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A TRANSFORMED STOCHASTIC EULER SCHEME FOR
MULTIDIMENSIONAL TRANSMISSION PDE

By Pierre Étoré†, Miguel Martinez‡

Laboratoire Jean-Kuntzmann† and Université Paris-Est, Marne-la-Vallée‡

In this paper we consider multi-dimensional Partial Differential
Equations (PDE) of parabolic type in divergence form. The coeffi-
cient matrix of the divergence operator is assumed to be discontinu-
ous along some smooth interface. At this interface, the solution of the
PDE presents a compatibility transmission condition of its conormal
derivatives (multi-dimensional diffraction problem). We prove an ex-
istence and uniqueness result for the solution and study its properties.
In particular, we provide new estimates for the partial derivatives of
the solution in the classical sense. We then construct a low complex-
ity numerical Monte Carlo stochastic Euler scheme to approximate
the solution of the PDE of interest. Using the afore mentioned es-
timates, we prove a convergence rate for our stochastic numerical
method when the initial condition belongs to some iterated domain
of the divergence form operator. Finally, we compare our results to
classical deterministic numerical approximations and illustrate the
accuracy of our method.

Introduction.

Statement of the problem. Given a finite time horizon T , a real valued function x 7→ u0(x),
and an elliptic symmetric matrix x 7→ a(x) ∈ Rd×d, which is smooth except at the interface sur-
faces Γ between subdomains of Rd, we consider the parabolic transmission problem (or diffraction)
problem : find u from [0, T ]× Rd to R satisfying

(0.1)


∂tu(t, x)−∇. (a(x)∇xu(t, x)) = 0, ∀(t, x) ∈ (0, T ]× (Rd \ Γ)

u(0, x) = u0(x), ∀x ∈ Rd

Compatibility transmission conditions along the interfaces surfaces.

The objective of this paper is to provide an efficient stochastic numerical resolution method for
the solution of (0.1).

Parabolic PDEs in divergence form and their probabilistic representations. Parabolic equations
involving L = ∇ · (a∇x) have been a major preoccupation for mathematicians in the fifties and
the sixties. We may cite the pioneering works of J.Nash [38, 39], E. De Giorgi [7], and J. Moser
[36, 35, 34] that prove the continuity of the solution of the Cauchy problem attached to L and also
the celebrated paper by D.G. Aronson [1], which gives upper and lower Gaussian estimate bounds
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Monte Carlo methods.
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for the fundamental solution of the operator L (for a more modern perspective on evolution PDEs
involving divergence form operators of type L see also [28]).

In the particular case where the matrix a is assumed to be discontinuous along the regular
boundaries of some nice disjoint connected open sets in Rd, a refined analysis of the parabolic
equation may be found in the monograph [17], where the parabolic equation is interpreted as a
diffraction problem with transmission conditions along the discontinuity boundaries.

Up to our knowledge, the first construction of a Markovian semi-group associated to L = ∇.(a∇)
(in the general case where a is only supposed to be measurable) may be found in the seminal paper
of D. Stroock [45] (see also [2], Chapter 7). To understand our difficulty, the conclusion of [45] is :

It should be obvious that the results obtained in this section can be used to construct a diffusion process on Ω
corresponding to anyone of the semigroups discussed herein. In addition, the convergence results for the semigroups
give rise to weak convergence of the corresponding measures on Ω.

It remains an open and challenging problem to provide a better probabilistic interpretation of these essentially
analytic facts.

Since then, there have been many works that try to provide this ’better probabilistic interpreta-
tion’ in a multidimensional framework.

The construction of the associated Dirichlet process X. In the general case where the symmetric
matrix a is only supposed to be elliptic and measurable, the theory of Dirichlet forms as exposed in
the monograph by Fukushima [13, 12] gives surely the best possible answer to this question under
very general hypothesis. The symmetric operator L is naturally attached to its corresponding
symmetric Dirichlet form, giving rise to a stochastic Dirichlet process X that is described as the
addition of a continuous martingale and a continuous additive functional of zero energy. The theory
ensures the validity of a Feynman-Kac type formula linking the solution of the Cauchy problem
and the Dirichlet process X.

Going further in the analysis, A. Roskosz [43, 44] proves that X satisfies a Lyons-Zheng de-
composition, namely X may be written as the solution of a complex stochastic equation that is
the addition of three processes : a martingale, an increment of a reversed time martingale (whose
quadratic variations depend on the unknown process X), and an additive functional involving the
logarithm derivative of the fundamental solution of the parabolic operator evaluated at X.

This description permits to retrieve some kind of Itô formula for φ(XT ) where φ belongs to some
’good’ Sobolev space.

From a numerical perspective, it seems clear that the Lyons-Zheng decomposition provides a
description of X that is so strongly nonlinear (time reversion and logarithm derivative of the
density of the unknown process), that is seems quite impossible to propose a stochastic numerical
scheme for the process X at this stage.

However one may hope to describe in more detail the behavior of the trajectories of X when the
coefficient matrix a – instead of being assumed to be only elliptic measurable – is now assumed to
be very smooth outside discontinuities that take place along nice and smooth surfaces Γ.

In this perspective, many papers go deeper and manage to apply the stochastic calculus tools
developed by the theory of Dirichlet forms to give a more precise answer to the description of
processes related to X (see for example [48], [22], [49] and also the results included in the exercises
of the monograph [12]). Applying the results of the theory of Dirichlet forms, we prove here that X is
the solution of some stochastic differential equation that is the addition of the expected martingale
term driven by some Brownian motion and the expected additive drift term (both terms involving
the unknown process X), and an additive functional AΓ that captures the behavior of the process
at the discontinuity boundaries Γ. The additive functional is rigorously constructed through its
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Revuz correspondence with some transformation of the natural surface measure of Γ involving the
discontinuity jumps of a along Γ and the conormal derivatives.

Numerical Monte-Carlo methods in the one-dimensional case. When the underlying space is
one dimensional and the discontinuity is at zero (Γ then reduces to the single point 0), the theory

allows to identify AΓ with a(0+)−a(0−)
a(0+)+a(0−)L

0
t (X) and gives rise to the following stochastic differential

equation for the process X

(0.2) dXt = σ(Xt)dBt + σσ′±(Xt)dt+
a(0+)− a(0−)

a(0+) + a(0−)
dL0

t (X).

Here (Bt)t≥0 stands for some standard one dimensional Brownian motion constructed on some
probability space (Ω,F ,Px0) and we have σ2 = 2a. The process (L0

t (X))t≥0 denotes the symmetric
local time of the unknown process.

Under somewhat weaker conditions than those stated above, one can show that (0.2) has a unique
strong solution (Xt)t≥0, satisfying X0 = x0 Px0 − a.s., which is moreover a strong Markov process:
see Le Gall [19].

In this one dimensional context, the link between solutions of (0.2) and the solutions of parabolic
PDEs with transmission conditions involving the operator L has been thoroughly studied. One
may refer to the overview [21], and the series of works [29, 30, 32], [23], and [8, 9] where stochastic
numerical schemes are presented. Note that in most of these works the line-space is discretized
and the scheme is in fact some rescaled random walk evolving on a space-time grid. The method
proposed in [30] is an exception : it is an Euler type scheme that does not require any discretization
of the underlying one dimensional state space.

Though somewhat different, all these one dimensional numerical schemes are constructed using
this explicit representation of AΓ as a local time. In particular, all the tools related to the theory of
one dimensional local times for semi martingales (Itô -Tanaka formula, occupation time formula)
are used in force to construct these numerical schemes and prove that there is indeed convergence
in some sense towards the solution of (0.2).

Contribution of this paper. However, when turning to the objective of constructing a stochastic
numerical scheme for X in a multidimensional context (when d ≥ 2), the description of AΓ via its
Revuz correspondence measure does not provide a direct natural way for the discretization of X
(see however the Phd Thesis of L. Lenotre [24] and the walk on spheres algorithm in [5] in the
special case of a diagonal coefficient matrix a constant outside the discontinuity boundary Γ). We
also mention the work of [26], which attempts to interpret stochastically the deterministic Galerkin
method using jump Markov Chains.

In this article, we propose to tackle the problem of the construction of a quite simple numerical
scheme of Euler type for X from another perspective. Our starting point is the solution of the
parabolic equation involving L. Inspired by the proof of the convergence of the Euler scheme
constructed in the one dimensional case in [32], we build a multidimensional Euler scheme that is
purposely designed to capture the multidimensional transmission conditions of the parabolic PDE
associated to L.

The novelty of this approach is that we construct our scheme without being concerned at first
sight by the description of the limiting process X. All our concern is to guarantee that the error
between the expectation of our process – visualized through some very smooth arbitrary test func-
tion (belonging to the iterated domains of the operator L) – and the corresponding solution of the
parabolic equation (with the test function as initial condition) converges to zero.
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The resulting numerical scheme may be viewed as an extension of the symmetrized Euler scheme
of [4] for reflected diffusion with smooth coefficients to partially reflected diffusions with discon-
tinuous coefficients, when no Skorokhod representation of the local time at the boundary Γ is
available.

When turning to the proof of the convergence, we face the difficulty of getting global precise
estimation bounds for the solution of the parabolic equation and its partial derivatives (up to order
four in the space variable) outside the discontinuity boundary Γ for all strictly positive times (and
not just for times t satisfying t ≥ ε for some ε > 0) and all the way up to the boundary (not
only interior estimates). Unfortunately, the analysis performed in [17] (which is somewhat difficult
to read and to understand in full detail) does not provide the refined estimations we need for our
purpose (see also the recent work for the estimation of the gradient in [37] extending [27] to the
parabolic case, but still for times after some ε > 0 and estimates depending on ε).

Instead of trying to adapt and extend the results in [17], we preferred to look at the results
obtained for the solutions of elliptic divergence transmission problems involving L (see [33] and
also the rich monograph [3]). In this paper we extend the results of [33] to the parabolic case
by performing the classical Hille-Yosida theorem and we perform the analysis in order to get
global estimates. The price to pay is to strengthen strongly our assumptions on the regularity of
a outside its discontinuity boundary Γ and to assume that the initial condition function (the test
function) belongs to some order of the iterated domain of the operator L. As expected, the orders
of smoothness and iteration that we require increase strongly with the dimension d.

Then, using the classical Sobolev injections, we obtain all the estimates on the solution we need
to prove the convergence of our stochastic numerical scheme.

Note that the analysis of the weak error, visualized through restricted test functions belonging
to some large enough iteration of the domain of the underlying operator, seems quite natural. This
is what is done for example in [4] for the symmetrized Euler scheme corresponding to reflected dif-
fusions, where the spatial derivatives of the test functions are assumed to verify some compatibility
conditions at the reflection boundary ; (whereas in [4] the compatibility conditions are fixed once
and for all, the compatibility conditions we require depend crucially on the dimension d).

Finally, we prove that the weak error of our scheme is of order the square root of the time
discretization step (improving slightly the results of [32] in the one dimensional case).

Organization of the paper. The paper is organized as follows.
In Section 1 we present the notations of the paper and our main assumptions. In Section 2 we

study the parabolic transmission problem. Using classical tools of deterministic partial differential
equation, we prove bounds on the solution and its partial derivatives when the initial condition is
very smooth (i.e. belongs to iterated domains of the operator; see the result of Corollary 2.20). Up
to our knowledge such results cannot be found in the existing literature on the subject. The proofs
of many technical lemmas and propositions of this section are in fact transfered to an appendix
section at the end of the paper. These proofs are technical and we believe they may be omitted at
the first reading of the paper.

Using the theory of Dirichlet forms in Section 3 we proceed to construct the stochastic process X
that is attached to the parabolic transmission problem. The main result of this section is the proof
of a Skorokhod decomposition of the Hunt process associated to our transmission operator in
divergence form.

In Section 4 we introduce our transformed Euler type stochastic numerical scheme, which cap-
tures the transmission condition at the boundary interface Γ (see the explanation figure 1). Using
in force the results obtained in the former sections, we manage to prove a weak convergence result
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towards the solution of the parabolic transmission problem in Section 5. We show that the con-
vergence is of order the square root of the time discretization step. The precise result is stated in
Theorem 5.1.

Finally, we conclude by presenting some numerical studies in Section 6. We compare results given
by our procedure to stochastic numerical schemes that use a regularization of the coefficient a in
the vicinity of the boundary, and to classical numerical deterministic scheme (using finite element
methods for the discretization in space).

1. General notations and assumptions. For two points x, y ∈ Rd we denote by 〈x, y〉 their
scalar product 〈x, y〉 = x∗y =

∑d
i=1 xiyi.

For a point x ∈ Rd we denote by |x| its euclidean norm i.e. |x|2 =
∑d

i=1 x
2
i = 〈x, x〉.

We denote by (e1, . . . , ed) the usual orthonormal basis of Rd.
For two metric spaces E,F we will denote by C(E;F ) the set of continuous functions from E to

F and, for 1 ≤ p ≤ ∞, by Cp(E;F ) the set of functions in C(E;F ) that are p times differentiable
with continuous derivatives.

We will denote by Cpc (E;F ) the set of functions in Cp(E;F ) that have a compact support.
We will denote by Cpb (E;F ) the set of functions in Cp(E;F ) that are continuous with bounded

p first derivatives (Cb(E;F ) denotes the set of functions in C(E;F ) that are bounded).
If F = R, we will sometimes simply write for instance C(E) for C(E;R), for the sake of concise-

ness.
For any multi-index α = (i1, . . . , id) ∈ Nd and x = (x1, . . . , xd) ∈ Rd, we note xα the product

xi11 . . . x
id
d and |α| = i1 + · · ·+ id. So that for u ∈ C |α|(Rd) we will denote ∂|α|u

∂xα , or in short ∂αu, the

partial derivative ∂i1
x
i1
1

. . . ∂id
x
id
d

u.

Let U ⊂ Rd an open subset. We will denote by L2(U) the set of square integrable functions from
U to R equipped with the usual norm and scalar product || · ||L2(U) and 〈·, ·〉L2(U).

