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In this paper we consider multi-dimensional Partial Differential Equations (PDE) of parabolic type in divergence form. The coefficient matrix of the divergence operator is assumed to be discontinuous along some smooth interface. At this interface, the solution of the PDE presents a compatibility transmission condition of its co-normal derivatives (multi-dimensional diffraction problem). We prove an existence and uniqueness result for the solution and study its properties. In particular, we provide new estimates for the partial derivatives of the solution in the classical sense. We then construct a low complexity numerical Monte Carlo stochastic Euler scheme to approximate the solution of the PDE of interest. Using the afore mentioned estimates, we prove a convergence rate for our stochastic numerical method when the initial condition belongs to some iterated domain of the divergence form operator. Finally, we compare our results to classical deterministic numerical approximations and illustrate the accuracy of our method.

Introduction

Given a finite time horizon T , a real valued function x → u 0 (x), and an elliptic symmetric matrix x → a(x) ∈ R d×d , which is smooth except at the interface surface Γ between subdomains D ± of R d (Γ = D+ ∩ D-), we consider the parabolic transmission (or diffraction) problem : find u from [0, T ] × R d to R satisfying

           ∂ t u(t, x) -∇ • (a(x)∇ x u(t, x)) = 0, ∀(t, x) ∈ (0, T ] × (R d \ Γ)
u(0, x) = u 0 (x), ∀x ∈ R d a + ∇ x u + (t, .) -a -∇ x u -(t, .), ν = 0 and u + (t, .) = u -(t, .) along Γ [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] (here ν denotes the unit vector field which is normal to Γ and points to D + ).

The objective of this paper is to provide an efficient stochastic numerical resolution method for the solution of [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF].

Parabolic equations involving ∇ • (a∇) have been a major preoccupation for mathematicians in the fifties and the sixties. We may cite the pioneering works of [START_REF] Nash | Parabolic equations[END_REF][START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF], [START_REF] De Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF], and [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF][START_REF] Moser | Correction to: "A Harnack inequality for parabolic differential equations[END_REF] that prove the continuity of the solution of the Cauchy problem attached to ∇•(a∇) and also the celebrated paper by [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF], which gives upper and lower Gaussian estimate bounds for the fundamental solution of the operator ∇ • (a∇) (for a more modern perspective on evolution PDEs involving divergence form operators of type ∇ • (a∇) see also [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]). In these references assumptions on a are very weak (it is assumed to be measurable, bounded and elliptic).

In the case where the matrix a is assumed to be discontinuous along the regular boundaries of some nice disjoint connected open sets in R d , but smooth elsewhere, a refined analysis of the parabolic equation may be found in the monograph [START_REF] Ladyženskaja | Linear and Quasi Linear Equations of Parabolic type. Izdat[END_REF]. The authors interpret the parabolic equation as a diffraction problem with transmission conditions along the discontinuity boundaries, of the type of [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF], and investigate the classical smoothness of its solution.

When the underlying space is one-dimensional and the discontinuity is at zero (Γ then reduces to the single point 0), the link between (1) and some asymmetric diffusion process X is well known. More precisely one has that u(t, x) = E x [u 0 (X t )] where X is solution to the Stochastic Differential Equation (SDE) with local time dX t = σ(X t )dW t + a ′ (X t )dt + a(0+) -a(0-) a(0+) + a(0-)

dL 0 t (X) (2) 
where σ 2 = 2a and a ′ denotes a function that coincides with the first order derivative of a outside zero, and can be set at any arbitrary value at zero. In [START_REF] Bally | The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus[END_REF] we have denoted W a standard one-dimensional Brownian motion (B.m.), and L 0 t (X) the symmetric local time of X at time t. Under mild conditions (2) has a unique strong solution X, see [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF]. Put in other words the operator ∇ • (a∇) appears as the infinitesimal generator of the diffusion X solution of [START_REF] Bally | The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus[END_REF]. Note that the local time term in (2) is a singular term that reflects the discontinuity of a along Γ = {0}.

For a study of the one-dimensional case one may refer to the overview [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF], [START_REF] Étoré | Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators[END_REF], and the series of works [35, 36, 37, 29, 9, 10, 11, 12] [28, 8, 16, 27, 3] where stochastic numerical schemes are presented.

Then if one constructs a scheme X approaching X (in law for example), we will have that E x [u 0 (X t )] approaches u(t, x). This provides some stochastic numerical resolution method for the solution of [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]. But none of the above cited works on the one-dimensional case can be directly adapted to the multidimensional case.

As a matter of fact, till now and up to our knowledge much fewer stochastic schemes have been proposed and studied to tackle the multidimensional case.

A natural idea would be to regularize the coefficient a around the interface Γ, and then to perform a discretized stochastic scheme on the classical problem obtained by regularization (for smooth a ε the process X in link with ∇•(a ε ∇) is some Itô process with classical drift that can be approached by a standard Euler scheme). But then there is a balance to find between the regularization step and the discretization step. Such methods are less precise and less investigated (see [START_REF] Stroock | Markov chain approximations to symmetric diffusions[END_REF] for some elements in this direction; see also some of our numerical results in Section 6).

For some results with no regularization procedure see [START_REF] Lenôtre | étude et simulation des processus de diffusion biaisés[END_REF], and [START_REF] Bossy | Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics[END_REF] in the case of a diagonal coefficient matrix a constant outside the discontinuity boundary Γ; see also [START_REF] Limic | Markov jump processes approximating a nonsymmetric generalized diffusion[END_REF], which attempts to interpret stochastically the deterministic Galerkin method using jump Markov Chains.

In this paper we will propose a stochastic numerical scheme that allows to treat the multidimensional case, when the matrix-valued diffusion coefficient a is not necessarily diagonal, nor piecewise constant. We aim at treating the discontinuity of a directly and use no regularization. The scheme we propose is of Euler type; it can be seen as en extension to the multidimensional case of the scheme studied in [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] (see some comments in Remark 4.4).

One of the difficulties of the multidimensional case is that the stochastic process X naturally in link with the operator ∇ • (a∇) is more difficult to describe than in dimension one. One knows that the operator generates such a process X, which is Markov (see for instance [START_REF] Stroock | Diffusion semigroups corresponding to uniformly elliptic divergence form operators[END_REF]; on the Dirichlet form approach see [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF], in particular Exercise 3.1.1 p. 111). We still have the link u(t, x) = E x [u 0 (X t )]. But the Itô dynamic of X is difficult to establish and to exploit. In the companion paper [START_REF] Étoré | Stochastic processes associated to multidimensional parabolic transmission problems in divergence form[END_REF] we have been able to prove (in the case R d = D+ ∪ D -and a has some smoothness in D ± ) that

X k t = x k + t 0 d j=1 σ kj (X s )dW j s + t 0 d j=1 ∂ j a kj (X s )I Xs∈D ds - 1 2 t 0 γ +,k (X s )dK s + 1 2 t 0 γ -,k (X s )dK s , t ≥ 0. (3) 
In this expression W is a standard B.m., we have σσ * = 2a, the terms γ ±,k are some co-normal vectors to the surface Γ = D+ ∩ D-, and K is the PCAF associated through the Revuz correspondence to the surface measure on Γ. Equation ( 3) is in some sense the multi-dimensional analog to [START_REF] Bally | The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus[END_REF], the singular term being now -

1 2 t 0 γ +,k (X s )dK s + 1 2 t 0 γ -,k (X s )dK s .
Thus we are led, in the present paper, to contruct a stochastic scheme X such that E x [u 0 (X t )] approaches u(t, x), but without seeking to approach X by X. The idea will be to perform a standard Euler scheme as long as X does not cross the boundary Γ. But when the scheme X crosses the boundary we will correct its position in a way that reflects the transmission condition in [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]. The contribution of the paper are the following.

I) We will first study the PDE (1). We will show that, when the initial condition u 0 belongs to some iteration of the domain of ∇ • (a∇), this PDE has a classical solution. Then we prove the existence of global bounds for the partial derivatives of this solution (up to order four in the space variable) outside the discontinuity boundary Γ, for all strictly positive times (and not just for times t satisfying t ≥ ε for some ε > 0), and all the way up to the boundary (not only interior estimates). In our opinion these estimates are new (compared to [START_REF] Ladyženskaja | Linear and Quasi Linear Equations of Parabolic type. Izdat[END_REF]) and have an interest per se. These estimates will be needed to perform the convergence analysis of our scheme. The method we follow, in this PDE oriented part of the paper, is combining the Hille-Yosida theorem with results on elliptic transmission PDEs to be found in [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF].

II) We propose our scheme and study its convergence rate. More precisely we prove that uniformly w.r.t.

x 0 u(T, x 0 ) -E x0 u 0 (X n T ) ≤ K h n ,
where h n is the time step of our Euler scheme (see the precise assumptions and statement in Theorem 5.1). Note that this rate of convergence is naturally slower than in the classical smooth case (e.g. [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF][START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF][START_REF] Bally | The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus[END_REF]) but is expected for these kind of transmission problems with boundary issues. In this respect our result is a slight improvement in comparison to the one obtained for the one-dimensional transmission case in [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] and [START_REF] Bokil | An Euler-Maruyama method for diffusion equations with discontinuous coefficients and a family of interface conditions[END_REF].

The paper is organized as follows. In Section 2 we present the notations of the paper and our main assumptions. In Section 3 we define precisely and study the parabolic transmission problem [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF], proving in particular an existence and uniqueness result for a classical solution, for which we get estimates for the space and time derivatives. In Section 4 we present our scheme, and in Section 5 we analyse its convergence. Section 6 is devoted to numerical experiments.

General notations and assumptions

For two points x, y ∈ R d we denote by x, y their scalar product x, y = x * y = d i=1 x i y i . For a point x ∈ R d we denote by |x| its Euclidean norm i.e.

|x| 2 = d i=1 x 2 i = x, x .
We denote by (e 1 , . . . , e d ) the usual orthonormal basis of R d . For two metric spaces E, F we will denote by C(E; F ) the set of continuous functions from E to F and, for 1 ≤ p ≤ ∞, by C p (E; F ) the set of functions in C(E; F ) that are p times differentiable with continuous derivatives.

We will denote by C p c (E; F ) the set of functions in C p (E; F ) that have a compact support.

We will denote by C p b (E; F ) the set of functions in C p (E; F ) that are continuous with bounded p first derivatives (C b (E; F ) denotes the set of functions in C(E; F ) that are bounded).

If F = R, we will sometimes simply write for instance C(E) for C(E; R), for the sake of conciseness.

For any multi-index α

= (i 1 , . . . , i d ) ∈ N d and x = (x 1 , . . . , x d ) ∈ R d , we note x α the product x i1 1 . . . x i d d and |α| = i 1 + • • • + i d . So that for u ∈ C |α| (R d ) we will denote ∂ |α| u ∂x α , or in short ∂ α u, the partial derivative ∂ i1 x i 1 1 . . . ∂ i d x i d d u.
Let U ⊂ R d an open subset. We will denote by L 2 (U ) the set of square integrable functions from U to R equipped with the usual norm and scalar product || • || L 2 (U) and •, • L 2 (U) .

We denote H 1 (U ) the usual Sobolev space W 1,2 (U ), equipped with the usual norm || • || H 1 (U) . We will denote by D i v the derivative in the distribution sense with respect to x i of v ∈ L 2 (U ).

We recall that the space H 1 0 (U ) ⊂ H 1 (U ) can be defined as

H 1 0 (U ) = C ∞ c (U ; R) = C 1 c (U ; R). We denote H -1 (U ) the usual dual topological space of H 1 0 (U ). For m ≥ 2, we denote H m (U ) the usual Sobolev space W m,2 (U ) ⊂ L 2 (U ) of functions having m successive weak derivatives in L 2 (U ).
The notion of a C k domain U ⊂ R d with bounded boundary Γ = ∂U is defined with the help of a system of local change of coordinates of class C k (see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] Chap.3 pp. 89-90).

From now on we consider in the whole paper that R d = D+ ∪D -with D + and D -two open connected subdomains separated by a transmission boundary Γ that is to say Γ = D+ ∩ D-(in addition we will denote

D = D + ∪ D -= R d \ Γ ⊂ R d ).
By an assumption of type "Γ is bounded and C k " we will mean that both D + and D -are C k domains, and that Γ is bounded. Note that in that case we shall consider D + (resp. D -) as the interior (resp. exterior) domain. Note that D -is then unbounded (although its boundary is bounded).

