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Abstract

In this paper we consider multi-dimensional Partial Differential Equations (PDE) of parabolic
type in divergence form. The coefficient matrix of the divergence operator is assumed to be discontin-
uous along some smooth interface. At this interface, the solution of the PDE presents a compatibility
transmission condition of its co-normal derivatives (multi-dimensional diffraction problem). We prove
an existence and uniqueness result for the solution and study its properties. In particular, we provide
new estimates for the partial derivatives of the solution in the classical sense. We then construct a
low complexity numerical Monte Carlo stochastic Euler scheme to approximate the solution of the
PDE of interest. Using the afore mentioned estimates, we prove a convergence rate for our stochastic
numerical method when the initial condition belongs to some iterated domain of the divergence form
operator. Finally, we compare our results to classical deterministic numerical approximations and
illustrate the accuracy of our method.

1 Introduction

Given a finite time horizon T , a real valued function x 7→ u0(x), and an elliptic symmetric matrix
x 7→ a(x) ∈ Rd×d, which is smooth except at the interface surface Γ between subdomains D± of Rd
(Γ = D̄+ ∩ D̄−), we consider the parabolic transmission (or diffraction) problem : find u from [0, T ]×Rd
to R satisfying

∂tu(t, x)−∇. (a(x)∇xu(t, x)) = 0, ∀(t, x) ∈ (0, T ]× (Rd \ Γ)

u(0, x) = u0(x), ∀x ∈ Rd

〈a+∇xu+(t, .)− a−∇xu−(t, .), ν〉 = 0 and u+(t, .) = u−(t, .) along Γ.

(1.1)
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The objective of this paper is to provide an efficient stochastic numerical resolution method for the
solution of (1.1).

Parabolic equations involving ∇ · (a∇) have been a major preoccupation for mathematicians in the
fifties and the sixties. We may cite the pioneering works of [39, 38], [5], and [35, 36, 37] that prove the
continuity of the solution of the Cauchy problem attached to ∇ · (a∇) and also the celebrated paper by
[1], which gives upper and lower Gaussian estimate bounds for the fundamental solution of the operator
∇ · (a∇) (for a more modern perspective on evolution PDEs involving divergence form operators of
type ∇ · (a∇) see also [30]). In these references assumptions on a are very weak (it is assumed to be
measurable, bounded and elliptic).

In the case where the matrix a is assumed to be discontinuous along the regular boundaries of
some nice disjoint connected open sets in Rd, but smooth elsewhere, a refined analysis of the parabolic
equation may be found in the monograph [20]. The authors interpret the parabolic equation as a
diffraction problem with transmission conditions along the discontinuity boundaries, of the type of (1.1),
and investigate the classical smoothness of its solution.

When the underlying space is one-dimensional and the discontinuity is at zero (Γ then reduces to the
single point 0), the link between (1.1) and some asymmetric diffusion process X is well known. More
precisely one has that u(t, x) = Ex[u0(Xt)] where X is solution to the Stochastic Differential Equation
(SDE) with local time

dXt = σ(Xt)dWt + a′(Xt)dt+
a(0+)− a(0−)

a(0+) + a(0−)
dL0

t (X) (1.2)

where σ2 = 2a and a′ denotes a function that coincides with the first order derivative of a outside zero,
and can be set at any arbitrary value at zero. In (1.2) we have denoted W a standard one-dimensional
Brownian motion (B.m.), and L0

t (X) the symmetric local time of X at time t. Under mild conditions
(1.2) has a unique strong solution X, see [22]. Put in other words the operator ∇ · (a∇) appears as the
infinitesimal generator of the diffusion X solution of (1.2). Note that the local time term in (1.2) is a
singular term that reflects the discontinuity of a along Γ = {0}.

For a study of the one-dimensional case one may refer to the overview [23], [12], and the series of
works [31, 32, 33, 26, 7, 8, 10, 11] [25, 6, 14, 24] where stochastic numerical schemes are presented.

Then if one constructs a scheme X approaching X (in law for example), we will have that Ex[u0(Xt)]
approaches u(t, x). This provides some stochastic numerical resolution method for the solution of (1.1).
But none of the above cited works on the one-dimensional case can be directly adapted to the multidi-
mensional case.

As a matter of fact, till now and up to our knowledge much fewer stochastic schemes have been
proposed and studied to tackle the multidimensional case.

A natural idea would be to regularize the coefficient a around the interface Γ, and then to perform
a discretized stochastic scheme on the classical problem obtained by regularization (for smooth aε the
process X in link with ∇ · (aε∇) is some Itô process with classical drift that can be approached by a
standard Euler scheme). But then there is a balance to find between the regularization step and the
discretization step. Such methods are less precise and less investigated (see [41] for some elements in
this direction; see also some of our numerical results in Section 6).

For some results with no regularization procedure see [27], and [2] in the case of a diagonal coefficient
matrix a constant outside the discontinuity boundary Γ; see also [29], which attempts to interpret
stochastically the deterministic Galerkin method using jump Markov Chains.

In this paper we will propose a stochastic numerical scheme that allows to treat the multidimensional
case, when the matrix-valued diffusion coefficient a is not necessarily diagonal, nor piecewise constant.
We aim at treating the discontinuity of a directly and use no regularization. The scheme we propose
is of Euler type; it can be seen as en extension to the multidimensional case of the scheme studied in
[33] (see some comments in Remark 4.4).

One of the difficulties of the multidimensional case is that the stochastic process X naturally in
link with the operator ∇ · (a∇) is more difficult to describe than in dimension one. One knows that
the operator generates such a process X, which is Markov (see for instance [40]; on the Dirichlet form
approach see [15], in particular Exercise 3.1.1 p111). We still have the link u(t, x) = Ex[u0(Xt)]. But
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the Itô dynamic of X is difficult to establish and to exploit. In the companion paper [9] we have been
able to prove (in the case Rd = D̄+ ∪D− and a has some smoothness in D±) that

Xk
t = xk +

∫ t

0

d∑
j=1

σkj(Xs)dW
j
s +

∫ t

0

d∑
j=1

∂jakj(Xs)IXs∈Dds

− 1

2

∫ t

0

γ+,k(Xs)dKs +
1

2

∫ t

0

γ−,k(Xs)dKs, t ≥ 0. (1.3)

In this expression W is a standard B.m., we have σσ∗ = 2a, the terms γ±,k are some co-normal vectors
to the surface Γ = D̄+ ∩ D̄−, and K is the PCAF associated through the Revuz correspondence to the
surface measure on Γ. Equation (1.3) is in some sense the multi-dimensional analog to (1.2), the singular

term being now − 1
2

∫ t
0
γ+,k(Xs)dKs + 1

2

∫ t
0
γ−,k(Xs)dKs.

However to infer from (1.3) an approximation scheme X for X is not easy. In the afore mentioned
works about the one-dimensional case, things are most often achieved with the help of Itô-Tanaka type
formulas, that allow to manipulate SDEs with local time. In the multi-dimensional case we have not
access to such a formula, and in addition we know less about the singular term − 1

2

∫ t
0
γ+,k(Xs)dKs +

1
2

∫ t
0
γ−,k(Xs)dKs than we know about L0

t (X) in the one-dimensional case.

Thus we are led, in the present paper, to contruct a stochastic scheme X such that Ex[u0(Xt)]
approaches u(t, x), but without seeking to approach X by X. The idea will be to perform a standard
Euler scheme as long as X does not cross the boundary Γ. But when the scheme X crosses the boundary
we will correct its position in a way that reflects the transmission condition in (1.1). The contribution
of the paper are the following.

I) We will first study the PDE (1.1). We will show that, when the initial condition u0 belongs to some
iteration of the domain of ∇ · (a∇), this PDE has a classical solution. Then we prove the existence of
global bounds for the partial derivatives of this solution (up to order four in the space variable) outside
the discontinuity boundary Γ, for all strictly positive times (and not just for times t satisfying t ≥ ε for
some ε > 0), and all the way up to the boundary (not only interior estimates). In our opinion these
estimates are new (compared to [20]) and have an interest per se. These estimates will be needed to
perform the convergence analysis of our scheme. The method we follow, in this PDE oriented part of
the paper, is combining the Hille-Yosida theorem with results on elliptic transmission PDEs to be found
in [34].

II) We propose our scheme (we insist again that our matrix valued coefficient a does not need to be
diagonal) and study its convergence rate. More precisely we prove that∣∣∣u(T, x0)− Ex0u0(X

n

T )
∣∣∣ ≤ K√hn,

where hn is the time step of our Euler scheme (see the precise assumptions and statement in Theorem
5.1). This has to be compared with the results in the classical smooth case and the ones in [33].

The paper is organised as follows. In Section 2 we present the notations of the paper and our main
assumptions. In Section 3 we define precisely and study the parabolic transmission problem (1.1), proving
in particular an existence and uniqueness result for a classical solution, for which we get estimates for
the space and time derivatives. In Section 4 we present our scheme, and in Section 5 we analyse its
convergence. Section 6 is devoted to numerical experiments.

2 General notations and assumptions

For two points x, y ∈ Rd we denote by 〈x, y〉 their scalar product 〈x, y〉 = x∗y =
∑d
i=1 xiyi.

For a point x ∈ Rd we denote by |x| its Euclidean norm i.e. |x|2 =
∑d
i=1 x

2
i = 〈x, x〉.

We denote by (e1, . . . , ed) the usual orthonormal basis of Rd.
For two metric spaces E,F we will denote by C(E;F ) the set of continuous functions from E to F

and, for 1 ≤ p ≤ ∞, by Cp(E;F ) the set of functions in C(E;F ) that are p times differentiable with
continuous derivatives.
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We will denote by Cpc (E;F ) the set of functions in Cp(E;F ) that have a compact support.
We will denote by Cpb (E;F ) the set of functions in Cp(E;F ) that are continuous with bounded p first

derivatives (Cb(E;F ) denotes the set of functions in C(E;F ) that are bounded).
If F = R, we will sometimes simply write for instance C(E) for C(E;R), for the sake of conciseness.
For any multi-index α = (i1, . . . , id) ∈ Nd and x = (x1, . . . , xd) ∈ Rd, we note xα the product

xi11 . . . xidd and |α| = i1 + · · · + id. So that for u ∈ C |α|(Rd) we will denote ∂|α|u
∂xα , or in short ∂αu, the

partial derivative ∂i1
x
i1
1

. . . ∂id
x
id
d

u.