We denote H1(U) the usual Sobolev space W 1,2(U), equipped with the norm

(1.1) v 7→
(
||v||2L2(U) +

d∑
i=1

||Div||2L2(U)

)1/2
=: ||v||H1(U)

where Div denotes the derivative in the distribution sense with respect to xi of v ∈ L2(U). Note
that for the sake of conciseness we will sometimes note ∇v = (D1v, . . . , Ddv)∗ and thus

||∇v||2L2(U) =

d∑
i=1

||Div||2L2(U)

for a function v ∈ H1(U).
We recall that the space H1

0 (U) ⊂ H1(U) can be defined as H1
0 (U) = C∞c (U ;R) = C1

c (U ;R).
We denote H−1(U) the usual dual topological space of H1

0 (U).
For m ≥ 2, we denote Hm(U) the usual Sobolev space Wm,2(U) ⊂ L2(U) of functions having m

successive weak derivatives in L2(U) (and for a multi-index α with |α| ≤ m and u ∈ Hm(U) we
denote Dαu such a weak derivative).

We will have to consider fractional Sobolev spaces - in fact Hs(Γ), s ∈ {−1
2 ,

1
2}, where Γ is

some boundary of dimension d − 1 between domains included in Rd. We recall here the definition
of Hs(Rn), s ∈ R, based on Fourier transform. We denote S(Rn) the Schwartz space of rapidly
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decreasing C∞(Rn) functions, and S ′(Rn) the space of temperate distributions (see [33] p72 for
details). For u ∈ S(Rn) we define û(ξ) =

∫
Rn e

−i2πξ∗xu(x)dx, ξ ∈ Rn. Then for u ∈ S ′(Rn), û is
defined by extension, using

(1.2) 〈û, ϕ〉S′,S = 〈u, ϕ̂〉S′,S , ∀ϕ ∈ S(Rn).

We thus have
Hs(Rn) =

{
u ∈ S ′(Rn) : (1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)

}
.

This space is equipped with the norm

v 7→
∫
Rn

(1 + |ξ|2)s|v̂(ξ)|2dξ =: ||v||Hs(Rn).

In the case s = 1 the thus defined Sobolev space corresponds in fact exactly to our previous
definition of H1(Rn).

The notion of a Lipschitz domain U ⊂ Rd (resp. of class Ck) with bounded boundary Γ = ∂U
is defined with the help of a system of local Lipschitz change of coordinates (resp. of class Ck; see
[33] Chap.3 pp89-90).

This allows to define the space Hs(Γ) from Hs(Rd−1), 0 ≤ s ≤ 1, in the case U is Lipschitz with
bounded boundary Γ (see again [33] Chap. 3, pp98-99).

In the case where U is Lipschitz with bounded boundary Γ, we denote H−1/2(Γ) and H̃−1(U) the
dual spaces of respectively H1/2(Γ) and H1(U) (in coherence with respectively p98-99 and Theorem
3.30 p92 in [33]).

The surface measure ς(dy) on the boundary Γ of U can be defined as follows. Consider a coor-
dinate neighborhood

U ∩G =
{

(x′, xd) | xd < F (x′)
}
∩G

with a Lipschitz function F . Denote by `(dx′) the Lebesgue measure on Rd−1. Since F is differen-
tiable a.e. with bounded ∇F , we may let for any Borel B ⊂ Γ ∩G

ς(B) =

∫
B∗

(
1 + |∇F (x′)|2

)1/2
`(dx′) , B∗ = {x′ | (x′, F (x′)) ∈ B}.

Then, it is known that ς(dy) a.e. point x ∈ Γ admits a unit inward normal vector ν(x).
Consider Rd = D̄+ ∪ D− with D+ and D− two open connected subdomains separated by a

transmission boundary Γ that is to say

Γ = D̄+ ∩ D̄−.

By an assumption of type ”Γ is bounded and Lipschitz (or of class Ck)” we will mean that both
D+ and D− are Lipschitz (or Ck) domains, and that Γ is bounded. Note that in that case we shall
consider D+ (resp. D−) as the interior (resp. exterior) domain. Note that D− is then unbounded
(although its boundary is bounded).

We shall encounter however the situation where D± and Γ are unbounded but we will restrict
ourselves to the case where D+ = Rd+ = {x = (x′, xd) ∈ Rd−1 × R, xd > 0}, D− = Rd− = {x =
(x′, xd) ∈ Rd−1 × R, xd < 0} and Γ = Rd−1 × {0}. This will be convenient to lead some of our
proofs. In fact when we assert a result mentioning the curve Γ without further precision this will
mean that either D± = Rd±, either Γ is bounded and Lipschitz (for example in the Green identities
of Subsubsection 2.1.2; see also Remark 2.11).
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We will denote γ : H1(D±) → H1/2(Γ) the usual trace operator on Γ (Γ is supposed to be
bounded and Lipschitz).

On the surface Γ we introduce the following assumption.

Assumption 1.1. (D) : The transmission boundary Γ is bounded and of class C5.

We denote
D = D+ ∪D− = Rd \ Γ ⊂ Rd.

For u ∈ C(Rd;R) we denote for a point y ∈ Γ

u(y±) = lim
z→y , z∈D±

u(z).

For u ∈ C(Rd;R) ∩ C1(D;R) we denote ∇xu = ( ∂u∂x1 , . . . ,
∂u
∂xd

)∗ and, for a point y ∈ Γ

(1.3) ∇xu±(y) = lim
z→y , z∈D±

∇xu(z),

if this limit exists.
For a vector field G ∈ C(Rd;Rd) ∩ C1(D;Rd) we denote by ∇ · G its divergence i.e. ∇ · G =∑d
i=1

∂Gi
∂xi

.

For G ∈ C2(D;R) and x ∈ D we denote H[G](x) the Hessian matrix of G at point x.

Let a(x) = (aij(x))i,j∈{1,...,d} be a symmetric matrix valued and time homogeneous diffusion
coefficient.

If aij ∈ C1(D;R) for all 1 ≤ i, j ≤ d and u ∈ C(Rd;R) ∩ C2(D;R) we denote

(1.4) Lu(x) = ∇ · (a(x)∇xu(x)) , ∀x ∈ D.

In the whole paper the coefficients of the function matrix a are always assumed to be measurable
and bounded. We assume

Assumption 1.2. (B) : There exists Λ∗ ∈ (0,∞) such that

(1.5) ∀x ∈ Rd, ∀i, j ∈ {1, . . . , d}, |aij(x)| ≤ Λ∗.

Let us denote Λ := dΛ∗ and Λ∗ = Λ2 = d2 Λ2
∗.

Then, we have for any x ∈ Rd and ξ ∈ Rd

ξ∗a(x)ξ =
∑

1≤i,j≤d
aij(x)ξiξj ≤ Λ∗

∑
1≤i,j≤d

ξiξj ≤
Λ∗
2

∑
1≤i,j≤d

(|ξi|2 + |ξj |2) = Λ∗d|ξ|2 = Λ|ξ|2,(1.6)

and

|a(x)ξ|2 =
∑

1≤i≤d
|
∑

1≤j≤d
aij(x)ξj |2 ≤ Λ2

∗ d
2
∑

1≤j≤d
|ξj |2 = Λ∗|ξ|2.(1.7)

We will also often make the following ellipticity assumption
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Assumption 1.3. (E) : There exists λ ∈ (0,∞) such that

(1.8) ∀x ∈ Rd, ∀ξ ∈ Rd, λ|ξ|2 ≤ ξ∗a(x)ξ.

Remark 1.4. Under the ellipticity assumption (E) each diagonal term aii of the matrix-valued
coefficient a : Rd → Rd×d has a uniformly bounded inverse (see Lemma 4.17 in [33]).

In the sequel we will frequently note a± the restrictions of a to D±. More precisely, by an
assumption of type ”the coefficients aij satisfy (a±)ij ∈ Cpb (D±)” we will mean that the restriction
of each aij to D+ (resp. D−) coincides on D+ (resp. D−) with a function ã+

ij of class Cpb (Rd) (resp.

ã−ij). So that for any x ∈ Γ we can give a sense for example to a+(x): it is limz→x , z∈D+ a(z) = ã+(x)

(denoting ã+(x) =
(
ã+
ij(x)

)
1≤i,j≤d).

Note that under (E) we can assert that for any x ∈ D we have

(1.9) a±(x) = P ∗±(x)D±(x)P±(x)

with P±(x) some orthogonal matrices and D±(x) some diagonal matrices with strictly positive
eigenvalues.

For a point x ∈ Γ we denote by ν(x) ∈ Rd the unit normal to Γ at point x, pointing toD+. Assume
the aij ’s satisfy (a±)ij ∈ C(D±). We define then the co-normal vector fields γ+(x) := a+(x)ν(x)
and γ−(x) := −a−(x)ν(x), for x ∈ Γ, and introduce the following assumption.

Assumption 1.5. (Γ) : The co-normal vector fields γ+ and γ− are of class C4.

Note that under (E) it is clear that we have

(1.10) ∀x ∈ Γ, 〈γ+(x), ν(x)〉 ≥ λ > 0 and 〈γ−(x), ν(x)〉 ≤ −λ < 0.

Note that the notation γ for the trace operator follows the usual one ([33] for instance) and the
notation γ± for the co-normal vectors follows the one of the paper [4]. But it will be dealt with the
trace operator only in Section 2 and in the Appendix, and with co-normal vectors only in Sections
4 and 5. So that these notations will cause no confusion.

To finish with we define the unbounded operator A : D(A) ⊂ L2(Rd)→ L2(Rd) by

D(A) =
{
u ∈ H1(Rd) with

d∑
i,j=1

Di(aijDju) ∈ L2(Rd)
}

and

∀u ∈ D(A), Au =

d∑
i,j=1

Di(aijDju).

Then we introduce the iterated domains defined recursively by

D(Ak) = {v ∈ D(Ak−1) : Av ∈ D(Ak−1)}, k ≥ 2.
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2. The parabolic transmission problem. Let 0 < T < ∞ a finite time horizon. Let us
consider the transmission parabolic problem

(PT)



∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (?)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(0, x) = u0(x) ∀x ∈ Rd.

We will say that (t, x) 7→ u(t, x) is classical solution to (PT) if it satisfies

(2.1) u ∈ C
(
[0, T ];C2(D̄+) ∩ C2(D̄−)

)
∩ C1

(
[0, T ];C(D̄+) ∩ C(D̄−)

)
∩ C

(
[0, T ];C(Rd)

)
and satisfies the following requisites. First, u satisfies the first line of (PT), where the derivatives
are understood in the classical sense. Second, for all 0 < t ≤ T the limits limz→y , z∈D± ∇xu(t, z)
satisfy the transmission condition (?) for all y ∈ Γ. Note that these limits exist thanks to (2.1).
Third, u is continuous accross Γ (third line). Fourth, it satisfies the initial condition at the fourth
line of (PT).
The aim of this section is to prove the following result.

Theorem 2.1. Let a = (aij)1≤i,j≤d satisfy (B), (E).

• Denote

(2.2) k0 =

{
bd4c+ 2 if d is even;

b3
2 + bd/2c

2 c+ 2 if d is odd.

Assume that the coefficients aij satisfy (a±)ij ∈ C2k0−3
b (D±) and Γ is bounded and of class

C2k0−2. Then for u0 ∈ D(Ak0) the parabolic transmission problem (PT) admits a classical
solution.
• Furthermore, if u0 ∈ D(Ak) for k ≥ k0, the coefficients aij satisfy (a±)ij ∈ C2k−1

b (D±) and Γ
is bounded of class C2k, this classical solution u is such that

u ∈ Ck−j
(

[0, T ] ; Cn(j)(D̄+) ∩ Cn(j)(D̄−)
)
, dd/4e ≤ j ≤ k

with n(j) = b2j − d
2c.

The idea is to use the Hille-Yosida theorem. This requires to study in a first time the associated
elliptic resolvent equation, in a weak sense. More precisely, for a source term f ∈ L2(Rd) we will
seek for a solution u in D(A) of

(2.3) u−Au = f

(see Proposition 2.12 below). Then, by applying the Hille-Yosida theorem in L2(Rd), we will get the
existence of a solution to (PT) in a semi-weak sense (for which the time derivatives are understood in
a classical sense and the space derivatives in a weak sense). Finally, using some Sobolev embedding
arguments, we will get Theorem 2.1.
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Remark 2.2. The result of Theorem 2.1 has to be compared with the classical results on
parabolic PDE for smooth coefficients (and with no transmission condition) In this more classical
situation, a unique classical solution to the parabolic PDE exists as soon as the aij’s are bounded
and Hölder continuous and satisfy (E), and u0 is continuous and satisfies some growth condition
(see for example [11] Chap. 1 or [25], Theorem 5.14). Here we ask additional smoothness on the
coefficients (a±)ij’s inside the domains D±. This is because our technique of proof is very different:
unlike the parametrix method in the classical case, this additional smoothness is required for the use
of the Hille-Yosida theorem and the Sobolev embeddings. With this approach, we manage to study
the global regularity of the classical solution of PT in the whole domains [0, T ]×D± (for all times
and all the way up to the transmission boundary Γ).

2.1. Study of the associated elliptic problem. In this subsection we establish the existence of a
solution to (2.3) belonging to D(A) and study its smoothness properties, together with the ones of
functions belonging to the iterated domains D(Ak), for k ≥ 1.

To that aim we will partly rely on the results in [33] Chap. 4, pp. 141-145. For the sake of clarity
and completeness we have rewritten the proofs of some of these results (see also the Appendix).

We recall that the coefficients aij are assumed to be bounded by Λ∗ so that we may define the
following continuous bilinear and symmetric form, which will be used extensively in the sequel

(2.4) E(u, v) =

d∑
i,j=1

〈aijDju,Div〉L2(Rd), ∀u, v ∈ H1(Rd).

Let u ∈ D(A). Using the definition of Au as a distribution acting on C∞c (Rd;R), and the density
of C∞c (Rd;R) in H1(Rd) = H1

0 (Rd), one can establish the following relation, linking A and the form
(2.4):

(2.5) E(u, v) = 〈−Au, v〉L2(Rd), ∀v ∈ H1(Rd).

2.1.1. Some preliminary results. In the sequel, for u ∈ L2(Rd), we frequently denote u+ (resp.
u−) the restriction of u to D+ (resp. D−). It may happen that we use this notation for restricted
distributions also.

We introduce the following notation for the jump across Γ of u ∈ L2(Rd), with u+ ∈ H1(D+)
and u− ∈ H1(D−):

[u]Γ = γ(u+)− γ(u−).

If [u]Γ = 0 we shall simply write γ(u) = γ(u+) = γ(u−).

We start with two lemmas. The proofs are postponed to the Appendix.

Lemma 2.3. Let v ∈ L2(Rd). Then, for any 1 ≤ i ≤ d, the distribution (Div)± is equal to
Di(v±). As a consequence, if v ∈ H1(Rd), then v± ∈ H1(D±).