Assume Γ is bounded and C 2 . We will denote γ ± : H 1 (D ± ) → H 1/2 (Γ) the usual trace operators on Γ and H -1/2 (Γ) the dual space of H 1/2 (Γ) (see pp. 98-102 in [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]). We will denote (u, v) Γ the action of an element u ∈ H -1/2 (Γ) on a element v ∈ H 1/2 (Γ) (this can be thought as a surface integral).

In the sequel we will frequently note f ± the restrictions of a function f to D ± . Besides, by an assumption of type "the function f satisfies f ± ∈ C p ( D± )" (or "f ∈ C p ( D+ ) ∩ C p ( D-)") we will mean that the restriction of f to D + (resp. D -) coincides on D + (resp. D -) with a function f+ of class C p (R d ) (resp. f-). So that for any x ∈ Γ we can give a sense for example to f + (x): it is lim z→x , z∈D+ f (z) = f+ (x).

In the same time spirit we may note for f ∈ C( D+ ) ∩ C( D-) and a point

y ∈ Γ f (y±) = lim z→y , z∈D± f (z) = f ± (y). For u ∈ C 1 ( D+ ; R) ∩ C 1 ( D-; R) we denote ∇ x u = ( ∂u ∂x1 , . . . , ∂u ∂x d ) * and, for a point y ∈ Γ ∇ x u ± (y) = lim z→y , z∈D± ∇ x u(z). (4) 
For a vector field

G ∈ C 1 (D; R d ) we denote by ∇ • G (x) its divergence at point x ∈ D, i.e. ∇ • G(x) = d i=1 ∂Gi ∂xi (x). For u ∈ C 2 (D; R) and x ∈ D we denote H[u](x) the Hessian matrix of u at point x.
Let a(x) = (a ij (x)) i,j∈{1,...,d} be a symmetric matrix valued and time homogeneous diffusion coefficient.

If

a ij ∈ C 1 (D; R) for all 1 ≤ i, j ≤ d and u ∈ C 2 (D; R) we denote Lu(x) = ∇ • (a(x)∇ x u(x)) , ∀x ∈ D. (5) 
In the whole paper the coefficients of the function matrix a are always assumed to be measurable and bounded by a constant Λ.

We will also often make the following ellipticity assumption Assumption 2.1. (E) : There exists λ ∈ (0, ∞) such that

∀x ∈ R d , ∀ξ ∈ R d , λ|ξ| 2 ≤ ξ * a(x)ξ. (6) 
Note that under (E) we can assert that for any x ∈ D we have

a ± (x) = P * ± (x)E ± (x)P ± (x) (7) 
with P ± (x) some orthogonal matrices and E ± (x) some diagonal matrices with strictly positive eigenvalues.

Assume Γ is C 2 . For a point x ∈ Γ we denote by ν(x) ∈ R d the unit normal to Γ at point x, pointing to D + . Assume the a ij 's satisfy (a ± ) ij ∈ C( D± ).

We define then the co-normal vector fields γ + (x) := a + (x)ν(x) and γ -(x) := -a -(x)ν(x), for x ∈ Γ.

Note that under (E) it is clear that we have

∀x ∈ Γ, γ + (x), ν(x) ≥ λ > 0 and γ -(x), ν(x) ≤ -λ < 0. ( 8 
)
Note that the notation γ ± for the trace operators follows the usual one ( [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] for instance) and the notation γ ± for the co-normal vectors follows the one of the paper [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. But it will be dealt with the trace operator only in Section 3, and with co-normal vectors only in Sections 4 and 5. So that these notations will cause no confusion.

In order to study the PDE aspects we will consider the unbounded operator A :

D(A) ⊂ L 2 (R d ) → L 2 (R d ) defined by D(A) = u ∈ H 1 (R d ) with d i,j=1 D i (a ij D j u) ∈ L 2 (R d ) and ∀u ∈ D(A), Au = d i,j=1 D i (a ij D j u).
We also introduce the iterated domains defined recursively by

D(A k ) = {v ∈ D(A k-1 ) : Av ∈ D(A k-1 )}, k ≥ 2.
These iterated domains will help us to establish the existence of a smooth solution to [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]. First, using a variant of the Hille-Yosida theorem (Theorem VII-5 in [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF]), we will prove that if the initial condition u 0 is taken in D(A k ), k ≥ 2 there is a solution u to (1), which has classical smoothness in the time variable and weak smoothness in the space variable: for example this solution lives in C([0, T ]; D(A k )) (we may speak of a semi-weak solution). Then we will prove that if a has some additional smoothness in the domains D ± , then a function v in D(A k ) is of class H 2k if restricted to D ± (but it is not necessarily of class H 2k on the whole space R d ; see our Corollary 3.1). Using then Sobolev embedding arguments we will get classical smoothness of the semi-weak solution u on each subdomain D ± (see in particular the proof of Theorem 3.1).

The parabolic transmission problem

Let 0 < T < ∞ a finite time horizon. Let us consider the transmission parabolic problem

(P T )                    ∂ t u(t, x) -Lu(t, x) = 0 ∀(t, x) ∈ (0, T ] × D a + ∇ x u + (t, y) -a -∇ x u -(t, y), ν(y) = 0 ∀(t, y) ∈ (0, T ] × Γ (⋆) u(t, y+) = u(t, y-) ∀(t, y) ∈ [0, T ] × Γ u(0, x) = u 0 (x) ∀x ∈ R d .
We will say that (t, x) → u(t, x) is classical solution to (P T ) if it satisfies

u ∈ C [0, T ]; C 2 ( D+ ) ∩ C 2 ( D-) ∩ C 1 [0, T ]; C( D+ ) ∩ C( D-) ∩ C [0, T ]; C(R d ) ( 9 
) and satisfies the following requisites. First, u satisfies the first line of (P T ), where the derivatives are understood in the classical sense. Second, for all 0 < t ≤ T the limits lim z→y , z∈D± ∇ x u(t, z) satisfy the transmission condition (⋆) for all y ∈ Γ. Note that these limits exist thanks to [START_REF] Étoré | On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients[END_REF]. Third, u is continuous accross Γ (third line). Fourth, it satisfies the initial condition at the fourth line of (P T ). The aim of this section is to prove the following result. Theorem 3.1. Let a = (a ij ) 1≤i,j≤d satisfy (E).

• Denote k 0 = ⌊ d 4 ⌋ + 2 if d is even; ⌊ 3 2 + ⌊d/2⌋ 2 ⌋ + 2 if d is odd. ( 10 
)
Assume that the coefficients a ij satisfy (a ± ) ij ∈ C 2k0-3 b ( D± ) and Γ is bounded and of class C 2k0-2 . Then for u 0 ∈ D(A k0 ) the parabolic transmission problem (P T ) admits a classical solution.

• Furthermore, if u 0 ∈ D(A k ) for k ≥ k 0 , the coefficients a ij satisfy (a ± ) ij ∈ C 2k-1 b ( D± ) and Γ is bounded of class C 2k , this classical solution u is such that u ∈ C k-j [0, T ] ; C n(j) ( D+ ) ∩ C n(j) ( D-) , ⌈d/4⌉ ≤ j ≤ k with n(j) = ⌊2j -d 2 ⌋.
To prove Theorem 3.1 it requires to study in a first time the associated elliptic resolvent equation, in a weak sense. More precisely, for a source term f ∈ L 2 (R d ) we will seek for a solution u in D(A) of

u -Au = f (11) 
(see Proposition 3.4 below).

Then the idea is to apply in L 2 (R d ) a version of the Hille-Yosida theorem that states that for u 0 ∈ D(A k ), k ≥ 2, there is a solution u to du dt = Au, u(0) = u 0 , living in C k-j [0, T ]; D(A j ) , 0 ≤ j ≤ k (see Proposition 3.6 below).

As we will have studied the weak smoothness of functions living in the D(A k )'s (Proposition 3.5 and Corollary 3.1), we will be able to conclude that u is in fact a classical solution by using Sobolev embedding arguments.

Remark 3.1. Note that in Theorem 3.1 we make no statement regarding the uniqueness of the classical solution of (P T ). In order to prove uniqueness, a reasonable strategy could be to show that any classical solution is in fact a semiweak solution living in C k-j [0, T ]; D(A j ) , 0 ≤ j ≤ k. Such a semi-weak solution is known to be unique (see the forthcoming Proposition 3.6): more precisely two possible semi-weak solutions are equal at any time t for almost every spatial point x ; then using the continuity of classical solutions we would get the expected classical uniqueness result for the solution of problem (P T ).

In our opinion it is possible to fulfill this purely PDE program, but we have chosen not to do so in this paper in order to avoid overburdening the exposition. Instead we adopt another strategy and prove that uniqueness in the classical sense holds as a consequence of the uniqueness in law of our stochastic numerical approximation scheme (that we build in the sequel) and its convergence towards any classical solution of (P T ) (see the forthcoming Remarks 4.2 and 5.1 and the statement of Theorem 5.1). Remark 3.2. 1) In the classical situation with smooth coefficients studied for instance in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] Chap. 1 (or [START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF], Theorem 5.14), a unique classical solution to the parabolic PDE exists as soon as the a ij 's are bounded and Hölder continuous and satisfy (E), and u 0 is continuous and satisfies some growth condition.

Here we ask additional smoothness on the coefficients (a ± ) ij 's inside the domains D ± . Indeed, because of the discontinuity of a across Γ we are led to use a different technique of proof: unlike the parametrix method in the classical case, this additional smoothness is required for the use of the Hille-Yosida theorem and the Sobolev embeddings.

Note that with this methodology of proof these additional assumptions would still be needed if our coefficients and the solution were smooth at the interface. Note also that with this approach the assumptions on the initial condition u 0 are understood in a weak sense (and are different).

2) Our result is also different from the one in [START_REF] Ladyženskaja | Linear and Quasi Linear Equations of Parabolic type. Izdat[END_REF] (Theorem 13.1; see also [START_REF] Ladyzhenskaya | The classical solvability of diffraction problems. Boundary value problems of mathematical physics[END_REF]). In this reference the authors study the classical smoothness of the parabolic transmission problem by studying first the smoothness of ∂ t u (to that aim they differentiate with respect to time the initial equation). Then they study the smoothness with respect to the space variable by using results for the elliptic transmission problem, involving difference quotient techniques. But by doing so they get estimates on subdomains of the form [ε, T ] × D ± with 0 < ε. Here, we manage to study the global regularity of the classical solution of (P T ) in the whole domains [0, T ] × D ± .

Study of the associated elliptic problem and of the domains D(A k )

In this subsection we establish the existence of a solution to [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] belonging to D(A) and study its smoothness properties, together with the ones of functions belonging to the iterated domains D(A k ), for k ≥ 1.

We recall that the coefficients a ij are assumed to be bounded by Λ so that we may define the following continuous bilinear and symmetric form, which will be used extensively in the sequel

E(u, v) = d i,j=1 a ij D j u, D i v L 2 (R d ) , ∀u, v ∈ H 1 (R d ). ( 12 
)
Let u ∈ D(A). Using the definition of Au as a distribution acting on

C ∞ c (R d ; R), and the density of C ∞ c (R d ; R) in H 1 (R d ) = H 1 0 (R d )
, one can establish the following relation, linking A and the form ( 12):

E(u, v) = -Au, v L 2 (R d ) , ∀v ∈ H 1 (R d ).
(13)

Some results on weak solutions of elliptic transmission PDEs

Here we gather some preliminary results on weak solutions of elliptic transmission PDEs that rely mainly on [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] Chap. 4, pp. 141-145.

We recall that for u ∈ L 2 (R d ), we denote u + (resp. u -) the restriction of u to D + (resp. D -). It may happen that we use this notation for restricted distributions also.

We introduce the following notation for the jump across

Γ of u ∈ L 2 (R d ), with u + ∈ H 1 (D + ) and u -∈ H 1 (D -): [u] Γ = γ + (u + ) -γ -(u-). If [u] Γ = 0 we shall simply write γ(u) = γ + (u + ) = γ -(u -).
We have the two following lemmas (the proof of the first one is straightforward).

