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Abstract

In this paper we consider multi-dimensional Partial Differential Equations (PDE)
of parabolic type in divergence form. The coefficient matrix of the divergence
operator is assumed to be discontinuous along some smooth interface. At this
interface, the solution of the PDE presents a compatibility transmission con-
dition of its co-normal derivatives (multi-dimensional diffraction problem). We
prove an existence and uniqueness result for the solution and study its proper-
ties. In particular, we provide new estimates for the partial derivatives of the
solution in the classical sense. We then construct a low complexity numerical
Monte Carlo stochastic Euler scheme to approximate the solution of the PDE of
interest. Using the afore mentioned estimates, we prove a convergence rate for
our stochastic numerical method when the initial condition belongs to some it-
erated domain of the divergence form operator. Finally, we compare our results
to classical deterministic numerical approximations and illustrate the accuracy
of our method.

Keywords: Stochastic Differential Equations, Divergence Form Operators,
Euler discretization scheme, Monte Carlo methods

1. Introduction

Given a finite time horizon T , a real valued function x 7→ u0(x), and an
elliptic symmetric matrix x 7→ a(x) ∈ R

d×d, which is smooth except at the
interface surface Γ between subdomains D± of Rd (Γ = D̄+ ∩ D̄−), we consider
the parabolic transmission (or diffraction) problem : find u from [0, T ]× R

d to
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∂tu(t, x)−∇ · (a(x)∇xu(t, x)) = 0, ∀(t, x) ∈ (0, T ]× (Rd \ Γ)

u(0, x) = u0(x), ∀x ∈ R
d

〈a+∇xu+(t, .)− a−∇xu−(t, .), ν〉 = 0 and u+(t, .) = u−(t, .) along Γ

(1)

(here ν denotes the unit vector field which is normal to Γ and points to D+).

The objective of this paper is to provide an efficient stochastic numerical
resolution method for the solution of (1).

Parabolic equations involving ∇ · (a∇) have been a major preoccupation for
mathematicians in the fifties and the sixties. We may cite the pioneering works
of [42, 43], [7], and [39, 40, 41] that prove the continuity of the solution of the
Cauchy problem attached to ∇·(a∇) and also the celebrated paper by [1], which
gives upper and lower Gaussian estimate bounds for the fundamental solution
of the operator ∇ · (a∇) (for a more modern perspective on evolution PDEs
involving divergence form operators of type ∇ · (a∇) see also [33]). In these
references assumptions on a are very weak (it is assumed to be measurable,
bounded and elliptic).

In the case where the matrix a is assumed to be discontinuous along the
regular boundaries of some nice disjoint connected open sets in R

d, but smooth
elsewhere, a refined analysis of the parabolic equation may be found in the
monograph [23]. The authors interpret the parabolic equation as a diffraction
problem with transmission conditions along the discontinuity boundaries, of the
type of (1), and investigate the classical smoothness of its solution.

When the underlying space is one-dimensional and the discontinuity is at
zero (Γ then reduces to the single point 0), the link between (1) and some
asymmetric diffusion process X is well known. More precisely one has that
u(t, x) = E

x[u0(Xt)] where X is solution to the Stochastic Differential Equation
(SDE) with local time

dXt = σ(Xt)dWt + a′(Xt)dt+
a(0+)− a(0−)

a(0+) + a(0−)
dL0

t (X) (2)

where σ2 = 2a and a′ denotes a function that coincides with the first order
derivative of a outside zero, and can be set at any arbitrary value at zero. In (2)
we have denoted W a standard one-dimensional Brownian motion (B.m.), and
L0
t (X) the symmetric local time of X at time t. Under mild conditions (2) has

a unique strong solution X , see [25]. Put in other words the operator ∇ · (a∇)
appears as the infinitesimal generator of the diffusion X solution of (2). Note
that the local time term in (2) is a singular term that reflects the discontinuity
of a along Γ = {0}.

For a study of the one-dimensional case one may refer to the overview [26],
[13], and the series of works [35, 36, 37, 29, 9, 10, 11, 12] [28, 8, 16, 27, 3] where
stochastic numerical schemes are presented.
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Then if one constructs a scheme X approaching X (in law for example),
we will have that Ex[u0(Xt)] approaches u(t, x). This provides some stochastic
numerical resolution method for the solution of (1). But none of the above cited
works on the one-dimensional case can be directly adapted to the multidimen-
sional case.

As a matter of fact, till now and up to our knowledge much fewer stochastic
schemes have been proposed and studied to tackle the multidimensional case.

A natural idea would be to regularize the coefficient a around the interface
Γ, and then to perform a discretized stochastic scheme on the classical problem
obtained by regularization (for smooth aε the process X in link with ∇·(aε∇) is
some Itô process with classical drift that can be approached by a standard Euler
scheme). But then there is a balance to find between the regularization step and
the discretization step. Such methods are less precise and less investigated (see
[46] for some elements in this direction; see also some of our numerical results
in Section 6).

For some results with no regularization procedure see [30], and [4] in the case
of a diagonal coefficient matrix a constant outside the discontinuity boundary
Γ; see also [32], which attempts to interpret stochastically the deterministic
Galerkin method using jump Markov Chains.

In this paper we will propose a stochastic numerical scheme that allows to
treat the multidimensional case, when the matrix-valued diffusion coefficient
a is not necessarily diagonal, nor piecewise constant. We aim at treating the
discontinuity of a directly and use no regularization. The scheme we propose is
of Euler type; it can be seen as en extension to the multidimensional case of the
scheme studied in [37] (see some comments in Remark 4.4).

One of the difficulties of the multidimensional case is that the stochastic
process X naturally in link with the operator ∇ · (a∇) is more difficult to
describe than in dimension one. One knows that the operator generates such
a process X , which is Markov (see for instance [45]; on the Dirichlet form
approach see [17], in particular Exercise 3.1.1 p. 111). We still have the link
u(t, x) = E

x[u0(Xt)]. But the Itô dynamic of X is difficult to establish and to
exploit. In the companion paper [14] we have been able to prove (in the case
R

d = D̄+ ∪D− and a has some smoothness in D±) that

Xk
t = xk +

∫ t

0

d∑

j=1

σkj(Xs)dW
j
s +

∫ t

0

d∑

j=1

∂jakj(Xs)IXs∈Dds

− 1

2

∫ t

0

γ+,k(Xs)dKs +
1

2

∫ t

0

γ−,k(Xs)dKs, t ≥ 0. (3)

In this expression W is a standard B.m., we have σσ∗ = 2a, the terms γ±,k are
some co-normal vectors to the surface Γ = D̄+∩D̄−, and K is the PCAF associ-
ated through the Revuz correspondence to the surface measure on Γ. Equation
(3) is in some sense the multi-dimensional analog to (2), the singular term being

now − 1
2

∫ t

0
γ+,k(Xs)dKs +

1
2

∫ t

0
γ−,k(Xs)dKs.
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However to infer from (3) an approximation scheme X for X is not easy.
In the afore mentioned works about the one-dimensional case, things are most
often achieved with the help of Itô-Tanaka type formulas, that allow to ma-
nipulate SDEs with local time. In the multi-dimensional case we have not
access to such a formula, and in addition we know less about the singular term
− 1

2

∫ t

0
γ+,k(Xs)dKs +

1
2

∫ t

0
γ−,k(Xs)dKs than we know about L0

t (X) in the one-
dimensional case.

Thus we are led, in the present paper, to contruct a stochastic scheme X
such that E

x[u0(Xt)] approaches u(t, x), but without seeking to approach X
by X. The idea will be to perform a standard Euler scheme as long as X does
not cross the boundary Γ. But when the scheme X crosses the boundary we
will correct its position in a way that reflects the transmission condition in (1).
The contribution of the paper are the following.

I) We will first study the PDE (1). We will show that, when the initial
condition u0 belongs to some iteration of the domain of ∇ · (a∇), this PDE has
a classical solution. Then we prove the existence of global bounds for the partial
derivatives of this solution (up to order four in the space variable) outside the
discontinuity boundary Γ, for all strictly positive times (and not just for times
t satisfying t ≥ ε for some ε > 0), and all the way up to the boundary (not
only interior estimates). In our opinion these estimates are new (compared to
[23]) and have an interest per se. These estimates will be needed to perform
the convergence analysis of our scheme. The method we follow, in this PDE
oriented part of the paper, is combining the Hille-Yosida theorem with results
on elliptic transmission PDEs to be found in [38].

II) We propose our scheme and study its convergence rate. More precisely
we prove that uniformly w.r.t. x0

∣
∣
∣u(T, x0)− E

x0u0(X
n

T )
∣
∣
∣ ≤ K

√

hn,

where hn is the time step of our Euler scheme (see the precise assumptions and
statement in Theorem 5.1). Note that this rate of convergence is naturally slower
than in the classical smooth case (e.g. [22, 47, 2]) but is expected for these kind
of transmission problems with boundary issues. In this respect our result is a
slight improvement in comparison to the one obtained for the one-dimensional
transmission case in [37] and [3].

The paper is organized as follows. In Section 2 we present the notations
of the paper and our main assumptions. In Section 3 we define precisely and
study the parabolic transmission problem (1), proving in particular an existence
and uniqueness result for a classical solution, for which we get estimates for the
space and time derivatives. In Section 4 we present our scheme, and in Section
5 we analyse its convergence. Section 6 is devoted to numerical experiments.
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2. General notations and assumptions

For two points x, y ∈ R
d we denote by 〈x, y〉 their scalar product 〈x, y〉 =

x∗y =
∑d

i=1 xiyi.

For a point x ∈ R
d we denote by |x| its Euclidean norm i.e. |x|2 =

∑d
i=1 x

2
i =

〈x, x〉.
We denote by (e1, . . . , ed) the usual orthonormal basis of Rd.
For two metric spaces E,F we will denote by C(E;F ) the set of continuous

functions from E to F and, for 1 ≤ p ≤ ∞, by Cp(E;F ) the set of functions in
C(E;F ) that are p times differentiable with continuous derivatives.

We will denote by Cp
c (E;F ) the set of functions in Cp(E;F ) that have a

compact support.
We will denote by Cp

b (E;F ) the set of functions in Cp(E;F ) that are con-
tinuous with bounded p first derivatives (Cb(E;F ) denotes the set of functions
in C(E;F ) that are bounded).

If F = R, we will sometimes simply write for instance C(E) for C(E;R), for
the sake of conciseness.

For any multi-index α = (i1, . . . , id) ∈ N
d and x = (x1, . . . , xd) ∈ R

d, we
note xα the product xi1

1 . . . xid
d and |α| = i1 + · · ·+ id. So that for u ∈ C|α|(Rd)

we will denote ∂|α|u
∂xα , or in short ∂αu, the partial derivative ∂i1

x
i1
1

. . . ∂id

x
id
d

u.

Let U ⊂ R
d an open subset. We will denote by L2(U) the set of square

integrable functions from U to R equipped with the usual norm and scalar
product || · ||L2(U) and 〈·, ·〉L2(U).

We denote H1(U) the usual Sobolev spaceW 1,2(U), equipped with the usual
norm || · ||H1(U). We will denote by Div the derivative in the distribution sense
with respect to xi of v ∈ L2(U).

We recall that the space H1
0 (U) ⊂ H1(U) can be defined as H1

0 (U) =
C∞

c (U ;R) = C1
c (U ;R).

We denote H−1(U) the usual dual topological space of H1
0 (U).

For m ≥ 2, we denote Hm(U) the usual Sobolev space Wm,2(U) ⊂ L2(U) of
functions having m successive weak derivatives in L2(U).

The notion of a Ck domain U ⊂ R
d with bounded boundary Γ = ∂U is

defined with the help of a system of local change of coordinates of class Ck (see
[38] Chap.3 pp. 89-90).

From now on we consider in the whole paper that Rd = D̄+∪D− withD+ and
D− two open connected subdomains separated by a transmission boundary Γ
that is to say

Γ = D̄+ ∩ D̄−

(in addition we will denote D = D+ ∪D− = R
d \ Γ ⊂ R

d).
By an assumption of type ”Γ is bounded and Ck” we will mean that both

D+ and D− are Ck domains, and that Γ is bounded. Note that in that case we
shall consider D+ (resp. D−) as the interior (resp. exterior) domain. Note that
D− is then unbounded (although its boundary is bounded).
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Assume Γ is bounded and C2. We will denote γ± : H1(D±) → H1/2(Γ) the
usual trace operators on Γ and H−1/2(Γ) the dual space of H1/2(Γ) (see pp.
98-102 in [38]). We will denote (u, v)Γ the action of an element u ∈ H−1/2(Γ)
on a element v ∈ H1/2(Γ) (this can be thought as a surface integral).