Lemma 2.4 ([33], Exercise 4.5). Suppose u ∈ L2(Rd) with u± ∈ H1(D±). Then u ∈ H1(Rd) if
and only if [u]Γ = 0 a.e. on Γ.

Remark 2.5. The result of Lemma 2.4 has to be compared with the fact that if d = 1, we know
that any function in H1(Rd) has a continuous version ([6] Theorem VIII.2).
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2.1.2. Green identities. We shall consider restricted operators and bilinear forms in the following
sense. We define A+ : H1(D+)→ H−1(D+) by

∀v ∈ H1(D+), A+v =

d∑
i,j=1

Di

(
(a+)ijDjv

)
.

We define A− : H1(D−) → H−1(D−) in the same manner (note that we do not specify here any
domain D(A±)). Further, we define

E±(u, v) =
d∑

i,j=1

∫
D±

(a±)ijDjuDiv, ∀u, v ∈ H1(D±).

In the same fashion as for Equation (2.5), we have, for u± ∈ H1(D±) with A±u± ∈ L2(D±),

(2.6) E±(u±, v) =

∫
D±

(−A±u±)v, ∀v ∈ H1
0 (D±).

Imagine now that in (2.6) we wish to take the test function in H1(D±) instead of H1
0 (D±).

There will still be a link between A± and E±, but through Green type identities, involving conormal
derivatives and boundary integrals.

We introduce a specific notation for the one-sided conormal derivatives on Γ of u ∈ L2(Rd) with
u± ∈ H2(D±). Provided the (a±)ij are in C1

b (D±;R) and Γ is bounded and Lipschitz we set

(2.7) B±ν u = ν∗γ(a±∇u±) =
d∑
i=1

d∑
j=1

νiγ
(
(a±)ijDju±

)
on Γ.

For g ∈ H−
1
2 (Γ) and f ∈ H

1
2 (Γ) we denote by

(
g, f
)

Γ
the action of g on f . If both f, g are in

H
1
2 (Γ) the quantity

(
g, f
)

Γ
coincides with the surface integral

∫
Γ gf dς.

We have for example the next result.

Proposition 2.6 (First Green identity, first version; [33], Lemma 4.1). Let u ∈ L2(Rd) with
u+ ∈ H2(D+) and u− ∈ H2(D−). Assume that the coefficients (a±)ij are in C1

b (D±;R). Then

E+(u+, v) =

∫
D+

(−A+u+)v −
(
B+
ν u, γ(v)

)
Γ
, ∀v ∈ H1(D+)

and

E−(u−, v) =

∫
D−

(−A−u−)v +
(
B−ν u, γ(v)

)
Γ
, ∀v ∈ H1(D−).

Remark 2.7. Note that the change of sign in front of the integral on Γ is due to the fact that
−ν is the outward normal to D+, and ν is the outward normal to D−.

In fact, for our coming purpose (proof of Theorem 2.14), we need a version of the first Green
identity that is valid for u ∈ L2(Rd) with u+ ∈ H1(D+) and u− ∈ H1(D−) (and possibly non
smooth coefficients (a±)ij). We thus need to extend the definition of B±ν u to such functions, for
which the trace in (2.7) is no more defined in H1/2(Γ) (the boundary Γ is assumed to be bounded
and Lipschitz).
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But thanks to Lemma 4.3 in [33], for any f± ∈ H̃−1(D±) s.t.

(2.8) −A±u± = f± on D±,

there exists g± ∈ H−
1
2 (Γ), uniquely defined by u± and f±, and satisfying

E+(u+, v) = 〈f+, v〉H̃−1(D+),H1(D+) −
(
g+, γ(v)

)
Γ
, ∀v ∈ H1(D+),

E−(u−, v) = 〈f−, v〉H̃−1(D−),H1(D−) +
(
g−, γ(v)

)
Γ
, ∀v ∈ H1(D−).

and ∣∣∣∣g±∣∣∣∣H−1/2(Γ)
≤ C

(∣∣∣∣u±∣∣∣∣H1(D±)
+
∣∣∣∣f±∣∣∣∣H̃−1(D±)

)
Remark 2.8. Note that the meaning of equality (2.8) is that for any ϕ ∈ C∞c (D±;R),

〈−A±u±, ϕ〉H−1(D+),H1
0 (D+) = 〈f±, ϕ〉H̃−1(D+),H1(D+).

In the sequel the equality ”on D±” (for elements of H̃−1(D±)) will have a similar meaning (as for
example in Lemma 2.10 below). We will also use the same idea on some subsets of D± (see for e.g.
the proof of Proposition 2.15).

In particular if A±u± ∈ L2(D±) one makes the natural choice

f+ =

{
−A+u+ on D+

0 on D̄−
and f− =

{
0 on D̄+

−A−u− on D−

and defines B±ν u := g±. The notation B±ν u comes from the fact that this new definition is consistent
with the original one involved in Proposition 2.6 (see [33] p.117 for details). To sum up, we have,
using the new sense of B±ν u, the following result.

Proposition 2.9 (First Green identity, extended version; [33] Theorem 4.4, point i)). Let
u ∈ L2(Rd) with u+ ∈ H1(D+) and u− ∈ H1(D−). Assume A+u+ ∈ L2(D+), A−u− ∈ L2(D−).
Then

E+(u+, v) =

∫
D+

(−A+u+)v −
(
B+
ν u, γ(v)

)
Γ
, ∀v ∈ H1(D+)

and

E−(u−, v) =

∫
D−

(−A−u−)v +
(
B−ν u, γ(v)

)
Γ
, ∀v ∈ H1(D−).

Finally we introduce a notation for the jumps across Γ of the conormal derivative of a function
u with u± ∈ H1(D±): [

Bνu
]
Γ

= B+
ν u− B−ν u ∈ H−1/2(Γ).

Using Lemma 2.3 and Proposition 2.9 it is possible to prove the following two-sided Green
identity, that we state directly for a function u ∈ H1(Rd) (not only with u± ∈ H1(D±)).This
two-sided Green identity we will be thoroughly used in the sequel.
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Lemma 2.10 (Two-sided Green identity, [33] Lemma 4.19, Equation (4.33)). Let u ∈ H1(Rd).
Let f+ ∈ L2(D+) and f− ∈ L2(D−) and assume

(2.9) u± −A±u± = f± on D±.

Set f = f+ + f−, then

(2.10) 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd) −
([
Bνu

]
Γ
, γ(v)

)
Γ
, ∀v ∈ H1(Rd).

Proof. Pick v in H1(Rd). Notice that u± ∈ H1(D±) and v± ∈ H1(D±), thanks to Lemma 2.3.
Thanks to (2.9) we get A±u± ∈ L2(D±), so that one can use Proposition 2.9 and get

(2.11)

∫
D+

u+v+ + E+(u+, v+) =

∫
D+

(u+ −A+u+)v+ −
(
B+
ν u , γ(v+)

)
Γ

and

(2.12)

∫
D−

u−v− + E−(u−, v−) =

∫
D−

(u− −A−u−)v− +
(
B−ν u , γ(v−)

)
Γ
.

But, as v ∈ H1(Rd), we have [v]Γ = 0 and thus γ(v+) = γ(v−) = γ(v). Thus, using again (2.9), and
the definition of f and

[
Bνu

]
Γ
, we get, summing (2.11) and (2.12),

〈u, v〉L2(Rd) + E+(u+, v+) + E−(u−, v−) = 〈f, v〉L2(Rd) −
([
Bνu

]
Γ
, γ(v)

)
Γ
.

To complete the proof it suffices to notice that, thanks to Lemma 2.3, we have

E+(u+, v+) + E−(u−, v−) =
d∑

i,j=1

{∫
D+

(a+)ij(Dju)+(Div)+ +

∫
D−

(a−)ij(Dju)−(Div)−

}
= E(u, v).

Remark 2.11. Note that in [33] Green identities are stated in the case of Γ bounded and
Lipschitz. But we claim that these results are true for D± = Rd±, as in the proofs one usually starts
with D± = Rd± (or some hypograph type domain) and then turns to Γ bounded with the help of local
change of coordinates.

2.1.3. Existence of a weak solution to the resolvent equation and immediate properties. We have
the next result.

Proposition 2.12. Assume (B), (E). Let f ∈ L2(Rd). Then (2.3) has a unique solution in
D(A).

Proof. Let us note that the symmetric bilinear form on H1(Rd)

(u, v) 7→ 〈u, v〉L2(Rd) + E(u, v)

is continuous and, thanks to Assumption (E), coercive. Thus the Lax-Milgram theorem ([6] Corol-
lary V.8) immediately asserts the existence of a unique u ∈ H1(Rd) such that

∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd).
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In other words we have for any ϕ ∈ C∞c (Rd;R),

E(u, ϕ) = −〈
d∑

i,j=1

Di(aijDju), ϕ〉L2(Rd) = 〈(f − u), ϕ〉L2(Rd).

Hence the distribution
∑d

i,j=1Di(aijDju) belongs to L2(Rd), and thus u ∈ D(A). Finally, from the
above relations we deduce

∀v ∈ H1(Rd), 〈u−Au, v〉L2(Rd) = 〈f, v〉L2(Rd),

which implies (2.3).

The proposition below gives properties of functions belonging to D(A). It indicates that the
solution u ∈ D(A) of (2.3) encountered in Proposition 2.12 satisfies a continuity property and a
transmission condition in a weak sense at the interface.

Proposition 2.13. Let u ∈ D(A). Then [u]Γ =
[
Bνu

]
Γ

= 0 a.e. on Γ.

Proof. Let u ∈ D(A). As u ∈ H1(Rd) one gets by Lemma 2.4 that [u]Γ = 0 a.e. on Γ. Set now
f = u−Au ∈ L2(Rd). According to Equation (2.5) we have

(2.13) ∀v ∈ H1(Rd), 〈u, v〉L2(Rd) + E(u, v) = 〈f, v〉L2(Rd).

Using repeatedly Lemma 2.3 one can see that u± −A±u± = f± on D±. Note that by construction
f = f++f−. Using now Lemma 2.10, and comparing (2.10) and (2.13), one gets

([
Bνu

]
Γ
, γ(ϕ)

)
Γ

= 0

for any ϕ ∈ C∞c (Rd;R), which completes the proof.

2.1.4. Regularity of the weak solution of the elliptic problem and consequence on the iterated
domains D(Ak). Here we will establish and use the following main result.

Theorem 2.14. Assume (B), (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D±;R). Assume Γ is bounded and
of class Cr+2.

Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±

and
[
Bνu

]
Γ
∈ H

1
2

+r(Γ). Then u± ∈ H2+r(D±).

Theorem 2.14 will follow from the two following propositions. The first one provides a local
analysis of the regularity across the interface Γ, and its result is to be found in Theorem 4.20
in [33]. The second one asserts a classical result on the global regularity of the solution away from
the interface.

Proposition 2.15 ([33], Theorem 4.20). Let G1 and G2 be bounded open connected subset of
Rd, such that G1 ⊂ G2 and G1 intersects Γ, and put

Dj
± = Gj ∩D± and Γj = Γ ∩Gj for j = 1, 2.
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Assume that G2 is constructed in such a way that there is a Cr+2-diffeomorphism between Γ2 and
a bounded portion of the hyperplan xd = 0.

Assume (B), (E).

Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1(D2
±;R).

Let f± ∈ L2(D±) with f± ∈ Hr(D2
±). Let u ∈ L2(Rd) with u ∈ H1(G2) satisfying

u± −A±u± = f± on D2
±

and
[
Bνu

]
Γ
∈ H

1
2

+r(Γ2). Then u± ∈ H2+r(D1
±).

Proof. As this result is not so classical we have found interesting to provide a detailed proof
in the Appendix.

Proposition 2.16 ([47], Theorem 8.10). Assume (B), (E).
Let r ∈ N. Assume that the coefficients (a±)ij belong to Cr+1

b (D±;R). Assume Γ is bounded.
Let f± ∈ Hr(D±). Let u ∈ H1(Rd) satisfying

u± −A±u± = f± on D±.

Let D′± ⊂ D± open subsets with D′± ⊂ D± and denote d′± = dist(D′±,Γ).
We have that u± ∈ Hr+2(D′±), with

||u±||Hr+2(D′±) ≤ C±
(
||u±||H1(D±) + ||f ||Hr(D±)

)
,

where the constant C± depends on d, λ, d′± and max1≤i,j≤d max|α|≤r+1 supx∈D± |∂
α(a±)ij(x)|.

Proof. In [47] this result is asserted with the assumption that D′± ⊂ D±, with D′± compact.
So that for the interior (bounded) domain D+ the result is immediate. On the unbounded domain
D− we claim that the same result holds for non compact D′−, as in fact only the distance d′− =
dist(D′−,Γ) plays a role in the proof. We provide the proof in Appendix for the sake of completeness,
inspired by the proof of Theorem 4.16 in [33], that we have found more coherent with our notations
and setting.

Proof of Theorem 2.14. As Γ is closed and bounded we will cover it by a finite number of
balls and use the local regularity result of Proposition 2.15 inside each ball. We will combine this
with the interior regularity result of Proposition 2.16, to finally get a result on the global regularity
of the function u on D+ and D−.

As Γ is bounded and of class Cr+2 one may cover it by a finite number of open balls G2,k ⊂ Rd,
1 ≤ k ≤ N (i.e. Γ ⊂ ∪Nk=1G2,k), that are chosen in such a way that there are a Cr+2 diffeomorphisms
between each Γ2,k = Γ∩G2,k and a bounded open portion of Rd−1×{0} ([33] pp 89-90). Then one

chooses D′± ⊂ D± open subsets with D′± ⊂ D± and D′+ ∪D′− ∪Nk=1 G2,k = Rd. Note that D′− is a
closed but unbounded part of Rd. It is convenient to choose D′± so that we have the overlapping
D′± ∩ G2,k ∩ G2,k+1 6= ∅ for any 1 ≤ k ≤ N − 1 and D′± ∩ G2,N ∩ G2,1 6= ∅. Then one may choose
arbitrary open connected sets G1,k with G1,k ⊂ G2,k, and respecting D′+ ∪ D′− ∪Nk=1 G1,k = Rd,
D′± ∩G1,k ∩G1,k+1 6= ∅ for any 1 ≤ k ≤ N − 1 and D′± ∩G1,N ∩G1,1 6= ∅. As in Proposition 2.15

we note Dj,k
± = Gj,k ∩D±, 1 ≤ k ≤ N , for j = 1, 2.