Let U ⊂ Rd an open subset. We will denote by L2(U) the set of square integrable functions from U
to R equipped with the usual norm and scalar product || · ||L2(U) and 〈·, ·〉L2(U).

We denote H1(U) the usual Sobolev space W 1,2(U), equipped with the usual norm || · ||H1(U). We
will denote by Div the derivative in the distribution sense with respect to xi of v ∈ L2(U).

We recall that the space H1
0 (U) ⊂ H1(U) can be defined as H1

0 (U) = C∞c (U ;R) = C1
c (U ;R).

We denote H−1(U) the usual dual topological space of H1
0 (U).

For m ≥ 2, we denote Hm(U) the usual Sobolev space Wm,2(U) ⊂ L2(U) of functions having m
successive weak derivatives in L2(U).

The notion of a Ck domain U ⊂ Rd with bounded boundary Γ = ∂U is defined with the help of a
system of local change of coordinates of class Ck (see [34] Chap.3 pp89-90).

From now on we consider in the whole paper that Rd = D̄+∪D− with D+ and D− two open connected
subdomains separated by a transmission boundary Γ that is to say

Γ = D̄+ ∩ D̄−

(in addition we will denote D = D+ ∪D− = Rd \ Γ ⊂ Rd).
By an assumption of type ”Γ is bounded and Ck” we will mean that both D+ and D− are Ck

domains, and that Γ is bounded. Note that in that case we shall consider D+ (resp. D−) as the interior
(resp. exterior) domain. Note that D− is then unbounded (although its boundary is bounded).

Assume Γ is bounded and C2. We will denote γ : H1(D±)→ H1/2(Γ) the usual trace operator on Γ
and H−1/2(Γ) the dual space of H1/2(Γ) (see p98-102 in [34]).

In the sequel we will frequently note f± the restrictions of a function f to D±. Besides, by an
assumption of type ”the function f satisfies f± ∈ Cp(D̄±)” (or ”f ∈ Cp(D̄+) ∩ Cp(D̄−)”) we will
mean that the restriction of f to D+ (resp. D−) coincides on D+ (resp. D−) with a function f̃+

of class Cp(Rd) (resp. f̃−). So that for any x ∈ Γ we can give a sense for example to f+(x): it is
limz→x , z∈D+

f(z) = f̃+(x).
In the same time spirit we may note for f ∈ C(D̄+) ∩ C(D̄−) and a point y ∈ Γ

f(y±) = lim
z→y , z∈D±

f(z) = f±(y).

For u ∈ C1(D̄+;R) ∩ C1(D̄−;R) we denote ∇xu = ( ∂u∂x1
, . . . , ∂u∂xd )∗ and, for a point y ∈ Γ

∇xu±(y) = lim
z→y , z∈D±

∇xu(z). (2.1)

For a vector field G ∈ C1(D;Rd) we denote by ∇ ·G (x) its divergence at point x ∈ D, i.e. ∇ ·G(x) =∑d
i=1

∂Gi
∂xi

(x).

For u ∈ C2(D;R) and x ∈ D we denote H[u](x) the Hessian matrix of u at point x.

Let a(x) = (aij(x))i,j∈{1,...,d} be a symmetric matrix valued and time homogeneous diffusion coeffi-
cient.

If aij ∈ C1(D;R) for all 1 ≤ i, j ≤ d and u ∈ C2(D;R) we denote

Lu(x) = ∇ · (a(x)∇xu(x)) , ∀x ∈ D. (2.2)

In the whole paper the coefficients of the function matrix a are always assumed to be measurable and
bounded by a constant Λ.

We will also often make the following ellipticity assumption
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Assumption 2.1. (E) : There exists λ ∈ (0,∞) such that

∀x ∈ Rd, ∀ξ ∈ Rd, λ|ξ|2 ≤ ξ∗a(x)ξ. (2.3)

Note that under (E) we can assert that for any x ∈ D we have

a±(x) = P ∗±(x)E±(x)P±(x) (2.4)

with P±(x) some orthogonal matrices and E±(x) some diagonal matrices with strictly positive eigenval-
ues.

Assume Γ is C2. For a point x ∈ Γ we denote by ν(x) ∈ Rd the unit normal to Γ at point x,
pointing to D+. Assume the aij ’s satisfy (a±)ij ∈ C(D̄±). We define then the co-normal vector fields
γ+(x) := a+(x)ν(x) and γ−(x) := −a−(x)ν(x), for x ∈ Γ.

Note that under (E) it is clear that we have

∀x ∈ Γ, 〈γ+(x), ν(x)〉 ≥ λ > 0 and 〈γ−(x), ν(x)〉 ≤ −λ < 0. (2.5)

Note that the notation γ for the trace operator follows the usual one ([34] for instance) and the
notation γ± for the co-normal vectors follows the one of the paper [3]. But it will be dealt with the trace
operator only in Section 3, and with co-normal vectors only in Sections 4 and 5. So that these notations
will cause no confusion.

To finish with we define the unbounded operator A : D(A) ⊂ L2(Rd)→ L2(Rd) by

D(A) =
{
u ∈ H1(Rd) with

d∑
i,j=1

Di(aijDju) ∈ L2(Rd)
}

and

∀u ∈ D(A), Au =

d∑
i,j=1

Di(aijDju).

Then we introduce the iterated domains defined recursively by

D(Ak) = {v ∈ D(Ak−1) : Av ∈ D(Ak−1)}, k ≥ 2.

3 The parabolic transmission problem

Let 0 < T <∞ a finite time horizon. Let us consider the transmission parabolic problem

(PT)



∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (?)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(0, x) = u0(x) ∀x ∈ Rd.

We will say that (t, x) 7→ u(t, x) is classical solution to (PT) if it satisfies

u∈C
(
[0, T ];C2(D̄+) ∩ C2(D̄−)

)
∩ C1

(
[0, T ];C(D̄+) ∩ C(D̄−)

)
∩ C

(
[0, T ];C(Rd)

)
(3.1)

and satisfies the following requisites. First, u satisfies the first line of (PT), where the derivatives are
understood in the classical sense. Second, for all 0 < t ≤ T the limits limz→y , z∈D± ∇xu(t, z) satisfy
the transmission condition (?) for all y ∈ Γ. Note that these limits exist thanks to (3.1). Third, u is
continuous accross Γ (third line). Fourth, it satisfies the initial condition at the fourth line of (PT).
The aim of this section is to prove the following result.
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Theorem 3.1. Let a = (aij)1≤i,j≤d satisfy (E).

• Denote

k0 =

{
bd4c+ 2 if d is even;

b 3
2 + bd/2c

2 c+ 2 if d is odd.
(3.2)

Assume that the coefficients aij satisfy (a±)ij ∈ C2k0−3
b (D̄±) and Γ is bounded and of class C2k0−2.

Then for u0 ∈ D(Ak0) the parabolic transmission problem (PT) admits a classical solution.

• Furthermore, if u0 ∈ D(Ak) for k ≥ k0, the coefficients aij satisfy (a±)ij ∈ C2k−1
b (D̄±) and Γ is

bounded of class C2k, this classical solution u is such that

u ∈ Ck−j
(

[0, T ] ; Cn(j)(D̄+) ∩ Cn(j)(D̄−)
)
, dd/4e ≤ j ≤ k

with n(j) = b2j − d
2c.

To prove Theorem 3.1 requires to study in a first time the associated elliptic resolvent equation, in a
weak sense. More precisely, for a source term f ∈ L2(Rd) we will seek for a solution u in D(A) of

u−Au = f (3.3)

(see Proposition 3.11 below).
Then the idea is to apply in L2(Rd) a version of the Hille-Yosida theorem that states that for

u0 ∈ D(Ak), k ≥ 2, there is a solution u to du
dt = Au, u(0) = u0, living in Ck−j

(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k

(see Proposition 3.14 below).
As we will have studied the weak smoothness of functions living in the D(Ak)’s (Proposition 3.12 and

Corollary 3.13), we will be able to conclude, using Sobolev embedding arguments.

Remark 3.2. 1) In the classical situation with smooth coefficients studied for instance in [13] Chap.
1 (or [28], Theorem 5.14), a unique classical solution to the parabolic PDE exists as soon as the aij’s
are bounded and Hölder continuous and satisfy (E), and u0 is continuous and satisfies some growth
condition.

Here we ask additional smoothness on the coefficients (a±)ij’s inside the domains D±. Indeed, because
of the discontinuity of a across Γ we are led to use a different technique of proof: unlike the parametrix
method in the classical case, this additional smoothness is required for the use of the Hille-Yosida theorem
and the Sobolev embeddings.

Note that with this methodology of proof these additional assumptions would still be needed if our
coefficients and the solution were smooth at the interface. Note that with this approach the assumptions
on the initial condition u0 are understood in a weak sense (and are different).

2) Our result is also different from the one in [20] (Theorem 13.1; see also [21]). In this reference
the authors study the classical smoothness of the parabolic transmission problem by studying first the
smoothness of ∂tu (to that aim they differentiate with respect to time the initial equation). Then they
study the smoothness with respect to the space variable by using results for the elliptic transmission
problem, involving difference quotient techniques. But by doing so they get estimates on subdomains of
the form [ε, T ]×D± with 0 < ε. Here, we manage to study the global regularity of the classical solution
of PT in the whole domains [0, T ]×D±.

3.1 Study of the associated elliptic problem and of the domains D(Ak)

In this subsection we establish the existence of a solution to (3.3) belonging to D(A) and study its
smoothness properties, together with the ones of functions belonging to the iterated domains D(Ak),
for k ≥ 1.

We recall that the coefficients aij are assumed to be bounded by Λ so that we may define the following
continuous bilinear and symmetric form, which will be used extensively in the sequel

E(u, v) =

d∑
i,j=1

〈aijDju,Div〉L2(Rd), ∀u, v ∈ H1(Rd). (3.4)
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Let u ∈ D(A). Using the definition of Au as a distribution acting on C∞c (Rd;R), and the density of
C∞c (Rd;R) in H1(Rd) = H1

0 (Rd), one can establish the following relation, linking A and the form (3.4):

E(u, v) = 〈−Au, v〉L2(Rd), ∀v ∈ H1(Rd). (3.5)

3.1.1 Some results on weak solutions of elliptic transmission PDEs

Here we gather some preliminary results on weak solutions of elliptic transmission PDEs that rely mainly
on [34] Chap. 4, pp. 141-145.

We recall that for u ∈ L2(Rd), we denote u+ (resp. u−) the restriction of u to D+ (resp. D−). It
may happen that we use this notation for restricted distributions also.