Lemma 3.1. Let v ∈ L 2 (R d ). Then, for any 1 ≤ i ≤ d, the distribution (D i v) ± is equal to D i (v ± ). As a consequence, if v ∈ H 1 (R d ), then v ± ∈ H 1 (D ± ). Lemma 3.2 ([38], Exercise 4.5). Suppose u ∈ L 2 (R d ) with u ± ∈ H 1 (D ± ). Then u ∈ H 1 (R d ) if and only if [u] Γ = 0 a.e. on Γ.
We shall consider restricted operators and bilinear forms in the following sense. We define

A + : H 1 (D + ) → H -1 (D + ) by ∀v ∈ H 1 (D + ), A + v = d i,j=1 D i (a + ) ij D j v .
We define A -: H 1 (D -) → H -1 (D -) in the same manner (note that we do not specify here any domain D(A ± )). Further, we define

E ± (u, v) = d i,j=1 D± (a ± ) ij D j u D i v, ∀u, v ∈ H 1 (D ± ).
In the same fashion as for Equation ( 13), we have, for

u ± ∈ H 1 (D ± ) with A ± u ± ∈ L 2 (D ± ), E ± (u ± , v) = D± (-A ± u ± )v, ∀v ∈ H 1 0 (D ± ). ( 14 
)
Imagine now that in [START_REF] Étoré | Stochastic processes associated to multidimensional parabolic transmission problems in divergence form[END_REF] we wish to take the test function in H 1 (D ± ) instead of H 1 0 (D ± ). There will still be a link between A ± and E ± , but through Green type identities, involving co-normal derivatives and boundary integrals. We have the following result. Proposition 3.1 (First Green identity, extended version; see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] 

Theorem 4.4, point i)). Assume Γ is bounded and C 2 . Let u ∈ L 2 (R d ) with u + ∈ H 1 (D + ) and u -∈ H 1 (D -). Assume A + u + ∈ L 2 (D+), A -u -∈ L 2 (D-). Then there exist uniquely defined elements B ± ν u ∈ H -1 2 (Γ) such that E + (u + , v) = D+ (-A + u + )v -B + ν u, γ + (v) Γ , ∀v ∈ H 1 (D + ) (15) 
and

E -(u -, v) = D- (-A -u -)v + B - ν u, γ -(v) Γ , ∀v ∈ H 1 (D -). (16) 
The elements B ± ν u in Proposition 3.1 are the one-sided co-normal derivatives of u on Γ.

To fix ideas, note that under the stronger assumptions that the (a ± ) ij 's are in C 1 b ( D± ; R), and u ± ∈ H 2 (D ± ), we have

B ± ν u = ν * γ ± (a ± ∇u ± ) = d i=1 d j=1 ν i γ ± (a ± ) ij D j u ± on Γ
(note that as the (a ± ) ij D j u ± 's are in H 1 (D ± ) the trace terms are correctly defined in the above expression). Thus one understands that the change of sign in front of the (•, •) Γ term between ( 15) and ( 16) is due to the fact that -ν is the outward normal to D + and ν is the outward normal to D -. For details on the definition of B ± ν u under the weaker assumptions of Proposition 3.1, see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] pp. 116-117.

Finally we introduce a notation for the jumps across Γ of the co-normal derivative of a function u satisfying the assumptions of Proposition 3.1:

B ν u Γ = B + ν u -B - ν u ∈ H -1/2 (Γ).
We have the following result. 

2 . Let u ∈ H 1 (R d ). Let f + ∈ L 2 (D + ) and f -∈ L 2 (D -) and assume u ± -A ± u ± = f ± on D ± . ( 17 
)
Set f = f + + f -, then u, v L 2 (R d ) + E(u, v) = f, v L 2 (R d ) -B ν u Γ , γ(v) Γ , ∀v ∈ H 1 (R d ). ( 18 
)
Remark 3.3. Note that in the above proposition u ± ∈ H 1 (D ± ), thanks to Lemma 3.1. Equation [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF] 

means that u ± -A ± u ± , ϕ H -1 (D±),H 1 0 (D±) = f, ϕ L 2 (D±) , for all ϕ ∈ C ∞ c (D ± ; R). Therefore A ± u ± ∈ L 2 (D ± )
and by Proposition 3.1 the element B ν u Γ is well defined. Then same remark holds for the forthcoming Proposition 3.2.

Our notations being different from the ones in [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF], we provide the short proof of Lemma 3.3 for the sake of clarity.

Proof. Taking into account Remark 3.3 we can use Proposition 3.1, and summing ( 15) and ( 16) one gets for any

v ∈ H 1 (R d ) (note that γ + (v + ) = γ -(v -) = γ(v)) u, v L 2 (R d ) + E + (u + , v + ) + E -(u -, v -) = f, v L 2 (R d ) -B ν u Γ , γ(v) Γ .
To complete the proof it suffices to notice that, thanks to Lemma 3.1, we have

E + (u + , v + ) + E -(u -, v -) = d i,j=1 D+ (a + ) ij (D j u) + (D i v) + + D-(a -) ij (D j u) -(D i v) - = E(u, v).
We recall now results on the smoothness of weak solutions of elliptic transmission PDEs. 

D j ± = G j ∩ D ± and Γ j = Γ ∩ G j for j = 1, 2.
Assume that the set G 2 is constructed in such a way that there is a C r+2diffeomorphism between Γ 2 and a bounded portion of the hyperplane

x d = 0. Assume (E). Let r ∈ N. Assume that the coefficients (a ± ) ij belong to C r+1 (D 2 ± ; R). Let f ± ∈ L 2 (D ± ) with f ± ∈ H r (D 2 ± ). Let u ∈ L 2 (R d ) with u ∈ H 1 (G 2 ) satisfying u ± -A ± u ± = f ± on D 2 ± and B ν u Γ ∈ H 1 2 +r (Γ 2 ). Then u ± ∈ H 2+r (D 1 ± ). Proposition 3.3 ([18], Theorem 8.10). Assume (E). Let r ∈ N. Assume that the coefficients (a ± ) ij belong to C r+1 b ( D± ; R). As- sume Γ is bounded. Let f ± ∈ H r (D ± ). Let u ∈ H 1 (R d ) satisfying u ± -A ± u ± = f ± on D ± . Let D ′ ± ⊂ D ± open subsets with D ′ ± ⊂ D ± and denote d ′ ± = dist(D ′ ± , Γ). We have that u ± ∈ H r+2 (D ′ ± ), with ||u ± || H r+2 (D ′ ± ) ≤ C ± ||u ± || H 1 (D±) + ||f || H r (D±) , where the constant C ± depends on d, λ, d ′ ± and max 1≤i,j≤d max |α|≤r+1 sup x∈D± |∂ α (a ± ) ij (x)|.
Proof. In [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] this result is asserted with the assumption that D ′ ± ⊂ D ± , with D ′ ± compact. So that for the interior (bounded) domain D + the result is immediate. On the unbounded domain D -we claim that the same result holds for non compact D ′ -, as in fact only the distance d ′ -= dist(D ′ -, Γ) plays a role in the proof. Thus, covering Γ with open balls in order to use the local result of Proposition 3.2, and combining with the global result of Proposition 3.3, it is possible to show the following theorem, that will be used extensively in the sequel.

Theorem 3.2. Assume (E).

Let r ∈ N. Assume that the coefficients (a ± ) ij belong to C r+1 b ( D± ; R). Assume Γ is bounded and of class C r+2 .

Let

f ± ∈ H r (D ± ). Let u ∈ H 1 (R d ) satisfying u ± -A ± u ± = f ± on D ± and B ν u Γ ∈ H 1 2 +r (Γ). Then u ± ∈ H 2+r (D ± ).

Existence of a weak solution to the resolvent equation and immediate properties of functions in

D(A k ), k ≥ 1 We have the next result. Proposition 3.4. Assume (E). Let f ∈ L 2 (R d ). Then (11) has a unique solution in D(A).
Proof. Let us note that the symmetric bilinear form on

H 1 (R d ) (u, v) → u, v L 2 (R d ) + E(u, v)
is continuous and, thanks to Assumption (E), coercive. Thus the Lax-Milgram theorem ([6] Corollary V.8) immediately asserts the existence of a unique u ∈ H

1 (R d ) such that ∀v ∈ H 1 (R d ), u, v L 2 (R d ) + E(u, v) = f, v L 2 (R d ) .
In other words we have for any

ϕ ∈ C ∞ c (R d ; R), E(u, ϕ) = - d i,j=1 D i (a ij D j u), ϕ H -1 (R d ),H 1 (R d ) = (f -u), ϕ L 2 (R d ) .
Hence the distribution

d i,j=1 D i (a ij D j u) belongs to L 2 (R d )
, and thus u ∈ D(A). Finally, from the above relations we deduce

∀v ∈ H 1 (R d ), u -Au, v L 2 (R d ) = f, v L 2 (R d ) ,
which implies [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF].

The proposition below gives properties of functions belonging to D(A). It indicates that the solution u ∈ D(A) of ( 11) encountered in Proposition 3.4 satisfies a continuity property and a transmission condition in a weak sense at the interface.

Proposition 3.5. Let u ∈ D(A). Then [u] Γ = B ν u Γ = 0 a.e. on Γ. Proof. Let u ∈ D(A). As u ∈ H 1 (R d ) one gets by Lemma 3.2 that [u] Γ = 0 a.e. on Γ. Set now f = u -Au ∈ L 2 (R d ). According to Equation (13) we have ∀v ∈ H 1 (R d ), u, v L 2 (R d ) + E(u, v) = f, v L 2 (R d ) , (19) 
and this in true in particular for any v ∈ C ∞ c (D + ; R). But using Lemma 3.1 one has for any v ∈ C ∞ c (D + ; R), that

E(u, v) = d i,j=1 D+ (a + ) ij (D j u) + D i v = d i,j=1 D+ (a + ) ij (D j u + )D i v = E + (u + , v).
Using now [START_REF] Étoré | Stochastic processes associated to multidimensional parabolic transmission problems in divergence form[END_REF] we see that u

+ -A + u + , v L 2 (D+) = f + , v L 2 (D+) for any v ∈ C ∞ c (D + ; R).
Proceeding in the same manner on D -we finally see that

u ± -A ± u ± = f ± on D ± .
Note that by construction f = f + + f -. Using now Lemma 3.3, and comparing ( 18) and [START_REF] Gobet | Euler schemes and half-space approximation for the simulation of diffusion in a domain[END_REF], one gets B ν u Γ , γ(v) Γ = 0 for any v ∈ H 1 (R d ). Using the fact that the trace operator is surjective, this implies that B ν u Γ , w Γ = 0 for any w ∈ H 1/2 (Γ), which completes the proof.

Thanks to Theorem 3.2 we can get as a corollary the following result concerning the iterated domains

D(A k ), k ∈ N * . Corollary 3.1. Assume (E). Let k ∈ N * and u ∈ D(A k ). Assume that the coefficients (a ± ) ij ∈ C 2k-1 b (D ± ) and that Γ is bounded and of class C 2k . Then u ± ∈ H 2k (D ± ).
Proof. The proof proceeds by induction on k.

Let u ∈ D(A) (case k = 1). We have B ν u Γ = 0, according to Proposition 3.5. Thus in particular B ν u Γ ∈ H 1 2 (Γ). As in the proof of Proposition 3.5 we set f = u -Au and notice that we have u

± -A ± u ± = f ± on D ± , with f ± ∈ L 2 (D ± ). Using Theorem 3.2 -remember that u is in H 1 (R d ), (a ± ) ij ∈ C 1 b ( D± ; R) and Γ is bounded of class C 2 -we get that u ± ∈ H 2 (D ± ).
Suppose now that the result is true at rank k -1 we prove its validity at rank

k (k ≥ 2). Let u ∈ D(A k ). As u ∈ D(A) we have B ν u Γ = 0 ∈ H 2k-3 2 (Γ). As Au ∈ D(A k-1
) the quantity u -Au =: f satisfies f ± ∈ H 2k-2 (D ± ), using the induction hypothesis. But as we have u ± -A ± u ± = f ± on D ± , one may use again the smoothness of (a ± ) ij and Γ and Theorem 3.2 in order to conclude that u ± ∈ H 2k (D ± ).