It is clear that the (a±)ij belong to Cr+1(D2,k
± ;R) for any k ∈ {1, . . . , N}. Besides f± ∈ Hr(D2,k

± )

(by adapting the result of Lemma 2.3), and u± − A±u± = f± on D2,k
± . To finish with, we have
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[
Bνu

]
Γ
∈ H

1
2

+r(Γ2,k). Then, for each k one may then use Proposition 2.15 to conclude that u± ∈
Hr+2(D1,k

± ). On another hand by Proposition 2.16 one gets that u± ∈ Hr+2(D′±). So that for

example u+ ∈ Hr+2(D′+)∩
(
∩Nk=1 H

r+2(D1,k
+ )
)

. We claim that this implies that u+ ∈ Hr+2(D+) -

note that of course D′+ ∪
(
∪Nk=1 D

1,k
+

)
= D+.

Let us start with D′+ ∪D
1,1
+ = D′+ ∪D

1′,1
+ , where we have denoted D1′,1

+ = D1,1
+ \D′+. Adapting

again Lemma 2.3 we have that u+|D′+ ∈ H
r+2(D′+) and u+|D1′,1

+

∈ Hr+2(D1′,1
+ ). One may prove by

induction that u+ ∈ H2+r(D′+∪D
1′,1
+ ) in the following way. First, notice that u+ ∈ H1(D′+∪D

1′,1
+ ),

as u ∈ H1(Rd) anyway (Lemma 2.3 again). Assume now u+ ∈ Hm(D′+ ∪ D
1′,1
+ ) for m < 2 + r.

Then for any multi-index |α| ≤ m, we have Dαu+ ∈ L2(D′+ ∪D
1′,1
+ ). From the fact that u+|D′+ ∈

Hr+2(D′+) and u+|D1′,1
+

∈ Hr+2(D1′,1
+ ) we have that (Dαu+)|D′+ ∈ H1(D′+) and (Dαu+)|

D1′,1
+

∈

H1(D1′,1
+ ) (we adapt again Lemma 2.3 for the restriction aspect). Adapting now the result of

Lemma 2.4 we have that Dαu+ ∈ H1(D′+∪D
1,1′

+ ), which is the desired result, if [u+]Γ′′1,+ = 0 a.e. on

Γ′′1,+ = ∂D′+ ∩D
1′,1
+ . But Γ′′1,+ ⊂ D

1,1
+ and u+ ∈ Hr+2(D1,1

+ ). Adapting this time the necessary part

of Lemma 2.4 we get that indeed [u+]Γ′′1,+ = 0 a.e. on Γ′′1,+. Thus indeed Dαu+ ∈ H1(D′+ ∪D
1′,1
+ )

and more precisely DiD
αu+ = Di(D

αu+)|D′+ +Di(D
αu+)|

D1′,1
+

∈ L2(D′+∪D
1′,1
+ ) for any 1 ≤ i ≤ d.

The proof by induction that u+ ∈ H2+r(D′+ ∪D
1′,1
+ ) = H2+r(D′+ ∪D

1,1
+ ) is completed.

Repeating this procedure one proves by induction that u+ ∈ Hr+2
(
D′+∪Nk=1 (D1,k

+ )
)

= Hr+2(D+)

(using in particular the fact that the D1,k
+ ’s are in finite number). One proceeds in the same way

on D−.

Now that we have proved Theorem 2.14 we can get as a corollary the following result concerning
the iterated domains D(Ak), k ∈ N∗.

Corollary 2.17. Let k ∈ N∗ and u ∈ D(Ak). Assume that the coefficients (a±)ij ∈ C2k−1
b (D±)

and that Γ is bounded and of class C2k. Then u± ∈ H2k(D±).

Proof. The proof proceeds by induction on k.

Let u ∈ D(A) (case k = 1). We have
[
Bνu

]
Γ

= 0, according to Proposition 2.13. Thus in

particular
[
Bνu

]
Γ
∈ H

1
2 (Γ). As in the proof of Proposition 2.13 we set f = u−Au and notice that

we have u± −A±u± = f± on D±, with f± ∈ L2(D±).
Using Theorem 2.14 - remember that u is in H1(Rd), (a±)ij ∈ C1

b (D±;R) and Γ is bounded of
class C2 - we get that u± ∈ H2(D±).

Suppose now that the result is true at rank k− 1 we prove its validity at rank k (k ≥ 2). Let u ∈
D(Ak). As u ∈ D(A) we have

[
Bνu

]
Γ

= 0 ∈ H2k− 3
2 (Γ). As Au ∈ D(Ak−1) the quantity u−Au =: f

satisfies f± ∈ H2k−2(D±), using the induction hypothesis. But as we have u± − A±u± = f± on
D±, one may use again the smoothness of (a±)ij and Γ and Theorem 2.14 in order to conclude that
u± ∈ H2k(D±).

2.2. The solution of the parabolic problem (PT).

2.2.1. Application of the Hille-Yosida theorem. We now use the Hille-Yosida theorem ([6] The-
orems VII.4 and VII.5) in order to prove the following proposition. Note that in Equation (2.14)
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below, the time derivative is understood in the strong sense, while the space derivatives are under-
stood in the weak sense. Besides, by convention D(A0) = L2(Rd).

Proposition 2.18. Let u0 ∈ D(A). Then there exists a unique function

u ∈ C1
(
[0, T ]; L2(Rd)

)
∩ C

(
[0, T ]; D(A)

)
satisfying

(2.14)
du

dt
= Au, u(0) = u0.

Furthermore, let u0 ∈ D(Ak), k ≥ 2. Then,

u ∈ Ck−j
(
[0, T ]; D(Aj)

)
, 0 ≤ j ≤ k.

Proof. According to [6] it suffices to show that the operator (−A,D(A)) is maximal monotone.
But thanks to Assumption (E) we immediately see that 〈−Av, v〉L2(Rd) = E(v, v) ≥ 0, for any

v ∈ D(A), and thanks to Proposition 2.12 we have that for any f ∈ L2(Rd) there exists u ∈ D(A)
solving (2.3).

Using now Propositions 2.13, Corollary 2.17 and Proposition 2.18 together with some Sobolev
embedding theorems, we show Theorem 2.1.

2.2.2. Proof of Theorem 2.1.

Proof. Assume d is even. Apply the result of Proposition 2.18 with k = k0 = bd4c + 2 and
consider u solution of (2.14). We have that

u ∈ C1
(

[0, T ];D
(
Ak0−1

))
with k0 − 1 = bd4c + 1. Using the result of Corollary 2.17 and combining Corollary IX.13 p. 168
with Theorem IX.7 p. 157 in [6], we see that for any t ∈ [0, T ]

(2.15) u±(t, .) ∈ H4+2b d
4
c(D±) ⊂ H2+ d

2 (D±) ↪−→ C2(D̄±).

Assume now that d is odd. Apply the result of Proposition 2.18 with k = k0 = b3
2 + bd/2c

2 c + 2
and consider u solution of (2.14). We have that

u ∈ C1
(

[0, T ];D
(
Ak0−1

))
with k0 − 1 = b3

2 + bd/2c
2 c+ 1. Using the result of Corollary 2.17 and combining Corollary IX.13 p.

168 with Theorem IX.7 p. 157 in [6], we see that for any t ∈ [0, T ]

(2.16) u±(t, .) ∈ H2+2b 3
2

+
bd/2c

2
c(D±) ↪−→ C2(D̄±)

since

b2 + 2b3
2

+
bd/2c

2
c − d

2
c ≥ b2 + 2

(
1

2
+
bd/2c

2

)
− d

2
c ≥ b3 + bd

2
c − d

2
c ≥ 2.
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Let us now show that u solution of (2.14) (for the corresponding k0) is a classical solution of
(PT).

First, it is clear that Lu coincides with Au on any bounded part of D± (the derivatives in the
distributional sense coincide with the classical derivatives thanks to the established smoothness of
u). This shows the first line of (PT).

Second, as for any t ∈ [0, T ] the function u(t, .) belongs to D(A), we have using the result of
Proposition 2.13 that

(2.17) [u(t, .)]Γ = 0 a.e. on Γ; [Bνu(t, .)]Γ = 0 a.e. on Γ.

Note that u(t, .) ∈ D(A) implies that u±(t, .) are in H2(D±). So that the second part of (2.17)
reads

ν∗ (γ (a+∇u+(t, .))− γ (a−∇u−(t, .))) = 0 a.e.

But as (a±∇u±) ∈ C1(D̄±;Rd), we get

〈 (a+∇xu+(t, .))(y)− (a−∇xu−(t, .))(y), ν(y) 〉 = 0

for almost every y ∈ Γ, and consequently for every y ∈ Γ by continuity. The same argument
applies to the first part of (2.17) and the second and third lines of (PT) are satisfied. Note that the
constructed solution satisfies u(t, .) ∈ C

(
Rd
)

for any time t ∈ [0, T ].

Now let k ≥ k0. For dd4e ≤ j ≤ k, we have 2j − d
2 > 0. Thus, for v ∈ D(Aj) we have from

Corollary 2.17,
v± ∈ H2j(D±) ↪−→ Cn(j)(D̄±)

with n(j) = b2j − d
2c. Using again the result of Proposition 2.18, we get the announced result.

2.3. Conclusion and consequences: boundedness of the partial derivatives. Going a bit further in
the analysis, and using additional Sobolev embedding arguments, we can state the following result.

Proposition 2.19. Let p, q ∈ N with p + bq/2c ≥ 2. Let m = d q2 + d
4e, m

′ = m + 1 and

k = m′+ p. Assume that the coefficients aij satisfy (a±)ij ∈ C2m′−1
b (D±), that Γ is bounded and of

class C2m′, and that u0 ∈ D(Ak).
Then the classical solution u(t, x) of (PT) constructed in Theorem 2.1 satisfies

u ∈ Cp([0, T ] ; Cqb (D̄+) ∩ Cqb (D̄−)).

Proof. First, notice that it is easy to check that k is greater than the k0 defined in Theorem
2.1, so that it makes sense speaking of the classical solution of (PT), for u0 ∈ D(Ak).

This solution is constructed in the same way as in Theorem 2.1, in particular by the mean of
Proposition 2.18. So that one can assert that

u ∈ Cp([0, T ] ; D(Am
′
)).

It remains to check that if v ∈ D(Am
′
), then v± ∈ Cqb (D̄±). First, note that m ≥ dd4e, and that one

may easily check

b2m− d

2
c ≥ q

(using in particular d2ae ≤ 2dae). So that if v ∈ D(Am
′
) ⊂ D(Am), we have, as for the second part

of Theorem 2.1,

v± ∈ H2m(D±) ↪−→ Cb2m−
d
2
c(D̄±) ⊂ Cq(D̄±).

18



We claim that for any multi-index α, |α| ≤ q, the partial derivatives ∂αv± are bounded. Indeed,
using again Corollary 2.17, we get

v± ∈ H2m′(D±),

so that for α, |α| ≤ q,

∂αv± ∈ H2d q
2

+ d
4
e−q+2(D±) ⊂ H

d
2

+2(D±) ↪−→ L∞(D±).

Here we have used the fact 1
2−

1
2−

2
d < 0, so that one can use the third embedding result of Corollary

IX.13 in [6] (and again Theorem IX.7 for the projection argument). The result is proved.

From the above proposition we get the following control on the partial derivatives of the solution
to (PT).

Corollary 2.20. In the context of Proposition 2.19 we have

sup
t∈[0,T ]

sup
x∈D̄±

|∂jt ∂αu±(t, x)| <∞

for any j ≤ p and any multi-index α, with |α| ≤ q.

Proof. By Proposition 2.19 any of the considered partial derivatives of u± belongs to the space

C([0, T ] ; Cb(D̄±)).

Let for example v ∈ C([0, T ] ; Cb(D̄+)). We prove the continuity of the map t 7→ supx∈D̄+
|v(t, x)|,

t ∈ [0, T ]. Let t0 ∈ [0, T ]. Using the reverse triangle inequality we get for any t 6= t0,∣∣ sup
x∈D̄+

|v(t, x)| − sup
x∈D̄+

|v(t0, x)|
∣∣ ≤ sup

x∈D̄+

∣∣v(t, x)− v(t0, x)
∣∣,

and we get the continuity at t0, as v is continuous from [0, T ] to Cb(D̄+) (equipped with the supreme
norm). Thus the desired continuity is proved, and from this we can assert that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| = sup
x∈D̄+

|v(t∗, x)|

for some t∗ ∈ [0, T ]. As v(t∗, ·) ∈ Cb(D̄+) we have that

sup
t∈[0,T ]

sup
x∈D̄+

|v(t, x)| <∞.

The result is proved.

In the analysis of the convergence of our Euler scheme, we will use the above corollary with p
up to 2 and q up to 4.
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3. Stochastic processes associated to multidimensional parabolic transmission prob-
lems in divergence form. The aim of this section is to define and study the stochastic process
X naturally in link with the already encountered operator (A,D(A)), via the theory of Dirichlet
forms as exposed in [12].

The starting point of the construction is some closed symmetric Dirichlet form (E ,D[E ]), which
is in link with (A,D(A)) and its corresponding semigroup (Tt) on L2(Rd). In Subsection 3.1 we
define these objects and study the regularity in t of E(Ttf, g), f ∈ L2(Rd), g ∈ D[E ], using the
spectral resolution of the identity associated to (A,D(A)) (Subsubsection 3.1.1). This study allows
to establish the relation with the results of D.W. Stroock in [45] (Subsubsection 3.1.2) which are
exposed in the Cb(Rd) setting (Feller semigroup).

Then in Subsection 3.2 the Hunt process X associated to (E ,D[E ]) is defined and studied. In par-
ticular we aim at writing down its Skorokhod representation as precisely as possible (Subsubsection
3.2.2).

3.1. Dirichlet form and Markovian semigroup associated to general elliptic divergence form op-
erators.

3.1.1. Construction. Let a : Rd → Rd×d a symmetric coefficient matrix satisfying the ellipticity
condition (E) and the uniform boundedness condition (B).

To the coefficient matrix a, we may associate a closed symmetric Dirichlet form (E ,D[E ]) defined
on L2(Rd) by 

D [E ] = H1(Rd),

E(u, v) =
d∑

i,j=1

∫
Rd
aij DjuDiv, u, v ∈ D [E ]

(see [12], p111). This will be the starting point of our construction. Note that of course E is nothing
else than the symmetric bilinear form already defined in (2.4).