We introduce the following notation for the jump across Γ of u ∈ L2(Rd), with u+ ∈ H1(D+) and
u− ∈ H1(D−):

[u]Γ = γ(u+)− γ(u−).

If [u]Γ = 0 we shall simply write γ(u) = γ(u+) = γ(u−). We have the two following lemmas (the proof
of the first one is straightforward).

Lemma 3.3. Let v ∈ L2(Rd). Then, for any 1 ≤ i ≤ d, the distribution (Div)± is equal to Di(v±). As
a consequence, if v ∈ H1(Rd), then v± ∈ H1(D±).

Lemma 3.4 ([34], Exercise 4.5). Suppose u ∈ L2(Rd) with u± ∈ H1(D±). Then u ∈ H1(Rd) if and only
if [u]Γ = 0 a.e. on Γ.

We shall consider restricted operators and bilinear forms in the following sense. We define A+ :
H1(D+)→ H−1(D+) by

∀v ∈ H1(D+), A+v =

d∑
i,j=1

Di

(
(a+)ijDjv

)
.

We define A− : H1(D−) → H−1(D−) in the same manner (note that we do not specify here any
domain D(A±)). Further, we define

E±(u, v) =

d∑
i,j=1

∫
D±

(a±)ijDjuDiv, ∀u, v ∈ H1(D±).

In the same fashion as for Equation (3.5), we have, for u± ∈ H1(D±) with A±u± ∈ L2(D±),

E±(u±, v) =

∫
D±

(−A±u±)v, ∀v ∈ H1
0 (D±). (3.6)

Imagine now that in (3.6) we wish to take the test function in H1(D±) instead of H1
0 (D±). There will

still be a link between A± and E±, but through Green type identities, involving co-normal derivatives
and boundary integrals. We have the following result.

Proposition 3.5 (First Green identity, extended version; see [34] Theorem 4.4, point i)). Assume Γ is
bounded and C2. Let u ∈ L2(Rd) with u+ ∈ H1(D+) and u− ∈ H1(D−). Assume A+u+ ∈ L2(D+),

A−u− ∈ L2(D−). Then there exist uniquely defined elements B±ν u ∈ H−
1
2 (Γ) such that

E+(u+, v) =

∫
D+

(−A+u+)v −
(
B+
ν u, γ(v)

)
Γ
, ∀v ∈ H1(D+) (3.7)

and

E−(u−, v) =

∫
D−

(−A−u−)v +
(
B−ν u, γ(v)

)
Γ
, ∀v ∈ H1(D−). (3.8)

The elements B±ν u in Proposition 3.5 are the one-sided co-normal derivatives of u on Γ.
To fix ideas, note that under the stronger assumptions that the (a±)ij ’s are in C1

b (D̄±;R), and
u± ∈ H2(D±), we have

B±ν u = ν∗γ(a±∇u±) =

d∑
i=1

d∑
j=1

νiγ
(
(a±)ijDju±

)
on Γ
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(note that as the (a±)ijDju±’s are in H1(D±) the trace terms are correctly defined in the above expres-
sion). Thus one understands that the change of sign in front of the (·, ·)Γ term between (3.7) and (3.8)
is due to the fact that −ν is the outward normal to D+ and ν is the outward normal to D−.

For details on the definition of B±ν u under the weaker assumptions of Proposition 3.5, see [34] pp
116-117.

Finally we introduce a notation for the jumps across Γ of the co-normal derivative of a function u
satisfying the assumptions of Proposition 3.5:[

Bνu
]
Γ

= B+
ν u− B−ν u ∈ H−1/2(Γ).

We have the following result.

Lemma 3.6 (Two-sided Green identity; inspired by [34] Lemma 4.19, Equation (4.33)). Assume Γ is
bounded and C2. Let u ∈ H1(Rd). Let f+ ∈ L2(D+) and f− ∈ L2(D−) and assume

u± −A±u± = f± on D±. (3.9)

Set f = f+ + f−, then

〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd) −
([
Bνu

]
Γ
, γ(v)

)
Γ
, ∀v ∈ H1(Rd). (3.10)

Remark 3.7. Note that in the above proposition u± ∈ H1(D±), thanks to Lemma 3.3. Equation
(3.9) means that 〈u± − A±u±, ϕ〉H−1(D±),H1

0 (D±) = 〈f, ϕ〉L2(D±), for all ϕ ∈ C∞c (D±;R). Therefore

A±u± ∈ L2(D±) and by Proposition 3.5 the element
[
Bνu

]
Γ

is well defined. Then same remark holds
for the forthcoming Proposition 3.8.

Our notations being different from the ones in [34], we provide the short proof of Lemma 3.6 for the
sake of clarity.

Proof. Taking into account Remark 3.7 we can use Proposition 3.5, and summing (3.7) and (3.8) one
gets for any v ∈ H1(Rd) (note that γ(v+) = γ(v−) = γ(v))

〈u, v〉L2(Rd) + E+(u+, v+) + E−(u−, v−) = 〈f, v〉L2(Rd) −
([
Bνu

]
Γ
, γ(v)

)
Γ
.

To complete the proof it suffices to notice that, thanks to Lemma 3.3, we have

E+(u+, v+) + E−(u−, v−) =

d∑
i,j=1

{∫
D+

(a+)ij(Dju)+(Div)+

+
∫
D−

(a−)ij(Dju)−(Div)−

}
= E(u, v).

We recall now results on the smoothness of weak solutions of elliptic transmission PDEs.

Proposition 3.8 ([34], Theorem 4.20). Let G1 and G2 be bounded open connected subsets of Rd, such
that G1 ⊂ G2 and G1 intersects Γ, and put

Dj
± = Gj ∩D± and Γj = Γ ∩Gj for j = 1, 2.

Assume that the set G2 is constructed in such a way that there is a Cr+2-diffeomorphism between Γ2 and
a bounded portion of the hyperplan xd = 0.

Assume (E).

Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1(D2
±;R).

Let f± ∈ L2(D±) with f± ∈ Hr(D2
±). Let u ∈ L2(Rd) with u ∈ H1(G2) satisfying

u± −A±u± = f± on D2
±

and
[
Bνu

]
Γ
∈ H 1

2 +r(Γ2). Then u± ∈ H2+r(D1
±).
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Proposition 3.9 ([16], Theorem 8.10). Assume (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D̄±;R). Assume Γ is bounded.
Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±.

Let D′± ⊂ D± open subsets with D′± ⊂ D± and denote d′± = dist(D′±,Γ).
We have that u± ∈ Hr+2(D′±), with

||u±||Hr+2(D′±) ≤ C±
(
||u±||H1(D±) + ||f ||Hr(D±)

)
,

where the constant C± depends on d, λ, d′± and

max
1≤i,j≤d

max
|α|≤r+1

sup
x∈D±

|∂α(a±)ij(x)|.

Proof. In [16] this result is asserted with the assumption that D′± ⊂ D±, with D′± compact. So that
for the interior (bounded) domain D+ the result is immediate. On the unbounded domain D− we claim
that the same result holds for non compact D′−, as in fact only the distance d′− = dist(D′−,Γ) plays a
role in the proof.

Thus, covering Γ with open balls in order to use the local result of Proposition 3.8, and combining
with the global result of Proposition 3.9, it is possible to show the following theorem, that will be used
extensively in the sequel.

Theorem 3.10. Assume (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D̄±;R). Assume Γ is bounded and of
class Cr+2.

Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±

and
[
Bνu

]
Γ
∈ H 1

2 +r(Γ). Then u± ∈ H2+r(D±).

3.1.2 Existence of a weak solution to the resolvent equation and immediate properties of
functions in D(Ak), k ≥ 1

We have the next result.

Proposition 3.11. Assume (E). Let f ∈ L2(Rd). Then (3.3) has a unique solution in D(A).

Proof. Let us note that the symmetric bilinear form on H1(Rd)

(u, v) 7→ 〈u, v〉L2(Rd) + E(u, v)

is continuous and, thanks to Assumption (E), coercive. Thus the Lax-Milgram theorem ([4] Corollary
V.8) immediately asserts the existence of a unique u ∈ H1(Rd) such that

∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd).

In other words we have for any ϕ ∈ C∞c (Rd;R),

E(u, ϕ) = −〈
d∑

i,j=1

Di(aijDju), ϕ〉H−1(Rd),H1(Rd) = 〈(f − u), ϕ〉L2(Rd).

Hence the distribution
∑d
i,j=1Di(aijDju) belongs to L2(Rd), and thus u ∈ D(A). Finally, from the

above relations we deduce

∀v ∈ H1(Rd), 〈u−Au, v〉L2(Rd) = 〈f, v〉L2(Rd),

which implies (3.3).
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The proposition below gives properties of functions belonging to D(A). It indicates that the solution
u ∈ D(A) of (3.3) encountered in Proposition 3.11 satisfies a continuity property and a transmission
condition in a weak sense at the interface.

Proposition 3.12. Let u ∈ D(A). Then [u]Γ =
[
Bνu

]
Γ

= 0 a.e. on Γ.

Proof. Let u ∈ D(A). As u ∈ H1(Rd) one gets by Lemma 3.4 that [u]Γ = 0 a.e. on Γ. Set now
f = u−Au ∈ L2(Rd). According to Equation (3.5) we have

∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd), (3.11)

and this in true in particular for any v ∈ C∞c (D+;R). But using Lemma 3.3 one has for any v ∈
C∞c (D+;R), that

E(u, v) =

d∑
i,j=1

∫
D+

(a+)ij(Dju)+Div =

d∑
i,j=1

∫
D+

(a+)ij(Dju+)Div = E+(u+, v).

Using now (3.6) we see that 〈u+ −A+u+, v〉L2(D+) = 〈f+, v〉L2(D+) for any v ∈ C∞c (D+;R). Proceeding
in the same manner on D− we finally see that u± −A±u± = f± on D±.

Note that by construction f = f+ + f−. Using now Lemma 3.6, and comparing (3.10) and (3.11),
one gets

([
Bνu

]
Γ
, γ(v)

)
Γ

= 0 for any v ∈ H1(Rd). Using the fact that the trace operator is surjective,

this implies that
([
Bνu

]
Γ
, w
)

Γ
= 0 for any w ∈ H1/2(Γ), which completes the proof.

Thanks to Theorem 3.10 we can get as a corollary the following result concerning the iterated domains
D(Ak), k ∈ N∗.

Corollary 3.13. Assume (E). Let k ∈ N∗ and u ∈ D(Ak). Assume that the coefficients (a±)ij ∈
C2k−1
b (D±) and that Γ is bounded and of class C2k. Then u± ∈ H2k(D±).