The solution of the parabolic problem (P T ) 3.2.1. Application of the Hille-Yosida theorem

We now use the Hille-Yosida theorem ( [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF] Theorems VII.4 and VII.5) in order to prove the following proposition. Note that in Equation ( 20) below, the time derivative is understood in the strong sense, while the space derivatives are understood in the weak sense. Besides, by convention

D(A 0 ) = L 2 (R d ). Proposition 3.6. Assume (E). Let u 0 ∈ D(A). Then there exists a unique function u ∈ C 1 [0, T ]; L 2 (R d ) ∩ C [0, T ]; D(A) satisfying du dt = Au, u(0) = u 0 . (20) 
Furthermore, let

u 0 ∈ D(A k ), k ≥ 2. Then, u ∈ C k-j [0, T ]; D(A j ) , 0 ≤ j ≤ k.
Proof. According to [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF] it suffices to check that (-A, D(A)) is maximal monotone. But thanks to Assumption (E) we immediately see that -Av, v L 2 (R d ) = E(v, v) ≥ 0, for any v ∈ D(A), and thanks to Proposition 3.4 we have that for any f ∈ L 2 (R d ) there exists u ∈ D(A) solving [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF].

Using now Proposition 3.5, Corollary 3.1 and Proposition 3.6 together with some Sobolev embedding theorems, we show Theorem 3.1.

Proof of Theorem 3.1

Proof. Assume d is even. Apply the result of Proposition 3.6 with k = k 0 = ⌊ d 4 ⌋ + 2 and consider u solution of [START_REF] Gobet | Monte-Carlo methods and stochastic processes[END_REF]. We have that

u ∈ C 1 [0, T ]; D A k0-1 with k 0 -1 = ⌊ d 4 ⌋+ 1.
Using the result of Corollary 3.1 and combining Corollary IX.13 p. 168 with Theorem IX.7 p. 157 in [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF], we see that for any t ∈ [0, T ]

u ± (t, .) ∈ H 4+2⌊ d 4 ⌋ (D ± ) ⊂ H 2+ d 2 (D ± ) ֒-→ C 2 ( D± ). ( 21 
)
Assume now that d is odd. Apply the result of Proposition 3.6 with k = k 0 = ⌊ 3 2 + ⌊d/2⌋ 2 ⌋ + 2 and consider u solution of [START_REF] Gobet | Monte-Carlo methods and stochastic processes[END_REF]. We have that

u ∈ C 1 [0, T ]; D A k0-1 with k 0 -1 = ⌊ 3 2 + ⌊d/2⌋ 2 ⌋ + 1.
Using the result of Corollary 3.1 and combining Corollary IX.13 p. 168 with Theorem IX.7 p. 157 in [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF], we see that for any

t ∈ [0, T ] u ± (t, .) ∈ H 2+2⌊ 3 2 + ⌊d/2⌋ 2 ⌋ (D ± ) ֒-→ C 2 ( D± ) (22) 
since

⌊2 + 2⌊ 3 2 + ⌊d/2⌋ 2 ⌋ - d 2 ⌋ ≥ ⌊2 + 2 1 2 + ⌊d/2⌋ 2 - d 2 ⌋ ≥ ⌊3 + ⌊ d 2 ⌋ - d 2 ⌋ ≥ 2.
Let us now show that u solution of (20) (for the corresponding k 0 ) is a classical solution of (P T ).

First, it is clear that Lu coincides with Au on any bounded part of D ± (the derivatives in the distributional sense coincide with the classical derivatives thanks to the established smoothness of u). This shows the first line of (P T ).

Second, as for any t ∈ [0, T ] the function u(t, .) belongs to D(A), we have using the result of Proposition 3.5 that [u(t, .)] Γ = 0 a.e. on Γ; [B ν u(t, .)] Γ = 0 a.e. on Γ.

(

) 23 
Note that u(t, .) ∈ D(A) implies that u ± (t, .) are in H2 (D ± ). So that the second part of (23) reads

ν * (γ + (a + ∇u + (t, .)) -γ -(a -∇u -(t, .))) = 0 a.e.
But as (a ± ∇u ± ) ∈ C 1 ( D± ; R d ), we get

(a + ∇ x u + (t, .))(y) -(a -∇ x u -(t, .))(y), ν(y) = 0
for almost every y ∈ Γ, and consequently for every y ∈ Γ by continuity. The same argument applies to the first part of ( 23) and the second and third lines of (P T ) are satisfied. Note that the constructed solution satisfies u(t, .)

∈ C R d for any time t ∈ [0, T ]. Now let k ≥ k 0 . For ⌈ d 4 ⌉ ≤ j ≤ k, we have 2j -d 2 > 0. Thus, for v ∈ D(A j ) we have from Corollary 3.1, v ± ∈ H 2j (D ± ) ֒-→ C n(j) ( D± )
with n(j) = ⌊2j -d

Conclusion and consequences: boundedness of the partial derivatives

Going a bit further in the analysis, and using additional Sobolev embedding arguments, we can state the following result.

Proposition 3.7. Assume (E). Let p, q ∈ N with p + ⌊q/2⌋ ≥ 2. Let m = ⌈ q 2 + d 4 ⌉, m ′ = m + 1 and k = m ′ + p. Assume that the coefficients a ij satisfy (a ± ) ij ∈ C 2m ′ -1 b ( D± ), that Γ is bounded and of class C 2m ′ , and that u 0 ∈ D(A k ).
Then the classical solution u(t, x) of (P T ) constructed in Theorem 3.

1 satis- fies u ∈ C p ([0, T ] ; C q b ( D+ ) ∩ C q b ( D-)). Proof.
First, notice that it is easy to check that k is greater than the k 0 defined in Theorem 3.1, so that it makes sense speaking of the classical solution of (P T ), for

u 0 ∈ D(A k ).
This solution is constructed in the same way as in Theorem 3.1, in particular by the mean of Proposition 3.6. So that one can assert that

u ∈ C p ([0, T ] ; D(A m ′ )). It remains to check that if v ∈ D(A m ′ ), then v ± ∈ C q b ( D± ). First, note that m ≥ ⌈ d 4 ⌉
, and that one may easily check ⌊2m -d 2 ⌋ ≥ q (using in particular ⌈2a⌉ ≤ 2⌈a⌉). So that if v ∈ D(A m ′ ) ⊂ D(A m ), we have, as for the second part of Theorem 3.1,

v ± ∈ H 2m (D ± ) ֒-→ C ⌊2m-d 2 ⌋ ( D± ) ⊂ C q ( D± ).
We claim that for any multi-index α, |α| ≤ q, the partial derivatives ∂ α v ± are bounded. Indeed, using again Corollary 3.1, we get

v ± ∈ H 2m ′ (D ± ), so that for α, |α| ≤ q, ∂ α v ± ∈ H 2⌈ q 2 + d 4 ⌉-q+2 (D ± ) ⊂ H d 2 +2 (D ± ) ֒-→ L ∞ (D ± ).
Here we have used the fact 1 2 -1 2 -2 d < 0, so that one can use the third embedding result of Corollary IX.13 in [START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF] (and again Theorem IX.7 for the projection argument). The result is proved.

From the above proposition we get the following control on the partial derivatives of the solution to (P T ). The result is proved.

In the analysis of the convergence of our Euler scheme, we will use the above corollary with p up to 2 and q up to 4.

Euler scheme

Recalls on the projection and the distance to the transmission boundary and further notations and premiminaries

In this subsection we adopt the notations from [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. We have the following set of geometric results. Proposition 4.1 ([5], Proposition 1; see also [START_REF] Gobet | Euler schemes and half-space approximation for the simulation of diffusion in a domain[END_REF]). Assume Γ is bounded and of class C 5 . Assume (E). Assume that the coefficients a ij satisfy (a

± ) ij ∈ C 4 b ( D± ).
There is constant R > 0 such that:

1. (a) for any x ∈ V - Γ (R), there are unique s = π γ+ Γ (x) ∈ Γ and F γ+ (x) ≤ 0 such that :

x = π γ+ Γ (x) + F γ+ (x)γ + (π γ+ Γ (x)) ; (24) 
(b) for any x ∈ V + Γ (R), there are unique s = π γ- parallel to γ ± (to γ± ) : these are C 4 functions on V ∓ Γ (R). One has

Γ (x) ∈ Γ and F γ-(x) ≤ 0 such that : x = π γ- Γ (x) + F γ-(x)γ -(π γ- Γ (x)) ; (25 
F γ+ , F γ+ ≤ 0 on V - Γ (R) and F γ-, F γ-≤ 0 on V + Γ (R). (b) It is possible to extend F γ+ , F γ+ and F γ-, F γ-to C 4 b (R d , R
) functions, with the conditions F γ± , F γ± > 0 on D ± and F γ± , F γ± < 0 on D ∓ . 4. The above extensions for F γ± and F ν can be performed in a way such that the functions F γ± and F ν are equivalent in the sense that for all x ∈ R d ,

1 c 1 d(x, Γ) = 1 c 1 |F ν (x)| ≤ F γ± (x) ≤ c 1 |F ν (x)| = c 1 d(x, Γ) (26) 
for some constant c 1 > 1. 5. For x ∈ Γ,

∇ F γ± (x) = ν * ν, γ± (x). ( 27 
)
Remark 4.1. Under the assumptions of Proposition 4.1 we have that the vector fields γ ± (x), x ∈ Γ, are of class C 4 , and we have [START_REF] Dereudre | Exact simulation of brownian diffusions with drift admitting jumps[END_REF]. Thus we are indeed under the assumptions of Proposition 1 in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. We sometimes use the notation ν(x) or γ ± (x) even if x / ∈ Γ. For x ∈ V ± Γ (R), we set ν(x) = ν(π γ± Γ (x)) and γ ± (x) = γ ± (π γ± Γ (x)) and for x / ∈ V ± Γ (R), arbitrary values are given.

Note that if u is a classical solution to the transmission parabolic problem (P T ) defined in Section 3, the transmission condition (⋆) can be expressed as

γ + (y) , ∇ x u + (t, y) = -γ -(y) , ∇ x u -(t, y) , ∀(t, y) ∈ (0, T ] × Γ. ( 28 
)
This in fact will be the crux of our approach (see Subsubsection 5.5.2).

In the sequel, we will need the following result.

Proposition 4.2. Assume Γ is bounded and of class C 5 . Assume (E). Assume that the coefficients a ij satisfy (a

± ) ij ∈ C 4 b ( D± ). Let x ∈ V ∓ Γ (R) and x ∈ V ∓ Γ ( 
R) be linked by the following relation :

x = π γ± Γ (x) -F γ± (x)γ ∓ (π γ± Γ (x)). ( 29 
)
Then, there exists c 2 > 1 such that

1 c 2 d(x, Γ) ≤ d(x, Γ) ≤ c 2 d(x, Γ). ( 30 
)
Proof. Without loss of generality, assume for example that x ∈ V - Γ (R) and x ∈ V - Γ (R) are related by [START_REF] Lejay | A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients[END_REF]. Then we have

x -π γ+ Γ (x) = -F γ+ (x)γ -(π γ+ Γ (x)). ( 31 
)
and by uniqueness of the projection π

-γ- Γ (x), we see that π γ+ Γ (x) = π -γ- Γ (x) (note that F -γ-(x) = F γ+ (x)).
We deduce that

1 c 1 d(x, Γ) ≤ | F -γ-(x)| = |F -γ-(x)| × |γ -(π -γ- Γ (x))| = |x -π γ+ Γ (x)| = |x -π -γ- Γ (x)| ≤ c 1 d(x, Γ)
due to the same kind of relation as ( 26), but written for -γ -instead of γ -.

Returning back to [START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF], we see that

1 c 1 d(x, Γ) ≤ |F γ+ (x)| × |γ -(π Γ (x))| = | F γ+ (x)| |γ -(π Γ (x))| |γ + (π Γ (x))| ≤ c 1 d(x, Γ).
So that in view of (26) written for x and γ + ,

1 c 2 1 |γ + (π Γ (x))| |γ -(π Γ (x))| d(x, Γ) ≤ d(x, Γ) ≤ c 2 1 |γ + (π Γ (x))| |γ -(π Γ (x))| d(x, Γ).
But using ( 6) and [START_REF] De Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF], it easy to see that for any z ∈ Γ,

λ 2 Λ 2 d 2 ≤ |γ + (z)| 2 |γ -(z)| 2 ≤ Λ 2 d 2 λ 2
from which we deduce the result of the proposition.