In the sequel we will frequently note f± the restrictions of a function f to
D±. Besides, by an assumption of type ”the function f satisfies f± ∈ Cp(D̄±)”
(or ”f ∈ Cp(D̄+) ∩ Cp(D̄−)”) we will mean that the restriction of f to D+

(resp. D−) coincides on D+ (resp. D−) with a function f̃+ of class Cp(Rd)
(resp. f̃−). So that for any x ∈ Γ we can give a sense for example to f+(x): it
is limz→x , z∈D+

f(z) = f̃+(x).
In the same time spirit we may note for f ∈ C(D̄+) ∩ C(D̄−) and a point

y ∈ Γ
f(y±) = lim

z→y , z∈D±
f(z) = f±(y).

For u ∈ C1(D̄+;R) ∩ C1(D̄−;R) we denote ∇xu = ( ∂u
∂x1

, . . . , ∂u
∂xd

)∗ and, for
a point y ∈ Γ

∇xu±(y) = lim
z→y , z∈D±

∇xu(z). (4)

For a vector field G ∈ C1(D;Rd) we denote by ∇ ·G (x) its divergence at point

x ∈ D, i.e. ∇ ·G(x) =
∑d

i=1
∂Gi

∂xi
(x).

For u ∈ C2(D;R) and x ∈ D we denote H[u](x) the Hessian matrix of u at
point x.

Let a(x) = (aij(x))i,j∈{1,...,d} be a symmetric matrix valued and time homo-
geneous diffusion coefficient.

If aij ∈ C1(D;R) for all 1 ≤ i, j ≤ d and u ∈ C2(D;R) we denote

Lu(x) = ∇ · (a(x)∇xu(x)) , ∀x ∈ D. (5)

In the whole paper the coefficients of the function matrix a are always as-
sumed to be measurable and bounded by a constant Λ.

We will also often make the following ellipticity assumption

Assumption 2.1. (E) : There exists λ ∈ (0,∞) such that

∀x ∈ R
d, ∀ξ ∈ R

d, λ|ξ|2 ≤ ξ∗a(x)ξ. (6)

Note that under (E) we can assert that for any x ∈ D we have

a±(x) = P ∗
±(x)E±(x)P±(x) (7)

with P±(x) some orthogonal matrices and E±(x) some diagonal matrices with
strictly positive eigenvalues.

Assume Γ is C2. For a point x ∈ Γ we denote by ν(x) ∈ R
d the unit normal

to Γ at point x, pointing to D+. Assume the aij ’s satisfy (a±)ij ∈ C(D̄±).

6



We define then the co-normal vector fields γ+(x) := a+(x)ν(x) and γ−(x) :=
−a−(x)ν(x), for x ∈ Γ.

Note that under (E) it is clear that we have

∀x ∈ Γ, 〈γ+(x), ν(x)〉 ≥ λ > 0 and 〈γ−(x), ν(x)〉 ≤ −λ < 0. (8)

Note that the notation γ± for the trace operators follows the usual one ([38]
for instance) and the notation γ± for the co-normal vectors follows the one of
the paper [5]. But it will be dealt with the trace operator only in Section 3, and
with co-normal vectors only in Sections 4 and 5. So that these notations will
cause no confusion.

In order to study the PDE aspects we will consider the unbounded opera-
tor A : D(A) ⊂ L2(Rd) → L2(Rd) defined by

D(A) =
{
u ∈ H1(Rd) with

d∑

i,j=1

Di(aijDju) ∈ L2(Rd)
}

and

∀u ∈ D(A), Au =

d∑

i,j=1

Di(aijDju).

We also introduce the iterated domains defined recursively by

D(Ak) = {v ∈ D(Ak−1) : Av ∈ D(Ak−1)}, k ≥ 2.

These iterated domains will help us to establish the existence of a smooth solu-
tion to (1). First, using a variant of the Hille-Yosida theorem (Theorem VII-5
in [6]), we will prove that if the initial condition u0 is taken in D(Ak), k ≥ 2
there is a solution u to (1), which has classical smoothness in the time vari-
able and weak smoothness in the space variable: for example this solution lives
in C([0, T ];D(Ak)) (we may speak of a semi-weak solution). Then we will prove
that if a has some additional smoothness in the domains D±, then a function v
in D(Ak) is of class H2k if restricted to D± (but it is not necessarily of class H2k

on the whole space R
d; see our Corollary 3.1). Using then Sobolev embedding

arguments we will get classical smoothness of the semi-weak solution u on each
subdomain D± (see in particular the proof of Theorem 3.1).

3. The parabolic transmission problem

Let 0 < T < ∞ a finite time horizon. Let us consider the transmission
parabolic problem

7



(PT)







∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (⋆)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(0, x) = u0(x) ∀x ∈ R
d.

We will say that (t, x) 7→ u(t, x) is classical solution to (PT) if it satisfies

u∈C
(
[0, T ];C2(D̄+)∩C2(D̄−)

)
∩C1

(
[0, T ];C(D̄+)∩C(D̄−)

)
∩C
(
[0, T ];C(Rd)

)

(9)
and satisfies the following requisites. First, u satisfies the first line of (PT), where
the derivatives are understood in the classical sense. Second, for all 0 < t ≤ T
the limits limz→y , z∈D± ∇xu(t, z) satisfy the transmission condition (⋆) for all
y ∈ Γ. Note that these limits exist thanks to (9). Third, u is continuous accross
Γ (third line). Fourth, it satisfies the initial condition at the fourth line of (PT).
The aim of this section is to prove the following result.

Theorem 3.1. Let a = (aij)1≤i,j≤d satisfy (E).

• Denote

k0 =

{ ⌊d
4⌋+ 2 if d is even;

⌊ 3
2 + ⌊d/2⌋

2 ⌋+ 2 if d is odd.
(10)

Assume that the coefficients aij satisfy (a±)ij ∈ C2k0−3
b (D̄±) and Γ is

bounded and of class C2k0−2. Then for u0 ∈ D(Ak0 ) the parabolic trans-
mission problem (PT) admits a classical solution.

• Furthermore, if u0 ∈ D(Ak) for k ≥ k0, the coefficients aij satisfy (a±)ij ∈
C2k−1

b (D̄±) and Γ is bounded of class C2k, this classical solution u is such
that

u ∈ Ck−j
(

[0, T ] ; Cn(j)(D̄+) ∩ Cn(j)(D̄−)
)

, ⌈d/4⌉ ≤ j ≤ k

with n(j) = ⌊2j − d
2⌋.

To prove Theorem 3.1 it requires to study in a first time the associated elliptic
resolvent equation, in a weak sense. More precisely, for a source term f ∈ L2(Rd)
we will seek for a solution u in D(A) of

u−Au = f (11)

(see Proposition 3.4 below).
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Then the idea is to apply in L2(Rd) a version of the Hille-Yosida theorem that
states that for u0 ∈ D(Ak), k ≥ 2, there is a solution u to du

dt = Au, u(0) = u0,
living in Ck−j

(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k (see Proposition 3.6 below).

As we will have studied the weak smoothness of functions living in the
D(Ak)’s (Proposition 3.5 and Corollary 3.1), we will be able to conclude that u
is in fact a classical solution by using Sobolev embedding arguments.

Remark 3.1. Note that in Theorem 3.1 we make no statement regarding the
uniqueness of the classical solution of (PT). In order to prove uniqueness, a
reasonable strategy could be to show that any classical solution is in fact a semi-
weak solution living in Ck−j

(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k. Such a semi-weak

solution is known to be unique (see the forthcoming Proposition 3.6): more
precisely two possible semi-weak solutions are equal at any time t for almost
every spatial point x ; then using the continuity of classical solutions we would
get the expected classical uniqueness result for the solution of problem (PT).

In our opinion it is possible to fulfill this purely PDE program, but we have
chosen not to do so in this paper in order to avoid overburdening the exposition.
Instead we adopt another strategy and prove that uniqueness in the classical
sense holds as a consequence of the uniqueness in law of our stochastic numerical
approximation scheme (that we build in the sequel) and its convergence towards
any classical solution of (PT) (see the forthcoming Remarks 4.2 and 5.1 and the
statement of Theorem 5.1).

Remark 3.2. 1) In the classical situation with smooth coefficients studied for
instance in [15] Chap. 1 (or [31], Theorem 5.14), a unique classical solution to
the parabolic PDE exists as soon as the aij ’s are bounded and Hölder continuous
and satisfy (E), and u0 is continuous and satisfies some growth condition.

Here we ask additional smoothness on the coefficients (a±)ij ’s inside the
domains D±. Indeed, because of the discontinuity of a across Γ we are led to use
a different technique of proof: unlike the parametrix method in the classical case,
this additional smoothness is required for the use of the Hille-Yosida theorem and
the Sobolev embeddings.

Note that with this methodology of proof these additional assumptions would
still be needed if our coefficients and the solution were smooth at the interface.
Note also that with this approach the assumptions on the initial condition u0

are understood in a weak sense (and are different).
2) Our result is also different from the one in [23] (Theorem 13.1; see also

[24]). In this reference the authors study the classical smoothness of the parabolic
transmission problem by studying first the smoothness of ∂tu (to that aim they
differentiate with respect to time the initial equation). Then they study the
smoothness with respect to the space variable by using results for the elliptic
transmission problem, involving difference quotient techniques. But by doing so
they get estimates on subdomains of the form [ε, T ] × D± with 0 < ε. Here,
we manage to study the global regularity of the classical solution of (PT ) in the
whole domains [0, T ]×D±.
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3.1. Study of the associated elliptic problem and of the domains D(Ak)

In this subsection we establish the existence of a solution to (11) belonging
to D(A) and study its smoothness properties, together with the ones of functions
belonging to the iterated domains D(Ak), for k ≥ 1.

We recall that the coefficients aij are assumed to be bounded by Λ so that
we may define the following continuous bilinear and symmetric form, which will
be used extensively in the sequel

E(u, v) =
d∑

i,j=1

〈aijDju,Div〉L2(Rd), ∀u, v ∈ H1(Rd). (12)

Let u ∈ D(A). Using the definition of Au as a distribution acting on
C∞

c (Rd;R), and the density of C∞
c (Rd;R) in H1(Rd) = H1

0 (R
d), one can es-

tablish the following relation, linking A and the form (12):

E(u, v) = 〈−Au, v〉L2(Rd), ∀v ∈ H1(Rd). (13)

3.1.1. Some results on weak solutions of elliptic transmission PDEs

Here we gather some preliminary results on weak solutions of elliptic trans-
mission PDEs that rely mainly on [38] Chap. 4, pp. 141-145.

We recall that for u ∈ L2(Rd), we denote u+ (resp. u−) the restriction of
u to D+ (resp. D−). It may happen that we use this notation for restricted
distributions also.

We introduce the following notation for the jump across Γ of u ∈ L2(Rd),
with u+ ∈ H1(D+) and u− ∈ H1(D−):

[u]Γ = γ+(u+)− γ−(u−).

If [u]Γ = 0 we shall simply write γ(u) = γ+(u+) = γ−(u−). We have the two
following lemmas (the proof of the first one is straightforward).

Lemma 3.1. Let v ∈ L2(Rd). Then, for any 1 ≤ i ≤ d, the distribution (Div)±
is equal to Di(v±). As a consequence, if v ∈ H1(Rd), then v± ∈ H1(D±).

Lemma 3.2 ([38], Exercise 4.5). Suppose u ∈ L2(Rd) with u± ∈ H1(D±).
Then u ∈ H1(Rd) if and only if [u]Γ = 0 a.e. on Γ.

We shall consider restricted operators and bilinear forms in the following
sense. We define A+ : H1(D+) → H−1(D+) by

∀v ∈ H1(D+), A+v =
d∑

i,j=1

Di

(
(a+)ijDjv

)
.

We define A− : H1(D−) → H−1(D−) in the same manner (note that we do not
specify here any domain D(A±)). Further, we define

E±(u, v) =
d∑

i,j=1

∫

D±

(a±)ijDjuDiv, ∀u, v ∈ H1(D±).

10



In the same fashion as for Equation (13), we have, for u± ∈ H1(D±) with
A±u± ∈ L2(D±),

E±(u±, v) =

∫

D±

(−A±u±)v, ∀v ∈ H1
0 (D±). (14)

Imagine now that in (14) we wish to take the test function inH1(D±) instead
of H1

0 (D±). There will still be a link between A± and E±, but through Green
type identities, involving co-normal derivatives and boundary integrals. We
have the following result.