Proof. The proof proceeds by induction on k.

Let u ∈ D(A) (case k = 1). We have
[
Bνu

]
Γ

= 0, according to Proposition 3.12. Thus in particular[
Bνu

]
Γ
∈ H

1
2 (Γ). As in the proof of Proposition 3.12 we set f = u − Au and notice that we have

u± −A±u± = f± on D±, with f± ∈ L2(D±).
Using Theorem 3.10 - remember that u is in H1(Rd), (a±)ij ∈ C1

b (D̄±;R) and Γ is bounded of
class C2 - we get that u± ∈ H2(D±).

Suppose now that the result is true at rank k−1 we prove its validity at rank k (k ≥ 2). Let u ∈ D(Ak).

As u ∈ D(A) we have
[
Bνu

]
Γ

= 0 ∈ H2k− 3
2 (Γ). As Au ∈ D(Ak−1) the quantity u − Au =: f satisfies

f± ∈ H2k−2(D±), using the induction hypothesis. But as we have u±−A±u± = f± on D±, one may use
again the smoothness of (a±)ij and Γ and Theorem 3.10 in order to conclude that u± ∈ H2k(D±).

3.2 The solution of the parabolic problem (PT)

3.2.1 Application of the Hille-Yosida theorem

We now use the Hille-Yosida theorem ([4] Theorems VII.4 and VII.5) in order to prove the following
proposition. Note that in Equation (3.12) below, the time derivative is understood in the strong sense,
while the space derivatives are understood in the weak sense. Besides, by convention D(A0) = L2(Rd).

Proposition 3.14. Assume (E). Let u0 ∈ D(A). Then there exists a unique function

u ∈ C1
(
[0, T ]; L2(Rd)

)
∩ C

(
[0, T ]; D(A)

)
satisfying

du

dt
= Au, u(0) = u0. (3.12)

Furthermore, let u0 ∈ D(Ak), k ≥ 2. Then,

u ∈ Ck−j
(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k.
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Proof. According to [4] it suffices to check that (−A,D(A)) is maximal monotone. But thanks to As-
sumption (E) we immediately see that 〈−Av, v〉L2(Rd) = E(v, v) ≥ 0, for any v ∈ D(A), and thanks to

Proposition 3.11 we have that for any f ∈ L2(Rd) there exists u ∈ D(A) solving (3.3).

Using now Proposition 3.12, Corollary 3.13 and Proposition 3.14 together with some Sobolev embed-
ding theorems, we show Theorem 3.1.

3.2.2 Proof of Theorem 3.1

Proof. Assume d is even. Apply the result of Proposition 3.14 with k = k0 = bd4c + 2 and consider u
solution of (3.12). We have that

u ∈ C1
(
[0, T ];D

(
Ak0−1

))
with k0 − 1 = bd4c + 1. Using the result of Corollary 3.13 and combining Corollary IX.13 p. 168 with
Theorem IX.7 p. 157 in [4], we see that for any t ∈ [0, T ]

u±(t, .) ∈ H4+2b d4 c(D±) ⊂ H2+ d
2 (D±) ↪−→ C2(D̄±). (3.13)

Assume now that d is odd. Apply the result of Proposition 3.14 with k = k0 = b 3
2 + bd/2c

2 c+ 2 and
consider u solution of (3.12). We have that

u ∈ C1
(
[0, T ];D

(
Ak0−1

))
with k0 − 1 = b 3

2 + bd/2c
2 c+ 1. Using the result of Corollary 3.13 and combining Corollary IX.13 p. 168

with Theorem IX.7 p. 157 in [4], we see that for any t ∈ [0, T ]

u±(t, .) ∈ H2+2b 32 +
bd/2c

2 c(D±) ↪−→ C2(D̄±) (3.14)

since

b2 + 2b3
2

+
bd/2c

2
c − d

2
c ≥ b2 + 2

(
1

2
+
bd/2c

2

)
− d

2
c ≥ b3 + bd

2
c − d

2
c ≥ 2.

Let us now show that u solution of (3.12) (for the corresponding k0) is a classical solution of (PT).
First, it is clear that Lu coincides with Au on any bounded part of D± (the derivatives in the

distributional sense coincide with the classical derivatives thanks to the established smoothness of u).
This shows the first line of (PT).

Second, as for any t ∈ [0, T ] the function u(t, .) belongs to D(A), we have using the result of Propo-
sition 3.12 that

[u(t, .)]Γ = 0 a.e. on Γ; [Bνu(t, .)]Γ = 0 a.e. on Γ. (3.15)

Note that u(t, .) ∈ D(A) implies that u±(t, .) are in H2(D±). So that the second part of (3.15) reads

ν∗ (γ (a+∇u+(t, .))− γ (a−∇u−(t, .))) = 0 a.e.

But as (a±∇u±) ∈ C1(D̄±;Rd), we get

〈 (a+∇xu+(t, .))(y)− (a−∇xu−(t, .))(y), ν(y) 〉 = 0

for almost every y ∈ Γ, and consequently for every y ∈ Γ by continuity. The same argument applies to
the first part of (3.15) and the second and third lines of (PT) are satisfied. Note that the constructed
solution satisfies u(t, .) ∈ C

(
Rd
)

for any time t ∈ [0, T ].

Now let k ≥ k0. For dd4e ≤ j ≤ k, we have 2j − d
2 > 0. Thus, for v ∈ D(Aj) we have from

Corollary 3.13,
v± ∈ H2j(D±) ↪−→ Cn(j)(D̄±)

with n(j) = b2j − d
2c. Using again the result of Proposition 3.14, we get the announced result.
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3.3 Conclusion and consequences: boundedness of the partial derivatives

Going a bit further in the analysis, and using additional Sobolev embedding arguments, we can state the
following result.

Proposition 3.15. Assume (E). Let p, q ∈ N with p + bq/2c ≥ 2. Let m = d q2 + d
4e, m

′ = m + 1 and

k = m′+p. Assume that the coefficients aij satisfy (a±)ij ∈ C2m′−1
b (D̄±), that Γ is bounded and of class

C2m′ , and that u0 ∈ D(Ak).
Then the classical solution u(t, x) of (PT) constructed in Theorem 3.1 satisfies

u ∈ Cp([0, T ] ; Cqb (D̄+) ∩ Cqb (D̄−)).

Proof. First, notice that it is easy to check that k is greater than the k0 defined in Theorem 3.1, so that
it makes sense speaking of the classical solution of (PT), for u0 ∈ D(Ak).

This solution is constructed in the same way as in Theorem 3.1, in particular by the mean of Propo-
sition 3.14. So that one can assert that

u ∈ Cp([0, T ] ; D(Am
′
)).

It remains to check that if v ∈ D(Am
′
), then v± ∈ Cqb (D̄±). First, note that m ≥ dd4e, and that one may

easily check

b2m− d

2
c ≥ q

(using in particular d2ae ≤ 2dae). So that if v ∈ D(Am
′
) ⊂ D(Am), we have, as for the second part of

Theorem 3.1,

v± ∈ H2m(D±) ↪−→ Cb2m−
d
2 c(D̄±) ⊂ Cq(D̄±).

We claim that for any multi-index α, |α| ≤ q, the partial derivatives ∂αv± are bounded. Indeed, using
again Corollary 3.13, we get

v± ∈ H2m′(D±),

so that for α, |α| ≤ q,

∂αv± ∈ H2d q2 + d
4 e−q+2(D±) ⊂ H d

2 +2(D±) ↪−→ L∞(D±).

Here we have used the fact 1
2 −

1
2 −

2
d < 0, so that one can use the third embedding result of Corollary

IX.13 in [4] (and again Theorem IX.7 for the projection argument). The result is proved.

From the above proposition we get the following control on the partial derivatives of the solution
to (PT).

Corollary 3.16. In the context of Proposition 3.15 we have

sup
t∈[0,T ]

sup
x∈D̄±

|∂jt ∂αu±(t, x)| <∞

for any j ≤ p and any multi-index α, with |α| ≤ q.

Proof. By Proposition 3.15 any of the considered partial derivatives of u± belongs to the space

C([0, T ] ; Cb(D̄±)).

Let for example v ∈ C([0, T ] ; Cb(D̄+)). We prove the continuity of the map t 7→ supx∈D̄+
|v(t, x)|,

t ∈ [0, T ]. Let t0 ∈ [0, T ]. Using the reverse triangle inequality we get for any t 6= t0,∣∣ sup
x∈D̄+

|v(t, x)| − sup
x∈D̄+

|v(t0, x)|
∣∣ ≤ sup

x∈D̄+

∣∣v(t, x)− v(t0, x)
∣∣,

and we get the continuity at t0, as v is continuous from [0, T ] to Cb(D̄+) (equipped with the supreme
norm). Thus the desired continuity is proved, and from this we can assert that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| = sup
x∈D̄+

|v(t∗, x)|

12



for some t∗ ∈ [0, T ]. As v(t∗, ·) ∈ Cb(D̄+) we have that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| <∞.

The result is proved.

In the analysis of the convergence of our Euler scheme, we will use the above corollary with p up to
2 and q up to 4.

4 Euler scheme

4.1 Recalls on the projection and the distance to the transmission boundary
and further notations and premiminaries

In this subsection we adopt the notations from [3]. We have the following set of geometric results.

Proposition 4.1 ([3], Proposition 1; see also [17]). Assume Γ is bounded and of class C5. Assume (E).
Assume that the coefficients aij satisfy (a±)ij ∈ C4

b (D̄±).
There is constant R > 0 such that:

1. (a) for any x ∈ V −Γ (R), there are unique s = π
γ+
Γ (x) ∈ Γ and F γ+(x) ≤ 0 such that :

x = π
γ+
Γ (x) + F γ+(x)γ+(π

γ+
Γ (x)) ; (4.1)

(b) for any x ∈ V +
Γ (R), there are unique s = π

γ−
Γ (x) ∈ Γ and F γ−(x) ≤ 0 such that :

x = π
γ−
Γ (x) + F γ−(x)γ−(π

γ−
Γ (x)) ; (4.2)

2. (a) the function x 7→ π
γ+
Γ (x) is called the projection of x on Γ parallel to γ+ : this is a C4 function

on V −Γ (R) ;

(b) the function x 7→ π
γ−
Γ (x) is called the projection of x on Γ parallel to γ− : this is a C4 function

on V +
Γ (R) ;

3. Let us set F̃ γ±(x) = F γ±(x)|γ±
(
π
γ±
Γ (x)

)
| the normalized version of F γ± corresponding to the unit

vector field γ̃± : x 7→ γ±(x)
|γ±(x)| .