Our transformed Euler scheme

We are now in position to introduce our transformed Euler scheme.

Let us denote from now on △t = h n = T n the time step (where n ∈ N * ) and fix a starting point

x 0 ∈ R d .
The time grid is given by (t n k ) n k=0 with t n k = T k n for 0 ≤ k ≤ n. We denote by (∆W k+1 ) n k=0 the i.i.d. sequence of Brownian increments constructed on (Ω, F , P x0 ) and defined by Recall that σ : R d → R d×d stands for a matrix valued coefficient satisfying

∆W k+1 = W t k+1 -W t k , ∀ 0 ≤ k ≤ n. D - D + X t k π γ- Γ (x) X t k+1 Γ || || x = Xt k+1 iteration point
σσ * (x) = 2a(x), ∀x ∈ D.
Set (∂a(x)) j = div(x → (a 1j (x), . . . , a nj (x))).

Our stochastic numerical scheme

X n t k n k=0
is defined as follows (we omit the superscript n) X 0 = x 0 and for t ∈ (t k , t k+1 ], we set

                           Xt = Xt k + σ(Xt k )(Wt -Wt k ) + ∂a(Xt k )(t -t k ) (standard Euler incrementation) Xt k+1 = Xt k+1 if Xt k ∈ D+ and Xt k+1 ∈ D+ or Xt k ∈ D-and Xt k+1 ∈ D-; Xt k+1 = π γ + Γ ( Xt k+1 ) -F γ + ( Xt k+1 )γ-(π γ + Γ ( Xt k+1 )) if Xt k ∈ D+ and Xt k+1 ∈ D-; Xt k+1 = π γ - Γ ( Xt k+1 ) -F γ -( Xt k+1 )γ+(π γ - Γ ( Xt k+1 )) if Xt k ∈ D-and Xt k+1 ∈ D+ . ( 32 
)
Remark 4.2. Note that by its construction the presented Euler scheme enjoys uniqueness in law.

Remark 4.3. (Comparison with known results in the classical smooth case)

-Note that whenever a is smooth, the co-normal vector fields γ + and γ - are in exactly opposite directions and our problem becomes artificial.

Combining [START_REF] Limic | Markov jump processes approximating a nonsymmetric generalized diffusion[END_REF] with ( 24) and [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] shows that the construction of our scheme ensures that Xt k = X t k for k = 0, . . . , n in this particular and artificial case (see also Figure 1 and observe that the isosceles triangle becomes flat in this case). Thus, there is no correction when crossing the boundary and -whenever a is smooth -our scheme reduces the classical Euler scheme.

-Note also that at the crossing of the boundary our construction resembles the so-called symmetrized Euler scheme constructed for the specific case of reflected diffusions (see [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]). However in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF] (see also [START_REF] Gobet | Euler schemes and half-space approximation for the simulation of diffusion in a domain[END_REF]) the purpose of the construction is to forbid the numerical scheme from crossing the reflecting boundary (without undermining the convergence), contrary to our framework where we let the scheme cross freely the transmission boundary (the correction point remains in the same side as its corresponding iteration point). Up to our current knowledge both problems -reflected boundary problem and transmission boundary problem -cannot be treated in a common framework. Still, we feel that both problems share the same flavor and the reader might want to compare the picture of Figure 1 with Figure 1 p. 881 in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF].

Remark 4.4. (Comparison with the results of [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] in the one dimensional case)

When the dimension d is reduced to 1 (one dimensional problem), the discontinuity surface reduces to a single point (say 0). In this case and when the coefficient a = a + I y> + a -I y< is constant on both sides of the discontinuity, it is remarkable that our Euler Scheme is exactly the same as the one described in [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF].

Indeed, in this one-dimensional context, let ϕ(y) = (a -I y> + a + I y< ) y. Note that ϕ is a bijective map from R to R. The Euler Scheme constructed in [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] is then defined by X 0 = x 0 and for all k ∈ {0, . . . , n},

X t k = ϕ -1 Y t k
where Y 0 = ϕ(x 0 ) and for all k ∈ {0, . . . , n -1}

Y t k+1 = Y t k + a -σ + I Y t k > + a + σ -I Y t k < (W t k+1 -W t k ) ;
(see [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] for details -please take care that [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] is written for the right-hand sided local time; the above computation is valid for the symmetric local time). For example if ϕ(X t k ) < 0 and Y t k+1 ≥ 0, we get (because ϕ -1 (0) = 0 and ϕ -1 is continuous at 0 and also because X and Y share the same sign),

X t k+1 = ϕ -1 ϕ(X t k ) + a -σ + I Y t k > + a + σ -I Y t k < △W k+1 k = X t k + 0 ϕ(Xt k ) ϕ -1 ′ (z)dz + ϕ(Xt k )+(a -σ + I Y t k > =0 +a+σ-I Y t k < )△W k+1 k 0 ϕ -1 ′ (z)dz = X t k -ϕ(X t k ) 1 a + + ϕ(X t k ) + a + σ -△W k+1 k 1 a - = a + a - X t k + a + a - σ -△W k+1 k ,
which turns out to be the corresponding case stated in [START_REF] Limic | Markov jump processes approximating a nonsymmetric generalized diffusion[END_REF] in this one-dimensional context. This correspondence is valid in all the other cases. Hence, our transformed Euler Scheme may be viewed as some kind of multidimensional generalization of the Euler Scheme presented in [START_REF] Martinez | One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times[END_REF] (up to second order terms if the coefficient a of the operator is not piece-wise constant).

Convergence rate of our Euler scheme

The purpose of this section is to prove the following result. ( D± ) and that Γ is of class C 2m ′ . Let u 0 : R d → R be in the space D(A k ). Let u be a classical solution of (P T ).

We have that for all n large enough,

sup x0∈R d u(T, x 0 ) -E x0 u 0 (X n T ) ≤ K h n , (33) 
where the constant K depends on d, λ, Λ, u 0 and T . As a consequence of the above and under these assumptions, there is uniqueness of the classical solution u of (P T ).

Remark 5.1. Note that the uniqueness of u appears as a consequence of the uniqueness in law of our numerical scheme (Remark 4.2) and of the convergence [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]. This is in the spirit of the last statement of Theorem 5.7.6 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] where the uniqueness of the solution of parabolic PDEs is proved by the mean of a Feynman-Kac representation formula involving a diffusion X which enjoys uniqueness in law.

Remark 5.2. In Theorem 5.1 the assumptions on a(x) and Γ involving the integers m ′ and k are here in order to use Corollary 3.2, which ensures that we will have sup t∈[0,T ], x∈ D± |∂ j t ∂ α u ± (t, x)| < ∞ for any j ≤ 2 and any |α| ≤ 4. This control on the derivatives on u is what we need in order to lead our convergence proof. In fact if there is a way to get this control under weaker assumptions on a(x) and Γ our methodology of proof would lead to a convergence theorem stated under these weaker assumptions.

The rate of convergence in Theorem 5.1 is of order √ h n . This order is much slower than the order h n achieved for the standard Euler scheme applied to SDEs with smooth coefficients (see [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] and [START_REF] Bally | The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus[END_REF]). However this rate √ h n improves very slightly the results obtained in [START_REF] Martinez | Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu[END_REF]. This is due to the methodology of proof where we manage to use smooth discounted occupation times for the scheme around the interface instead of discretized occupation times involving harsh indicator functions.

Unfortunately we have not been able to prove a second order transmission boundary condition as the one derived in Lemma 3 p. 883 in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF] for the case of the symmetrized Euler scheme for reflected diffusions. This explains the reason why we do not achieve the rate h n as in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. Note that the rate √ h n seems confirmed by numerical 1D tests performed in [START_REF] Martinez | Inbterprétations probabilistes d'opérateurs sous forme divergence et analyse des méthodes numériques probabilistes associées[END_REF] and is classical for transmission problems.

Note that similarly to the results obtained for the symmetrized Euler scheme for reflected diffusions in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF], our convergence result holds uniformly with respect to the starting point x 0 .

In the sequel of this section we focus on proving (33).

Preliminary results

Lemma 5.1. (see [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF] Lemma 1 p. 883) Consider an Itô process with uniformly bounded coefficients dU t = b t dt + σ t dW t on (Ω, F , P). There exist some constants c > 0 and K (depending on p ≥ 1, T and the bounds on σ, b) such that, for any stopping times S and S ′ (with 0 ≤ S ≤ S ′ ≤ δ ≤ T ) and any η ≥ 0,

P sup t∈[S,S ′ ] |U t -U s | ≥ η ≤ K exp -c η 2 δ ; ( 34 
) E sup t∈[S,S ′ ] |U t -U s | p ≤ Kδ p/2 . ( 35 
)
We have when

X t k ∈ D + X t k+1 = Xt k+1 + F γ+ ( Xt k+1 ) - γ + (π γ+ Γ ( Xt k+1 )) + γ -(π γ+ Γ ( Xt k+1 ))
and when

X t k ∈ D - X t k+1 = Xt k+1 + F γ-( Xt k+1 ) - γ + (π γ- Γ ( Xt k+1 )) + γ -(π γ- Γ ( Xt k+1 ))
This shows that (X t ) 0≤t≤T behaves like a continuous semimartingale on each of the intervals [t k , t k+1 ).

We now aim at finding the differential form for (X t ) 0≤t≤T . Using Tanaka's formula (remember that we are using the symmetric local time), we have

d F γ+ ( Xt ) - = - t 0 I F γ + ( Xt)< d F γ+ ( Xt ) + 1 2 dL 0 t (F γ+ ( X)) = - t 0 I F γ + ( Xt)< ∇F γ+ ( Xt )d Xt - t 0 I F γ + ( Xt)< 1 2 Tr H[F γ+ ]( Xt )a(X t k ) dt + 1 2 dL 0 t (F γ+ ( X)).
Moreover, using Remark 4.1 we may and will write that

γ + (π γ+ Γ ( Xt k+1 )) + γ -(π γ+ Γ ( Xt k+1 )) = γ + ( Xt k+1 ) + γ -( Xt k+1 )
which allows to apply Itô's formula to ( Xt ) t k <t≤t k+1 along the vector fields γ + and γ -without having to differentiate the co-normal projections. Hence, applying these differentiations when X t k ∈ D + we find that for any t ∈ [t k , t k+1 ),

dX t = d Xt + (γ + + γ -) 2 ( Xt )dL 0 t (F γ+ ( X)) + F γ+ ( Xt ) - ∇ (γ + + γ -) ( Xt )d Xt + 1 2 Tr H[γ + + γ -]( Xt )a(X t k ) ) dt -I F γ + ( Xt)< ∇ (γ + + γ -) ( Xt )a(X t k ) ∇F γ+ ( Xt ) * dt + (γ + + γ -) ( Xt )∇F γ+ ( Xt )d Xt -I F γ + ( Xt)< (γ + + γ -) ( Xt ) 1 2 Tr H[F γ+ ]( Xt )a(X t k ) dt (36) 
and a corresponding equality holds also true for X t k ∈ D -.

Lemma 5.2. Under the assumptions of Theorem 5.1, for all c > 0, there exists a constant K(T ) such that

h n E x0 n-1 i=0 exp -c d 2 (X n ti , Γ) h n ≤ K(T ) h n (37) 
uniformly over

x 0 ∈ R d .
Proof. The idea is to use the occupation times formula. Using successively [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] and the inequality (30) of Proposition 4.2, we have

d (x, Γ) ≥ 1 c2 d (x, Γ) ≥ 1 c1c2 | F γ± (x)| so that A i+1 := E x0 exp -c d 2 (X n ti+1 , Γ) h n ≤ E x0   exp   -c F γ+ ( Xn ti+1 ) 2 |c 1 c 2 | 2 h n    I X n t i+ ∈D-    + E x0   exp   -c F γ-( Xn ti+1 ) 2 |c 1 c 2 | 2 h n    I X n t i+ ∈D+    := A + i+1 + A - i+1 . (38) 
We concentrate on term A + i+1 as both terms are treated in a similar manner.