Proposition 3.1 (First Green identity, extended version; see [38] Theorem 4.4,
point i)). Assume Γ is bounded and C2. Let u ∈ L2(Rd) with u+ ∈ H1(D+)
and u− ∈ H1(D−). Assume A+u+ ∈ L2(D+), A−u− ∈ L2(D−). Then there

exist uniquely defined elements B±
ν u ∈ H− 1

2 (Γ) such that

E+(u+, v) =

∫

D+

(−A+u+)v −
(

B+
ν u, γ+(v)

)

Γ
, ∀v ∈ H1(D+) (15)

and

E−(u−, v) =

∫

D−

(−A−u−)v +
(

B−
ν u, γ−(v)

)

Γ
, ∀v ∈ H1(D−). (16)

The elements B±
ν u in Proposition 3.1 are the one-sided co-normal derivatives

of u on Γ.
To fix ideas, note that under the stronger assumptions that the (a±)ij ’s are

in C1
b (D̄±;R), and u± ∈ H2(D±), we have

B±
ν u = ν∗γ±(a±∇u±) =

d∑

i=1

d∑

j=1

νiγ±
(
(a±)ijDju±

)
on Γ

(note that as the (a±)ijDju±’s are in H1(D±) the trace terms are correctly
defined in the above expression). Thus one understands that the change of sign
in front of the (·, ·)Γ term between (15) and (16) is due to the fact that −ν is
the outward normal to D+ and ν is the outward normal to D−.

For details on the definition of B±
ν u under the weaker assumptions of Propo-

sition 3.1, see [38] pp. 116-117.

Finally we introduce a notation for the jumps across Γ of the co-normal
derivative of a function u satisfying the assumptions of Proposition 3.1:

[
Bνu

]

Γ
= B+

ν u− B−
ν u ∈ H−1/2(Γ).

We have the following result.

Lemma 3.3 (Two-sided Green identity; inspired by [38] Lemma 4.19, Equation
(4.33)). Assume Γ is bounded and C2. Let u ∈ H1(Rd). Let f+ ∈ L2(D+) and
f− ∈ L2(D−) and assume

u± −A±u± = f± on D±. (17)

11



Set f = f+ + f−, then

〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd) −
([

Bνu
]

Γ
, γ(v)

)

Γ
, ∀v ∈ H1(Rd). (18)

Remark 3.3. Note that in the above proposition u± ∈ H1(D±), thanks to
Lemma 3.1. Equation (17)means that 〈u±−A±u±, ϕ〉H−1(D±),H1

0
(D±) = 〈f, ϕ〉L2(D±),

for all ϕ ∈ C∞
c (D±;R). Therefore A±u± ∈ L2(D±) and by Proposition 3.1 the

element
[
Bνu

]

Γ
is well defined. Then same remark holds for the forthcoming

Proposition 3.2.

Our notations being different from the ones in [38], we provide the short
proof of Lemma 3.3 for the sake of clarity.

Proof. Taking into account Remark 3.3 we can use Proposition 3.1, and sum-
ming (15) and (16) one gets for any v ∈ H1(Rd) (note that γ+(v+) = γ−(v−) =
γ(v))

〈u, v〉L2(Rd) + E+(u+, v+) + E−(u−, v−) = 〈f, v〉L2(Rd) −
([

Bνu
]

Γ
, γ(v)

)

Γ
.

To complete the proof it suffices to notice that, thanks to Lemma 3.1, we have

E+(u+, v+) + E−(u−, v−) =

d∑

i,j=1

{∫

D+

(a+)ij(Dju)+(Div)+

+
∫

D−
(a−)ij(Dju)−(Div)−

}

= E(u, v).

We recall now results on the smoothness of weak solutions of elliptic trans-
mission PDEs.

Proposition 3.2 ([38], Theorem 4.20). Let G1 and G2 be bounded open con-
nected subsets of Rd, such that G1 ⊂ G2 and G1 intersects Γ, and put

Dj
± = Gj ∩D± and Γj = Γ ∩Gj for j = 1, 2.

Assume that the set G2 is constructed in such a way that there is a Cr+2-
diffeomorphism between Γ2 and a bounded portion of the hyperplane xd = 0.

Assume (E).

Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1(D2
±;R).

Let f± ∈ L2(D±) with f± ∈ Hr(D2
±). Let u ∈ L2(Rd) with u ∈ H1(G2)

satisfying
u± −A±u± = f± on D2

±

and
[
Bνu

]

Γ
∈ H

1
2
+r(Γ2). Then u± ∈ H2+r(D1

±).

12



Proposition 3.3 ([18], Theorem 8.10). Assume (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D̄±;R). As-
sume Γ is bounded.

Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±.

Let D′
± ⊂ D± open subsets with D′

± ⊂ D± and denote d′± = dist(D′
±,Γ).

We have that u± ∈ Hr+2(D′
±), with

||u±||Hr+2(D′
±) ≤ C±

(
||u±||H1(D±) + ||f ||Hr(D±)

)
,

where the constant C± depends on d, λ, d′± and

max
1≤i,j≤d

max
|α|≤r+1

sup
x∈D±

|∂α(a±)ij(x)|.

Proof. In [18] this result is asserted with the assumption that D′
± ⊂ D±, with

D′
± compact. So that for the interior (bounded) domain D+ the result is im-

mediate. On the unbounded domain D− we claim that the same result holds
for non compact D′

−, as in fact only the distance d′− = dist(D′
−,Γ) plays a role

in the proof.

Thus, covering Γ with open balls in order to use the local result of Proposi-
tion 3.2, and combining with the global result of Proposition 3.3, it is possible
to show the following theorem, that will be used extensively in the sequel.

Theorem 3.2. Assume (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D̄±;R). As-
sume Γ is bounded and of class Cr+2.

Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±

and
[
Bνu

]

Γ
∈ H

1
2
+r(Γ). Then u± ∈ H2+r(D±).

3.1.2. Existence of a weak solution to the resolvent equation and immediate
properties of functions in D(Ak), k ≥ 1

We have the next result.

Proposition 3.4. Assume (E). Let f ∈ L2(Rd). Then (11) has a unique
solution in D(A).

Proof. Let us note that the symmetric bilinear form on H1(Rd)

(u, v) 7→ 〈u, v〉L2(Rd) + E(u, v)

is continuous and, thanks to Assumption (E), coercive. Thus the Lax-Milgram
theorem ([6] Corollary V.8) immediately asserts the existence of a unique u ∈
H1(Rd) such that

∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd).
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In other words we have for any ϕ ∈ C∞
c (Rd;R),

E(u, ϕ) = −〈
d∑

i,j=1

Di(aijDju), ϕ〉H−1(Rd),H1(Rd) = 〈(f − u), ϕ〉L2(Rd).

Hence the distribution
∑d

i,j=1 Di(aijDju) belongs to L2(Rd), and thus u ∈
D(A). Finally, from the above relations we deduce

∀v ∈ H1(Rd), 〈u−Au, v〉L2(Rd) = 〈f, v〉L2(Rd),

which implies (11).

The proposition below gives properties of functions belonging to D(A). It
indicates that the solution u ∈ D(A) of (11) encountered in Proposition 3.4
satisfies a continuity property and a transmission condition in a weak sense at
the interface.

Proposition 3.5. Let u ∈ D(A). Then [u]Γ =
[
Bνu

]

Γ
= 0 a.e. on Γ.

Proof. Let u ∈ D(A). As u ∈ H1(Rd) one gets by Lemma 3.2 that [u]Γ = 0 a.e.
on Γ. Set now f = u−Au ∈ L2(Rd). According to Equation (13) we have

∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd), (19)

and this in true in particular for any v ∈ C∞
c (D+;R). But using Lemma 3.1

one has for any v ∈ C∞
c (D+;R), that

E(u, v) =
d∑

i,j=1

∫

D+

(a+)ij(Dju)+Div =

d∑

i,j=1

∫

D+

(a+)ij(Dju+)Div = E+(u+, v).

Using now (14) we see that 〈u+ − A+u+, v〉L2(D+) = 〈f+, v〉L2(D+) for any
v ∈ C∞

c (D+;R). Proceeding in the same manner on D− we finally see that
u± −A±u± = f± on D±.

Note that by construction f = f+ + f−. Using now Lemma 3.3, and com-
paring (18) and (19), one gets

([
Bνu

]

Γ
, γ(v)

)

Γ
= 0 for any v ∈ H1(Rd). Using

the fact that the trace operator is surjective, this implies that
([
Bνu

]

Γ
, w
)

Γ
= 0

for any w ∈ H1/2(Γ), which completes the proof.

Thanks to Theorem 3.2 we can get as a corollary the following result con-
cerning the iterated domains D(Ak), k ∈ N

∗.

Corollary 3.1. Assume (E). Let k ∈ N
∗ and u ∈ D(Ak). Assume that the

coefficients (a±)ij ∈ C2k−1
b (D±) and that Γ is bounded and of class C2k. Then

u± ∈ H2k(D±).

Proof. The proof proceeds by induction on k.

Let u ∈ D(A) (case k = 1). We have
[
Bνu

]

Γ
= 0, according to Proposition

3.5. Thus in particular
[
Bνu

]

Γ
∈ H

1
2 (Γ). As in the proof of Proposition 3.5
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we set f = u − Au and notice that we have u± − A±u± = f± on D±, with
f± ∈ L2(D±).

Using Theorem 3.2 - remember that u is in H1(Rd), (a±)ij ∈ C1
b (D̄±;R)

and Γ is bounded of class C2 - we get that u± ∈ H2(D±).

Suppose now that the result is true at rank k − 1 we prove its validity at
rank k (k ≥ 2). Let u ∈ D(Ak). As u ∈ D(A) we have

[
Bνu

]

Γ
= 0 ∈ H2k− 3

2 (Γ).

As Au ∈ D(Ak−1) the quantity u − Au =: f satisfies f± ∈ H2k−2(D±), using
the induction hypothesis. But as we have u± − A±u± = f± on D±, one may
use again the smoothness of (a±)ij and Γ and Theorem 3.2 in order to conclude
that u± ∈ H2k(D±).

3.2. The solution of the parabolic problem (PT)

3.2.1. Application of the Hille-Yosida theorem

We now use the Hille-Yosida theorem ([6] Theorems VII.4 and VII.5) in
order to prove the following proposition. Note that in Equation (20) below, the
time derivative is understood in the strong sense, while the space derivatives
are understood in the weak sense. Besides, by convention D(A0) = L2(Rd).

Proposition 3.6. Assume (E). Let u0 ∈ D(A). Then there exists a unique
function

u ∈ C1
(
[0, T ]; L2(Rd)

)
∩ C

(
[0, T ]; D(A)

)

satisfying
du

dt
= Au, u(0) = u0. (20)

Furthermore, let u0 ∈ D(Ak), k ≥ 2. Then,

u ∈ Ck−j
(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k.

Proof. According to [6] it suffices to check that (−A,D(A)) is maximal mono-
tone. But thanks to Assumption (E) we immediately see that 〈−Av, v〉L2(Rd) =
E(v, v) ≥ 0, for any v ∈ D(A), and thanks to Proposition 3.4 we have that for
any f ∈ L2(Rd) there exists u ∈ D(A) solving (11).

Using now Proposition 3.5, Corollary 3.1 and Proposition 3.6 together with
some Sobolev embedding theorems, we show Theorem 3.1.

3.2.2. Proof of Theorem 3.1

Proof. Assume d is even. Apply the result of Proposition 3.6 with k = k0 =
⌊d
4⌋+ 2 and consider u solution of (20). We have that

u ∈ C1
(
[0, T ];D

(
Ak0−1

))

with k0−1 = ⌊d
4⌋+1. Using the result of Corollary 3.1 and combining Corollary

IX.13 p. 168 with Theorem IX.7 p. 157 in [6], we see that for any t ∈ [0, T ]

u±(t, .) ∈ H4+2⌊ d
4
⌋(D±) ⊂ H2+ d

2 (D±) −֒→ C2(D̄±). (21)
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Assume now that d is odd. Apply the result of Proposition 3.6 with k =

k0 = ⌊ 3
2 + ⌊d/2⌋

2 ⌋+ 2 and consider u solution of (20). We have that

u ∈ C1
(
[0, T ];D

(
Ak0−1

))

with k0 − 1 = ⌊ 3
2 + ⌊d/2⌋

2 ⌋+ 1. Using the result of Corollary 3.1 and combining
Corollary IX.13 p. 168 with Theorem IX.7 p. 157 in [6], we see that for any
t ∈ [0, T ]

u±(t, .) ∈ H2+2⌊ 3
2
+ ⌊d/2⌋

2
⌋(D±) −֒→ C2(D̄±) (22)

since

⌊2 + 2⌊3
2
+

⌊d/2⌋
2

⌋ − d

2
⌋ ≥ ⌊2 + 2

(
1

2
+

⌊d/2⌋
2

)

− d

2
⌋ ≥ ⌊3 + ⌊d

2
⌋ − d

2
⌋ ≥ 2.