(a) the functions x 7→ F̃ γ±(x) are called the algebraic distance of x to Γ parallel to γ± (to
γ̃±) : these are C4 functions on V ∓Γ (R). One has F γ+ , F̃ γ+ ≤ 0 on V −Γ (R) and F γ− , F̃ γ− ≤ 0
on V +

Γ (R).

(b) It is possible to extend F γ+ , F̃ γ+ and F γ− , F̃ γ− to C4
b (Rd,R) functions, with the conditions

F γ± , F̃ γ± > 0 on D± and F γ± , F̃ γ± < 0 on D∓.

4. The above extensions for F̃ γ± and F ν can be performed in a way such that the functions F̃ γ± and
F ν are equivalent in the sense that for all x ∈ Rd,

1

c1
d(x,Γ) =

1

c1
|F ν(x)| ≤

∣∣∣F̃ γ±(x)
∣∣∣ ≤ c1 |F ν(x)| = c1d(x,Γ) (4.3)

for some constant c1 > 1.

5. For x ∈ Γ,

∇F̃ γ±(x) =
ν∗

〈ν, γ̃±〉
(x). (4.4)

Remark 4.2. Under the assumptions of Proposition 4.1 we have that the vector fields γ±(x), x ∈ Γ, are
of class C4, and we have (2.5). Thus we are indeed under the assumptions of Proposition 1 in [3].
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We sometimes use the notation ν(x) or γ±(x) even if x /∈ Γ. For x ∈ V ±Γ (R), we set ν(x) = ν(π
γ±
Γ (x))

and γ±(x) = γ±(π
γ±
Γ (x)) and for x /∈ V ±Γ (R), arbitrary values are given.

Note that if u is a classical solution to the transmission parabolic problem (PT) defined in Section 3,
the transmission condition (?) can be expressed as

〈γ+(y) , ∇xu+(t, y)〉 = −〈γ−(y) ,∇xu−(t, y)〉, ∀(t, y) ∈ (0, T ]× Γ. (4.5)

This in fact will be the crux of our approach (see Subsubsection 5.5.2).

In the sequel, we will need the following result.

Proposition 4.3. Assume Γ is bounded and of class C5. Assume (E). Assume that the coefficients aij
satisfy (a±)ij ∈ C4

b (D̄±).
Let x̂ ∈ V ∓Γ (R) and x ∈ V ∓Γ (R) be linked by the following relation :

x = π
γ±
Γ (x̂)− F γ±(x̂)γ∓(π

γ±
Γ (x̂)). (4.6)

Then, there exists c2 > 1 such that

1

c2
d(x,Γ) ≤ d(x̂,Γ) ≤ c2 d(x,Γ). (4.7)

Proof. Without loss of generality, assume for example that x ∈ V −Γ (R) and x̂ ∈ V −Γ (R) are related by
(4.6). Then we have

x− πγ+Γ (x̂) = −F γ+(x̂)γ−(π
γ+
Γ (x̂)). (4.8)

and by uniqueness of the projection π
−γ−
Γ (x), we see that πγ+

Γ (x̂) = π
−γ−
Γ (x) (note that F−γ−(x) =

F γ+(x̂)).
We deduce that

1

c1
d(x,Γ) ≤ |F̃−γ−(x)| = |F−γ−(x)| × |γ−(π

−γ−
Γ (x))| = |x− πγ+Γ (x̂)|

= |x− π−γ−Γ (x)| ≤ c1d(x,Γ)

due to the same kind of relation as (4.3), but written for −γ− instead of γ−. Returning back to (4.8),
we see that

1

c1
d(x,Γ) ≤ |F γ+(x̂)| × |γ−(πΓ(x̂))| = |F̃ γ+(x̂)| |γ−(πΓ(x̂))|

|γ+(πΓ(x̂))|
≤ c1d(x,Γ).

So that in view of (4.3) written for x̂ and γ+,

1

c21

|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ) ≤ d(x̂,Γ) ≤ c21
|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ).

But using (2.3) and (2.4), it easy to see that for any z ∈ Γ,

λ2

Λ2d2
≤ |γ+(z)|2

|γ−(z)|2
≤ Λ2d2

λ2

from which we deduce the result of the proposition.

4.2 Our transformed Euler scheme

We are now in position to introduce our transformed Euler scheme.
Let us denote from now on 4t = hn = T

n the time step (where n ∈ N∗) and fix a starting point
x0 ∈ Rd.

The time grid is given by (tnk )nk=0 with tnk = Tk
n for 0 ≤ k ≤ n.

14



Figure 1: Correction of our scheme when the path crosses the boundary Γ.

We denote by (∆Wk+1)nk=0 the i.i.d. sequence of Brownian increments constructed on (Ω,F ,Px0)
and defined by

∆Wk+1 = Wtk+1
−Wtk , ∀ 0 ≤ k ≤ n.

Recall that σ : Rd → Rd×d stands for a matrix valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ D.

Set (∂a(x))j = div(x 7→ (a1j(x), . . . , anj(x))).

Our stochastic numerical scheme
(
X
n

tk

)n
k=0

is defined as follows (we omit the superscript n)

X0 = x0

and for t ∈ (tk, tk+1], we set

X̂t = Xtk + σ(Xtk )(Wt −Wtk ) + ∂a(Xtk )(t− tk) (standard Euler incrementation)

Xtk+1 = X̂tk+1 if
(
Xtk ∈ D+ and X̂tk+1 ∈ D+

)
or
(
Xtk ∈ D− and X̂tk+1 ∈ D−

)
;

Xtk+1 = π
γ+
Γ (X̂tk+1)− F γ+(X̂tk+1)γ−(π

γ+
Γ (X̂tk+1)) if Xtk ∈ D+ and X̂tk+1 ∈ D− ;

Xtk+1 = π
γ−
Γ (X̂tk+1)− F γ−(X̂tk+1)γ+(π

γ−
Γ (X̂tk+1)) if Xtk ∈ D− and X̂tk+1 ∈ D+ .

(4.9)

Remark 4.4. When the dimension d is reduced to 1 (one dimensional problem), the discontinuity surface
reduces to a single point (say 0). In this case and when the coefficient a = a+Iy> + a−Iy< is constant
on both sides of the discontinuity, it is remarkable that our Euler Scheme is exactly the same as the one
described in [33].

Indeed, in this one-dimensional context, let ϕ(y) = (a−Iy> + a+Iy<) y. Note that ϕ is a bijective
map from R to R. The Euler Scheme constructed in [33] is then defined by X0 = x0 and for all
k ∈ {0, . . . , n},

Xtk = ϕ−1
(
Y tk

)
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where Y 0 = ϕ(x0) and for all k ∈ {0, . . . , n− 1}

Y tk+1
= Y tk +

(
a−σ+IY tk> + a+σ−IY tk<

)
(Wtk+1

−Wtk) ;

(see [33] for details - please take care that [33] is written for the right-hand sided local time; the above
computation is valid for the symmetric local time). For example if ϕ(Xtk) < 0 and Y tk+1

≥ 0, we get

(because ϕ−1(0) = 0 and ϕ−1 is continuous at 0 and also because X and Y share the same sign),

Xtk+1
= ϕ−1

(
ϕ(Xtk) +

(
a−σ+IY tk> + a+σ−IY tk<

)
4W k+1

k

)
= Xtk +

∫ 0

ϕ(Xtk )

(
ϕ−1

)′
(z)dz

+

∫ ϕ(Xtk )+(a−σ+IY tk>︸ ︷︷ ︸
=0

+a+σ−IY tk<
)4Wk+1

k

0

(
ϕ−1

)′
(z)dz

= Xtk − ϕ(Xtk)
1

a+
+
(
ϕ(Xtk) + a+σ−4W k+1

k

) 1

a−

=
a+

a−
Xtk +

a+

a−
σ−4W k+1

k ,

which turns out to be the corresponding case in (4.9) in this one-dimensional context. This correspondence
is valid in all cases and our transformed Euler Scheme may be viewed as some kind of generalization of
the Euler Scheme presented in [33].

5 Convergence rate of our Euler scheme

The purpose of this section is to prove the following result.

Theorem 5.1. Let 0 < T < ∞. Assume (E). Let m′ = d2 + d
4e + 1 and k = m′ + 2. Assume that the

coefficients aij satisfy (a±)ij ∈ C2m′−1
b (D̄±) and that Γ is of class C2m′ . Let u0 : Rd → R be in the space

D(Ak). Let u be the classical solution of (PT).
We have that for all n large enough, and all x0 in Rd,∣∣∣u(T, x0)− Ex0u0(X

n

T )
∣∣∣ ≤ K√hn, (5.1)

where the constant K depends on d, λ, Λ, u0 and T .

Remark 5.2. In this theorem the assumptions on a(x) and Γ involving the integers m′ and k are here
in order to use Corollary 3.16, which ensures that we will have supt∈[0,T ], x∈D̄± |∂

j
t ∂

αu±(t, x)| < ∞ for
any j ≤ 2 and any |α| ≤ 4. This control on the derivatives on u is what we need in order to lead our
convergence proof. In fact if there is a way to get this control under weaker assumptions on a(x) and Γ,
this will lead to a convergence theorem stated under these weaker assumptions.