Set c ′ = c/2c 2 1 c 2 2 > 0 and g(x) = exp(-2c ′ x 2 /h); it is easy to check that |g(x)| + √ h|g ′ (x)| + h|g ′′ (x)| ≤ K(T ) exp(-c ′ x 2 /h). Hence, for t ∈ [t i , t i+1 ], Itô's formula yields that E x0 exp   -2c ′ F γ+ ( Xn ti+1 ) 2 h n    ≤ K(T ) E x0 exp -c ′ F γ+ ( Xn t ) 2 h n + 1 h n ti+1 t ds E x0 exp -c ′ F γ+ ( Xn s ) 2 h n .
We integrate this inequality with respect to t over [t i , t i+1 ] to get

h n A + i+1 ≤ K(T ) ti+1 ti ds E x0 exp   -c ′ F γ+ ( Xn s ) 2 h n    . (39) 
(for possibly some new constant K(T )).

Observe that from [START_REF] Lejay | An exponential timestepping algorithm for diffusion with discontinuous coefficients[END_REF],

d F γ+ ( Xn ), F γ+ ( Xn ) s = ∇ F γ+ ( Xn s )a(X n ti ) ∇ F γ+ ( Xn s ) * ds ≥ λds. (40) 
Indeed, using the Cauchy-Schwarz inequality and |ν(x)| = 1, we have that

∇ F γ+ (x)a(x) ∇ F γ+ (x) * = ν * (x)a(x)ν(x) ν(x), γ+ (x) 2 = ν(x), a(x)ν(x) ν(x), a(x)ν(x) |a(x)ν(x)| 2 ≥ ν(x), a(x)ν(x) |ν(x)| 2 |a(x)ν(x)| 2 |a(x)ν(x)| 2 = ν(x), a(x)ν(x) ≥ λ
which justifies [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF].

It readily follows from the occupation times formula that

h n A + i+1 ≤ K(T ) R -R dy exp -c ′ y 2 h n E x0 △ i+1 i L y F γ+ ( Xn . ) . (41) 
Now,

E x0 L y ti+1 F γ+ ( Xn . ) -L y ti F γ+ ( Xn . ) = 2E x0 F γ+ ( Xn ti+1 ) -y + -F γ+ ( Xn ti ) -y + - ti+1 ti I F γ + ( Xn s )≥y d F γ+ ( Xn s ) ≤ 2E x0 F γ+ ( Xn ti+1 ) -y + -F γ+ ( Xn ti ) -y + + K(T )h n . Therefore, n-1 i=0 E x0 L y ti+1 F γ+ ( Xn . ) -L y ti F γ+ ( Xn . ) ≤ K(T ) uniformly in |y| ≤ R
since the sum is telescoping. Moreover, the result of Lemma 5.1 ensures that this inequality is uniform w.r.t x 0 . We can thus conclude that

h n n-1 i=0 A + i+1 ≤ K(T ) √ h n uniformly w.r.t x 0 . The sum h n n-1 i=0 A -
i+1 is treated similarly. The proof of the Lemma is complete.

Error decomposition

In all the sequel x 0 is arbitrarily fixed. For all 0 ≤ k ≤ n set θ n k := T -t n k . The proof of Theorem 5.1 proceeds as follows (we omit the superscript n). Since u(0, x) = u 0 (x) for all x ∈ R d and u(T, x 0 ) = E x0 u(T, X 0 ), the discretization error at time T can be decomposed as follows:

ǫ x0 T = u(T, x 0 ) -E x0 u 0 X T = n-1 k=0 E x0 u(T -t k , X t k ) -E x0 u(T -t k+1 , X t k+1 ) , (42) 
and thus

ǫ x0 T ≤ n-1 k=0 E x0 u(θ k , X t k ) -u(θ k+1 , X t k ) +u(θ k+1 , X t k ) -u(θ k+1 , X t k+1 ) . (43) 
The rest of this section is devoted to the analysis of

n-1 k=0 E x0 (T k -S k ) ,
where the time increment T k is defined as

T k := u(θ k , X t k ) -u(θ k+1 , X t k ) (44) 
and the space increment is defined as

S k := u(θ k+1 , X t k+1 ) -u(θ k+1 , X t k ). (45) 

Estimate for the time increment T k

Remember the definition (44) of T k and that

θ k = T -t k . We have u(θ k , X t k ) -u(θ k+1 , X t k ) I Xt k ∈D+ = h n ∂ t u(θ k+1 , Y t k )I Xt k ∈D+ + h 2 n [0,1] 2 ∂ 2 tt u(θ k+1 + α 1 α 2 h n , X t k )α 1 dα 1 dα 2 I Xt k ∈D+ =: T + k + R + k . Similarly, u(θ k , X t k ) -u(θ k+1 , X t k ) I Xt k ∈D- = h n ∂ t u(θ k+1 , X t k )I Xt k ∈D- + h 2 n [0,1] 2 ∂ 2 tt u(θ k+1 + α 1 α 2 h n , X t k )α 1 dα 1 dα 2 I X t k ∈D- =: T - k + R - k .
In view of Corollary 3.2 and Remark 5.2 we have

E x0 |R + k + R - k | ≤ C h 2 n .
From the preceding we deduce

E x0 T k = E x0 ∂ t u(θ k+1 , X t k )h n + O(h 2 n ). (46) 

Expansion of the space increment S k

Let S k be defined as in [START_REF] Stroock | Diffusion semigroups corresponding to uniformly elliptic divergence form operators[END_REF]. Set

△ k+1 X := X t k+1 -X t k △ ♯ k+1 X := Xt k+1 -X t k . and recall that △ k+1 W = W t k+1 -W t k . Proposition 5.1. E x0 |(△ ♯ k+1 X) α | ≤ C(α)h |α|/2 n . (47) 
Proof. This is a consequence of the result of Lemma 5.1 combined with the fact that |(x) α | ≤ |x| |α| for any x ∈ R d .

We emphasize that, due to the definition of our stochastic scheme, △ ♯ k+1 X does not coincide with X t k+1 -X t k when X t k+1 and X t k do not belong to the same region, which explains the two notations △ and △ ♯ .

We need to introduce the four following events:

         Ω ++ k := [X t k ∈ D + and Xt k+1 ∈ D + ], Ω -- k := [X t k ∈ D -and Xt k+1 ∈ D -], Ω +- k := [X t k ∈ D + and Xt k+1 ∈ D -], Ω -+ k := [X t k ∈ D -and Xt k+1 ∈ D + ]. (48) 
In view of the definition of our stochastic numerical scheme we have

On Ω ++ k , △ k+1 X = △ ♯ k+1 X. Therefore S k I Ω ++ k = △ k+1 X, ∇ x u(θ k+1 , X t k ) I Ω ++ k + 1 2 △ k+1 X * H[u](θ k+1 , X t k )△ k+1 X I Ω ++ k + |α|=3 1 α! (△ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) I Ω ++ k + 1 0 dξ |α|=4 (1 -ξ) 4 α! (△ k+1 X) α ∂ 4 u ∂x α (θ k+1 , X t k + ξ△ k+1 X) I Ω ++ k =: S ++1 k + S ++2 k + S ++3 k + S ++4 k .
Similarly,

S k I Ω -- k = △ k+1 X, ∇ x u(θ k+1 , X t k ) I Ω -- k + 1 2 △ k+1 X * H[u](θ k+1 , X t k )△ k+1 X I Ω -- k + |α|=3 1 α! (△ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) I Ω -- k + 1 0 dξ |α|=4 (1 -ξ) 4 α! (△ k+1 X) α ∂ 4 u ∂x α (θ k+1 , X t k + ξ△ k+1 X) I Ω -- k =: S --1 k + S --2 k + S --3 k + S --4 k . We now use that Ω ++ k ∪ Ω -- k = Ω -(Ω +- k ∪ Ω -+ k ). Notice that Ω +- k ∪ Ω -+ k
belongs to the σ-field generated by (W t ) up to time t k+1 . In view of the first line of (32) and the fact that E Ft k ∆W k+1 = 0, we get

E x0 (S ++1 k + S --1 k ) = h n 2 E x0 ∂a(X t k ), ∇ x u(θ k+1 , X t k ) -E x0 △ ♯ k+1 X, ∇ x u(θ k+1 , X t k ) I Ω +- k ∪Ω -+ k .
Proceeding similarly and conditioning (△ ♯ k+1 X) 2 w.r.t. the past of (W t ) up to time t k , we obtain

E x0 (S ++2 k + S --2 k ) = 1 2 E x0 Tr[σH[u]σ * ](θ k+1 , X t k ) h n - 1 2 E x0 (△ ♯ k+1 X) * H[u](θ k+1 , X t k )△ ♯ k+1 X I Ω +- k ∪Ω -+ k and since E x0 (△ k+1 W ) α = 0 whenever |α| = 3, E x0 (S ++3 k + S --3 k ) = |α|=3 1 α! E x0 (△ ♯ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) - |α|=3 1 α! E x0 (△ ♯ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) I Ω +- k ∪Ω -+ k .
We have, combining the results of Corollary 3.2 and Proposition 5.1,

|α|=3 1 α! E x0 (△ ♯ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) ≤ C h 3/2 n . (49) 
In addition, and for the same reasons, we have

E x0 |S ++4 k + S --4 k | ≤ C h 2 n .
To summarize the calculations of this subsection, we have obtained

E x0 S k = E x0 Lu(θ k+1 , X t k )h n + E x0 S k -△ ♯ k+1 X, ∇ x u(θ k+1 , X t k ) I Ω +- k ∪Ω -+ k -E x0 1 2 (△ ♯ k+1 X) * H[u](θ k+1 , X t k )△ ♯ k+1 X + |α|=3 1 α! (△ ♯ k+1 X) α ∂ 3 u ∂x α (θ k+1 , X t k ) I Ω +- k ∪Ω -+ k + O(h 3/2 n ) =: E x0 Lu(θ k+1 , X t k )h n + E x0 R (1) k -E x0 R (2) k + O(h 3/2 n ). ( 50 
)
We now estimate the remaining terms

E x0 R (1) 
k and

E x0 R (2) 
k .

Control of the term

E x0 R (1) 
k . Expansion around a well chosen point in Γ On the event Ω +- k we have that X t k+1 and X t k are close to Γ. On this event, we also have that Xt k+1 ∈ D -and X t k ∈ D + . Remember our definition of (F γ+ (x), π γ+ Γ (x)) for x ∈ D -.

