a can be expressed in terms of the so-called reflection coefficients k by using the Levinson recursion [ l , p . 271, [START_REF] Kay | Spectrum analysis. A modern perspective[END_REF] , which allows us to calculate a regression vector of order m, a m in terms of a m-1 by

a m m-1 = a m-1 -k m a (-) m-1 (4) 
a m m = k m . (5) 
In these equations, a m m is the last component of a m and a m m-1 is a vector of order (m -1) deduced from a m by suppressing its last component. Moreover, a (-) m-1 is deduced from a m-1 by inversion of the order of the components Then using recursively (4) and ( 5) from 1 to n, we deduce the vector a n in terms of the set of reflexion coefficients k i , 1 ≤ i ≤ n.

Unfortunately, the explicit expression of the components of a n in terms of k i is not simple and, as an example, we give the first three vectors

a 1 = k 1 (6) 
a 2 = [k 1 -k 1 k 2 , k 2 ] T (7) 
a 3 = [k 1 -k 1 k 2 -k 2 k 3 , k 2 -k 1 k 3 + k 1 k 2 k 3 , k 3 ] T . (8) 
Finally, another way to represent the transfer function is to use a sequence of polynomials defined by

P m (z) = 1 -a T m Z m , (9) 
where Z m is the vector

Z m = [z, z 2 , z 3 , . . . , z m ] T . ( 10 
)
Of course, the transfer function ( 3) is given by

H(z) = [P n (z -1 )] -1 , (11) 
and it is equivalent to study the polynomial P n (z) or the transfer function H(z).

As a consequence, it appears that if the roots of P n (z) are z k , 1 ≤ k ≤ n, then the poles of H n (z) are z -1 k and, in particular, the stability condition for the AR filter is that the roots z k are outside the unit circle.

The purpose of this paper is the following one. In Section I1 we present some general properties of the regression vector a which are direct consequences of the Levinson recursion and then obtained without calculating the components of this vector. In Section III we introduce the stability condition and we deduce some properties of the regression vector of stable filters. In particular, we give the expression of the vector a of maximum norm for a stable filter. This question was motivated by an interpolation problem appearing in estimation theory [START_REF] Papoulis | Constrained Wiener filtering[END_REF]. In Section IV we present some simple sufficient conditions for stability of an AR filter. The conditions are particularly important in an adaptive filtering context where the coefficients a i 's are time varying. In these cases, it is important to secure the stability with conditions involving almost no calculations. In Section V, the stability problem is considered more carefully and we specify the limits of the stability domain in the space of the regression vector a. This problem was partially considered in [START_REF] Shlien | A geometric description of stable LPC digital filters[END_REF]. More precisely we give some geometrical properties of the boundary of the stability domain in the a domain. For the points belonging to this boundary, we give the structure of the transfer function which allows us to indicate which poles are on the unit circle. Finally, Section VI is devoted to some general expressions of the regression vector in terms of the reflection coefficients.

II. SOME STRUCTURAL PROPERTIES

In this section we present a sequence of properties directly deduced from the Levinson recursion and interpreted in the lattice representation.

Property 2.1 : Each component of a n is a polynomial in k i with a degree smaller or equal to n.

Proof: The property is true until the order 3, from ( 6) to [START_REF] Bellanger | Truitement Numérique du Signal[END_REF]. If it is true at the order m, we deduce immediately from (4) that it is also true at the order m + 1.

Property 2.2 :

The powers of k i in the polynomials introduced by 2.1 are either 0 or 1.

Proof: The property is true for a i , i ≤ 3. If it is true for a n , it is also true for a n+1 because in (4) a n and a (-) n do not depend on k n+1 .

Property 2.3 : The polynomials introduced in 2.1 are sums of products of k i with the signs + if the number of k i is odd andif it is even.

Proof: It is also by induction, and a direct consequence of the multiplication by -k n+1 in (4). Property 2.4 : If the reflection coefficients are negative, the components of a are also negative.

Proof: It is a direct consequence of 2.3. May 25, 2018 DRAFT Property 2.5 : If Sg(k i ) = (-1) i+1 , 1 ≤ i ≤ n, then Sg(a i ) = (-1) i+1 , 1 ≤ i ≤ n, where Sg(f ) is the sign of f .
Proof: The property is true for a 1 , a 2 , and a 3 , from ( 6) to [START_REF] Bellanger | Truitement Numérique du Signal[END_REF]. Let us suppose that the signs of the componentsof a m-1 are

a m-1 : [+, -, +, -, . . . , (-1) m ]. (12) 
For a

(-)

m-1 we obtain similarly

a (-) m-1 : (-1) m [+, -, +, -, . . . , (-1) m ]. (13) 
Then as

k m = (-1) m+1 |k m |, we deduce that the signs of -k m a (-) m-1 appearing in (4) are -k m a (-) m-1 : [+, -, +, -, . . . , (-1) m ]. (14) 
and by using ( 4), the property is true for a m m-1 . As it is true for the last component given by ( 5), it is true for a i , 1 ≤ i ≤ n.