On the underlying Hilbert space L2(Rd), we denote within this subsection by (A,D(A)) the
(unique) self-adjoint operator associated to (E ,D [E ]) and characterized by{

D(A) ⊂ D [E ] ,
E(u, v) = −〈Au, v〉L2(Rd), u ∈ D(A), v ∈ D [E ]

([12], Theorem 1.3.1 and Corollary 1.3.1 p.21). We aim at identifying this operator - as expected
it will turn out that (A,D(A)) is nothing else than the operator defined at the end of Section 1,
therefore the common notation.

By the very definition of (A,D(A)), we have for any f ∈ D(A) and any g ∈ C∞c (Rd)

−〈Af, g〉L2(Rd) = E(f, g) =
d∑

i,j=1

∫
Rd
aij Djf Dig = −

〈 d∑
i,j=1

Di(aijDjf), g
〉
H−1(Rd),H1(Rd)

where
∑d

i,j=1Di(aijDjf) is understood in the distributional sense as an element of H−1(Rd). But as

Af ∈ L2(Rd) by the definition of D(A) the above equality shows that
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)
(for any f ∈ D(A)).

Thus, it is proved that D(A) ⊆ {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)}.
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In turn (by the density of C∞c (Rd) in L2(Rd)) the equality permits to identify for any f ∈ D(A),

Af =
d∑

i,j=1

Di(aijDjf).

Let us now prove the reverse inclusion {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)} ⊆ D(A).

Let f ∈ {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)}. By the symmetry of the coefficient
matrix a and integration by parts, it is not hard to prove that for any v ∈ D(A),

〈Av, f〉L2(Rd) = −E(v, f) = −
d∑

j,i=1

∫
Rd
ajiDifDjv =

〈∑
j,i

Dj(ajiDif), v
〉
L2(Rd)

and in particular f ∈ D(A∗)
def
= {g ∈ L2(Rd) | ∃hg ∈ L2(Rd) s.t. (Av, g) = (v, hg),∀ v ∈ D(A)} (see

[40]). So that we get the reverse inclusion

{f ∈ H1(Rd) with

d∑
i,j=1

Di(aijDjf) ∈ L2(Rd)} ⊆ D(A∗) = D(A)

where the equality comes from the fact that (A,D(A)) is self-adjoint. Finally, we have proved

(3.1) D(A) = {f ∈ H1(Rd) with
d∑

i,j=1

Di(aijDjf) ∈ L2(Rd)}

and (A,D(A)) is fully identified as being the same operator as at the end of Section 1.
Note that since a is only assumed to be measurable, C∞c (Rd) - which is a core for the Dirichlet

form (E ,D(E)) - is not even a subset of D(A).

We now turn to the study of the spectral resolution and the semigroup associated to (E ,D[E ])
and (A,D(A)). For the sake of conciseness we denote (·, ·) = 〈·, ·〉L2(Rd) and || · || = || · ||L2(Rd) till
the end of the section.

Since (−A,D(A)) is a self-adjoint operator on the Hilbert space L2(Rd) that is non-negative
definite, it admits a spectral resolution of the identity {Eγ : γ ∈ [0,∞)}. For any γ ≥ 0 the
operator Eγ : L2(Rd)→ L2(Rd) is a self-adjoint projection operator with (Eγf, f) ≥ 0, f ∈ L2(Rd),
and the Eγ ’s form a spectral family with in particular EµEγ = Eµ∧γ , (see [12] p18 for a list of
properties). The link with (−A,D(A)) is through

(−Af, g) =

∫
[0,∞)

γd(Eγf, g) ∀f ∈ D(A), g ∈ L2(Rd)

and D(A) =
{
f ∈ L2(Rd) :

∫
[0,∞) γ

2d(Eγf, f) <∞
}

(see [12] paragraph 1.3.4 p.18).

Consequently, the family of operators {Tt
def
= etA : t > 0} is a strongly continuous semigroup of

self-adjoint contractions acting on L2(Rd) ([12] Lemma 1.3.2 p.19) and

(Ttf, g) =

∫
[0,∞)

e−γtd(Eγf, g) ∀f ∈ L2(Rd), g ∈ L2(Rd).
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Note that for any γ ≥ 0, t > 0, and any functions f ∈ L2(Rd) and g ∈ L2(Rd), we have the
commutation property

(TtEγf, g) = (Eγf, Ttg)

=

∫
[0,∞)

e−ξtdξ(Eγf,Eξg) =

∫
[0,γ]

e−ξtdξ(EξEγf, g) +

∫
[γ,∞)

e−ξtdξ(EξEγf, g)

=

∫
[0,γ]

e−ξtdξ(Eξf, g)

=

∫
[0,∞)

e−ξtdξ(Eξf,Eγg)

= (Ttf,Eγg) = (EγTtf, g).

Note also that for any f ∈ L2(Rd) and any t > 0,∫
[0,∞)

γ2d(EγTtf, Ttf) =

∫
[0,∞)

γ2dγ

(∫
[0,∞)

e−ξtdξ(EγEξf, Ttf)

)

=

∫
[0,∞)

γ2dγ

(∫
[0,∞)

e−ξtdξ

(∫
[0,∞)

e−θtdθ(EγEξf,Eθf)

))

=

∫
[0,∞)

γ2e−2γtdγ(Eγf, f)

≤ 4

t2
e−2

∫
[0,∞)

e−γtdγ(Eγf, f) =
4

t2
e−2(Ttf, f) ≤ 4

t2
e−2||f ||2 < +∞,

where we have used the spectral family property, the associativity of the Stieltjes integral and the
inequality γ2e−γt ≤ 4e−2/t2. The above inequality ensures that Ttf ∈ D(A) for any t > 0.

From the fact that | ddte
−γt| ≤ γ is integrable w.r.t. d(Eγh, g) whenever h ∈ D(A), we deduce

from the commutation property that for any f, g ∈ L2(Rd) and for any s > 0

− d

dt
(Ttf, Tsg) =

∫
[0,∞)

γe−γtd(Eγf, Tsg) −−−→
t↘0+

∫
[0,∞)

γd(EγTsf, g) = (−ATsf, g)

where the limit exists and is well defined (since we have shown that Tsf ∈ D(A)).
If moreover g ∈ D [E ] then

− d

ds
(Tsf, g) = − d

dt
(Ts+tf, g)|t=0+ = − d

dt
(Ttf, Tsg)|t=0+

= (−ATsf, g) = E(Tsf, g).(3.2)

And since − d
ds(Tsf, g) = − d

ds(Tsg, f) by the symmetry property of Ts, we deduce E(Tsf, g) =
E(f, Tsg) for any f, g ∈ D [E ].

Consequently, for any f ∈ D [E ] and using the ellipticity of the coefficient matrix a,

λ||∇Tsf ||2 ≤ E(Tsf, Tsf) = E(T2sf, f) = (−AT2sf, f)

=

∫
[0,∞)

γe−2γsd(Eγf, f) ≤ e−1

s

∫
[0,∞)

e−γsd(Eγf, f) =
e−1

s
(Tsf, f) ≤ ||f ||

2

s
,
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from which we deduce the fundamental estimate

(3.3) ||∇Tsf || ≤
||f ||√
λ s

, ∀s > 0.

In turn this estimate implies that for any f ∈ L2(Rd), g ∈ D [E ], the function

s 7→ E(Tsf, g) is integrable on (0, t],

and from (3.2) and the right continuity of s 7→ Tsf at time s = 0+ (one may extend T0f = f
as long as no differentiation of s 7→ Tsf is implied at s = 0+ when f /∈ D(A)), we deduce the
integrated version of (3.2) namely
∀f ∈ L2(Rd), ∀g ∈ D [E ],

(3.4) (Ttf, g)− (f, g) = −
∫ t

0

d∑
i,j=1

(aijDjTsf,Dig) ds = −
∫ t

0
E(Tsf, g)ds, t ∈ (0,∞).

3.1.2. Link with the results of D.W. Stroock [45]. In his celebrated article Diffusion semigroups
corresponding to uniformly elliptic divergence form operators D.W. Stroock constructs via a regu-
larization procedure a Feller continuous semigroup {Pt : t > 0} associated to a with the properties
that (with our notations)

1. the map t ∈ [0,∞) 7→ Ptφ ∈ H1(Rd) is a weakly continuous map for each φ ∈ C∞c (Rd).
2. ∀φ, ψ ∈ C∞c (Rd),

(3.5) (Ptφ, ψ)− (φ, ψ) = −
∫ t

0
(a∇Psφ,∇ψ) ds = −

∫ t

0
E(Psφ, ψ)ds, t ∈ (0,∞).

(Nota : please note that there is a sign error in the original version of [45]).
In fact, {Pt : t > 0} determines a unique strongly continuous semigroup {P̄t : t > 0} of self-
adjoint contractions on L2(Rd). The semigroup {P̄t : t > 0} is strongly continuous onH1(Rd).
Moreover, for each t > 0, P̄t maps L2(Rd) into H1(Rd) and for each f ∈ H1(Rd) = D [E ], we
have the fundamental estimate

(3.6) ||∇P̄sf || ≤
1√
λ

(
||f ||√
s

)
∧ ||∇f ||, ∀s > 0.

(See [45] Theorem II.3.1. p.341).
This estimate implies that for for each f, g ∈ D [E ] and any t, s > 0,

|E(P̄tf, g)− E(P̄sf, g)| ≤ Λ||∇g|| ||P̄t∨s−t∧sf − f ||√
λ (t ∧ s)

−−→
s→t

0,

which ensures the continuity of s 7→ E(P̄sφ, ψ) for any φ, ψ ∈ C∞c (Rd). Since (P̄t)t>0 and (Pt)t>0

cöıncide on C∞c (Rd), we may differentiate in (3.5) (as long as t > 0) to find that

(3.7)
d

dt
(P̄tφ, ψ) = −E(P̄tφ, ψ), t ∈ (0,∞).

This has to be compared to (3.2).
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Let us now justify rigorously that for any t > 0, s ∈ (0, t) and φ, ψ ∈ C∞c (Rd),

(3.8)
d

ds
(Tsφ, P̄t−sψ) =

d

du
(Tuφ, P̄t−sψ)|u=s −

d

du
(Tsφ, P̄t−uψ)|u=s.

We have for sufficiently small 0 ≤ h < t− s and using the strong continuity of (P t)t>0

|
(
Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ

)
| ≤ ||P̄t−s+hψ − P̄t−sψ|| ||Ts+hφ− Tsφ||

≤ εψ(h)

(∫
[0,∞)

e−2γs(e−γh − 1)2d(Eγφ, φ)

)1/2

≤ εψ(h)

(∫
[0,∞)

e−2γs(γh)2d(Eγφ, φ)

)1/2

≤ hεψ(h)

(∫
[0,∞)

e−γs
(
γ2e−γs

)
d(Eγφ, φ)

)1/2

≤ hεψ(h)
2e−1

s
||φ||,

where as usual εψ(·) denotes some positive continuous function vanishing at zero. We deduce that

1

h
|
(
Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ

)
| −−−→
h→0

0,

implying (3.8).
Hence, from (3.8) and applying (3.2) and (3.7), we have that

d

ds
(Tsφ, P̄t−sψ) = 0, s ∈ (0, t).(3.9)

Integrating the identity (3.9) on (0, t) and using the time continuity of both semigroups (Tt) and
(P̄t) up to time s = 0+ gives

(3.10) (Ttφ, ψ) = (φ, P̄tψ) = (P̄tφ, ψ)

which holds for any φ, ψ ∈ C∞c (Rd). Since C∞c (Rd) is dense in L2(Rd), using the strong continuity
of both semigroups (Tt) and (P̄t), we finally deduce from (3.10) the identification

(3.11) {P̄t : t > 0} = {Tt : t > 0} on L2(Rd).

Consequently, all results in [45] that are valid for {P̄t : t > 0} are true for {Tt : t > 0}. For
example, identifying abusively {Tt : t > 0} with its Feller restriction {Pt : t > 0} on C∞c (Rd),
we deduce that there is a p ∈ C

(
(0,∞)× Rd × Rd

)
such that

(3.12) [Ttφ] (x) =

∫
Rd
φ(y)p(t, x, y)dy, `(dx)− a.e., φ ∈ C∞c (Rd).

Moreover, the fundamental function p satisfies the well-known Aronson’s estimates for the funda-
mental solutions of elliptic divergence form operators, namely there exists a constant M(λ,Λ, d) ∈
[1,∞) such that

(3.13)
1

Mtd/2
exp

(
−M |x− y|2/t

)
≤ p(t, x, y) ≤ M

td/2
exp

(
−|x− y|2/Mt

)
.
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Finally, we have the convergence result of [45] (Theorem II.3.1. p.341) that we state roughly without
introducing the necessary notations (see [45] for details) : if {an}∞1 ⊂ A(λ,Λ) and an −→ a almost
everywhere, then pn(t, x, y) −→ p(t, x, y) uniformly on compacts (in (0,∞)×Rd×Rd) and for each
t ∈ [0,∞) and φ ∈ C∞c (Rd), Tnt φ −→ Ttφ in H1(Rd).

3.2. Stochastic representation of transmission operators in divergence form.

3.2.1. Representation of the Hunt process associated to elliptic divergence form operators using
the Revuz correspondence for additive functionals. Since (E ,D [E ]) is a regular Dirichlet form (with
the space D [E ] ∩ Cc(Rd) or C∞c (Rd) as a special standard core, see e.g. Exercice 1.4.1 in [12]), we
are in position to apply Theorem 7.2.1 p. 380 of [12].

We may associate to (E ,D [E ]) and its corresponding semigroup (Tt) a Hunt process, symmetric
w.r.t the Lebesgue measure `(dx) on Rd. We shall denote by M = (Ω, (Ft)t≥0,F , (Xt)t≥0, (Px)x∈Rd)
this Hunt process, with X = (X1, . . . , Xd). The correspondence with (E ,D [E ]) and (Tt) is through

(3.14) Ex[f(Xt)] = Ttf(x), ∀f ∈ L2(Rd), ∀t ≥ 0,∀x ∈ Rd

(see the discussion p160 in [12], at the beginning of Section 4.2).
Let us also denote by {Rα : α > 0} the Markovian resolvent kernel of the Markovian transition

function {p̂(t, x, dy) := p(t, x, y)dy : t > 0}. Then, for any α > 0, f ∈ Bb(Rd) and x ∈ Rd,
Rαf(x) =

∫
Rd rα(x, y)f(y)dy with rα(x, y) =

∫∞
0 e−αtp(t, x, y)dt.