5.1 Preliminary results

Lemma 5.3. (see [3]) Consider an Itô process with uniformly bounded coefficients dUt = btdt+ σtdWt

on (Ω,F ,Px0). There exist some constants c > 0 and K (depending on p ≥ 1, T and the bounds on σ,
b) such that, for any stopping times S and S′ (with 0 ≤ S ≤ S′ ≤ δ ≤ T ) and any η ≥ 0,

Px0

[
sup

t∈[S,S′]

|Ut − Us| ≥ η

]
≤ K exp

(
−cη

2

δ

)
; (5.2)

Ex0

[
sup

t∈[S,S′]

|Ut − Us|p
]
≤ Kδp/2. (5.3)
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We have when Xtk ∈ D+

Xtk+1
= X̂tk+1

+
[
F γ+(X̂tk+1

)
]− (

γ+(π
γ+
Γ (X̂tk+1

)) + γ−(π
γ+
Γ (X̂tk+1

))
)

and when Xtk ∈ D−

Xtk+1
= X̂tk+1

+
[
F γ−(X̂tk+1

)
]− (

γ+(π
γ−
Γ (X̂tk+1

)) + γ−(π
γ−
Γ (X̂tk+1

))
)

This shows that (Xt)0≤t≤T behaves like a continuous semimartingale on each of the intervals [tk, tk+1).
Using Tanaka’s formula, we have – for example for Xtk ∈ D+ – that for any t ∈ [tk, tk+1),

dXt = dX̂t +
1

2
(γ+ + γ−) (X̂t)dL

0
t (F

γ+(X̂))

+
[
F γ+(X̂t)

]− (
∇ (γ+ + γ−) (X̂t)dX̂t

+
1

2
Tr
[
H[γ+ + γ−](X̂t)a(Xtk))

]
dt
)

− IFγ+ (X̂t)<

[
∇ (γ+ + γ−) (X̂t)a(Xtk)

(
∇F γ+(X̂t)

)∗
dt

+ (γ+ + γ−) (X̂t)∇F γ+(X̂t)dX̂t

]
− IFγ+ (X̂t)<

(γ+ + γ−) (X̂t)
1

2
Tr
[
H[F γ+ ](X̂t)a(Xtk)

]
dt. (5.4)

Lemma 5.4. Under the assumptions of Theorem 5.1, for all c > 0, there exists a constant K(T ) such
that

hn Ex0

n−1∑
i=0

[
exp

(
−c

d2(X
n

ti ,Γ)

hn

)]
≤ K(T )

√
hn. (5.5)

Proof. The idea is to use the occupation times formula. Using successively (4.3) and the inequality (4.7)
of Proposition 4.3, we have d (x,Γ) ≥ 1

c2
d (x̂,Γ) ≥ 1

c1c2
|F̃ γ±(x̂)| so that

Ai+1 := Ex0

[
exp

(
−c

d2(X
n

ti+1
,Γ)

hn

)]

≤ Ex0

exp

−c
∣∣∣F̃ γ+(X̂n

ti+1
)
∣∣∣2

|c1c2|2hn

 IXnti+∈D−


+ Ex0

exp

−c
∣∣∣F̃ γ−(X̂n

ti+1
)
∣∣∣2

|c1c2|2hn

 IXnti+∈D+


:= A+

i+1 +A−i+1. (5.6)

We concentrate on term A+
i+1 as both terms are treated in a similar manner.

Set c′ = c/2c21c
2
2 > 0 and g(x) = exp(−2c′x2/h); it is easy to check that |g(x)|+

√
h|g′(x)|+h|g′′(x)| ≤

K(T ) exp(−c′x2/h). Hence, for t ∈ [ti, ti+1], Itô’s formula yields that

Ex0 exp

−2c′

∣∣∣F̃ γ+(X̂n
ti+1

)
∣∣∣2

hn


≤ K(T )

[
Ex0 exp

(
− c′

∣∣∣F̃ γ+(X̂n
t )
∣∣∣2

hn

)
+

1

hn

∫ ti+1

t

dsEx0 exp
(
− c′

∣∣∣F̃ γ+(X̂n
s )
∣∣∣2

hn

)]
.
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We integrate this inequality with respect to t over [ti, ti+1] to get

hnA+
i+1 ≤ K(T )

∫ ti+1

ti

dsEx0 exp

−c′
∣∣∣F̃ γ+(X̂n

s )
∣∣∣2

hn

 . (5.7)

(for possibly some new constant K(T )).
Observe that from (4.4),

d〈F̃ γ+(X̂n), F̃ γ+(X̂n)〉s = ∇F̃ γ+(X̂n
s )a(X

n

ti)
[
∇F̃ γ+(X̂n

s )
]∗
ds ≥ λds. (5.8)

Indeed, using the Cauchy-Schwarz inequality and |ν(x̂)| = 1, we have that

∇F̃ γ+(x̂)a(x)
[
∇F̃ γ+(x̂)

]∗
=
ν∗(x̂)a(x)ν(x̂)

〈ν(x̂), γ̃+(x̂)〉2
=
〈ν(x̂), a(x)ν(x̂)〉
〈ν(x̂), a(x̂)ν(x̂)

|a(x̂)ν(x̂)| 〉2

≥ 〈ν(x̂), a(x)ν(x̂)〉
|ν(x̂)|2|a(x̂)ν(x̂)|2

|a(x̂)ν(x̂)|2 = 〈ν(x̂), a(x)ν(x̂)〉

≥ λ

which justifies (5.8).
It readily follows from the occupation times formula that

hnA+
i+1 ≤ K(T )

∫ R

−R
dy exp

(
−c′ y

2

hn

)
Ex0

[
4i+1
i Ly

(
F̃ γ+(X̂n

. )
)]
. (5.9)

Now,

Ex0

[
Lyti+1

(
F̃ γ+(X̂n

. )
)
− Lyti

(
F̃ γ+(X̂n

. )
)]

= 2Ex0

[ (
F̃ γ+(X̂n

ti+1
)− y

)+

−
(
F̃ γ+(X̂n

ti)− y
)+

−
∫ ti+1

ti

IF̃γ+ (X̂ns )≥yd
(
F̃ γ+(X̂n

s )
) ]

≤ 2Ex0

[(
F̃ γ+(X̂n

ti+1
)− y

)+

−
(
F̃ γ+(X̂n

ti)− y
)+
]

+K(T )hn.

Therefore,
∑n−1
i=0 Ex0

[
Lyti+1

(
F̃ γ+(X̂n

. )
)
− Lyti

(
F̃ γ+(X̂n

. )
)]
≤ K(T ) uniformly in |y| ≤ R since the

sum is telescoping. We can thus conclude that hn
∑n−1
i=0 A

+
i+1 ≤ K(T )

√
hn.

The sum hn
∑n−1
i=0 A

−
i+1 is treated similarly. The proof of the Lemma is complete.

5.2 Error decomposition

In all the sequel x0 is arbitrarily fixed.
For all 0 ≤ k ≤ n set

θnk := T − tnk .

The proof of Theorem 5.1 proceeds as follows (we omit the superscript n). Since u(0, x) = u0(x) for
all x ∈ Rd and u(T, x0) = Ex0u(T,X0), the discretization error at time T can be decomposed as follows:

εx0

T =
∣∣u(T, x0)− Ex0u0

(
XT

)∣∣
=
∣∣∣ n−1∑
k=0

Ex0u(T − tk, Xtk)− Ex0u(T − tk+1, Xtk+1
)
∣∣∣, (5.10)
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and thus

εx0

T ≤
∣∣∣ n−1∑
k=0

Ex0
{
u(θk, Xtk)− u(θk+1, Xtk)

+u(θk+1, Xtk)− u(θk+1, Xtk+1
)
} ∣∣∣.

(5.11)

The rest of this section is devoted to the analysis of∣∣∣∣∣
n−1∑
k=0

Ex0(Tk − Sk)

∣∣∣∣∣ ,
where the time increment Tk is defined as

Tk := u(θk, Xtk)− u(θk+1, Xtk) (5.12)

and the space increment is defined as

Sk := u(θk+1, Xtk+1
)− u(θk+1, Xtk). (5.13)

5.3 Estimate for the time increment Tk

Remember the definition (5.12) of Tk and that θk = T − tk. We have{
u(θk, Xtk)− u(θk+1, Xtk)

}
IXtk∈D+

= hn∂tu(θk+1, Y tk)IXtk∈D+

+ h2
n

∫
[0,1]2

∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk∈D+

=: T+
k +R+

k .

Similarly, {
u(θk, Xtk)− u(θk+1, Xtk)

}
IXtk∈D−

= hn∂tu(θk+1, Xtk)IXtk∈D−

+ h2
n

∫
[0,1]2

∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk∈D−

=: T−k +R−k .

In view of Corollary 3.16 and Remark 5.2 we have

Ex0 |R+
k +R−k | ≤ C h

2
n.

From the preceding we deduce

Ex0Tk = Ex0∂tu(θk+1, Xtk)hn +O(h2
n). (5.14)

5.4 Expansion of the space increment Sk

Let Sk be defined as in (5.13). Set

4k+1X := Xtk+1
−Xtk

4]k+1X := X̂tk+1
−Xtk .

and recall that 4k+1W = Wtk+1
−Wtk .
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Proposition 5.5.
Ex0 |(4]k+1X)α| ≤ C(α)h|α|/2n . (5.15)

Proof. This is a consequence of the result of Lemma 5.3 combined with the fact that |(x)α| ≤ |x||α| for
any x ∈ Rd.

We emphasize that, due to the definition of our stochastic scheme, 4]k+1X does not coincide with

Xtk+1
−Xtk when Xtk+1

and Xtk do not belong to the same region, which explains the two notations
4 and 4].

We need to introduce the four following events:
Ω++
k := [Xtk ∈ D+ and X̂tk+1

∈ D+],

Ω−−k := [Xtk ∈ D− and X̂tk+1
∈ D−],

Ω+−
k := [Xtk ∈ D+ and X̂tk+1

∈ D−],

Ω−+
k := [Xtk ∈ D− and X̂tk+1

∈ D+].

(5.16)

In view of the definition of our stochastic numerical scheme we have

On Ω++
k , 4k+1X = 4]k+1X.

Therefore

SkIΩ++
k

= 〈4k+1X,∇xu(θk+1, Xtk)〉 IΩ++
k

+
1

2

(
4k+1X

)∗
H[u](θk+1, Xtk)4k+1X IΩ++

k

+
∑
|α|=3

1

α!
(4k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ++

k

+

∫ 1

0

dξ
∑
|α|=4

(1− ξ)4

α!
(4k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ4k+1X) IΩ++

k

=: S++1
k + S++2

k + S++3
k + S++4

k .

Similarly,

SkIΩ−−k = 〈4k+1X,∇xu(θk+1, Xtk)〉 IΩ−−k

+
1

2

(
4k+1X

)∗
H[u](θk+1, Xtk)4k+1X IΩ−−k

+
∑
|α|=3

1

α!
(4k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ−−k

+

∫ 1

0

dξ
∑
|α|=4

(1− ξ)4

α!
(4k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ4k+1X) IΩ−−k

=: S−−1
k + S−−2

k + S−−3
k + S−−4

k .