Let us now show that u solution of (20) (for the corresponding k0) is a
classical solution of (PT).

First, it is clear that Lu coincides with Au on any bounded part of D±
(the derivatives in the distributional sense coincide with the classical derivatives
thanks to the established smoothness of u). This shows the first line of (PT).

Second, as for any t ∈ [0, T ] the function u(t, .) belongs to D(A), we have
using the result of Proposition 3.5 that

[u(t, .)]Γ = 0 a.e. on Γ; [Bνu(t, .)]Γ = 0 a.e. on Γ. (23)

Note that u(t, .) ∈ D(A) implies that u±(t, .) are in H2(D±). So that the second
part of (23) reads

ν∗ (γ+ (a+∇u+(t, .))− γ− (a−∇u−(t, .))) = 0 a.e.

But as (a±∇u±) ∈ C1(D̄±;Rd), we get

〈 (a+∇xu+(t, .))(y) − (a−∇xu−(t, .))(y), ν(y) 〉 = 0

for almost every y ∈ Γ, and consequently for every y ∈ Γ by continuity. The
same argument applies to the first part of (23) and the second and third lines of
(PT) are satisfied. Note that the constructed solution satisfies u(t, .) ∈ C

(
R

d
)

for any time t ∈ [0, T ].
Now let k ≥ k0. For ⌈d

4⌉ ≤ j ≤ k, we have 2j − d
2 > 0. Thus, for v ∈ D(Aj)

we have from Corollary 3.1,

v± ∈ H2j(D±) −֒→ Cn(j)(D̄±)

with n(j) = ⌊2j − d
2⌋. Using again the result of Proposition 3.6, we get the

announced result.

16



3.3. Conclusion and consequences: boundedness of the partial derivatives

Going a bit further in the analysis, and using additional Sobolev embedding
arguments, we can state the following result.

Proposition 3.7. Assume (E). Let p, q ∈ N with p + ⌊q/2⌋ ≥ 2. Let m =
⌈ q
2 + d

4⌉, m′ = m + 1 and k = m′ + p. Assume that the coefficients aij satisfy

(a±)ij ∈ C2m′−1
b (D̄±), that Γ is bounded and of class C2m′

, and that u0 ∈
D(Ak).

Then the classical solution u(t, x) of (PT) constructed in Theorem 3.1 satis-
fies

u ∈ Cp([0, T ] ; Cq
b (D̄+) ∩ Cq

b (D̄−)).

Proof. First, notice that it is easy to check that k is greater than the k0 defined
in Theorem 3.1, so that it makes sense speaking of the classical solution of (PT),
for u0 ∈ D(Ak).

This solution is constructed in the same way as in Theorem 3.1, in particular
by the mean of Proposition 3.6. So that one can assert that

u ∈ Cp([0, T ] ; D(Am′
)).

It remains to check that if v ∈ D(Am′
), then v± ∈ Cq

b (D̄±). First, note that
m ≥ ⌈d

4⌉, and that one may easily check

⌊2m− d

2
⌋ ≥ q

(using in particular ⌈2a⌉ ≤ 2⌈a⌉). So that if v ∈ D(Am′
) ⊂ D(Am), we have, as

for the second part of Theorem 3.1,

v± ∈ H2m(D±) −֒→ C⌊2m− d
2
⌋(D̄±) ⊂ Cq(D̄±).

We claim that for any multi-index α, |α| ≤ q, the partial derivatives ∂αv± are
bounded. Indeed, using again Corollary 3.1, we get

v± ∈ H2m′
(D±),

so that for α, |α| ≤ q,

∂αv± ∈ H2⌈ q
2
+ d

4
⌉−q+2(D±) ⊂ H

d
2
+2(D±) −֒→ L∞(D±).

Here we have used the fact 1
2 − 1

2 − 2
d < 0, so that one can use the third

embedding result of Corollary IX.13 in [6] (and again Theorem IX.7 for the
projection argument). The result is proved.

From the above proposition we get the following control on the partial deriva-
tives of the solution to (PT).
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Corollary 3.2. In the context of Proposition 3.7 we have

sup
t∈[0,T ]

sup
x∈D̄±

|∂j
t ∂

αu±(t, x)| < ∞

for any j ≤ p and any multi-index α, with |α| ≤ q.

Proof. By Proposition 3.7 any of the considered partial derivatives of u± belongs
to the space

C([0, T ] ; Cb(D̄±)).

Let for example v ∈ C([0, T ] ; Cb(D̄+)). We prove the continuity of the map
t 7→ supx∈D̄+

|v(t, x)|, t ∈ [0, T ]. Let t0 ∈ [0, T ]. Using the reverse triangle
inequality we get for any t 6= t0,

∣
∣ sup
x∈D̄+

|v(t, x)| − sup
x∈D̄+

|v(t0, x)|
∣
∣ ≤ sup

x∈D̄+

∣
∣v(t, x) − v(t0, x)

∣
∣,

and we get the continuity at t0, as v is continuous from [0, T ] to Cb(D̄+)
(equipped with the supreme norm). Thus the desired continuity is proved,
and from this we can assert that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| = sup
x∈D̄+

|v(t∗, x)|

for some t∗ ∈ [0, T ]. As v(t∗, ·) ∈ Cb(D̄+) we have that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| < ∞.

The result is proved.

In the analysis of the convergence of our Euler scheme, we will use the above
corollary with p up to 2 and q up to 4.

4. Euler scheme

4.1. Recalls on the projection and the distance to the transmission boundary and
further notations and premiminaries

In this subsection we adopt the notations from [5]. We have the following
set of geometric results.

Proposition 4.1 ([5], Proposition 1; see also [19]). Assume Γ is bounded and
of class C5. Assume (E). Assume that the coefficients aij satisfy (a±)ij ∈
C4

b (D̄±).
There is constant R > 0 such that:

1. (a) for any x ∈ V −
Γ (R), there are unique s = π

γ+

Γ (x) ∈ Γ and F γ+(x) ≤ 0
such that :

x = π
γ+

Γ (x) + F γ+(x)γ+(π
γ+

Γ (x)) ; (24)
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(b) for any x ∈ V +
Γ (R), there are unique s = π

γ−
Γ (x) ∈ Γ and F γ−(x) ≤ 0

such that :
x = π

γ−
Γ (x) + F γ−(x)γ−(π

γ−
Γ (x)) ; (25)

2. (a) the function x 7→ π
γ+

Γ (x) is called the projection of x on Γ parallel to
γ+ : this is a C4 function on V −

Γ (R) ;
(b) the function x 7→ π

γ−
Γ (x) is called the projection of x on Γ parallel to

γ− : this is a C4 function on V +
Γ (R) ;

3. Let us set F̃ γ±(x) = F γ±(x)|γ±
(
π
γ±
Γ (x)

)
| the normalized version of F γ±

corresponding to the unit vector field γ̃± : x 7→ γ±(x)
|γ±(x)| .

(a) the functions x 7→ F̃ γ±(x) are called the algebraic distance of x to Γ
parallel to γ± (to γ̃±) : these are C4 functions on V ∓

Γ (R). One has

F γ+ , F̃ γ+ ≤ 0 on V −
Γ (R) and F γ− , F̃ γ− ≤ 0 on V +

Γ (R).

(b) It is possible to extend F γ+ , F̃ γ+ and F γ− , F̃ γ− to C4
b (R

d,R) func-

tions, with the conditions F γ± , F̃ γ± > 0 on D± and F γ± , F̃ γ± < 0
on D∓.

4. The above extensions for F̃ γ± and F ν can be performed in a way such that
the functions F̃ γ± and F ν are equivalent in the sense that for all x ∈ R

d,

1

c1
d(x,Γ) =

1

c1
|F ν(x)| ≤

∣
∣
∣F̃ γ±(x)

∣
∣
∣ ≤ c1 |F ν(x)| = c1d(x,Γ) (26)

for some constant c1 > 1.

5. For x ∈ Γ,

∇F̃ γ±(x) =
ν∗

〈ν, γ̃±〉
(x). (27)

Remark 4.1. Under the assumptions of Proposition 4.1 we have that the vector
fields γ±(x), x ∈ Γ, are of class C4, and we have (8). Thus we are indeed under
the assumptions of Proposition 1 in [5].

We sometimes use the notation ν(x) or γ±(x) even if x /∈ Γ. For x ∈ V ±
Γ (R),

we set ν(x) = ν(π
γ±
Γ (x)) and γ±(x) = γ±(π

γ±
Γ (x)) and for x /∈ V ±

Γ (R), arbitrary
values are given.

Note that if u is a classical solution to the transmission parabolic problem
(PT) defined in Section 3, the transmission condition (⋆) can be expressed as

〈γ+(y) , ∇xu+(t, y)〉 = −〈γ−(y) ,∇xu−(t, y)〉, ∀(t, y) ∈ (0, T ]× Γ. (28)

This in fact will be the crux of our approach (see Subsubsection 5.5.2).

In the sequel, we will need the following result.

Proposition 4.2. Assume Γ is bounded and of class C5. Assume (E). Assume
that the coefficients aij satisfy (a±)ij ∈ C4

b (D̄±).
Let x̂ ∈ V ∓

Γ (R) and x ∈ V ∓
Γ (R) be linked by the following relation :

x = π
γ±
Γ (x̂)− F γ±(x̂)γ∓(π

γ±
Γ (x̂)). (29)
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Then, there exists c2 > 1 such that

1

c2
d(x,Γ) ≤ d(x̂,Γ) ≤ c2 d(x,Γ). (30)

Proof. Without loss of generality, assume for example that x ∈ V −
Γ (R) and

x̂ ∈ V −
Γ (R) are related by (29). Then we have

x− π
γ+

Γ (x̂) = −F γ+(x̂)γ−(π
γ+

Γ (x̂)). (31)

and by uniqueness of the projection π
−γ−
Γ (x), we see that πγ+

Γ (x̂) = π
−γ−
Γ (x)

(note that F−γ−(x) = F γ+(x̂)).
We deduce that

1

c1
d(x,Γ) ≤ |F̃−γ−(x)| = |F−γ−(x)| × |γ−(π−γ−

Γ (x))| = |x− π
γ+

Γ (x̂)|

= |x− π
−γ−
Γ (x)| ≤ c1d(x,Γ)

due to the same kind of relation as (26), but written for −γ− instead of γ−.
Returning back to (31), we see that

1

c1
d(x,Γ) ≤ |F γ+(x̂)| × |γ−(πΓ(x̂))| = |F̃ γ+(x̂)| |γ−(πΓ(x̂))|

|γ+(πΓ(x̂))|
≤ c1d(x,Γ).

So that in view of (26) written for x̂ and γ+,

1

c21

|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ) ≤ d(x̂,Γ) ≤ c21
|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ).

But using (6) and (7), it easy to see that for any z ∈ Γ,

λ2

Λ2d2
≤ |γ+(z)|2

|γ−(z)|2
≤ Λ2d2

λ2

from which we deduce the result of the proposition.

4.2. Our transformed Euler scheme

We are now in position to introduce our transformed Euler scheme.
Let us denote from now on △t = hn = T

n the time step (where n ∈ N
∗) and

fix a starting point x0 ∈ R
d.

The time grid is given by (tnk )
n
k=0 with tnk = Tk

n for 0 ≤ k ≤ n.
We denote by (∆Wk+1)

n
k=0 the i.i.d. sequence of Brownian increments con-

structed on (Ω,F ,Px0) and defined by

∆Wk+1 = Wtk+1
−Wtk , ∀ 0 ≤ k ≤ n.
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D−

D+

Xtk π
γ−
Γ (x̂)

Xtk+1

Γ

|| ||

x̂ = X̂tk+1
iteration point

Figure 1: Correction of our scheme when the path crosses the boundary Γ.

Recall that σ : Rd → R
d×d stands for a matrix valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ D.

Set (∂a(x))j = div(x 7→ (a1j(x), . . . , anj(x))).

Our stochastic numerical scheme
(

X
n

tk

)n

k=0
is defined as follows (we omit

the superscript n)
X0 = x0

and for t ∈ (tk, tk+1], we set























































X̂t = Xtk + σ(Xtk )(Wt −Wtk) + ∂a(Xtk)(t− tk) (standard Euler incrementation)

Xtk+1
= X̂tk+1

if
(

Xtk ∈ D+ and X̂tk+1
∈ D+

)

or
(

Xtk ∈ D− and X̂tk+1
∈ D−

)

;

Xtk+1
= π

γ+
Γ (X̂tk+1

)− F γ+(X̂tk+1
)γ−(π

γ+
Γ (X̂tk+1

)) if Xtk ∈ D+ and X̂tk+1
∈ D− ;

Xtk+1
= π

γ−
Γ (X̂tk+1

)− F γ−(X̂tk+1
)γ+(π

γ−
Γ (X̂tk+1

)) if Xtk ∈ D− and X̂tk+1
∈ D+ .