Property 2.6 : The number of terms appearing in the polynomials introduced in 2.1 is for each

component [C 1 n , C 2 n , . . . , C n n ]
. Proof: These coefficients, often denoted ( n r ), are the binomial coefficients. The property is true for a 1 , a 2 , and a 3 . If it is true for n, the number of terms appearing in a n+1 is from (1-4)

[C 1 n +, C n n , C 2 n +, C n-1 n , . . . , C i n +, C n-i+1 n , . . . , C n n , C n n ]
Indeed a n and k n+1 a 

+ C p n == C p n+1 , (15) 
we deduce immediately

C i n + C n-i+1 n = C i n+1 . ( 16 
)
As the last component of a n+1 is k n+1 , if the property is true for a n , it is also true for a n+1 .

Property As the last component of a 2n+1 is of degree 1, we deduce that the degree of a 2n+1 is given by (18).

By the same procedure, if a 2n+1 has the property (18), a 2n+2 has the property (17).

III. SOME CONSEQUENCES OF STABILITY

All the properties indicated in Section II are direct consequences of the Levinson recursion ( 4)-( 5), without any consideration of stability problems. In this section, we will discuss some consequences on the regression vector deduced from the stability condition

|k i | < 1, 1 ≤ i ≤ n.
Consequence 3.1: If an AR filter is stable, then the components of the regression vector satisfy

|a i | < C i n .
Proof: It is a direct consequence of 2.6. Indeed, a i is a polynomial with C i n terms which are product of reflection coefficients k i . As |k j | < 1, the absolute values of these terms are also smaller than 1 which gives immediately |a i | < C i n . Comment: It is clear that this condition does not ensure that the AR filter is stable. Indeed, it is well known that the stability condition cannot be expressed as a condition on each component, but is a condition on all the a i together. On the other hand, if one a i is greater than C i n , the filter is certainly unstable.

Consequence 3.2: If an AR filter is stable, then we have

|a i | < 2 n -1.
Proof: It is a direct consequence of 3.1. Indeed, we deduce from it that

|a i | < C i n = 2 n -1. (19) 
Comments: As for 3.1, this condition is a necessary condition for stability of an AR filter, but does not secure this stability.

Consequence 3.3: If an AR filter is stable, then the magnitude of the regression vector is smaller than

[C n 2n -1] 1/2 .
Proof: We deduce that the square of the square of the magnitude of a n satisfies

||a i || 2 < n i=1 (C i n ) 2 = n i=0 (C i n ) 2 -1. (20) 
In order to calculate this term, we write two expansions of (a + b) 2n

(a + b) 2n = 2n k=0 C k 2n a 2n-k b k , (21) 
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[(a + b) n ] 2 = i j C i n C j n a 2n-i-j b i+j , (22) 
By identification we deduce immediately

C n 2n = n i=0 C i n C n-i n = n i=0 [C i n ] 2 , (23) 
and with (20) we deduce

||a i || 2 < C n 2n -1. (24) 
Consequence 3.4: If an AR filter is stable, then the maximum of the magnitude of the regression vector is reached for two vectors corresponding to k i = -1 and to k i = (-1) i-1 , 1 ≤ i ≤ n, respectively, and its value is [C n 2n -1] 1/2 . Proof: For k i = -1 we deduce from 2.3, 2.4, and 2.6 that the components of a n , are

a T n = -[C 1 n , C 2 n , , . . . , C n n ], (25) 
which means that for this vector the upper bound given by (20) is reached.

For k i = (-1) i-1 we will prove that the corresponding vector is

a T n = [C 1 n , -C 2 n , , C 3 n . . . , (-1) n-1 C n n ]. (26) 
Let us suppose that this property is true for n, and let us calculate a n+1 with k n+1 = (-1) n . We deduce that

-k n+1 a (-)T n = [C n n , -C n-1 n , C n-2 n , . . . , (-1) n-1 C 1 n ], (27) 
and applying (4) and ( 5), we deduce that

a nT n+1 = [C 1 n+1 , -C 2 n+1 , C 3 n+1 , . . . , (-1) n-1 C n n+1 ], (28) 
As the last component of a n+1 is k n+1 = (-1) n = (-1) n C n+1 n+1 , we see that a n+1 has the structure of a n given by (26). Of course, the upper bound of (20) is reached for this vector.

Comment: This property is important in some interpolation problems. Indeed it has been shown in another paper [START_REF] Papoulis | Constrained Wiener filtering[END_REF] that if we consider the signal y k defined by [START_REF] Blanc-Lapierre | Fonctions Aléatoires[END_REF] where u k is a white noise of variance 2 , the interpolation of y n in terms of all its past and future can be obtained with an error given by

η 2 = 2 [1 + a 2 i ] -1 = 2 [1 + ||a n || 2 ] -1 . ( 29 
)
For a given value of 2 this error is minimum |a n | is maximum, provided that the AR filter is stable.