Denote by S the set of positive Radon measures on (Rd,B(Rd)). For µ ∈ S define R1µ(x) =∫
Rd r1(x, y)µ(dy) (x ∈ Rd) and introduce the subset of finite energy measures

S0 :=

{
µ ∈ S : ∃C > 0, ∀v ∈ D [E ] ∩ Cc(Rd),

∫
Rd
|v(x)|µ(dx) ≤ C (E(v, v) + (v, v))1/2

}
=

{
µ ∈ S : sup

v∈D[E]∩Cc(Rd)

∫
Rd

|v(x)|
||v||E1

µ(dx) <∞

}
, where we follow the notations of [12].

Finally, introduce

S00 := {µ ∈ S0 : µ(Rd) <∞, ||R1µ(.)||∞ <∞}.

Let us denote respectively by A+
c and A+

c,1 the families of all Positive Continuous Additive
Functionals (PCAF in short) (resp. the family of all PCAF in the strict sense) associated to M (for
the distinction between A+

c and A+
c,1, see [12] the introduction of Section 5.1).

The Revuz correspondence asserts that there is a one-to-one correspondence (up to equivalence of
processes) between A+

c and S. This correspondence permits to construct for any µ ∈ S00 a unique
PCAF in the strict sense A ∈ A+

c,1 such that

(3.15) ∀x ∈ Rd, Ex
∫ ∞

0
e−tdAt = R1µ(x).

(see for e.g. Theorem 5.1.4 in [12]).
In order to get a bijective map, introduce a new subset S1 of S defined by µ ∈ S1 if there exists a

sequence (En)n≥0 of Borel finely open sets increasing to Rd satisfying that IEn .µ ∈ S00 for each n.
Then, there is a one-to-one correspondence between S1 and A+

c,1 (up to equivalence) which is given
by relation (3.15) whenever µ ∈ S00. The set of measures S1 is called the set of smooth measures
(in the strict sense).
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Let us introduce D [E ]b,loc the space of essentially bounded functions belonging locally to D[E ]
(u ∈ D [E ]b,loc if for any compact set G, there exists a bounded function ω such that u = ω,
`(dx)-a.e. on G).

For u ∈ D [E ]b, we may associate a unique positive Radon measure µ〈u〉 ∈ S, satisfying

(3.16)

∫
Rd
f(x)µ〈u〉(dx) = 2E(uf, u)− E(u2, f), ∀f ∈ D [E ] ∩ Cc(Rd).

If D [E ]b,loc, we may construct µ〈u〉 ∈ S with the help of a sequence (Gn)n≥0 of relatively compact

open sets such that Gn ⊂ Gn+1 and
⋃
n≥0Gn = Rd. Let (un)n≥0 a sequence of functions in D [E ]b

satisfying un = u on Gn. There is no ambigüıty in defining µ〈u〉 = µ〈un〉 on Gn because the
construction is consistent (since µ〈un〉 = µ〈un+1〉 on Gn). For an account on the above assertions,
please refer to [12] Section 3.2.

Note that obviously (E ,D [E ]) is strong local, so we may apply Theorem 5.5.5 in [12].
Suppose that a function u satisfies the following conditions :

1. u ∈ D [E ]b,loc , u is finely continuous on Rd.
2. IG.µ〈u〉 ∈ S00 for any relatively compact open set G.

3. ∃% = %(1) − %(2) with IG.%(1), IG.%(2) ∈ S00 for any relatively compact open set G and

E(u, v) = (%, v), ∀v ∈ C∞c (Rd).

(Note that even though u is not formally in D [E ], the quantity E(u, v) is well-defined because
v has compact support and u ∈ D [E ]b,loc).

Let A(1), A(2), and B be PCAF’s in the strict sense with Revuz measures %(1), %(2), and µ〈u〉
respectively. Then, Theorem 5.5.5 in [12] asserts that

(3.17) u(Xt)− u(X0) = M
[u]
t +N

[u]
t , Px − a.s, ∀x ∈ Rd.

Here,

(3.18) N [u] = −A(1) +A(2), Px − a.s, ∀x ∈ Rd

and M [u] is a local Additive Functional in the strict sense such that for any relatively compact set
G,

ExM [u]
t∧τG = 0, ∀x ∈ G

and
Ex
[
(M

[u]
t∧τG)2

]
= ExBt∧τG , ∀x ∈ G,

where τG = inf(s > 0 : Xs /∈ G) stands for the first leaving time from G (with the convention
inf ∅ =∞) and B denotes the PCAF in the strict sense with Revuz measure µ〈u〉.

3.2.2. Skorokhod representation of the Hunt process associated to a transmission operator in
divergence form. Consider Rd = D̄+ ∪ D− with D+ and D− two open connected subdomains
separated by a transmission boundary Γ that is to say

Γ = D̄+ ∩ D̄−.

We denote
D = D+ ∪D− = Rd \ Γ ⊂ Rd.
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We apply the results of Theorem 5.5.5 in [12] in this context for the coordinate functions

pk(x1, . . . , xd) := xk (k ∈ {1, . . . , d})

.

Theorem 3.1. Assume that Assumptions (B) (E) are fulfilled and that (a±)ij ∈ C1
b (D±;R)

for all 1 ≤ i, j ≤ d with aij possessing a possible discontinuity on Γ. Then, the Hunt process M
associated to (E ,D [E ]) is a diffusion which possesses the following Skorokhod decomposition : for
any k ∈ {1, . . . , d},

Xk
t = xk +

∫ t

0

d∑
j=1

√
2σkj(Xs)dW

j
s +

∫ t

0

d∑
j=1

∂jakj(Xs)IXs∈Dds

− 1

2

∫ t

0
γ+,k(Xs)dKs +

1

2

∫ t

0
γ−,k(Xs)dKs, t ≥ 0, Px − a.s., ∀x = (x1, . . . , xd) ∈ Rd.(3.19)

In the above equality σ : Rd → Rd×d denotes the positive square-root of coefficient 2a i.e. the positive
matrix real valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ D.

(Note that this coefficient exists because a(x) is non-negative definite for all x ∈ D). The process
W = (W 1, . . . ,W d) is a d-dimensional standard Brownian motion starting from zero and (Kt)t≥0

denotes the unique PCAF associated to the surface measure ς(dξ) ∈ S on Γ through the Revuz
correspondence. The process (Kt) increases only at times where X lies on Γ,∫ t

0
IXs∈ΓdKs = Kt, t ≥ 0.

Proof. We follow the ideas of [48] Theorem 5.2. Of course pk ∈ D [E ]b,loc and pk is finely

continuous on Rd. Let G a relatively compact open set containing Γ and a function fk ∈ D [E ]b
such that pk = fk on G. Let 〈M [fk]〉 the square bracket of M [fk]. Then, an easy computation from
(3.16) shows that the energy measure of M [fk] (the Revuz measure of 〈M [fk]〉) is

µ〈fk〉(dy) = µ〈M [fk]〉(dy) = 〈a(y)∇fk(y),∇fk(y)〉`(dy)

and we know that µ〈fk〉 = µ〈pk〉 on G. It is easy to show that IG.µ〈pk〉 is a finite Radon measure
belonging to S00 and that µ〈pk〉 is a smooth measure. Then, an easy computation from (3.15) shows
that

〈M [fk]〉t =

∫ t

0
〈a(Xs)∇fk(Xs),∇fk(Xs)〉ds, k ∈ {1, . . . , d}

and by the well-known results on stochastic representation of martingales, there exists a d dimen-
sional Brownian motion W = (W 1, . . . ,W d) such that

M
[fk]
t =

∫ t

0

[
σ(Xs)∇fk(Xs)

]∗
dWs, Px − a.s. ∀x ∈ Rd, k ∈ {1, . . . , d}

(see for e.g. [42] Chapter V Theorem 3.9 and the remark following its proof).
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Moreover, for any v ∈ C∞c (Rd), using the First Green Identities of Proposition 2.6 and taking
into account that v is of compact support, we have :

E(fk, v) = E+(fk,+, v) + E−(fk,−, v)

=

∫
D+

(−A+fk,+)v −
(
B+
ν fk,+, γ(v)

)
Γ

+

∫
D−

(−A−fk,−)v +
(
B−ν fk,−, γ(v)

)
Γ

=

∫
D

d∑
i,j=1

Di (aij(y)Djfk(y)) v(y)Iy∈D`(dy)−
∫

Γ
ν∗ [γ (a+∇fk,+)− γ (a−∇fk,−)] γ(v)dς

=

∫
D

d∑
j=1

∂jakj(y)v(y)Iy∈D`(dy)−
∫

Γ
[γ((a+ν)k)− (γ(a−ν)k)] vdς

=

∫
D

d∑
j=1

∂jakj(y)v(y)Iy∈D`(dy)−
∫

Γ
[(ã+ν)k − (ã−ν)k] vdς

= (%+
k , v)− (%−k , v)

with

%±k (dy) :=
d∑
j=1

[∂jakj(y)]± Iy∈D`(dy) + [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy).

(here, the notation [a]+ (resp. [a]−) stands for the positive (resp. negative) part of some real number
a).

Let us now proceed to show that the measures IG.%±k belong to S00.
Note that ||∂jakjID∩G||∞ < ∞ and from the definition of S00 and the Revuz correpondence

(3.15), it is not difficult to prove that the measures [∂jakj ]± (y)Iy∈D`(dy) are smooth with their

corresponding additive functional writing as
(∫ t

0 [∂jakj ]± (Xs)IXs∈Dds
)
t≥0

.

We now turn to the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy). It is well-known

(see e.g. [10] p.134 3. (? ? ?), (? ? ??)) that there exists a universal constant C0 > 0, depending only
on the Lipschitz domain D+, such that for all h ∈ C1(D+),∫

Γ
|h(y)|ς(dy) ≤ C0

∫
D+

(|∇h(x)|+ |h(x)|)`(dx).

Thus, for all h ∈ D [E ] ∩ Cc(Rd), we have∫
Γ
|h(y)|ς(dy) ≤ C0

∫
D+

(|∇h(x)|+ |h(x)|)`(dx)

≤ C0`(D+)1/2

(∫
D+

(|∇h(x)|+ |h(x)|)2`(dx)

)1/2

≤ C0(2`(D+))1/2

(∫
Rd

(|∇h(x)|2 + |h(x)|2)`(dx)

)1/2

≤ C0

√
(2`(D+))

λ
(E(h, h) + (h, h))1/2

so that the surface measure ς(dy) belongs to S0. Since

∀y ∈ Γ, [| (γ−)k − (γ+)k |(y)]± ≤ 2|ã±(y)ν(y)| ≤ 2Λ∗,
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the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy) belong also to S0.

Note that from Aronson’s estimates (3.13) we retrieve the following estimations

r1(x, y) ≤ C|x− y|−(d−2) if d > 2 ; r1(x, y) ≤ C (ln(1/|x− y|) ∨ 1) if d = 2.

Then, using the same arguments as in [12] (Example 5.2.2 p.255), we can assert that the mea-
sures ζ±k (dy) belong to S00. Moreover, let (Kt)t≥0 denote the PCAF associated to ς(dy) ; in re-
gard of the results stated in the original article of D. Revuz (cf. [41] p.507) we may assert that(∫ t

0 [(γ−)k − (γ+)k]
± (Xs)IXs∈ΓdKs

)
t≥0

is the PCAF associated to ζ±k (dy) via the Revuz corre-

spondence.
By application of Theorem 5.5.5 in [12] and since all the necessary hypothesis are fulfilled, we

get the decomposition (3.19) on the set {t ≥ 0 : t ≤ τGq} where Gq := {x ∈ Rd : |x| < q}. The
identification of the process for all times follows by letting q tend to infinity.

The following corollary enhances the link between the solution of (3.19) and the PDE results of
Section 2.

Corollary 3.2. Let 0 < T < ∞. Under the conditions of Theorem 3.1, for any u0 ∈ D(A),
we have

(3.20) Ex[u0(Xt)] = u(t, x), ∀t ∈ [0, T ], ∀x ∈ Rd,

where X is the diffusion considered in Theorem 3.1 and u is the solution of (2.14) considered in
Proposition 2.18.

Proof. On the one hand we have Ex[u0(Xt)] = Ttu0(x) thanks to (3.14). On the other hand
we have d

dtTtu0 = ATtu0 (see [40] Thm 2.4-c)), i.e. Ttu0 solves (2.14) whose solution is unique
(Prop. 2.18). Thus T·u0 and u are equal in the space C1

(
[0, T ]; L2(Rd)

)
∩ C

(
[0, T ]; D(A)

)
, and

finally Ttu0(x) = u(t, x) for any t, x (where we have used the fact that D(A) ⊂ H1(Rd) and
elements of H1(Rd) are identified with their continuous versions).

In the light of (3.20) and in order to compute an approximated value of u(t, x), one could think
of producing a Monte Carlo method that uses (possibly approximated) paths of X. Unfortunately,
it is not clear how to simulate X from (3.19), even in an approximated way. We believe the question
is challenging and could be the subject of future research. In the following section we propose to
circumvent this difficulty by proposing our modified Euler scheme. We do not try to discretize
directly the paths of X from (3.19), but we provide a Monte Carlo method that approaches the
value of u(t, x) (as long as the initial condition is sufficiently regular) by taking crucially into
account the transmission condition (?) of (PT).

4. Euler scheme.

4.1. Recalls on the projection and the distance to the transmission boundary and further notations
and premiminaries. In this subsection we adopt the notations from [4]. We have the following set
of geometric results.

Proposition 4.1 ([4], Proposition 1; see also [15]). Assume (D) and (Γ). There is constant
R > 0 such that:
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1. (a) for any x ∈ V −Γ (R), there are unique s = π
γ+
Γ (x) ∈ Γ and F γ+(x) ≤ 0 such that :

(4.1) x = π
γ+
Γ (x) + F γ+(x)γ+(π

γ+
Γ (x)) ;

(b) for any x ∈ V +
Γ (R), there are unique s = π

γ−
Γ (x) ∈ Γ and F γ−(x) ≤ 0 such that :

(4.2) x = π
γ−
Γ (x) + F γ−(x)γ−(π

γ−
Γ (x)) ;

2. (a) the function x 7→ π
γ+
Γ (x) is called the projection of x on Γ parallel to γ+ : this is a C4

function on V −Γ (R) ;

(b) the function x 7→ π
γ−
Γ (x) is called the projection of x on Γ parallel to γ− : this is a C4

function on V +
Γ (R) ;

3. Let us set F̃ γ±(x) = F γ±(x)|γ±
(
π
γ±
Γ (x)

)
| the normalized version of F γ± corresponding to the

unit vector field γ̃± : x 7→ γ±(x)
|γ±(x)| .