(32)

Remark 4.2. Note that by its construction the presented Euler scheme enjoys
uniqueness in law.
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Remark 4.3. (Comparison with known results in the classical smooth case)

- Note that whenever a is smooth, the co-normal vector fields γ+ and γ−

are in exactly opposite directions and our problem becomes artificial.

Combining (32) with (24) and (25) shows that the construction of our
scheme ensures that X̂tk = Xtk for k = 0, . . . , n in this particular and
artificial case (see also Figure 1 and observe that the isosceles triangle
becomes flat in this case). Thus, there is no correction when crossing the
boundary and – whenever a is smooth – our scheme reduces the classical
Euler scheme.

- Note also that at the crossing of the boundary our construction resembles
the so-called symmetrized Euler scheme constructed for the specific case
of reflected diffusions (see [5]). However in [5] (see also [19]) the purpose
of the construction is to forbid the numerical scheme from crossing the re-
flecting boundary (without undermining the convergence), contrary to our
framework where we let the scheme cross freely the transmission bound-
ary (the correction point remains in the same side as its corresponding
iteration point). Up to our current knowledge both problems – reflected
boundary problem and transmission boundary problem – cannot be treated
in a common framework. Still, we feel that both problems share the same
flavor and the reader might want to compare the picture of Figure 1 with
Figure 1 p. 881 in [5].

Remark 4.4. (Comparison with the results of [37] in the one dimensional case)

When the dimension d is reduced to 1 (one dimensional problem), the dis-
continuity surface reduces to a single point (say 0). In this case and when the
coefficient a = a+Iy> + a−Iy< is constant on both sides of the discontinuity,
it is remarkable that our Euler Scheme is exactly the same as the one described
in [37].

Indeed, in this one-dimensional context, let ϕ(y) = (a−Iy> + a+Iy<) y.
Note that ϕ is a bijective map from R to R. The Euler Scheme constructed in
[37] is then defined by X0 = x0 and for all k ∈ {0, . . . , n},

Xtk = ϕ−1
(
Y tk

)

where Y 0 = ϕ(x0) and for all k ∈ {0, . . . , n− 1}

Y tk+1
= Y tk +

(

a−σ+IY tk
> + a+σ−IY tk

<

)

(Wtk+1
−Wtk) ;

(see [37] for details - please take care that [37] is written for the right-hand
sided local time; the above computation is valid for the symmetric local time).
For example if ϕ(Xtk) < 0 and Y tk+1

≥ 0, we get (because ϕ−1(0) = 0 and ϕ−1
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is continuous at 0 and also because X and Y share the same sign),

Xtk+1
= ϕ−1

(

ϕ(Xtk) +
(

a−σ+IY tk
> + a+σ−IY tk

<

)

△W k+1
k

)

= Xtk +

∫ 0

ϕ(Xtk
)

(
ϕ−1

)′
(z)dz

+

∫
ϕ(Xtk

)+(a−σ+IY tk
>

︸ ︷︷ ︸
=0

+a+σ−IY tk
<)△Wk+1

k

0

(
ϕ−1

)′
(z)dz

= Xtk − ϕ(Xtk)
1

a+
+
(
ϕ(Xtk) + a+σ−△W k+1

k

) 1

a−

=
a+
a−

Xtk +
a+
a−

σ−△W k+1
k ,

which turns out to be the corresponding case stated in (32) in this one-dimensional
context. This correspondence is valid in all the other cases.

Hence, our transformed Euler Scheme may be viewed as some kind of multi-
dimensional generalization of the Euler Scheme presented in [37] (up to second
order terms if the coefficient a of the operator is not piece-wise constant).

5. Convergence rate of our Euler scheme

The purpose of this section is to prove the following result.

Theorem 5.1. Let 0 < T < ∞. Assume (E). Let m′ = ⌈2 + d
4⌉ + 1 and

k = m′ + 2. Assume that the coefficients aij satisfy (a±)ij ∈ C2m′−1
b (D̄±) and

that Γ is of class C2m′
. Let u0 : Rd → R be in the space D(Ak). Let u be a

classical solution of (PT).
We have that for all n large enough,

sup
x0∈Rd

∣
∣
∣u(T, x0)− E

x0u0(X
n

T )
∣
∣
∣ ≤ K

√

hn, (33)

where the constant K depends on d, λ, Λ, u0 and T .
As a consequence of the above and under these assumptions, there is unique-

ness of the classical solution u of (PT).

Remark 5.1. Note that the uniqueness of u appears as a consequence of the
uniqueness in law of our numerical scheme (Remark 4.2) and of the conver-
gence (33). This is in the spirit of the last statement of Theorem 5.7.6 in [21]
where the uniqueness of the solution of parabolic PDEs is proved by the mean
of a Feynman-Kac representation formula involving a diffusion X which enjoys
uniqueness in law.

Remark 5.2. In Theorem 5.1 the assumptions on a(x) and Γ involving the
integers m′ and k are here in order to use Corollary 3.2, which ensures that
we will have supt∈[0,T ], x∈D̄± |∂j

t ∂
αu±(t, x)| < ∞ for any j ≤ 2 and any |α| ≤
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4. This control on the derivatives on u is what we need in order to lead our
convergence proof. In fact if there is a way to get this control under weaker
assumptions on a(x) and Γ our methodology of proof would lead to a convergence
theorem stated under these weaker assumptions.

The rate of convergence in Theorem 5.1 is of order
√
hn. This order is much

slower than the order hn achieved for the standard Euler scheme applied to SDEs
with smooth coefficients (see [47] and [2]). However this rate

√
hn improves very

slightly the results obtained in [36]. This is due to the methodology of proof
where we manage to use smooth discounted occupation times for the scheme
around the interface instead of discretized occupation times involving harsh
indicator functions.

Unfortunately we have not been able to prove a second order transmission
boundary condition as the one derived in Lemma 3 p. 883 in [5] for the case
of the symmetrized Euler scheme for reflected diffusions. This explains the
reason why we do not achieve the rate hn as in [5]. Note that the rate

√
hn

seems confirmed by numerical 1D tests performed in [35] and is classical for
transmission problems.

Note that similarly to the results obtained for the symmetrized Euler scheme
for reflected diffusions in [5], our convergence result holds uniformly with respect
to the starting point x0.

In the sequel of this section we focus on proving (33).

5.1. Preliminary results

Lemma 5.1. (see [5] Lemma 1 p. 883)
Consider an Itô process with uniformly bounded coefficients dUt = btdt +

σtdWt on (Ω,F ,P). There exist some constants c > 0 and K (depending on
p ≥ 1, T and the bounds on σ, b) such that, for any stopping times S and S′

(with 0 ≤ S ≤ S′ ≤ δ ≤ T ) and any η ≥ 0,

P

[

sup
t∈[S,S′]

|Ut − Us| ≥ η

]

≤ K exp

(

−c
η2

δ

)

; (34)

E

[

sup
t∈[S,S′]

|Ut − Us|p
]

≤ Kδp/2. (35)

We have when Xtk ∈ D+

Xtk+1
= X̂tk+1

+
[

F γ+(X̂tk+1
)
]− (

γ+(π
γ+

Γ (X̂tk+1
)) + γ−(π

γ+

Γ (X̂tk+1
))
)

and when Xtk ∈ D−

Xtk+1
= X̂tk+1

+
[

F γ−(X̂tk+1
)
]− (

γ+(π
γ−
Γ (X̂tk+1

)) + γ−(π
γ−
Γ (X̂tk+1

))
)
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This shows that (Xt)0≤t≤T behaves like a continuous semimartingale on each
of the intervals [tk, tk+1).

We now aim at finding the differential form for (Xt)0≤t≤T .
Using Tanaka’s formula (remember that we are using the symmetric local

time), we have

d
[

F γ+(X̂t)
]−

= −
∫ t

0

IFγ+ (X̂t)<d
(

F γ+(X̂t)
)

+
1

2
dL0

t (F
γ+(X̂))

= −
∫ t

0

IFγ+ (X̂t)<∇F γ+(X̂t)dX̂t −
∫ t

0

IFγ+ (X̂t)<

1

2
Tr
[

H[F γ+ ](X̂t)a(Xtk)
]

dt

+
1

2
dL0

t (F
γ+(X̂)).

Moreover, using Remark 4.1 we may and will write that

(

γ+(π
γ+

Γ (X̂tk+1
)) + γ−(π

γ+

Γ (X̂tk+1
))
)

=
(

γ+(X̂tk+1
) + γ−(X̂tk+1

)
)

which allows to apply Itô’s formula to (X̂t)tk<t≤tk+1
along the vector fields γ+

and γ− without having to differentiate the co-normal projections.
Hence, applying these differentiations when Xtk ∈ D+ we find that for

any t ∈ [tk, tk+1),

dXt = dX̂t +
(γ+ + γ−)

2
(X̂t)dL

0
t (F

γ+(X̂)) +
[

F γ+(X̂t)
]− (

∇ (γ+ + γ−) (X̂t)dX̂t

+
1

2
Tr
[

H[γ+ + γ−](X̂t)a(Xtk))
]

dt
)

− IFγ+ (X̂t)<

[

∇ (γ+ + γ−) (X̂t)a(Xtk)
(

∇F γ+(X̂t)
)∗

dt

+ (γ+ + γ−) (X̂t)∇F γ+(X̂t)dX̂t

]

− IFγ+ (X̂t)< (γ+ + γ−) (X̂t)
1

2
Tr
[

H[F γ+ ](X̂t)a(Xtk)
]

dt (36)

and a corresponding equality holds also true for Xtk ∈ D−.

Lemma 5.2. Under the assumptions of Theorem 5.1, for all c > 0, there exists
a constant K(T ) such that

hn E
x0

n−1∑

i=0

[

exp

(

−c
d2(X

n

ti ,Γ)

hn

)]

≤ K(T )
√

hn (37)

uniformly over x0 ∈ R
d.

Proof. The idea is to use the occupation times formula. Using successively
(26) and the inequality (30) of Proposition 4.2, we have d (x,Γ) ≥ 1

c2
d (x̂,Γ) ≥
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1
c1c2

|F̃ γ±(x̂)| so that

Ai+1 := E
x0

[

exp

(

−c
d2(X

n

ti+1
,Γ)

hn

)]

≤ E
x0




exp




−c

∣
∣
∣F̃ γ+(X̂n

ti+1
)
∣
∣
∣

2

|c1c2|2hn




 IX

n
ti+

∈D−






+ E
x0




exp




−c

∣
∣
∣F̃ γ−(X̂n

ti+1
)
∣
∣
∣

2

|c1c2|2hn




 IX

n
ti+

∈D+






:= A+
i+1 +A−

i+1. (38)

We concentrate on term A+
i+1 as both terms are treated in a similar manner.

Set c′ = c/2c21c
2
2 > 0 and g(x) = exp(−2c′x2/h); it is easy to check that

|g(x)| +
√
h|g′(x)| + h|g′′(x)| ≤ K(T ) exp(−c′x2/h). Hence, for t ∈ [ti, ti+1],

Itô’s formula yields that

E
x0 exp




−2c′

∣
∣
∣F̃ γ+(X̂n

ti+1
)
∣
∣
∣

2

hn






≤ K(T )
[

E
x0 exp

(
− c′

∣
∣
∣F̃ γ+(X̂n

t )
∣
∣
∣

2

hn

)

+
1

hn

∫ ti+1

t

dsEx0 exp
(
− c′

∣
∣
∣F̃ γ+(X̂n

s )
∣
∣
∣

2

hn

)]

.