Decomposition of E x0 R (1) k

As the function u is continuous across the surface Γ at point π γ+ Γ (x), we get

E x0 S k -△ ♯ k+1 X, ∇ x u(θ k+1 , X t k ) I Ω +- k = E x0 u(θ k+1 , X t k+1 ) -u(θ k+1 , π γ+ Γ ( Xt k+1 )) + u(θ k+1 , π γ+ Γ ( Xt k+1 )) -u(θ k+1 , X t k ) I Ω +- k -E x0 △ ♯ k+1 X, ∇ x u + (θ k+1 , π γ+ Γ ( Xt k+1 )) I Ω +- k -E x0 △ ♯ k+1 X, ∇ x u(θ k+1 , X t k ) -∇ x u + (θ k+1 , π γ+ Γ ( Xt k+1 )) I Ω +- k so that E x 0 S k -△ ♯ k+1 X, ∇xu(θ k+1 , Xt k ) I Ω +- k = L +-1 k + L +-2 k + L +-3 k , where L +-1 k := E x 0 Xt k+1 -π γ + Γ ( Xt k+1 ), ∇xu-(θ k+1 , π γ + Γ ( Xt k+1 )) I Ω +- k -E x 0 Xt k -π γ + Γ ( Xt k+1 ), ∇xu+(θ k+1 , π γ + Γ ( Xt k+1 )) I Ω +- k -E x 0 △ ♯ k+1 X, ∇xu+(θ k+1 , π γ + Γ ( Xt k+1 )) I Ω +- k L +-2 k :=    1 0 dξ |α|=2 (1 -ξ) 2 α! E x 0 ( Xt k+1 -π γ + Γ ( Xt k+1 )) α × ∂ α u ∂x α (θ k+1 , π γ + Γ ( Xt k+1 ) + ξ( Xt k+1 -π γ + Γ ( Xt k+1 ))) I Ω +- k - 1 0 dξ |α|=2 (1 -ξ) 2 α! E x 0 (Xt k -π γ + Γ ( Xt k+1 )) α × ∂ α u ∂x α (θ k+1 , π γ + Γ ( Xt k+1 ) + ξ(Xt k -π γ + Γ ( Xt k+1 ))) I Ω +- k and L +-3 k := -E x 0 △ ♯ k+1 X, ∇xu+(θ k+1 , Xt k ) -∇xu+(θ k+1 , π γ + Γ ( Xt k+1 )) I Ω +- k .
5.5.2. Canceling the term L +-1 k using the transmission condition Observe that due to the fact that

Xt k -π γ+ Γ ( Xt k+1 ) + Xt k+1 -Xt k = Xt k+1 -π γ+ Γ ( Xt k+1 ).
we have that

L +-1 k = E x0 X t k+1 -π γ+ Γ ( Xt k+1 ), ∇ x u -(θ k+1 , π γ+ Γ ( Xt k+1 )) -Xt k+1 -π γ+ Γ ( Xt k+1 ), ∇ x u + (θ k+1 , π γ+ Γ ( Xt k+1 )) I Ω +- k = E x0 F γ+ ( Xt k+1 ) -γ -(π γ+ Γ ( Xt k+1 )), ∇ x u -(θ k+1 , π γ+ Γ ( Xt k+1 )) -γ + (π γ+ Γ ( Xt k+1 )), ∇ x u + (θ k+1 , π γ+ Γ ( Xt k+1 )) I Ω +- k = 0,
where we have used the vector problem solved by (F γ+ , π γ+ Γ ) and Equation (28) (i.e. the transmission condition (⋆) and the definition of γ ± (x)). is the sum of two terms. These two terms are treated similarly, so we concentrate only on the first. Let α such that |α| = 2. We have that

E x0 (X t k -π γ+ Γ ( Xt k+1 )) α I Ω +- k ≤ c 1 E x0 |X t k -π γ+ Γ ( Xt k+1 )| 2 I Ω +- k ≤ c 2 E x0 |△ ♯ k+1 X| 2 I Ω +- k .
The same kind of treatment can be performed for the second term of L +-2 k . Conditionning w.r.t F t k and applying the Cauchy-Schwarz inequality in the conditionnal expectation, we find using the result of Lemma 5.1, , we may perform a Taylor's expansion to the term

|L +-2 k | ≤ CE x0 E Ft k △ ♯ k+1 X 4 1/2 P Ft k Ω +- k 1/2 ≤ C h n E x0 P Ft k Ω +- k 1/2 .
∇ x u + (θ k+1 , X t k ) -∇ x u + (θ k+1 , π γ+ Γ ( Xt k+1
)). Using Corollary 3.2 and the Cauchy-Schwarz inequality, we find that

|L +-3 k | ≤ CE x0 △ ♯ k+1 X X t k -π γ+ Γ ( Xt k+1 ) I Ω +- k ≤ CE x0 △ ♯ k+1 X 2 I Ω +- k . (51) 
Finally, as for the term L +-2 k , we find that

|L +-3 k | ≤ C h n E x0 P Ft k Ω +- k 1/2 .
Using the same method for the other side Ω -+ k , we find that

E x0 R (1) k ≤ C h n E x0 P Ft k Ω +- k 1/2 + P Ft k Ω -+ k 1/2 .

Summing up

The term

E x0 R (2) 
k can be estimated using the same techniques used in the previous section and we omit the details.

Using now the fact that ∂ t u -Lu = 0, we finally find that

ǫ x0 T ≤ C h n E x0 n-1 k=0 P Ft k Ω +- k 1/2 + P Ft k Ω -+ k 1/2 + C h n . (52) 
Observe -using the result of Lemma 5.1 -that

P Ft k Ω +- k 1/2 = P Ft k X t k ∈ D + , Xt k+1 ∈ D - 1/2 ≤ P Ft k || Xt k+1 -X t k || ≥ d X t k , Γ 1/2 ≤ K(T ) exp - 1 2 d 2 X t k , Γ h n
and the same kind of inequality holds true for

P Ft k Ω -+ k 1/2 .
Finally,

ǫ x0 T ≤ K(T ) h n E x0 n-1 k=0 exp - 1 2 d 2 X t k , Γ h n + C h n ,
and we conclude the proof of Theorem 5.1 using the result of Lemma 5.2 (note that if we sum up all the dependancies of our constants, we indeed have that K in (33) depends on d, λ, Λ, u 0 and T ).

Numerical experiments

In the forthcoming Examples 1 and 2 we have d = 2 and consider PDEs in a bounded spatial domain D 0 = D + ∪ D -∪ Γ to be given by the open unit disc, i.e.,

D 0 = {(x 1 , x 2 ) ∈ R : x 2 1 + x 2 2 < 1}. The boundary of D 0 is thus the unit circle ∂D 0 = {(x 1 , x 2 ) ∈ R : x 2 1 + x 2 2 =
1}. The subdomains D + and D -are defined by

D + = {(x 1 , x 2 ) ∈ D with x 2 > 0} and D -= {(x 1 , x 2 ) ∈ D with x 2 < 0}, so that the interface is Γ = {(x 1 , 0) ∈ R 2 : -1 ≤ x 1 ≤ 1}. We recall the notation D = D + ∪ D -.
Note that the forthcoming parabolic problem (P T,bounded D0 ) of Example 2 is then posed in a bounded domain, unlike in our theoretical study. But we have found that convenient for numerical purposes.

The diffusion matrix is defined by

a(x) = a + (x)I x∈D+ + a -(x)I x∈ D-,
with a ± (x) = P * ± E ± (x)P ± where P ± are rotation (therefore orthogonal) matrices

P ± = cos(θ ± ) -sin(θ ± ) sin(θ ± ) cos(θ ± ) (for θ ± ∈ [0, 2π))
, and E ± (x) are diagonal matrix-valued functions

E ± (x) = λ 1 ± + ǫ ± x 2 0 0 λ 2 ± + ǫ ± x 2
where λ 1 ± , λ 2 ± > 0 and ǫ ± < λ i ± for i = 1, 2. Note that this ensures that a(x) satisfies the uniform ellipticity assumption (E).

We take Note that when the scheme crosses the interface Γ, we compute the quantities π γ± Γ ( Xt k+1 ) and F γ± ( Xt k+1 ) in the following way (we will detail the procedure for π γ+ Γ ( Xt k+1 ) and F γ+ ( Xt k+1 )). Recall that we have

θ + = π 4 , θ -= π 3 , λ 1 + = 1, λ 2 + = 9, λ 1 -= 2, λ 2 -= 3 , ǫ + = 0.
Xt k+1 -π γ+ Γ ( Xt k+1 ) = F γ+ ( Xt k+1 )γ + (π γ+ Γ ( Xt k+1 )).
But here ν = (0, 1) * so that for any

x ∈ Γ γ + (x) = 1 2 4 5 + 0.5x 2 and π γ+ Γ ( Xt k+1 ) 2 = 0 so that Xt k+1 -π γ+ Γ ( Xt k+1 ) 2 = Xt k+1 2 . This yields F γ+ ( Xt k+1 ) = Xt k+1 2 
2.5 , and then

π γ+ Γ ( Xt k+1 ) = Xt k+1 1 -F γ+ ( Xt k+1 ) × 2 0 .
Then we have everything in hand to perform our Tranformed Euler Scheme X.

Comparing with an Euler scheme applied on regularized coefficients.

A natural method with which to compare our tranformed scheme is to regularize first the coefficients and then to perform a standard (i.e. not transformed) Euler scheme. More precisely consider the operator

C 2 (R d ; R) ∋ f → L ε f = ∇ • a ε ∇ x f = Tr [H[f ]a ε ] + (∂a ε ) * ∇ x f
where a ε is some smoothed version of a (ε is the regularization step, see the following discussion about its choice). Then L ε is the generator of the solution of the SDE

dX ε t = σ ε (X ε t ) dW t + [∂a ε ](X ε t ) dt, (53) 
where σ ε (σ ε ) * = 2a ε . The process X ε may be approached by a standard (i.e. not transformed) Euler scheme X ε , with time step h n .

Let h n be fixed. In fact ε will be chosen in function of h n . We are first inspired by the random walk approach proposed in [START_REF] Stroock | Markov chain approximations to symmetric diffusions[END_REF]. In this later paper Equation (3.11) indicated that ε has to be proportional to the square root of the space discretisation step. Then, using a scaling argument we choose ε = h

1/4 n . Then we set a ε (x) = a(x)1 |x2|>ε + A ε (x)1 |x2|≤ε
where

A ε (x) = 1 2 31 8 -0.7ε + x 2 ( 9 8ε + 1.2) √ 3 8 + 2 + x 2 ( 2 ε - √ 3 8ε ) √ 3 8 + 2 + x 2 ( 2 ε - √ 3 8ε ) 29 8 -0.7ε + x 2 ( 11 8ε + 1.2)
.

Note that the thus defined coefficient a ε is continuous and piecewise differentiable. Then we have ∂a

ε = ∂a(x)1 |x2|>ε + ∂A ε (x)1 |x2|≤ε where ∂A ε (x) = 1 ε - √ 3 16ε 11 16ε + 0.6 , and 2a ε (x) = σ ε [σ ε ] * (x) with σ ε (x) = σ(x)1 |x2|>ε + Σ ε (x)1 |x2|≤ε and Σ ε (x) being equal to     31 8 -0.7ε + x2( 9 8ε + 1.2) 0 √ 3 8 +2+x 2 ( 2 ε - √ 3 8ε ) √ 31 8 -0.7ε+x 2 ( 9 8ε +1.2) 29 8 -0.7ε + x2( 11 8ε + 1.2) - √ 3 8 +2+x 2 ( 2 ε - √ 3 8ε ) 2 31 8 -0.7ε+x 2 ( 9 8ε +1.2)     .
With these coefficients it is easy to perform a standard Euler Scheme on the SDE (53).

We will compare both methods on the two following examples. Benchmarks will be provided by a deterministic approximation of the solutions of the PDE of interest.

Example 1. We wish here to treat the elliptic transmission problem

(E 0 T,bounded D0 )                    Lv(x) = 0 ∀x ∈ D a + ∇ x v + (y) -a -∇ x v -(y), ν(y) = 0 ∀y ∈ Γ v(y+) = v(y-) ∀y ∈ Γ v(x) = f (x) ∀x ∈ ∂D 0 .
We take the function f to be

f (x) = sin(3x 1 ) + cos(4x 2 ).
Consider then on one side our study of the convergence in the parabolic case, and on the other side the Feynman-Kac representation for elliptic PDEs available in the smooth case (see for instance Theorem 5.7.2 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]). One can hope that

E x [f (X τ )] ----→ hn→0 v(x),
where X denotes our scheme and τ = inf{t ≥ 0 : X t / ∈ D 0 }. We thus compute a Monte Carlo approximation of E x [f (X τ )] on one side (with N = 10 6 paths). Note that in this Monte Carlo procedure we have used a boundary shifting method, on order to reduce the bias introduced by the approximation of the exit time τ = inf{t ≥ 0 : X t / ∈ D 0 } by τ (see [START_REF] Gobet | Monte-Carlo methods and stochastic processes[END_REF] Subsection 5.4.3, and the references therein).

On the other side E

x [f (X ε τ ε )], with τ ε = inf{t ≥ 0 : X ε t / ∈ D 0 }
, provides another approximation of v(x) (note that we use again a boundary shifting method).

Benchmarks are provided by the software FREEFEM with which we compute an approximation of v(x) by a finite element method, using around 1.5×10 6 triangles and 7 × 10 5 vertices (finite elements basis consists of polynomial functions of order 1). Indeed we observe that with this space discretization order the finite element method is at convergence. Table 1 shows the results. We provide 95% excess confidence intervals for E x [f (X τ )] and E x [f (X ε τ ε )]. It seems that our Transformed Euler scheme converges quicker to the benchmark than the standard Euler scheme applied on regularized coefficients. Indeed we notice that the value at convergence provided by FreeFem tends to be in the confidence intervals for E x [f (X τ )], while it is not the case for E

x [f (X ε τ ε )].
PDE solver that we use as a benchmark (FreeFem again), we will focus on a stationary PDE.