(a) the functions x 7→ F̃ γ±(x) are called the algebraic distance of x to Γ parallel to γ±
(to γ̃±) : these are C4 functions on V ∓Γ (R). One has F γ+ , F̃ γ+ ≤ 0 on V −Γ (R) and
F γ− , F̃ γ− ≤ 0 on V +

Γ (R).

(b) It is possible to extend F γ+, F̃ γ+ and F γ− , F̃ γ− to C4
b (Rd,R) functions, with the condi-

tions F γ± , F̃ γ± > 0 on D± and F γ± , F̃ γ± < 0 on D∓.

4. The above extensions for F̃ γ± and F ν can be performed in a way such that the functions F̃ γ±

and F ν are equivalent in the sense that

(4.3)
1

c1
d(x,Γ) =

1

c1
|F ν(x)| ≤

∣∣∣F̃ γ±(x)
∣∣∣ ≤ c1 |F ν(x)| = c1d(x,Γ) for all x ∈ Rd

for some constant c1 > 1.
5. For x ∈ Γ,

(4.4) ∇F̃ γ±(x) =
ν∗

〈ν, γ̃±〉
(x).

We sometimes use the notation ν(x) or γ±(x) even if x /∈ Γ. For x ∈ V ±Γ (R), we set ν(x) =
ν(π

γ±
Γ (x)) and γ±(x) = γ±(π

γ±
Γ (x)) and for x /∈ V ±Γ (R), arbitrary values are given.

Note that if u is a classical solution to the transmission parabolic problem (PT) defined in Section
2, the transmission condition (?) can be expressed as

(4.5) 〈γ+(y) , ∇xu+(t, y)〉 = −〈γ−(y) ,∇xu−(t, y)〉, ∀(t, y) ∈ (0, T ]× Γ.

This in fact will be the crux of our approach (see Subsubsection 5.5.2).

In the sequel, we will need the following result.

Proposition 4.2. Assume (B), (E), (D) and (Γ). Let x̂ ∈ V ∓Γ (R) and x ∈ V ∓Γ (R) be linked
by the following relation :

(4.6) x = π
γ±
Γ (x̂)− F γ±(x̂)γ∓(π

γ±
Γ (x̂)).

Then, there exists c2 > 1 such that

(4.7)
1

c2
d(x,Γ) ≤ d(x̂,Γ) ≤ c2 d(x,Γ).
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Proof. Without loss of generality, assume for example that x ∈ V −Γ (R) and x̂ ∈ V −Γ (R) are
related by (4.6). Then we have

(4.8) x− πγ+Γ (x̂) = −F γ+(x̂)γ−(π
γ+
Γ (x̂)).

and by uniqueness of the projection π
−γ−
Γ (x), we see that πγ+

Γ (x̂) = π
−γ−
Γ (x) (note that F−γ−(x) =

F γ+(x̂)).
We deduce that

1

c1
d(x,Γ) ≤ |F̃−γ−(x)| = |F−γ−(x)| × |γ−(π

−γ−
Γ (x))| = |x− πγ+Γ (x̂)| = |x− π−γ−Γ (x)| ≤ c1d(x,Γ)

due to the same kind of relation as (4.3), but written for −γ− instead of γ−. Returning back to
(4.8), we see that

1

c1
d(x,Γ) ≤ |F γ+(x̂)| × |γ−(πΓ(x̂))| = |F̃ γ+(x̂)| |γ−(πΓ(x̂))|

|γ+(πΓ(x̂))|
≤ c1d(x,Γ).

So that in view of (4.3) written for x̂ and γ+,

1

c2
1

|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ) ≤ d(x̂,Γ) ≤ c2
1

|γ+(πΓ(x̂))|
|γ−(πΓ(x̂))|

d(x,Γ).

But using (1.7), (1.8) and (1.9), it easy to see that for any z ∈ Γ,

λ2

Λ∗
≤ |γ+(z)|2

|γ−(z)|2
≤ Λ∗

λ2

from which we deduce the result of the proposition.

4.2. Our transformed Euler scheme. We are now in position to introduce our transformed Euler
scheme.

Let us denote from now on 4t = hn = T
n the time step (where n ∈ N∗) and fix a starting point

x0 ∈ Rd.
The time grid is given by (tnk)nk=0 with tnk = Tk

n for 0 ≤ k ≤ n.
We denote by (∆Wk+1)nk=0 the i.i.d. sequence of brownian increments constructed on (Ω,F ,Px0)

and defined by
∆Wk+1 = Wtk+1

−Wtk , ∀ 0 ≤ k ≤ n.

Recall that σ : Rd → Rd×d stands for a matrix valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ D.

Set (∂a(x))j = div(x 7→ (a1j(x), . . . , anj(x))).

Our stochastic numerical scheme
(
X
n
tk

)n
k=0

is defined as follows (we omit the superscript n)

X0 = x0

31



Fig 1. Correction of our scheme when the path crosses the boundary Γ.

and for t ∈ (tk, tk+1], we set
(4.9)

X̂t = Xtk + σ(Xtk)(Wt −Wtk) + ∂a(Xtk)(t− tk) (standard Euler incrementation)

Xtk+1
= X̂tk+1

if
(
Xtk ∈ D+ and X̂tk+1

∈ D+

)
or
(
Xtk ∈ D− and X̂tk+1

∈ D−
)

;

Xtk+1
= π

γ+
Γ (X̂tk+1

)− F γ+(X̂tk+1
)γ−(π

γ+
Γ (X̂tk+1

)) if Xtk ∈ D+ and X̂tk+1
∈ D− ;

Xtk+1
= π

γ−
Γ (X̂tk+1

)− F γ−(X̂tk+1
)γ+(π

γ−
Γ (X̂tk+1

)) if Xtk ∈ D− and X̂tk+1
∈ D+ .

Remark 4.3. When the dimension d is reduced to 1 (one dimensional problem), the discontinu-
ity surface reduces to a single point (say 0). In this case and when the coefficient a = a+Iy>+a−Iy<
is constant on both sides of the discontinuity, it is remarkable that our Euler Scheme is exactly the
same as the one described in [32].

Indeed, in this one-dimensional context, let ϕ(y) = (a−Iy> + a+Iy<) y. Note that ϕ is a bijective
map from R to R. The Euler Scheme constructed in [32] is then defined by X0 = x0 and for all
k ∈ {0, . . . , n},

Xtk = ϕ−1
(
Y tk

)
where Y 0 = ϕ(x0) and for all k ∈ {0, . . . , n− 1}

Y tk+1
= Y tk +

(
a−σ+IY tk> + a+σ−IY tk<

)
(Wtk+1

−Wtk) ;

(see [32] for details - please take care that [32] is written for the right-hand sided local time; the
above computation is valid for the symmetric local time). For example if ϕ(Xtk) < 0 and Y tk+1

≥ 0,
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we get (because ϕ−1(0) = 0 and ϕ−1 is continuous at 0 and also because X and Y share the same
sign),

Xtk+1
= ϕ−1

(
ϕ(Xtk) +

(
a−σ+IY tk> + a+σ−IY tk<

)
4W k+1

k

)

= Xtk +

∫ 0

ϕ(Xtk
)

(
ϕ−1

)′
(z)dz +

∫ ϕ(Xtk
)+(a−σ+IY tk>︸ ︷︷ ︸

=0

+a+σ−IY tk<
)4Wk+1

k

0

(
ϕ−1

)′
(z)dz

= Xtk − ϕ(Xtk)
1

a+
+
(
ϕ(Xtk) + a+σ−4W k+1

k

) 1

a−

=
a+

a−
Xtk +

a+

a−
σ−4W k+1

k ,

which turns out to be the corresponding case in (4.9) in this one-dimensional context. This corre-
spondence is valid in all cases and our transformed Euler Scheme may be viewed as some kind of
generalization of the Euler Scheme presented in [32].

5. Convergence rate of our Euler scheme. The purpose of this section is to prove the
following result.

Theorem 5.1. Let 0 < T < ∞. Assume (B), (E), (D) and (Γ). Let m′ = d2 + d
4e + 1 and

k = m′ + 2. Assume that the coefficients aij satisfy (a±)ij ∈ C2m′−1
b (D±) and that Γ is of class

C2m′. Let f : Rd → R be in the space D(Ak). Let u be the classical solution of (PT).
We have that for all n large enough, and all x0 in Rd,

(5.1)
∣∣∣u(T, x0)− Ex0f(X

n
T )
∣∣∣ ≤ K√hn,

where the constant K depends on d, λ, Λ∗, f and T .

Remark 5.2. In this theorem the assumptions on a(x) and Γ involving the integers m′ and k are
here in order to use Corollary 2.20, which ensures that we will have supt∈[0,T ], x∈D̄± |∂

j
t ∂

αu±(t, x)| <
∞ for any j ≤ 2 and any |α| ≤ 4. This control on the derivatives on u is what we need in order to
lead our convergence proof. In fact if there is a way to get this control under weaker assumptions
on a(x) and Γ, this will lead to a convergence theorem stated under these weaker assumptions.

Assume we are under the assumptions of Theorem 5.1. Remember that the classical solution u
of (PT) is in fact constructed starting from the semi-weak solution of (PT), it is the unique solution
of (2.14) (Proposition 2.18). So that in the light of Corollary 3.2 and Theorem 5.1 we get the
following Corollary.

Corollary 5.3. Under the assumptions of Theorem 5.1 - recall in particular that f ∈ D(Ak)
- consider the scheme X

n
and the solution X of (3.19). We have for any x0 ∈ Rd∣∣∣Ex0f(XT )− Ex0f(X

n
T )
∣∣∣ ≤ K√hn,

where the constant K depends on d, λ, Λ∗, f and T .
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Remark 5.4. Note that f has to be taken in some D(Ak) and the above corollary does not even
state the convergence in law of X

n
T to XT .

However and loosely speaking, let us emphasize that having to take very regular initial conditions
is very often the case for Monte Carlo methods dealing with problems involving a boundary. For
e.g. in [4] that treats the case of reflected diffusions, the authors have to choose an initial condition
satisfying some kind of compatibility condition involving directional partial derivatives of the initial
condition up to order three on the reflection boundary in order to ensure the convergence of their
symmetrized Euler scheme. Again we think that these questions could be addressed in future research.

5.1. Preliminary results.

Lemma 5.5. (see [4]) Consider an Itô process with uniformly bounded coefficients dUt = btdt+
σtdWt on (Ω,F ,Px0). There exist some constants c > 0 and K (depending on p ≥ 1, T and the
bounds on σ, b) such that, for any stopping times S and S′ (with 0 ≤ S ≤ S′ ≤ δ ≤ T ) and any
η ≥ 0,

Px0
[

sup
t∈[S,S′]

|Ut − Us| ≥ η

]
≤ K exp

(
−cη

2

δ

)
;(5.2)

Ex0
[

sup
t∈[S,S′]

|Ut − Us|p
]
≤ Kδp/2.(5.3)

We have when Xtk ∈ D+

Xtk+1
= X̂tk+1

+
[
F γ+(X̂tk+1

)
]− (

γ+(π
γ+
Γ (X̂tk+1

)) + γ−(π
γ+
Γ (X̂tk+1

))
)

and when Xtk ∈ D−

Xtk+1
= X̂tk+1

+
[
F γ−(X̂tk+1

)
]− (

γ+(π
γ−
Γ (X̂tk+1

)) + γ−(π
γ−
Γ (X̂tk+1

))
)

This shows that (Xt)0≤t≤T behaves like a continuous semimartingale on each of the intervals
[tk, tk+1). Using Tanaka’s formula, we have – for example for Xtk ∈ D+ – that for any t ∈ [tk, tk+1),

dXt = dX̂t +
1

2
(γ+ + γ−) (X̂t)dL

0
t (F

γ+(X̂))

+
[
F γ+(X̂t)

]−(
∇ (γ+ + γ−) (X̂t)dX̂t +

1

2
Tr
[
H[γ+ + γ−](X̂t)a(Xtk))

]
dt

)
− IF γ+ (X̂t)<

[
∇ (γ+ + γ−) (X̂t)a(Xtk)

(
∇F γ+(X̂t)

)∗
dt+ (γ+ + γ−) (X̂t)∇F γ+(X̂t)dX̂t

]
− IF γ+ (X̂t)<

(γ+ + γ−) (X̂t)
1

2
Tr
[
H[F γ+ ](X̂t)a(Xtk)

]
dt.(5.4)

Lemma 5.6. Under Assumptions (B), (E), (D) and (Γ), for all c > 0, there exists a constant
K(T ) such that

(5.5) hn Ex0
n−1∑
i=0

[
exp

(
−c

d2(X
n
ti ,Γ)

hn

)]
≤ K(T )

√
hn.
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Proof. The idea is to use the occupation times formula. Using successively (4.3) and the in-
equality (4.7) of Proposition 4.2, we have d (x,Γ) ≥ 1

c2
d (x̂,Γ) ≥ 1

c1c2
|F̃ γ±(x̂)| so that

Ai+1 := Ex0
[

exp

(
−c

d2(X
n
ti+1

,Γ)

hn

)]

≤ Ex0

exp

−c
∣∣∣F̃ γ+(X̂n

ti+1
)
∣∣∣2

|c1c2|2hn

 IXn
ti+
∈D−

+ Ex0

exp

−c
∣∣∣F̃ γ−(X̂n

ti+1
)
∣∣∣2

|c1c2|2hn

 IXn
ti+
∈D+


:= A+

i+1 +A−i+1.(5.6)

We concentrate on term A+
i+1 as both terms are treated in a similar manner.

Set c′ = c/2c2
1c

2
2 > 0 and g(x) = exp(−2c′x2/h); it is easy to check that |g(x)| +

√
h|g′(x)| +

h|g′′(x)| ≤ K(T ) exp(−c′x2/h). Hence, for t ∈ [ti, ti+1], Itô’s formula yields that

Ex0 exp

−2c′

∣∣∣F̃ γ+(X̂n
ti+1

)
∣∣∣2

hn


≤ K(T )

Ex0 exp

−c′
∣∣∣F̃ γ+(X̂n

t )
∣∣∣2

hn

 +
1

hn

∫ ti+1

t
dsEx0 exp

−c′
∣∣∣F̃ γ+(X̂n

s )
∣∣∣2

hn


 .