We integrate this inequality with respect to t over [ti, ti+1] to get

hn A+
i+1 ≤ K(T )

∫ ti+1

ti

dsEx0 exp




−c′

∣
∣
∣F̃ γ+(X̂n

s )
∣
∣
∣

2

hn




 . (39)

(for possibly some new constant K(T )).
Observe that from (27),

d〈F̃ γ+(X̂n), F̃ γ+(X̂n)〉s = ∇F̃ γ+(X̂n
s )a(X

n

ti)
[

∇F̃ γ+(X̂n
s )
]∗

ds ≥ λds. (40)

Indeed, using the Cauchy-Schwarz inequality and |ν(x̂)| = 1, we have that

∇F̃ γ+(x̂)a(x)
[

∇F̃ γ+(x̂)
]∗

=
ν∗(x̂)a(x)ν(x̂)

〈ν(x̂), γ̃+(x̂)〉2
=

〈ν(x̂), a(x)ν(x̂)〉
〈ν(x̂), a(x̂)ν(x̂)

|a(x̂)ν(x̂)| 〉2

≥ 〈ν(x̂), a(x)ν(x̂)〉
|ν(x̂)|2|a(x̂)ν(x̂)|2 |a(x̂)ν(x̂)|

2 = 〈ν(x̂), a(x)ν(x̂)〉

≥ λ
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which justifies (40).
It readily follows from the occupation times formula that

hn A+
i+1 ≤ K(T )

∫ R

−R

dy exp

(

−c′
y2

hn

)

E
x0

[

△i+1
i Ly

(

F̃ γ+(X̂n
. )
)]

. (41)

Now,

E
x0

[

Ly
ti+1

(

F̃ γ+(X̂n
. )
)

− Ly
ti

(

F̃ γ+(X̂n
. )
)]

= 2Ex0

[ (

F̃ γ+(X̂n
ti+1

)− y
)+

−
(

F̃ γ+(X̂n
ti)− y

)+

−
∫ ti+1

ti

IF̃γ+ (X̂n
s )≥yd

(

F̃ γ+(X̂n
s )
) ]

≤ 2Ex0

[(

F̃ γ+(X̂n
ti+1

)− y
)+

−
(

F̃ γ+(X̂n
ti)− y

)+
]

+K(T )hn.

Therefore,
∑n−1

i=0 E
x0

[

Ly
ti+1

(

F̃ γ+(X̂n
. )
)

− Ly
ti

(

F̃ γ+(X̂n
. )
)]

≤ K(T ) uniformly

in |y| ≤ R since the sum is telescoping. Moreover, the result of Lemma 5.1
ensures that this inequality is uniform w.r.t x0. We can thus conclude that
hn

∑n−1
i=0 A+

i+1 ≤ K(T )
√
hn uniformly w.r.t x0.

The sum hn

∑n−1
i=0 A−

i+1 is treated similarly. The proof of the Lemma is
complete.

5.2. Error decomposition

In all the sequel x0 is arbitrarily fixed.
For all 0 ≤ k ≤ n set

θnk := T − tnk .

The proof of Theorem 5.1 proceeds as follows (we omit the superscript n).
Since u(0, x) = u0(x) for all x ∈ R

d and u(T, x0) = E
x0u(T,X0), the discretiza-

tion error at time T can be decomposed as follows:

ǫx0

T =
∣
∣u(T, x0)− E

x0u0

(
XT

)∣
∣

=
∣
∣
∣

n−1∑

k=0

E
x0u(T − tk, Xtk)− E

x0u(T − tk+1, Xtk+1
)
∣
∣
∣,

(42)

and thus

ǫx0

T ≤
∣
∣
∣

n−1∑

k=0

E
x0
{
u(θk, Xtk)− u(θk+1, Xtk)

+u(θk+1, Xtk)− u(θk+1, Xtk+1
)
}
∣
∣
∣.

(43)

The rest of this section is devoted to the analysis of
∣
∣
∣
∣
∣

n−1∑

k=0

E
x0(Tk − Sk)

∣
∣
∣
∣
∣
,
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where the time increment Tk is defined as

Tk := u(θk, Xtk)− u(θk+1, Xtk) (44)

and the space increment is defined as

Sk := u(θk+1, Xtk+1
)− u(θk+1, Xtk). (45)

5.3. Estimate for the time increment Tk

Remember the definition (44) of Tk and that θk = T − tk. We have

{
u(θk, Xtk)− u(θk+1, Xtk)

}
IXtk

∈D+

= hn∂tu(θk+1, Y tk)IXtk
∈D+

+ h2
n

∫

[0,1]2
∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk

∈D+

=: T+
k +R+

k .

Similarly,

{
u(θk, Xtk)− u(θk+1, Xtk)

}
IXtk

∈D−

= hn∂tu(θk+1, Xtk)IXtk
∈D−

+ h2
n

∫

[0,1]2
∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk

∈D−

=: T−
k +R−

k .

In view of Corollary 3.2 and Remark 5.2 we have

E
x0 |R+

k +R−
k | ≤ C h2

n.

From the preceding we deduce

E
x0Tk = E

x0∂tu(θk+1, Xtk)hn +O(h2
n). (46)

5.4. Expansion of the space increment Sk

Let Sk be defined as in (45). Set

△k+1X := Xtk+1
−Xtk

△♯
k+1X := X̂tk+1

−Xtk .

and recall that △k+1W = Wtk+1
−Wtk .

Proposition 5.1.
E
x0 |(△♯

k+1X)α| ≤ C(α)h|α|/2
n . (47)

Proof. This is a consequence of the result of Lemma 5.1 combined with the fact
that |(x)α| ≤ |x||α| for any x ∈ R

d.
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We emphasize that, due to the definition of our stochastic scheme, △♯
k+1X

does not coincide with Xtk+1
−Xtk when Xtk+1

and Xtk do not belong to the
same region, which explains the two notations △ and △♯.

We need to introduce the four following events:






Ω++
k := [Xtk ∈ D+ and X̂tk+1

∈ D+],

Ω−−
k := [Xtk ∈ D− and X̂tk+1

∈ D−],

Ω+−
k := [Xtk ∈ D+ and X̂tk+1

∈ D−],

Ω−+
k := [Xtk ∈ D− and X̂tk+1

∈ D+].

(48)

In view of the definition of our stochastic numerical scheme we have

On Ω++
k , △k+1X = △♯

k+1X.

Therefore

SkIΩ++

k
= 〈△k+1X,∇xu(θk+1, Xtk)〉 IΩ++

k

+
1

2

(
△k+1X

)∗
H[u](θk+1, Xtk)△k+1X IΩ++

k

+
∑

|α|=3

1

α!
(△k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ++

k

+

∫ 1

0

dξ
∑

|α|=4

(1− ξ)4

α!
(△k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ△k+1X) IΩ++

k

=: S++1
k + S++2

k + S++3
k + S++4

k .

Similarly,

SkIΩ−−
k

= 〈△k+1X,∇xu(θk+1, Xtk)〉 IΩ−−
k

+
1

2

(
△k+1X

)∗
H[u](θk+1, Xtk)△k+1X IΩ−−

k

+
∑

|α|=3

1

α!
(△k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ−−

k

+

∫ 1

0

dξ
∑

|α|=4

(1− ξ)4

α!
(△k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ△k+1X) IΩ−−

k

=: S−−1
k + S−−2

k + S−−3
k + S−−4

k .

We now use that Ω++
k ∪Ω−−

k = Ω− (Ω+−
k ∪Ω−+

k ). Notice that Ω+−
k ∪Ω−+

k

belongs to the σ-field generated by (Wt) up to time tk+1. In view of the first
line of (32) and the fact that EFtk∆Wk+1 = 0, we get

E
x0(S++1

k + S−−1
k ) =

hn

2
E
x0
[
〈∂a(Xtk),∇xu(θk+1, Xtk)〉

]

− E
x0

[

〈△♯
k+1X,∇xu(θk+1, Xtk)〉 IΩ+−

k ∪Ω−+

k

]

.
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Proceeding similarly and conditioning (△♯
k+1X)2 w.r.t. the past of (Wt) up to

time tk, we obtain

E
x0(S++2

k + S−−2
k ) =

1

2
E
x0
[
Tr[σH[u]σ∗](θk+1, Xtk)

]
hn

− 1

2
E
x0

[

(△♯
k+1X)∗H[u](θk+1, Xtk)△♯

k+1X IΩ+−
k ∪Ω−+

k

]

and since E
x0(△k+1W )α = 0 whenever |α| = 3,

E
x0(S++3

k + S−−3
k ) =

∑

|α|=3

1

α!
E
x0

[

(△♯
k+1X)α

∂3u

∂xα
(θk+1, Xtk)

]

−
∑

|α|=3

1

α!
E
x0

[

(△♯
k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ+−

k ∪Ω−+

k

]

.

We have, combining the results of Corollary 3.2 and Proposition 5.1,

∣
∣
∣
∣
∣
∣

∑

|α|=3

1

α!
E
x0

[

(△♯
k+1X)α

∂3u

∂xα
(θk+1, Xtk)

]
∣
∣
∣
∣
∣
∣

≤ C h3/2
n . (49)

In addition, and for the same reasons, we have

E
x0 |S++4

k + S−−4
k | ≤ C h2

n.

To summarize the calculations of this subsection, we have obtained

E
x0Sk =

E
x0Lu(θk+1, Xtk)hn + E

x0

[(

Sk − 〈△♯
k+1X,∇xu(θk+1, Xtk)〉

)

IΩ+−
k ∪Ω−+

k

]

− E
x0

[(1

2
(△♯

k+1X)∗H[u](θk+1, Xtk)△♯
k+1X

+
∑

|α|=3

1

α!
(△♯

k+1X)α
∂3u

∂xα
(θk+1, Xtk)

)

IΩ+−
k ∪Ω−+

k

]

+ O(h3/2
n )

=: Ex0Lu(θk+1, Xtk)hn + E
x0R(1)

k − E
x0R(2)

k +O(h3/2
n ).

(50)

We now estimate the remaining terms Ex0R(1)
k and E

x0R(2)
k .

5.5. Control of the term E
x0R(1)

k . Expansion around a well chosen point in Γ

On the event Ω+−
k we have that Xtk+1

and Xtk are close to Γ. On this

event, we also have that X̂tk+1
∈ D− and Xtk ∈ D+. Remember our definition

of (F γ+(x), π
γ+

Γ (x)) for x ∈ D−.
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5.5.1. Decomposition of Ex0R(1)
k

As the function u is continuous across the surface Γ at point π
γ+

Γ (x), we get

E
x0

((

Sk − 〈△♯
k+1X,∇xu(θk+1, Xtk)〉

)

IΩ+−
k

]

= E
x0
[((

u(θk+1, Xtk+1
)− u(θk+1, π

γ+

Γ (X̂tk+1
))
)

+
(

u(θk+1, π
γ+

Γ (X̂tk+1
))− u(θk+1, Xtk)

) )
IΩ+−

k

]

− E
x0

[

〈△♯
k+1X,∇xu+(θk+1, π

γ+

Γ (X̂tk+1
))〉 IΩ+−

k

]

− E
x0

[

〈△♯
k+1X,∇xu(θk+1, Xtk)−∇xu+(θk+1, π

γ+

Γ (X̂tk+1
))〉 IΩ+−

k

]

so that

E
x0

((

Sk − 〈△♯
k+1X,∇xu(θk+1, Xtk)〉

)

I
Ω

+−
k

]

= L
+−1
k + L

+−2
k + L

+−3
k ,

where

L
+−1
k :=

{

E
x0

[

〈Xtk+1
− π

γ+
Γ (X̂tk+1

),∇xu−(θk+1, π
γ+
Γ (X̂tk+1

))〉I
Ω

+−
k

]

− E
x0

[

〈Xtk − π
γ+
Γ (X̂tk+1

),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 I
Ω

+−
k

]

−E
x0

[

〈△♯
k+1X,∇xu+(θk+1, π

γ+
Γ (X̂tk+1

))〉 I
Ω

+−
k

]}

L
+−2
k :=







∫ 1

0

dξ
∑

|α|=2

(1− ξ)2

α!
E

x0

[

(X̂tk+1
− π

γ+
Γ (X̂tk+1

))α

×∂αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1

) + ξ(X̂tk+1
− π

γ+
Γ (X̂tk+1

))) I
Ω

+−
k

]

−
∫ 1

0

dξ
∑

|α|=2

(1− ξ)2

α!
E

x0

[

(Xtk − π
γ+
Γ (X̂tk+1

))α

×∂αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1

) + ξ(Xtk − π
γ+
Γ (X̂tk+1

))) I
Ω

+−
k

]}

and

L
+−3
k := −

{

E
x0

[

〈△♯
k+1X,∇xu+(θk+1, Xtk)−∇xu+(θk+1, π

γ+
Γ (X̂tk+1

))〉 I
Ω

+−
k

]}

.

5.5.2. Canceling the term L+−1
k using the transmission condition

Observe that due to the fact that
(

X̂tk − π
γ+

Γ (X̂tk+1
)
)

+
(

X̂tk+1
− X̂tk

)

= X̂tk+1
− π

γ+

Γ (X̂tk+1
).
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we have that

L+−1
k = E

x0

[(

〈Xtk+1
− π

γ+

Γ (X̂tk+1
),∇xu−(θk+1, π

γ+

Γ (X̂tk+1
))〉

−〈X̂tk+1
− π

γ+

Γ (X̂tk+1
),∇xu+(θk+1, π

γ+

Γ (X̂tk+1
))〉
)

IΩ+−
k

]

= E
x0

[

F γ+(X̂tk+1
)
(

〈−γ−(π
γ+

Γ (X̂tk+1
)),∇xu−(θk+1, π

γ+

Γ (X̂tk+1
))〉

−〈γ+(πγ+

Γ (X̂tk+1
)),∇xu+(θk+1, π

γ+

Γ (X̂tk+1
))〉
)

IΩ+−
k

]

= 0,

where we have used the vector problem solved by (F γ+ , π
γ+

Γ ) and Equation (28)
(i.e. the transmission condition (⋆) and the definition of γ±(x)).