Our example is inspired by the field of Electro-and Magnetoencephalography (EEG/MEG). We follow [START_REF] Piastra | The discontinuous galerkin finite element method for solving the meg and the combined meg/eeg forward problem[END_REF] for the exposure of the equations governing the electric potential distribution (vector field E) and the resulting magnetic induction (vector field B) generated in the brain.

These equations come from the quasistatic approximation of Maxwell's equations. When the permeability of the electric medium is that of the free space i.e. the permeability is constantly equal to µ 0 , these equations read

∇ × E = 0, ∇ • E = ρ ǫ 0
for the electrical part and ∇ × B = µ 0 j, ∇ • B = 0 for the magnetic part. Here ρ is the electric charge density, ǫ 0 is the permittivity of free space and j represents the total electric current density (in addition ∇× denotes the curl operator, applied to any vector field).

Here j is produced by neuronal activity and in bioelectromagnetism it is split into two contributions, i.e. j = j p + j s , where j p and j s are respectively the primary and the secondary current. The secondary current is a passive current that is the result of the macroscopic electric field on charge carriers in the conducting medium. By Ohm's law one has aE = j s where a indicates the conductivity profile of the conductive medium. Now, since the curl ∇ × E equals zero, there exists a potential function v such that E = -∇ x v and thus -a∇ x v = j s . Applying the divergence operator to the curl ∇ × B one gets 0 = ∇ • (∇ × B) = ∇ • (µ 0 j) = µ 0 ∇ • (-a∇ x v + j p ) .

Hence, the electric potential function v solves a Poisson equation of type

∇ • (a∇ x v) = ∇ • j p in D 0 ⊂ R 3 (54) 
where D 0 stands for the space volume of the conductive device.

In our example, we will consider that D 0 = (-5, 5) × (-5, 5) × (-5, 5), that is D 0 is a 3-dimensional cubic domain. We will consider that the medium inside D 0 is composed of two materials with different conductivity profiles, one to be found above the horizontal plane, the other one below. With our notations, D + = {(x 1 , x 2 , x 3 ) ∈ D 0 , x 3 > 0} and D -= {(x 1 , x 2 , x 3 ) ∈ D 0 , x 3 < 0}.

The conductivity coefficient is thus given by the matrix valued function a(x, y, z) = a + I z≥ + a -I z< where we have chosen a + = 1 2

  1 1 1 1 2 2 1 2 3   and a -= 1 2   1 -1 -1 -1 2 0 -1 0 3   .
From Gauss's reduction, for any x = (x 1 , x 2 , x 3 ) * we have 2x * a + x = (x 1 + x 2 + x 3 ) 2 + (x 2 + x 3 ) 2 + x 2 3 and 2x * a -x = (x 1 -x 2 -x 3 ) 2 + (x 2 -x 3 ) 2 + x 2 3 , which shows that a + and a -are symmetric positive definite matrices.

We assume that ∇ • j p = -1 (this means that we assume that the primary current is smooth and non singular).

We thus aim at solving (E 0,source≡1 T,bounded D0 )

                   -Lv(x) = 1 ∀x ∈ D a + ∇ x v + (y) -a -∇ x v -(y), ν(y) = 0 ∀y ∈ Γ v(y+) = v(y-) ∀y ∈ Γ v(x) = 0 ∀x ∈ ∂D 0
(note that we choose the uniform Dirichlet boundary condition while the uniform Neumann boundary condition is physically more relevant, cf [START_REF] Piastra | The discontinuous galerkin finite element method for solving the meg and the combined meg/eeg forward problem[END_REF]; up to our knowledge performing efficient stochastic numerical schemes for Neumann boundary value problems remains a challenging problem, even in the case of smooth coefficients, cf for example [START_REF] Maire | Monte Carlo approximations of the Neumann problem[END_REF]).

In order to perform our stochastic numerical scheme one first notice that In particular, for any (x 1 , x 2 , x 3 ) * ∈ D -, we check that the projection decomposition along γ + simplifies to 3: Approximated values of the solution v(x) of (E 0,source≡1 T,bounded D ) at points x = (0, 0, 0.05) * , (0, 0, -0. Thus it is easy to compute at each time step π γ± Γ ( Xt k+1 ) and F γ± ( Xt k+1 ) and again we have everything in hand to perform our Tranformed Euler Scheme X.

Table 3 shows the results. To demand a very fine space discretization in FreeFem is computationally very costly and we have not been able to achieve such computations on the machines at our disposal. Consequently we are not sure that the result given by FreeFem is at convergence (the number of vertices indicated in Table 3 may seem high, but in fact this corresponds to a quite coarse discretization of the cube D 0 = (-5, 5) 3 , as we are in 3D; the error is expected to be of order 10 -1 ). Thus when testing the numerical stochastic scheme we have limited ourselves to h n = 10 -5 (also h n = 10 -5 was already time demanding, on this example). Also we have not computed confidence intervals, as we are not sure that the benchmark provided by FreeFem is totally relevant.

Note though, that the results presented in Table 3 show some coherence: it seems that both methods tend to converge to a common value.

Lemma 3 . 3 (

 33 Two-sided Green identity; inspired by[START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] Lemma 4.19, Equation (4.33)). Assume Γ is bounded and C

  Proposition 3.2 ([38], Theorem 4.20). Let G 1 and G 2 be bounded open connected subsets of R d , such that G 1 ⊂ G 2 and G 1 intersects Γ, and put

Corollary 3 . 2 .

 32 In the context of Proposition 3.7 we havesup t∈[0,T ] sup x∈ D± |∂ j t ∂ α u ± (t, x)| < ∞for any j ≤ p and any multi-index α, with |α| ≤ q.Proof. By Proposition 3.7 any of the considered partial derivatives of u ± belongs to the space C([0, T ] ; C b ( D± )).Let for example v ∈ C([0, T ] ; C b ( D+ )

  sup x∈ D+ |v(t, x)| = sup x∈ D+ |v(t * , x)| for some t * ∈ [0, T ]. As v(t * , •) ∈ C b ( D+ ) we have that sup t∈[0,T ] sup x∈ D+ |v(t, x)| < ∞.

) 2 . 3 .

 23 (a) the function x → π γ+ Γ (x) is called the projection of x on Γ parallel to γ + : this is a C 4 function on V - Γ (R) ; (b) the function x → π γ-Γ (x) is called the projection of x on Γ parallel to γ -: this is a C 4 function on V + Γ (R) ; Let us set F γ± (x) = F γ± (x)|γ ± π γ± Γ (x)| the normalized version of F γ± corresponding to the unit vector field γ± : x → γ±(x) |γ±(x)| . (a) the functions x → F γ± (x) are called the algebraic distance of x to Γ

Figure 1 :

 1 Figure 1: Correction of our scheme when the path crosses the boundary Γ.

Theorem 5 . 1 .

 51 Let 0 < T < ∞. Assume (E). Let m ′ = ⌈2 + d 4 ⌉ + 1 and k = m ′ + 2. Assume that the coefficients a ij satisfy (a ± ) ij ∈ C 2m ′ -1 b

5. 5 . 3 . 2 k

 532 The term L +-We now turn to the term L +-2 k . The term L +-2 k

5. 5 . 4 . 3 k

 543 The term L +-For the term L +-3 k

  + = σ + σ * + and 2a -= σ -σ * -.Here we have clearly ∂a ≡ 0. Besides the co-normal vector fields are constant withγ + (x) = γ + = (1, 2, 3) * , γ -(x) = γ -= (1, 0, -3) * .

(x 1 , x 2 , x 3 ) * = x 1 5 ×

 12315 which shows that F γ+ ((x 1 , x 2 , x 3 ) * ) = x 3 /3 andπ γ+ Γ ((x 1 , x 2 , x 3 ) * ) = x 1 -10 6 vertices)(h n = 10 -n , n = 3, 4, 5) estimated mean and stand. dev. (sd) x = (0, 0, 0.05) * 6.13578 6.14868 (sd: 4.25) 6.154155 (sd: 4.257) 6.15108 (sd: 4.25) x = (0, 0, -0.

  1) * , (2, 2, 1) * and (2, 2, 4.75) * , computed with a finite element method (3.4 × 10 6 vertices), and our tranformed Euler scheme (with N = 10 6 Monte Carlo samples, and different values of hn).Similarly for any (x 1 , x 2 , x 3 ) * ∈ D + the projection decomposition along γ - reads (x 1 , x 2 , x 3 ) * = x 1 + 0, -3) * which shows that F γ-((x 1 , x 2 , x 3 ) * ) = -x 3 /3 and π γ-Γ ((x 1 , x 2 , x 3 ) * ) = x 1 + x 3 3, x 2 , 0 * .

  ). We prove the continuity of the mapt → sup x∈ D+ |v(t, x)|, t ∈ [0, T ]. Let t 0 ∈ [0, T ].Using the reverse triangle inequality we get for any t = t 0 ,

	sup x∈ D+	|v(t, x)| -sup

x∈ D+ |v(t 0 , x)| ≤ sup x∈ D+ v(t, x) -v(t 0 , x) ,

and we get the continuity at t 0 , as v is continuous from [0, T ] to C b ( D+ ) (equipped with the supreme norm). Thus the desired continuity is proved, and from this we can assert that sup t∈[0,T ]

Table

  

⌋. Using again the result of Proposition

3.6, we get the announced result.
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Point x

Finite Element

Euler Scheme on Transformed by FREEFEM regularized coefficients Euler Scheme (7.10 5 vertices) (h n = 10 -n , n = 4, 5, 6) (h n = 10 -n , n = 2, 4, [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF][START_REF] Brezis | Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise[END_REF] x = (0, 0. ) at points x = (0, 0.5) * , (0.9, 0.05) * , (-0.3, -0.5) * computed with a finite element method (7.10 5 vertices), a standard Euler scheme applied on a regularisation a ε of a, and our tranformed Euler scheme (we provide confidence intervals for these two last values; we use N = 10 6 Monte Carlo samples, and different values of hn).

Example 2. We now turn to some parabolic example (with the same matrixvalued coefficient a). We consider the following problem (P T,bounded D0 ) :

Here we will take T = 0.1 and

Note that u 0 belongs to H 1 0 (D 0 ) and is therefore compatible with the uniform Dirichlet boundary condition in (P T,bounded D0 ). But it does not belong to the domain D(A), as it does not satisfy the transmission condition (⋆).

Nevertheless one can hope that Table 2: Approximated values of the solution u(T = 0.1, x) of (P T,bounded D 0 ) at points x = (0, 0.5) * , (0.9, 0.05) * , (-0.3, -0.5) * , (0, 0.05) * computed with a finite element / Crank-Nicholson scheme method (4.5 × 10 5 vertices, 300 times steps), a standard Euler scheme applied on a regularisation a ε of a, and our tranformed Euler scheme (we provide confidence intervals for these two last values; we use N = 10 6 Monte Carlo samples, and different values of hn).

(here we use for example Theorem 4.4.5 in [START_REF] Gobet | Monte-Carlo methods and stochastic processes[END_REF] and use again the notation τ of Example 1). Again we compute a Monte Carlo approximation of E x [u 0 (X t ) 1 t≤τ ] on one side and of E x [u 0 (X ε t ) 1 t≤τ ε ] on the other side (with N = 10 6 paths and using again the boundary shifting method).

We use FREEFEM to compute an approximation of u(t, x) by a finite element method (discretization in space) and a Crank-Nicholson scheme (discretization in time), using around 9 × 10 9 triangles and 4.5 × 10 5 vertices, and 300 time steps (we are at convergence).

Table 2 shows the results, for t = T . We provide again 95% excess confidence intervals, this time for E x [u 0 (X t ) 1 t≤τ ] and E x [u 0 (X ε t ) 1 t≤τ ε ]. Again it seems that our transformed Euler scheme converges slightly quicker to the benchmark.

Example 3. Here we want to apply our scheme to a 3D example coming from Electromagnetism. In order to lighten the computations made by the