We now use that Ω++
k ∪ Ω−−k = Ω − (Ω+−

k ∪ Ω−+
k ). Notice that Ω+−

k ∪ Ω−+
k belongs to the σ-field

generated by (Wt) up to time tk+1. In view of the first line of (4.9) and the fact that EFtk∆Wk+1 = 0,
we get

Ex0(S++1
k + S−−1

k ) =
hn
2
Ex0

[
〈∂a(Xtk),∇xu(θk+1, Xtk)〉

]
− Ex0

[
〈4]k+1X,∇xu(θk+1, Xtk)〉 IΩ+−

k ∪Ω−+
k

]
.
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Proceeding similarly and conditioning (4]k+1X)2 w.r.t. the past of (Wt) up to time tk, we obtain

Ex0(S++2
k + S−−2

k ) =
1

2
Ex0

[
Tr[σH[u]σ∗](θk+1, Xtk)

]
hn

− 1

2
Ex0

[
(4]k+1X)∗H[u](θk+1, Xtk)4]k+1X IΩ+−

k ∪Ω−+
k

]
and since Ex0(4k+1W )α = 0 whenever |α| = 3,

Ex0(S++3
k + S−−3

k ) =
∑
|α|=3

1

α!
Ex0

[
(4]k+1X)α

∂3u

∂xα
(θk+1, Xtk)

]

−
∑
|α|=3

1

α!
Ex0

[
(4]k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ+−

k ∪Ω−+
k

]
.

We have, combining the results of Corollary 3.16 and Proposition 5.5,∣∣∣∣∣∣
∑
|α|=3

1

α!
Ex0

[
(4]k+1X)α

∂3u

∂xα
(θk+1, Xtk)

]∣∣∣∣∣∣ ≤ C h3/2
n . (5.17)

In addition, and for the same reasons, we have

Ex0 |S++4
k + S−−4

k | ≤ C h2
n.

To summarize the calculations of this subsection, we have obtained

Ex0Sk =

Ex0Lu(θk+1, Xtk)hn + Ex0

[(
Sk − 〈4]k+1X,∇xu(θk+1, Xtk)〉

)
IΩ+−

k ∪Ω−+
k

]
− Ex0

[(1

2
(4]k+1X)∗H[u](θk+1, Xtk)4]k+1X

+
∑
|α|=3

1

α!
(4]k+1X)α

∂3u

∂xα
(θk+1, Xtk)

)
IΩ+−

k ∪Ω−+
k

]
+O(h3/2

n )

=: Ex0Lu(θk+1, Xtk)hn + Ex0R(1)
k − Ex0R(2)

k +O(h3/2
n ). (5.18)

We now estimate the remaining terms Ex0R(1)
k and Ex0R(2)

k .

5.5 Control of the term Ex0R(1)
k . Expansion around a well chosen point in Γ

On the event Ω+−
k we have that Xtk+1

and Xtk are close to Γ. On this event, we also have that

X̂tk+1
∈ D− and Xtk ∈ D+. Remember our definition of (F γ+(x), π

γ+
Γ (x)) for x ∈ D−.

5.5.1 Decomposition of Ex0R(1)
k

As the function u is continuous across the surface Γ at point π
γ+
Γ (x), we get

Ex0

((
Sk − 〈4]k+1X,∇xu(θk+1, Xtk)〉

)
IΩ+−

k

]
= Ex0

[((
u(θk+1, Xtk+1

)− u(θk+1, π
γ+
Γ (X̂tk+1

))
)

+
(
u(θk+1, π

γ+
Γ (X̂tk+1

))− u(θk+1, Xtk)
) )

IΩ+−
k

]
− Ex0

[
〈4]k+1X,∇xu+(θk+1, π

γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]
− Ex0

[
〈4]k+1X,∇xu(θk+1, Xtk)−∇xu+(θk+1, π

γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]
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so that

Ex0
((
Sk − 〈4]k+1X,∇xu(θk+1, Xtk )〉

)
I
Ω+−
k

]
=
{
Ex0

[
〈Xtk+1 − π

γ+
Γ (X̂tk+1),∇xu−(θk+1, π

γ+
Γ (X̂tk+1))〉I

Ω+−
k

]
− Ex0

[
〈Xtk − π

γ+
Γ (X̂tk+1),∇xu+(θk+1, π

γ+
Γ (X̂tk+1))〉 I

Ω+−
k

]
−Ex0

[
〈4]k+1X,∇xu+(θk+1, π

γ+
Γ (X̂tk+1))〉 I

Ω+−
k

]}
:=L+−1

k

+


∫ 1

0

dξ
∑
|α|=2

(1− ξ)2

α!
Ex0

[
(X̂tk+1 − π

γ+
Γ (X̂tk+1))α

×∂
αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1) + ξ(X̂tk+1 − π

γ+
Γ (X̂tk+1))) I

Ω+−
k

]
−
∫ 1

0

dξ
∑
|α|=2

(1− ξ)2

α!
Ex0

[
(Xtk − π

γ+
Γ (X̂tk+1))α

×∂
αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1) + ξ(Xtk − π

γ+
Γ (X̂tk+1))) I

Ω+−
k

]}
:=L+−2

k

−
{
Ex0

[
〈4]k+1X,∇xu+(θk+1, Xtk )−∇xu+(θk+1, π

γ+
Γ (X̂tk+1))〉 I

Ω+−
k

]}
:=L+−3

k

=L+−1
k + L+−2

k + L+−3
k .

5.5.2 Canceling the term L+−1
k using the transmission condition

Observe that due to the fact that(
X̂tk − π

γ+
Γ (X̂tk+1

)
)

+
(
X̂tk+1

− X̂tk

)
= X̂tk+1

− πγ+Γ (X̂tk+1
).

we have that

L+−1
k = Ex0

[(
〈Xtk+1

− πγ+Γ (X̂tk+1
),∇xu−(θk+1, π

γ+
Γ (X̂tk+1

))〉

−〈X̂tk+1
− πγ+Γ (X̂tk+1

),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉
)

IΩ+−
k

]
= Ex0

[
F γ+(X̂tk+1

)
(
〈−γ−(π

γ+
Γ (X̂tk+1

)),∇xu−(θk+1, π
γ+
Γ (X̂tk+1

))〉

−〈γ+(π
γ+
Γ (X̂tk+1

)),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉
)

IΩ+−
k

]
= 0,

where we have used the vector problem solved by (F γ+ , π
γ+
Γ ) and Equation (4.5) (i.e. the transmission

condition (?) and the definition of γ±(x)).

5.5.3 The term L+−2
k

We now turn to the term L+−2
k .

The term L+−2
k is the sum of two terms. These two terms are treated similarly, so we concentrate

only on the first. Let α such that |α| = 2. We have that

Ex0

[∣∣∣(Xtk − π
γ+
Γ (X̂tk+1

))α
∣∣∣ IΩ+−

k

]
≤ c1Ex0

[
|Xtk − π

γ+
Γ (X̂tk+1

)|2 IΩ+−
k

]
≤ c2Ex0

[
|4]k+1X|

2 IΩ+−
k

]
.

The same kind of treatment can be performed for the second term of L+−2
k . Conditionning w.r.t Ftk

and applying the Cauchy-Schwarz inequality in the conditionnal expectation, we find using the result of
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Lemma 5.3,

|L+−2
k | ≤ CEx0

[
EFtk

[∣∣4]k+1X
∣∣4]1/2 PFtk

(
Ω+−
k

)1/2]
≤ C hn Ex0PFtk

(
Ω+−
k

)1/2
.

5.5.4 The term L+−3
k

For the term L+−3
k , we may perform a Taylor’s expansion to the term

∇xu+(θk+1, Xtk)−∇xu+(θk+1, π
γ+
Γ (X̂tk+1

)).

Using Corollary 3.16 and the Cauchy-Schwarz inequality, we find that

|L+−3
k | ≤ CEx0

[∣∣4]k+1X
∣∣∣∣Xtk − π

γ+
Γ (X̂tk+1

)〉
∣∣ IΩ+−

k

]
≤ CEx0

[∣∣4]k+1X
∣∣2 IΩ+−

k

]
. (5.19)

Finally, as for the term L+−2
k , we find that

|L+−3
k | ≤ C hnEx0PFtk

(
Ω+−
k

)1/2
.

Using the same method for the other side Ω−+
k , we find that

Ex0R(1)
k ≤ C hnE

x0

(
PFtk

(
Ω+−
k

)1/2
+ PFtk

(
Ω−+
k

)1/2)
.

5.6 Summing up

The term Ex0R(2)
k can be estimated using the same techniques used in the previous section and we omit

the details.
Using now the fact that ∂tu− Lu = 0, we finally find that

εx0

T ≤ C hn E
x0

n−1∑
k=0

(
PFtk

(
Ω+−
k

)1/2
+ PFtk

(
Ω−+
k

)1/2)
+ C

√
hn. (5.20)

Observe – using the result of Lemma 5.3 – that

PFtk
(
Ω+−
k

)1/2
= PFtk

(
Xtk ∈ D+, X̂tk+1

∈ D−
)1/2

≤ PFtk
(
||X̂tk+1

−Xtk || ≥ d
(
Xtk ,Γ

))1/2

≤ K(T ) exp

(
−1

2

d2
(
Xtk ,Γ

)
hn

)

and the same kind of inequality holds true for PFtk
(
Ω−+
k

)1/2
.

Finally,

εx0

T ≤ K(T )hn Ex0

n−1∑
k=0

exp

(
−1

2

d2
(
Xtk ,Γ

)
hn

)
+ C

√
hn,

and we conclude the proof of Theorem 5.1 using the result of Lemma 5.4 (note that if we sum up all the
dependancies of our constants, we indeed have that K in (5.1) depends on d, λ, Λ, u0 and T ).
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6 Numerical experiments

In these examples d = 2 and the domain D is the open unit disc, i.e.,

D = {(x1, x2) ∈ R : x2
1 + x2

2 < 1}.

Note that the boundary of D is the unit circle ∂D = {(x1, x2) ∈ R : x2
1 + x2

2 = 1}.
The subdomains D+ and D− are defined by

D+ = {(x1, x2) ∈ D with x2 > 0} and D− = {(x1, x2) ∈ D with x2 < 0},

so that the interface is Γ = {(x1, 0) ∈ R2 : −1 ≤ x1 ≤ 1}.
The diffusion matrix is defined by

a(x) = a+(x)Ix∈D+
+ a−(x)Ix∈D̄− ,

with
a±(x) = P ∗±E±(x)P±

where P± are rotation (therefore orthogonal) matrices

P± =

(
cos(θ±) − sin(θ±)
sin(θ±) cos(θ±)

)
(for θ± ∈ [0, 2π)), and E±(x) are diagonal matrix-valued functions

E±(x) =

(
λ1
± + ε±x2 0

0 λ2
± + ε±x2

)
where λ1

±, λ
2
± > 0 and ε± < λi± for i = 1, 2. Note that this ensures that a(x) satisfies the uniform

ellipticity assumption (E).
We take θ+ = π

4 , θ− = π
3 , λ1

+ = 1, λ2
+ = 9, λ1

− = 2, λ2
− = 3 , ε+ = 0.5 and ε− = 1.9. This gives

a+(x) =
1

2

(
5 + 0.5x2 4

4 5 + 0.5x2

)
, a−(x) =

1

2

(
11
4 + 1.9x2

√
3

4√
3

4
9
4 + 1.9x2

)
.