5.5.3. The term L+−2
k

We now turn to the term L+−2
k .

The term L+−2
k is the sum of two terms. These two terms are treated

similarly, so we concentrate only on the first. Let α such that |α| = 2. We have
that

E
x0

[∣
∣
∣(Xtk − π

γ+

Γ (X̂tk+1
))α
∣
∣
∣ IΩ+−

k

]

≤ c1E
x0

[

|Xtk − π
γ+

Γ (X̂tk+1
)|2 IΩ+−

k

]

≤ c2E
x0

[

|△♯
k+1X|2 IΩ+−

k

]

.

The same kind of treatment can be performed for the second term of L+−2
k .

Conditionning w.r.t Ftk and applying the Cauchy-Schwarz inequality in the
conditionnal expectation, we find using the result of Lemma 5.1,

|L+−2
k | ≤ CE

x0

[

E
Ftk

[∣
∣△♯

k+1X
∣
∣
4
]1/2

P
Ftk

(
Ω+−

k

)1/2
]

≤ C hn E
x0P

Ftk

(
Ω+−

k

)1/2
.

5.5.4. The term L+−3
k

For the term L+−3
k , we may perform a Taylor’s expansion to the term

∇xu+(θk+1, Xtk)−∇xu+(θk+1, π
γ+

Γ (X̂tk+1
)).

Using Corollary 3.2 and the Cauchy-Schwarz inequality, we find that

|L+−3
k | ≤ CE

x0

[∣
∣△♯

k+1X
∣
∣
∣
∣Xtk − π

γ+

Γ (X̂tk+1
)〉
∣
∣ IΩ+−

k

]

≤ CE
x0

[∣
∣△♯

k+1X
∣
∣
2
IΩ+−

k

]

. (51)

Finally, as for the term L+−2
k , we find that

|L+−3
k | ≤ C hnE

x0P
Ftk

(
Ω+−

k

)1/2
.

Using the same method for the other side Ω−+
k , we find that

E
x0R(1)

k ≤ C hnE
x0

(

P
Ftk

(
Ω+−

k

)1/2
+ P

Ftk

(
Ω−+

k

)1/2
)

.
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5.6. Summing up

The term E
x0R(2)

k can be estimated using the same techniques used in the
previous section and we omit the details.

Using now the fact that ∂tu− Lu = 0, we finally find that

ǫx0

T ≤ C hn E
x0

n−1∑

k=0

(

P
Ftk

(
Ω+−

k

)1/2
+ P

Ftk

(
Ω−+

k

)1/2
)

+ C
√

hn. (52)

Observe – using the result of Lemma 5.1 – that

P
Ftk

(
Ω+−

k

)1/2
= P

Ftk

(

Xtk ∈ D+, X̂tk+1
∈ D−

)1/2

≤ P
Ftk

(

||X̂tk+1
−Xtk || ≥ d

(
Xtk ,Γ

))1/2

≤ K(T ) exp

(

−1

2

d2
(
Xtk ,Γ

)

hn

)

and the same kind of inequality holds true for PFtk

(
Ω−+

k

)1/2
.

Finally,

ǫx0

T ≤ K(T )hnE
x0

n−1∑

k=0

exp

(

−1

2

d2
(
Xtk ,Γ

)

hn

)

+ C
√

hn,

and we conclude the proof of Theorem 5.1 using the result of Lemma 5.2 (note
that if we sum up all the dependancies of our constants, we indeed have that K
in (33) depends on d, λ, Λ, u0 and T ).

6. Numerical experiments

In the forthcoming Examples 1 and 2 we have d = 2 and consider PDEs in a
bounded spatial domain D0 = D+ ∪D− ∪ Γ to be given by the open unit disc,
i.e.,

D0 = {(x1, x2) ∈ R : x2
1 + x2

2 < 1}.
The boundary of D0 is thus the unit circle ∂D0 = {(x1, x2) ∈ R : x2

1 + x2
2 = 1}.

The subdomains D+ and D− are defined by

D+ = {(x1, x2) ∈ D with x2 > 0} and D− = {(x1, x2) ∈ D with x2 < 0},

so that the interface is Γ = {(x1, 0) ∈ R
2 : −1 ≤ x1 ≤ 1}. We recall the

notation D = D+ ∪D−.
Note that the forthcoming parabolic problem (PT,bounded D0

) of Example 2
is then posed in a bounded domain, unlike in our theoretical study. But we have
found that convenient for numerical purposes.

The diffusion matrix is defined by

a(x) = a+(x)Ix∈D+
+ a−(x)Ix∈D̄− ,

33



with
a±(x) = P ∗

±E±(x)P±

where P± are rotation (therefore orthogonal) matrices

P± =

(
cos(θ±) − sin(θ±)
sin(θ±) cos(θ±)

)

(for θ± ∈ [0, 2π)), and E±(x) are diagonal matrix-valued functions

E±(x) =

(
λ1
± + ǫ±x2 0

0 λ2
± + ǫ±x2

)

where λ1
±, λ

2
± > 0 and ǫ± < λi

± for i = 1, 2. Note that this ensures that a(x)
satisfies the uniform ellipticity assumption (E).

We take θ+ = π
4 , θ− = π

3 , λ
1
+ = 1, λ2

+ = 9, λ1
− = 2, λ2

− = 3 , ǫ+ = 0.5 and
ǫ− = 1.9. This gives

a+(x) =
1

2

(
5 + 0.5x2 4

4 5 + 0.5x2

)

, a−(x) =
1

2

(
11
4 + 1.9x2

√
3
4√

3
4

9
4 + 1.9x2

)

.

Performing our Transformed Euler Scheme.
We have the Cholesky decompositions 2a±(x) = σ±σ∗

±(x), with

σ+(x) =

( √
5 + 0.5x2 0

4/
√
5 + 0.5x2

√

5 + 0.5x2 − 16/(5 + 0.5x2)

)

and

σ−(x) =





√
11
4 + 1.9x2 0

√
3
4 /
√

11
4 + 1.9x2

√
9
4 + 1.9x2 − 3/(44 + 30.4x2)



 ,

so that 2a(x) = σσ∗(x) with σ(x) = σ+(x)Ix∈D+
+ σ−(x)Ix∈D̄− . Besides we

have

∂a(x) =

(
0

0.25

)

Ix∈D+
+

(
0

0.95

)

Ix∈D̄− .

Note that when the scheme crosses the interface Γ, we compute the quantities
π
γ±
Γ (X̂tk+1

) and F γ±(X̂tk+1
) in the following way (we will detail the procedure

for π
γ+

Γ (X̂tk+1
) and F γ+(X̂tk+1

)). Recall that we have

X̂tk+1
− π

γ+

Γ (X̂tk+1
) = F γ+(X̂tk+1

)γ+(π
γ+

Γ (X̂tk+1
)).

But here ν = (0, 1)∗ so that for any x ∈ Γ

γ+(x) =
1

2

(
4

5 + 0.5x2

)

34



and
(
π
γ+

Γ (X̂tk+1
)
)

2
= 0 so that

(
X̂tk+1

− π
γ+

Γ (X̂tk+1
)
)

2
=
(
X̂tk+1

)

2
. This yields

F γ+(X̂tk+1
) =

(
X̂tk+1

)

2

2.5
,

and then

π
γ+

Γ (X̂tk+1
) =

( (
X̂tk+1

)

1
− F γ+(X̂tk+1

)× 2
0

)

.

Then we have everything in hand to perform our Tranformed Euler Scheme X.

Comparing with an Euler scheme applied on regularized coefficients.
A natural method with which to compare our tranformed scheme is to regularize
first the coefficients and then to perform a standard (i.e. not transformed) Euler
scheme. More precisely consider the operator

C2(Rd;R) ∋ f 7→ Lεf = ∇ ·
(
aε∇xf

)
= Tr [H[f ]aε] + (∂aε)∗ ∇xf

where aε is some smoothed version of a (ε is the regularization step, see the
following discussion about its choice). Then Lε is the generator of the solution
of the SDE

dXε
t = σε(Xε

t ) dWt + [∂aε](Xε
t ) dt, (53)

where σε(σε)∗ = 2aε. The process Xε may be approached by a standard (i.e.
not transformed) Euler scheme X

ε
, with time step hn.

Let hn be fixed. In fact ε will be chosen in function of hn. We are first
inspired by the random walk approach proposed in [46]. In this later paper
Equation (3.11) indicated that ε has to be proportional to the square root of the

space discretisation step. Then, using a scaling argument we choose ε = h
1/4
n .

Then we set
aε(x) = a(x)1|x2|>ε +Aε(x)1|x2|≤ε

where

Aε(x) =
1

2

(
31
8 − 0.7ε+ x2(

9
8ε + 1.2)

√
3
8 + 2 + x2(

2
ε −

√
3

8ε )√
3
8 + 2 + x2(

2
ε −

√
3

8ε )
29
8 − 0.7ε+ x2(

11
8ε + 1.2)

)

.

Note that the thus defined coefficient aε is continuous and piecewise differen-
tiable. Then we have ∂aε = ∂a(x)1|x2|>ε + ∂Aε(x)1|x2|≤ε where

∂Aε(x) =

(
1
ε −

√
3

16ε
11
16ε + 0.6

)

,

and 2aε(x) = σε[σε]∗(x) with σε(x) = σ(x)1|x2|>ε + Σε(x)1|x2|≤ε and Σε(x)
being equal to








√

31
8
− 0.7ε + x2(

9
8ε

+ 1.2) 0

√
3

8
+2+x2(

2
ε
−

√
3

8ε
)√

31
8

−0.7ε+x2(
9
8ε

+1.2)

√

29
8
− 0.7ε + x2(

11
8ε

+ 1.2) −
(√

3
8

+2+x2(
2
ε
−

√
3

8ε
)
)2

31
8

−0.7ε+x2(
9
8ε

+1.2)









.
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With these coefficients it is easy to perform a standard Euler Scheme on the
SDE (53).

We will compare both methods on the two following examples. Benchmarks
will be provided by a deterministic approximation of the solutions of the PDE
of interest.

Example 1. We wish here to treat the elliptic transmission problem

(E0
T,bounded D0

)







Lv(x) = 0 ∀x ∈ D

〈a+∇xv+(y)− a−∇xv−(y), ν(y)〉 = 0 ∀y ∈ Γ

v(y+) = v(y−) ∀y ∈ Γ

v(x) = f(x) ∀x ∈ ∂D0.

We take the function f to be

f(x) = sin(3x1) + cos(4x2).

Consider then on one side our study of the convergence in the parabolic case, and
on the other side the Feynman-Kac representation for elliptic PDEs available in
the smooth case (see for instance Theorem 5.7.2 in [21]). One can hope that

E
x[f(Xτ )] −−−−→

hn→0
v(x),

where X denotes our scheme and τ = inf{t ≥ 0 : Xt /∈ D0}.
We thus compute a Monte Carlo approximation of Ex[f(Xτ )] on one side

(with N = 106 paths). Note that in this Monte Carlo procedure we have
used a boundary shifting method, on order to reduce the bias introduced by
the approximation of the exit time τ = inf{t ≥ 0 : Xt /∈ D0} by τ (see [20]
Subsection 5.4.3, and the references therein).

On the other side E
x[f(X

ε

τε)], with τε = inf{t ≥ 0 : X
ε

t /∈ D0}, provides
another approximation of v(x) (note that we use again a boundary shifting
method).

Benchmarks are provided by the software FREEFEM with which we com-
pute an approximation of v(x) by a finite element method, using around 1.5×106

triangles and 7× 105 vertices (finite elements basis consists of polynomial func-
tions of order 1). Indeed we observe that with this space discretization order
the finite element method is at convergence.