Using (24) we see that this minimum error is Proof: The denominator of H(z) defined by ( 3) is

η 2 min = 2 (n!) 2 /(2n)!. (30) 
D(z) = z n - a i z n-i . ( 31 
)
If the regression vectors are a n given by ( 25) or (26), we obtain, respectively,

D + (z) = (z + 1) n (32) D -(z) = (z -1) n . (33) 
IV. SIMPLE SUFFICIENT CONDITIONS FOR STABILITY All the properties indicated in Section I11 are consequences of the stability and are then necessary conditions for stability. But conversely they can be satisfied for unstable filters and are then not sufficient conditions for stability.

Of course such necessary and sufficient conditions do exist and are well known [START_REF] Jury | Theory and Application of the z-Transform Method[END_REF], [START_REF] Rabiner | Digital Processing of Speech Signals[END_REF]. But, in general, they are very complicated to check and require a lot of calculation. In practice, they are equivalent to the calculation of all the reflections coefficients k i from a given regression vector in order to check that

|k i | < 1.
In many problems, and particularly in an adaptive context, it is necessary to have simple conditions securing the stability of the filter. By simple we mean conditions which can be verified almost without calculation.

Starting from the idea that if |a| is small, the k i s also are small and the filter is stable, we will introduce some very simple sufficient conditions for stability.

For this purpose, let us associate to any vector a the functions

S n (a) = n i=1 |a i | (34) T n (a) = n i=1 a 2 i = ||a|| 2 (35) 
A n (a) = max 1≤i≤n (|a i |).

(36)

These functions have been considered in Section III, and, in particular, their upper bounds for stable filters have been obtained.

In this section we are interested in some sufficient conditions on these functions which secure the stability of the corresponding AR filter. Of course it is obvious that these functions are very simple, .in terms of calculation from the components of the regression vector.
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Proof: It is the same as for 4.4. By taking all the a i 's equal to a, the condition means that a may be greater than l/n and, in this case, the filter is unstable.

Finally, it is worth noticing that .the condition A n < 1/n implies T n < 1/n which also implies S n < 1.

In other words, the simplest condition (A n < 1/n), which needs absolutely no calculation, is also the most restrictive.

These sufficient stability conditions are generalizations to all orders of a well-known conditions for second-order filters [8, p. 211].
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  terms because k n+1 is not present in the expression of the components of a n . But as C p n = C n-p n and C p-1 n

DRAFT May 25, 2018 Consequence 3 . 5 :

 201835 The two regression vectors of 3.4 correspond to two AR filters with poles of order n located in +1 and -1.

  2.7 :The total degrees of the polynomials appearing in the components of a n , are Proof: f we consider a 3 given by (8), we see that the three components are polynomials in k i , respectively, with degrees 2, 3, 1. Let us suppose that (17) is true. The degrees of the components of k 2n+1 a 2n(-) are, becauseof the multiplication by k 2n+1

	k 2n+1 a	(-) 2n : [2, 4, . . . , 2n -2, 2n, 2n + 1, 2n -1, . . . , 5, 3].
		[2, 4, 6, . . . , 2n, 2n -1, 2n -3, . . . 3, 1]	(17)

for a 2n , and [2, 4, 6, . . . , 2n, 2n + 1, 2n -1, 2n -3, , . . . 3, 1] (18) for a 2n+1 . DRAFT May 25, 2018

At first let us recall a known result.

Result 4. I: If S n < 1, then the corresponding AR filter is stable.

Proof: We have to prove that if S n < 1, the polynomial P n (z) defined by (9) has all its roots outside the unit circle. Let us suppose the contrary and consider a root z 0 such that |z 0 | < 1. As z 0 is a root we have, from (9),

which gives

because |z 0 | < 1. Thus, S n ≥ 1 which is in contradiction with the initial condition. Then all the roots are outside the unit circle.

Comment: We deduce from 3.2. and 4.1. that if S n < 1, the AR filter is stable, and if

it can be either stable or unstable, as we will see now. Proof: From.the Schwarz inequality we deduce that

and if T n < 1/n, then S n < 1, which secures the stability.

Result 4. 4: For every t > 1/n it is possible to find an unstable AR filter with regression vector a such that T n (a) > t.

Proof: Let us consider the filter such that a i = a > 0, ∀i. For this filter T n = na 2 , and as t > 1/n, then a > 1/n, or can be written 1/n + , > 0. It is possible to calculate the reflection coefficients of this filter, using (4) and [START_REF] Shlien | A geometric description of stable LPC digital filters[END_REF]. For example, we obtain easily

if < [n(n -1)] -1 , which proves that this filter is unstable.

Result 4. 5: If A n < l/n, then the corresponding AR filter is stable.

Proof: This condition means that |a i | < 1/n, 1 ≤ i ≤ n, and it results that S n < 1, which gives the stability.
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