Performing our Transformed Euler Scheme.
We have the Cholesky decompositions 2a±(x) = σ±σ

∗
±(x), with

σ+(x) =

( √
5 + 0.5x2 0

4/
√

5 + 0.5x2

√
5 + 0.5x2 − 16/(5 + 0.5x2)

)
and

σ−(x) =

 √
11
4 + 1.9x2 0

√
3

4 /
√

11
4 + 1.9x2

√
9
4 + 1.9x2 − 3/(44 + 30.4x2)

 ,

so that 2a(x) = σσ∗(x) with σ(x) = σ+(x)Ix∈D+
+ σ−(x)Ix∈D̄− . Besides we have

∂a(x) =

(
0

0.25

)
Ix∈D+

+

(
0

0.95

)
Ix∈D̄− .

Note that when the scheme crosses the interface Γ, we compute the quantities π
γ±
Γ (X̂tk+1

) and F γ±(X̂tk+1
)

in the following way (we will detail the procedure for π
γ+
Γ (X̂tk+1

) and F γ+(X̂tk+1
)). Recall that we have

X̂tk+1
− πγ+Γ (X̂tk+1

) = F γ+(X̂tk+1
)γ+(π

γ+
Γ (X̂tk+1

)).

But here ν = (0, 1)∗ so that for any x ∈ Γ

γ+(x) =
1

2

(
4

5 + 0.5x2

)
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and
(
π
γ+
Γ (X̂tk+1

)
)

2
= 0 so that

(
X̂tk+1

− πγ+Γ (X̂tk+1
)
)

2
=
(
X̂tk+1

)
2
. This yields

F γ+(X̂tk+1
) =

(
X̂tk+1

)
2

2.5
,

and then

π
γ+
Γ (X̂tk+1

) =

( (
X̂tk+1

)
1
− F γ+(X̂tk+1

)× 2
0

)
.

Then we have everything in hand to perform our Tranformed Euler Scheme X.

Comparing with an Euler scheme applied on regularized coefficients. A natural method with
which to compare our tranformed scheme is to regularize first the coefficients and then to perform a
standard (i.e. not transformed) Euler scheme. More precisely consider the operator

C2(Rd;R) 3 f 7→ Lεf = ∇ ·
(
aε∇xf

)
= Tr [H[f ]aε] + (∂aε)∗∇xf

where aε is some smoothed version of a (ε is the regularization step, see the following discussion about
its choice). Then Lε is the generator of the solution of the SDE

dXε
t = σε(Xε

t ) dWt + [∂aε](Xε
t ) dt, (6.1)

where σε(σε)∗ = 2aε. The process Xε may be approached by a standard (i.e. not transformed) Euler
scheme X

ε
, with time step hn.

Let hn be fixed. In fact ε will be chosen in function of hn. We are first inspired by the random walk
approach proposed in [41]. In this later paper Equation (3.11) indicated that ε has to be proportional

to the square root of the space discretisation step. Then, using a scaling argument we choose ε = h
1/4
n .

Then we set
aε(x) = a(x)1|x2|>ε +Aε(x)1|x2|≤ε

where

Aε(x) =
1

2

(
31
8 − 0.7ε+ x2( 9

8ε + 1.2)
√

3
8 + 2 + x2( 2

ε −
√

3
8ε )√

3
8 + 2 + x2( 2

ε −
√

3
8ε ) 29

8 − 0.7ε+ x2( 11
8ε + 1.2)

)
.

Note that the thus defined coefficient aε is continuous and piecewise differentiable. Then we have
∂aε = ∂a(x)1|x2|>ε + ∂Aε(x)1|x2|≤ε where

∂Aε(x) =

(
1
ε −

√
3

16ε
11
16ε + 0.6

)
,

and 2aε(x) = σε[σε]∗(x) with σε(x) = σ(x)1|x2|>ε + Σε(x)1|x2|≤ε and Σε(x) being equal to
√

31
8
− 0.7ε+ x2( 9

8ε
+ 1.2) 0

√
3

8
+2+x2( 2

ε
−
√

3
8ε

)√
31
8
−0.7ε+x2( 9

8ε
+1.2)

√
29
8
− 0.7ε+ x2( 11

8ε
+ 1.2)−

(√
3

8
+2+x2( 2

ε
−
√

3
8ε

)
)2

31
8
−0.7ε+x2( 9

8ε
+1.2)

 .

With these coefficients it is easy to perform a standard Euler Scheme on the SDE (6.1).

We will compare both methods on the two following examples. Benchmarks will be provided by a
deterministic approximation of the solutions of the PDE of interest.

Example 1. We wish here to treat the elliptic transmission problem

(E0
T,bounded D)



Lu(x) = 0 ∀x ∈ D

〈a+∇xu+(y)− a−∇u−(y), ν(y)〉 = 0 ∀y ∈ Γ

u(y+) = u(y−) ∀y ∈ Γ

u(x) = f(x) ∀x ∈ ∂D.
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Point x Finite Element Euler Scheme on Transformed
by FREEFEM regularized coefficients Euler Scheme
(7.105 vertices) (hn = 10−n, n = 4, 5, 6) (hn = 10−n, n = 2, 4, 5, 6)

x = (0, 0.5)∗ -0.1207 - -0.136356
-0.115913 -0.121001
-0.117946 -0.121299
-0.118792 -0.120821

x = (0.9, 0.05)∗ 0.92527 - 0.824901
0.915937 0.924759
0.922813 0.925370
0.923853 0.925389

x = (−0.3,−0.5)∗ -0.745461 - -0.737754
-0.738184 -0.746226
-0.739099 -0.745676
-0.742611 -0.745829

Table 1: Approximated values of the solution u(x) of (E0
T,,bounded D) at points x =

(0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗ computed with a finite element method (7.105 vertices), a standard
Euler scheme applied on a regularisation aε of a, and our tranformed Euler scheme (with N = 106 Monte
Carlo sample, and different values of hn).

We take the function f to be
f(x) = sin(3x1) + cos(4x2).

Consider then on one side our study of the convergence in the parabolic case, and on the other side
the Feynman-Kac representation for elliptic PDEs available in the smooth case (see for instance Theo-
rem 5.7.2 in [19]). One can hope that

Ex[f(Xτ )] −−−−→
hn→0

u(x),

where X denotes our scheme and τ = inf{t ≥ 0 : Xt /∈ D}.
We thus compute a Monte Carlo approximation of Ex[f(Xτ )] on one side (with N = 106 paths). Note

that in this Monte Carlo procedure we have used a boundary shifting method, on order to reduce the
bias introduced by the approximation of the exit time τ = inf{t ≥ 0 : Xt /∈ D} by τ (see [18] Subsection
5.4.3, and the references therein).

On the other side Ex[f(X
ε

τε)], with τε = inf{t ≥ 0 : X
ε

t /∈ D}, provides another approximation
of u(x) (note that we use again a boundary shifting method).

Benchmarks are provided by the software FREEFEM with which we compute an approximation
of u(x) by a finite element method, using around 1.5× 106 triangles and 7× 105 vertices (finite elements
basis consists of polynomial functions of order 1).

Table 1 shows the results. It seems that our Transformed Euler scheme converges quicker to the
benchmark than the standard Euler scheme applied on regularized coefficients.

Example 2. We now turn to some parabolic example (with the same matrix-valued coefficient a). We
consider the following problem (PT,bounded D) :

∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (?)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(t, x) = 0 ∀(t, x) ∈ (0, T ]× ∂D

u(0, x) = u0(x) ∀x ∈ Rd.
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Point x Finite Element / Euler Scheme on Transformed
Crank-Nicholson regularised coefficients Euler Scheme

(4.5× 105 vertices, (hn = 10−n, n = 5, 6, 7) (hn = 10−n, n = 4, 5, 6, 7)
300 time steps)

x = (0, 0.5)∗ 2.26288 - -
2.26766 2.28299
2.26332 2.27562
2.26233 2.26621

x = (0.9, 0.05)∗ 0.2564 - -
- -

0.269654 0.263835
0.263029 0.258807

x = (−0.3,−0.5)∗ 4.24525 - -
- -

4.23472 4.23862
4.23981 4.24483

x = (0, 0.05)∗ 4.02857 - -
4.03452 4.0381
4.02488 4.03255
4.02483 4.02936

Table 2: Approximated values of the solution u(T = 0.1, x) of (PT,bounded D) at points x =
(0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗, (0, 0.05)∗ computed with a finite element / Crank-Nicholson scheme
method (4.5× 105 vertices, 300 times steps), a standard Euler scheme applied on a regularisation aε of
a, and our tranformed Euler scheme (with N = 106 Monte Carlo sample, and different values of hn).

Here we will take T = 0.1 and
u0(x) = 10 ∗ (1− |x|2).

Note that the parabolic problem (PT,bounded D) is posed in a bounded domain, unlike in our theoretical
study. But we have found that convenient for numerical purposes.

Note also that u0 belongs to H1
0 (D) and is therefore compatible with the uniform Dirichlet boundary

condition in (PT,bounded D). But it does not belong to the domain D(A), as it does not satisfy the
transmission condition (?).

Nevertheless one can hope that

Ex[u0(Xt) 1t≤τ ] −−−−→
hn→0

u(t, x)

(here we use for example 4.4.5 in [18] and use again the notation τ of Example 1).
Again we compute a Monte Carlo approximation of Ex[u0(Xt) 1t≤τ ] on one side and of Ex[u0(X

ε

t ) 1t≤τε ]
on the other side (with N = 106 paths and using again the boundary shifting method).

We use FREEFEM to compute an approximation of u(t, x) by a finite element method (discretization
in space) and a Crank-Nicholson scheme (discretization in time), using around 9 × 109 triangles and
4.5× 105 vertices, and 300 time steps.

Table 2 shows the results, for t = T . Again it seems that our transformed Euler scheme converges
quicker to the benchmark, even if for some reason it is less obvious at point x = (0, 0.5)∗.
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