Table 1 shows the results. We provide 95% excess confidence intervals
for E

x[f(Xτ )] and E
x[f(X

ε

τε)]. It seems that our Transformed Euler scheme
converges quicker to the benchmark than the standard Euler scheme applied on
regularized coefficients. Indeed we notice that the value at convergence provided
by FreeFem tends to be in the confidence intervals for Ex[f(Xτ )], while it is not
the case for Ex[f(X

ε

τε)].
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Point x Finite Element Euler Scheme on Transformed
by FREEFEM regularized coefficients Euler Scheme
(7.105 vertices) (hn = 10−n, n = 4, 5, 6) (hn = 10−n, n = 2, 4, 5, 6)

x = (0, 0.5)∗ -0.1207 - [-0.138615;-0.136341]
[-0.117842;-0.115607] [-0.122637;-0.120408]
[-0.119072;-0.116820] [-0.122415; -0.120183]
[-0.119918;-0.117666] [-0.121583;-0.119353]

x = (0.9, 0.05)∗ 0.92527 - [0.825931;0.827528]
[0.915922;0.917244] [0.923715;0.924973]
[0.922148;0.923478] [0.924720;0.926020]
[0.923188; 0.924518] [0.924739;0.926039]

x = (−0.3,−0.5)∗ -0.745461 - [-0.736531;-0.732709]
[-0.738013;-0.734145] [-0.747555;-0.743703]
[-0.741029;-0.737169] [-0.747606;-0.743746]
[-0.744675;-0.740819] [-0.747759;-0.743899]

Table 1: Approximated values of the solution v(x) of (E0
T,bounded D0

) at points x =

(0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗ computed with a finite element method (7.105 vertices), a
standard Euler scheme applied on a regularisation aε of a, and our tranformed Euler scheme
(we provide confidence intervals for these two last values; we use N = 106 Monte Carlo
samples, and different values of hn).

Example 2. We now turn to some parabolic example (with the same matrix-
valued coefficient a). We consider the following problem (PT,bounded D0

) :







∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (⋆)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(t, x) = 0 ∀(t, x) ∈ (0, T ]× ∂D0

u(0, x) = u0(x) ∀x ∈ D̄0.

Here we will take T = 0.1 and

u0(x) = 10 ∗ (1− |x|2).

Note that u0 belongs toH
1
0 (D0) and is therefore compatible with the uniform

Dirichlet boundary condition in (PT,bounded D0
). But it does not belong to the

domain D(A), as it does not satisfy the transmission condition (⋆).
Nevertheless one can hope that

E
x[u0(Xt)1t≤τ ] −−−−→

hn→0
u(t, x)
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Point x Finite Element / Euler Scheme on Transformed
Crank-Nicholson regularised coefficients Euler Scheme
(4.5× 105 vertices, (hn = 10−n, n = 4, 5, 6, 7) (hn = 10−n, n = 4, 5, 6, 7)
300 time steps)

x = (0, 0.5)∗ 2.26288 - -
[2.26438;2.27807] [2.2769;2.29062]
[2.25639; 2.27025] [2.26869;2.28255]
[2.2554;2.26926] [2.25928;2.27314]

x = (0.9, 0.05)∗ 0.2564 - -
- -

[0.266988;0.27232] [0.261169;0.266501]
[0.260363;0.265695] [0.256141;0.261473]

x = (−0.3,−0.5)∗ 4.24525 - -
- -

[4.227519;4.241921] [4.231419;4.245821]
[4.232609;4.247011] [4.237629;4.252031]

x = (0, 0.05)∗ 4.02857 - -
[4.026754;4.042286] [4.03105;4.04655]
[4.017114;4.032646] [4.024784;4.040316]
[4.017064;4.032596] [4.021594;4.037126]

Table 2: Approximated values of the solution u(T = 0.1, x) of (PT,bounded D0
) at points

x = (0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗, (0, 0.05)∗ computed with a finite element / Crank-
Nicholson scheme method (4.5 × 105 vertices, 300 times steps), a standard Euler scheme
applied on a regularisation aε of a, and our tranformed Euler scheme (we provide confidence
intervals for these two last values; we use N = 106 Monte Carlo samples, and different values
of hn).

(here we use for example Theorem 4.4.5 in [20] and use again the notation τ of
Example 1).

Again we compute a Monte Carlo approximation of Ex[u0(Xt)1t≤τ ] on one

side and of Ex[u0(X
ε

t )1t≤τε ] on the other side (with N = 106 paths and using
again the boundary shifting method).

We use FREEFEM to compute an approximation of u(t, x) by a finite el-
ement method (discretization in space) and a Crank-Nicholson scheme (dis-
cretization in time), using around 9× 109 triangles and 4.5× 105 vertices, and
300 time steps (we are at convergence).

Table 2 shows the results, for t = T . We provide again 95% excess confidence
intervals, this time for E

x[u0(Xt)1t≤τ ] and E
x[u0(X

ε

t )1t≤τε ]. Again it seems
that our transformed Euler scheme converges slightly quicker to the benchmark.

Example 3. Here we want to apply our scheme to a 3D example coming
from Electromagnetism. In order to lighten the computations made by the
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PDE solver that we use as a benchmark (FreeFem again), we will focus on a
stationary PDE.

Our example is inspired by the field of Electro- and Magnetoencephalogra-
phy (EEG/MEG). We follow [44] for the exposure of the equations governing
the electric potential distribution (vector field E) and the resulting magnetic
induction (vector field B) generated in the brain.

These equations come from the quasistatic approximation of Maxwell’s equa-
tions. When the permeability of the electric medium is that of the free space
i.e. the permeability is constantly equal to µ0, these equations read

∇×E = 0, ∇ ·E =
ρ

ǫ0

for the electrical part and

∇×B = µ0 j, ∇ ·B = 0

for the magnetic part. Here ρ is the electric charge density, ǫ0 is the permittivity
of free space and j represents the total electric current density (in addition ∇×
denotes the curl operator, applied to any vector field).

Here j is produced by neuronal activity and in bioelectromagnetism it is split
into two contributions, i.e.

j = jp + js,

where jp and js are respectively the primary and the secondary current.
The secondary current is a passive current that is the result of the macro-

scopic electric field on charge carriers in the conducting medium. By Ohm’s law
one has

aE = js

where a indicates the conductivity profile of the conductive medium.
Now, since the curl ∇ × E equals zero, there exists a potential function v

such that E = −∇xv and thus −a∇xv = js. Applying the divergence operator
to the curl ∇×B one gets

0 = ∇ · (∇×B) = ∇ · (µ0 j) = µ0∇ · (−a∇xv + jp) .

Hence, the electric potential function v solves a Poisson equation of type

∇ · (a∇xv) = ∇ · jp in D0 ⊂ R
3 (54)

where D0 stands for the space volume of the conductive device.

In our example, we will consider that D0 = (−5, 5) × (−5, 5) × (−5, 5),
that is D0 is a 3-dimensional cubic domain. We will consider that the medium
inside D0 is composed of two materials with different conductivity profiles, one
to be found above the horizontal plane, the other one below. With our notations,
D+ = {(x1, x2, x3) ∈ D0, x3 > 0} and D− = {(x1, x2, x3) ∈ D0, x3 < 0}.
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The conductivity coefficient is thus given by the matrix valued function

a(x, y, z) = a+Iz≥ + a−Iz<

where we have chosen a+ =
1

2





1 1 1
1 2 2
1 2 3



 and a− =
1

2





1 −1 −1
−1 2 0
−1 0 3



.

From Gauss’s reduction, for any x = (x1, x2, x3)
∗ we have 2x∗a+x = (x1 + x2 + x3)

2
+

(x2 + x3)
2 + x2

3 and 2x∗a−x = (x1 − x2 − x3)
2 + (x2 − x3)

2 + x2
3, which shows

that a+ and a− are symmetric positive definite matrices.
We assume that ∇ · jp = −1 (this means that we assume that the primary

current is smooth and non singular).
We thus aim at solving

(E0,source≡1
T,bounded D0

)







−Lv(x) = 1 ∀x ∈ D

〈a+∇xv+(y)− a−∇xv−(y), ν(y)〉 = 0 ∀y ∈ Γ

v(y+) = v(y−) ∀y ∈ Γ

v(x) = 0 ∀x ∈ ∂D0

(note that we choose the uniform Dirichlet boundary condition while the uni-
form Neumann boundary condition is physically more relevant, cf [44]; up to
our knowledge performing efficient stochastic numerical schemes for Neumann
boundary value problems remains a challenging problem, even in the case of
smooth coefficients, cf for example [34]).

In order to perform our stochastic numerical scheme one first notice that

σ+ =





1 0 0
1 1 0
1 1 1



 , σ− =





1 0 0
−1 1 0
−1 −1 1





satisfy 2a+ = σ+σ
∗
+ and 2a− = σ−σ∗

−. Here we have clearly ∂a ≡ 0.
Besides the co-normal vector fields are constant with

γ+(x) = γ+ = (1, 2, 3)
∗
, γ−(x) = γ− = (1, 0,−3)

∗
.

In particular, for any (x1, x2, x3)
∗ ∈ D−, we check that the projection decom-

position along γ+ simplifies to

(x1, x2, x3)
∗ =

(

x1 −
x3

3
, x2 −

2x3

3
, 0

)∗
+

x3

3
(1, 2, 3)

∗

which shows that F γ+ ((x1, x2, x3)
∗) = x3/3 and

π
γ+

Γ ((x1, x2, x3)
∗) =

(

x1 −
x3

3
, x2 −

2x3

3
, 0

)∗
.
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Point x Finite Element Transformed Euler Scheme
(3.5× 106 vertices) (hn = 10−n, n = 3, 4, 5)

estimated mean and stand. dev. (sd)
x = (0, 0, 0.05)∗ 6.13578 6.14868 (sd: 4.25)

6.154155 (sd: 4.257)
6.15108 (sd: 4.25)

x = (0, 0,−0.1)∗ 6.1138 6.127855 (sd: 4.247449)
6.134545 (sd: 4.258)
6.136085 (sd: 4.268)

x = (2, 2, 1)∗ 4.81464 4.84222 (sd: 3.82653)
4.83942 (sd: 3.811)
4.83677 (sd: 3.816)

x = (2, 2, 4.75)∗ 0.657751 0.6620455 (sd: 2.09)
0.655707 (sd: 2.083)
0.6576685 (sd: 2.09)

Table 3: Approximated values of the solution v(x) of (E0,source≡1
T,bounded D

) at points x =

(0, 0, 0.05)∗, (0, 0,−0.1)∗, (2, 2, 1)∗ and (2, 2, 4.75)∗, computed with a finite element method
(3.4 × 106 vertices), and our tranformed Euler scheme (with N = 106 Monte Carlo samples,
and different values of hn).

Similarly for any (x1, x2, x3)
∗ ∈ D+ the projection decomposition along γ−

reads

(x1, x2, x3)
∗ =

(

x1 +
x3

3
, x2, 0

)∗
− x3

3
(1, 0,−3)∗

which shows that F γ− ((x1, x2, x3)
∗) = −x3/3 and

π
γ−
Γ ((x1, x2, x3)

∗) =
(

x1 +
x3

3
, x2, 0

)∗
.

Thus it is easy to compute at each time step π
γ±
Γ (X̂tk+1

) and F γ±(X̂tk+1
) and

again we have everything in hand to perform our Tranformed Euler Scheme X.

Table 3 shows the results.
To demand a very fine space discretization in FreeFem is computationally

very costly and we have not been able to achieve such computations on the
machines at our disposal. Consequently we are not sure that the result given
by FreeFem is at convergence (the number of vertices indicated in Table 3 may
seem high, but in fact this corresponds to a quite coarse discretization of the
cube D0 = (−5, 5)3, as we are in 3D; the error is expected to be of order 10−1).

Thus when testing the numerical stochastic scheme we have limited ourselves
to hn = 10−5 (also hn = 10−5 was already time demanding, on this example).
Also we have not computed confidence intervals, as we are not sure that the
benchmark provided by FreeFem is totally relevant.

Note though, that the results presented in Table 3 show some coherence: it
seems that both methods tend to converge to a common value.
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[10] Étoré, P., Lejay, A., 2007. A Donsker theorem to simulate one-dimensional
processes with measurable coefficients. ESAIM Probab. Stat. 11, 301–326.
URL: http://dx.doi.org/10.1051/ps:2007021, doi:10.1051/ps:2007021.
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[30] Lenôtre, L., 2015. étude et simulation des processus de diffusion biaisés.
Ph. D Thesis .

[31] Lieberman, G., 1996. Second Order Parabolic Differential Equations. World
Scientific. URL: https://books.google.fr/books?id=s9Guiwylm3cC.

44



[32] Limic, N., 2011. Markov jump processes approximating a non-
symmetric generalized diffusion. Applied Mathematics and Optimization
64, 101–133. URL: http://dx.doi.org/10.1007/s00245-011-9133-1,
doi:10.1007/s00245-011-9133-1.

[33] Lions, J.L., Magenes, E., 1972. Non-homogeneous boundary value problems
and applications. Vol. I. Springer-Verlag, New York-Heidelberg. Translated
from the French by P. Kenneth, Die Grundlehren der mathematischen Wis-
senschaften, Band 181.
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