We integrate this inequality with respect to t over [ti, ti+1] to get

(5.7) hnA+
i+1 ≤ K(T )

∫ ti+1

ti

dsEx0 exp

−c′
∣∣∣F̃ γ+(X̂n

s )
∣∣∣2

hn

 .

(for possibly some new constant K(T )).
Observe that from (4.4),

d〈F̃ γ+(X̂n), F̃ γ+(X̂n)〉s = ∇F̃ γ+(X̂n
s )a(X

n
ti)
[
∇F̃ γ+(X̂n

s )
]∗
ds ≥ λds.(5.8)

Indeed, using the Cauchy-Schwarz inequality and |ν(x̂)| = 1, we have that

∇F̃ γ+(x̂)a(x)
[
∇F̃ γ+(x̂)

]∗
=
ν∗(x̂)a(x)ν(x̂)

〈ν(x̂), γ̃+(x̂)〉2

=
〈ν(x̂), a(x)ν(x̂)〉
〈ν(x̂), a(x̂)ν(x̂)

|a(x̂)ν(x̂)|〉2

≥ 〈ν(x̂), a(x)ν(x̂)〉
|ν(x̂)|2|a(x̂)ν(x̂)|2

|a(x̂)ν(x̂)|2 = 〈ν(x̂), a(x)ν(x̂)〉 ≥ λ

which justifies (5.8).
It readily follows from the occupation times formula that

(5.9) hnA+
i+1 ≤ K(T )

∫ R

−R
dy exp

(
−c′ y

2

hn

)
Ex0

[
Lyti+1

(
F̃ γ+(X̂n

. )
)
− Lyti

(
F̃ γ+(X̂n

. )
)]
.
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Now,

Ex0
[
Lyti+1

(
F̃ γ+(X̂n

. )
)
− Lyti

(
F̃ γ+(X̂n

. )
)]

= 2Ex0
[(
F̃ γ+(X̂n

ti+1
)− y

)+
−
(
F̃ γ+(X̂n

ti)− y
)+
−
∫ ti+1

ti

IF̃ γ+ (X̂n
s )≥yd

(
F̃ γ+(X̂n

s )
)]

≤ 2Ex0
[(
F̃ γ+(X̂n

ti+1
)− y

)+
−
(
F̃ γ+(X̂n

ti)− y
)+
]

+K(T )hn.

Therefore,
∑n−1

i=0 Ex0
[
Lyti+1

(
F̃ γ+(X̂n

. )
)
− Lyti

(
F̃ γ+(X̂n

. )
)]
≤ K(T ) uniformly in |y| ≤ R since

the sum is telescoping. We can thus conclude that hn
∑n−1

i=0 A
+
i+1 ≤ K(T )

√
hn.

The sum hn
∑n−1

i=0 A
−
i+1 is treated similarly. The proof of the Lemma is complete.

5.2. Error decomposition. In all the sequel x0 is arbitrarily fixed.
For all 0 ≤ k ≤ n set

θnk := T − tnk .

The proof of Theorem 5.1 proceeds as follows (we omit the superscript n). Since u(0, x) = f(x)
for all x ∈ Rd and u(T, x0) = Ex0u(T,X0), the discretization error at time T can be decomposed
as follows:

εx0T =
∣∣u(T, x0)− Ex0f

(
XT

)∣∣
=
∣∣∣ n−1∑
k=0

Ex0u(T − tk, Xtk)− Ex0u(T − tk+1, Xtk+1
)
∣∣∣,(5.10)

and thus

εx0T ≤
∣∣∣ n−1∑
k=0

Ex0
{
u(θk, Xtk)− u(θk+1, Xtk)

+u(θk+1, Xtk)− u(θk+1, Xtk+1
)
} ∣∣∣.(5.11)

The rest of this section is devoted to the analysis of∣∣∣∣∣
n−1∑
k=0

Ex0(Tk − Sk)

∣∣∣∣∣ ,
where the time increment Tk is defined as

(5.12) Tk := u(θk, Xtk)− u(θk+1, Xtk)

and the space increment is defined as

(5.13) Sk := u(θk+1, Xtk+1
)− u(θk+1, Xtk).
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5.3. Estimate for the time increment Tk. Remember the definition (5.12) of Tk and that θk =
T − tk. We have{

u(θk, Xtk)− u(θk+1, Xtk)
}
IXtk

∈D+

= hn∂tu(θk+1, Y tk)IXtk
∈D+

+ h2
n

∫
[0,1]2

∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk

∈D+

=: T+
k +R+

k .

Similarly,{
u(θk, Xtk)− u(θk+1, Xtk)

}
IXtk

∈D−

= hn∂tu(θk+1, Xtk)IXtk
∈D− + h2

n

∫
[0,1]2

∂2
ttu(θk+1 + α1α2hn, Xtk)α1 dα1dα2 IXtk

∈D−

=: T−k +R−k .

In view of Corollary 2.20 and Remark 5.2 we have

Ex0 |R+
k +R−k | ≤ C h

2
n.

From the preceding we deduce

(5.14) Ex0Tk = Ex0∂tu(θk+1, Xtk)hn +O(h2
n).

5.4. Expansion of the space increment Sk. Let Sk be defined as in (5.13). Set

4k+1X := Xtk+1
−Xtk

4]
k+1X := X̂tk+1

−Xtk .

and recall that 4k+1W = Wtk+1
−Wtk .

Proposition 5.7.

(5.15) Ex0 |(4]
k+1X)α| ≤ C(α)h|α|/2n .

Proof. This is a consequence of the result of Lemma 5.5 combined with the fact that |(x)α| ≤
|x||α| for any x ∈ Rd.

We emphasize that, due to the definition of our stochastic numerical scheme, 4]
k+1X does not

coincide with Xtk+1
−Xtk when Xtk+1

and Xtk do not belong to the same region, which explains
the two notations 4 and 4].

We need to introduce the four following events:

(5.16)


Ω++
k := [Xtk ∈ D+ and X̂tk+1

∈ D+],

Ω−−k := [Xtk ∈ D− and X̂tk+1
∈ D−],

Ω+−
k := [Xtk ∈ D+ and X̂tk+1

∈ D−],

Ω−+
k := [Xtk ∈ D− and X̂tk+1

∈ D+].
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In view of the definition of our stochastic numerical scheme we have

On Ω++
k , 4k+1X = 4]

k+1X.

Therefore

SkIΩ++
k

= 〈4k+1X,∇xu(θk+1, Xtk)〉 IΩ++
k

+
1

2

(
4k+1X

)∗
H[u](θk+1, Xtk)4k+1X IΩ++

k

+
∑
|α|=3

1

α!
(4k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ++

k

+

∫ 1

0
dξ
∑
|α|=4

(1− ξ)4

α!
(4k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ4k+1X) IΩ++

k

=: S++1
k + S++2

k + S++3
k + S++4

k .

Similarly,

SkIΩ−−k = 〈4k+1X,∇xu(θk+1, Xtk)〉 IΩ−−k +
1

2

(
4k+1X

)∗
H[u](θk+1, Xtk)4k+1X IΩ−−k

+
∑
|α|=3

1

α!
(4k+1X)α

∂3u

∂xα
(θk+1, Xtk) IΩ−−k

+

∫ 1

0
dξ
∑
|α|=4

(1− ξ)4

α!
(4k+1X)α

∂4u

∂xα
(θk+1, Xtk + ξ4k+1X) IΩ−−k

=: S−−1
k + S−−2

k + S−−3
k + S−−4

k .

We now use that Ω++
k ∪Ω−−k = Ω− (Ω+−

k ∪Ω−+
k ). Notice that Ω+−

k ∪Ω−+
k belongs to the σ-field

generated by (Wt) up to time tk+1. In view of the first line of (4.9) and the fact that EFtk∆Wk+1 = 0,
we get

Ex0(S++1
k + S−−1

k ) =
hn
2
Ex0

[
〈∂a(Xtk),∇xu(θk+1, Xtk)〉

]
− Ex0

[
〈4]

k+1X,∇xu(θk+1, Xtk)〉 IΩ+−
k ∪Ω−+

k

]

Proceeding similarly and conditioning (4]
k+1X)2 w.r.t. the past of (Wt) up to time tk, we obtain

Ex0(S++2
k + S−−2

k ) =
1

2
Ex0

[
Tr[σH[u]σ∗](θk+1, Xtk)

]
hn

− 1

2
Ex0

[
(4]

k+1X)∗H[u](θk+1, Xtk)4]
k+1X IΩ+−

k ∪Ω−+
k

]
,

and, since Ex0(4k+1W )α = 0 whenever |α| = 3,

Ex0(S++3
k + S−−3

k ) =
∑
|α|=3

1

α!
Ex0

[
(4]

k+1X)α
∂3u

∂xα
(θk+1, Xtk)

]

−
∑
|α|=3

1

α!
Ex0

[
(4]

k+1X)α
∂3u

∂xα
(θk+1, Xtk) IΩ+−

k ∪Ω−+
k

]
.
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We have, combining the results of Corollary 2.20 and Proposition 5.7,

(5.17)

∣∣∣∣∣∣
∑
|α|=3

1

α!
Ex0

[
(4]

k+1X)α
∂3u

∂xα
(θk+1, Xtk)

]∣∣∣∣∣∣ ≤ C h3/2
n .

In addition, and for the same reasons, we have

Ex0 |S++4
k + S−−4

k | ≤ C h2
n.

To summarize the calculations of this subsection, we have obtained

Ex0Sk =

Ex0Lu(θk+1, Xtk)hn + Ex0
[(
Sk − 〈4]

k+1X,∇xu(θk+1, Xtk)〉
)

IΩ+−
k ∪Ω−+

k

]
− Ex0

1

2
(4]

k+1X)∗H[u](θk+1, Xtk)4]
k+1X +

∑
|α|=3

1

α!
(4]

k+1X)α
∂3u

∂xα
(θk+1, Xtk)

 IΩ+−
k ∪Ω−+

k


+O(h3/2

n )

=: Ex0Lu(θk+1, Xtk)hn + Ex0R(1)
k − Ex0R(2)

k +O(h3/2
n ).

(5.18)

We now estimate the remaining terms Ex0R(1)
k and Ex0R(2)

k .

5.5. Control of the term Ex0R(1)
k . Expansion around a well chosen point in Γ. On the event

Ω+−
k we have that Xtk+1

and Xtk are close to Γ. On this event, we also have that X̂tk+1
∈ D− and

Xtk ∈ D+. Remember our definition of (F γ+(x), π
γ+
Γ (x)) for x ∈ D−.

5.5.1. Decomposition of Ex0R(1)
k . As the function u is continuous across the surface Γ at point

π
γ+
Γ (x), we get

Ex0
((
Sk − 〈4]

k+1X,∇xu(θk+1, Xtk)〉
)

IΩ+−
k

]
= Ex0

[((
u(θk+1, Xtk+1

)− u(θk+1, π
γ+
Γ (X̂tk+1

))
)

+
(
u(θk+1, π

γ+
Γ (X̂tk+1

))− u(θk+1, Xtk)
))

IΩ+−
k

]
− Ex0

[
〈4]

k+1X,∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]
− Ex0

[
〈4]

k+1X,∇xu(θk+1, Xtk)−∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]
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=
{
Ex0

[
〈Xtk+1

− πγ+Γ (X̂tk+1
),∇xu−(θk+1, π

γ+
Γ (X̂tk+1

))〉IΩ+−
k

]
− Ex0

[
〈Xtk − π

γ+
Γ (X̂tk+1

),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]
−Ex0

[
〈4]

k+1X,∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]}
:=L+−1

k

+


∫ 1

0
dξ
∑
|α|=2

(1− ξ)2

α!
Ex0

[
(X̂tk+1

− πγ+Γ (X̂tk+1
))α

×∂
αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1

) + ξ(X̂tk+1
− πγ+Γ (X̂tk+1

))) IΩ+−
k

]
−
∫ 1

0
dξ
∑
|α|=2

(1− ξ)2

α!
Ex0

[
(Xtk − π

γ+
Γ (X̂tk+1

))α

×∂
αu

∂xα
(θk+1, π

γ+
Γ (X̂tk+1

) + ξ(Xtk − π
γ+
Γ (X̂tk+1

))) IΩ+−
k

]}
:=L+−2

k

−
{
Ex0

[
〈4]

k+1X,∇xu+(θk+1, Xtk)−∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉 IΩ+−
k

]}
:=L+−3

k

= L+−1
k + L+−2

k + L+−3
k .

5.5.2. Canceling the term L+−1
k using the transmission condition. Observe that due to the fact

that (
X̂tk − π

γ+
Γ (X̂tk+1

)
)

+
(
X̂tk+1

− X̂tk

)
= X̂tk+1

− πγ+Γ (X̂tk+1
).

we have that

L+−1
k = Ex0

[(
〈Xtk+1

− πγ+Γ (X̂tk+1
),∇xu−(θk+1, π

γ+
Γ (X̂tk+1

))〉

−〈X̂tk+1
− πγ+Γ (X̂tk+1

),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉
)

IΩ+−
k

]
= Ex0

[
F γ+(X̂tk+1

)
(
〈−γ−(π

γ+
Γ (X̂tk+1

)),∇xu−(θk+1, π
γ+
Γ (X̂tk+1

))〉

−〈γ+(π
γ+
Γ (X̂tk+1

)),∇xu+(θk+1, π
γ+
Γ (X̂tk+1

))〉
)

IΩ+−
k

]
= 0,

where we have used the vector problem solved by (F γ+ , π
γ+
Γ ) and Equation (4.5) (i.e. the transmis-

sion condition (?) and the definition of γ±(x)).

5.5.3. The term L+−2
k . We now turn to the term L+−2

k .
The term L+−2

k is the sum of two terms. These two terms are treated similarly, so we concentrate
only on the first. Let α such that |α| = 2. We have that

Ex0
[∣∣∣(Xtk − π

γ+
Γ (X̂tk+1

))α
∣∣∣ IΩ+−

k

]
≤ c1Ex0

[
|Xtk − π

γ+
Γ (X̂tk+1

)|2 IΩ+−
k

]
≤ c2Ex0

[
|4]

k+1X|
2 IΩ+−

k

]
The same kind of treatment can be performed for the second term of L+−2

k . Conditionning w.r.t
Ftk and applying the Cauchy-Schwarz inequality in the conditionnal expectation, we find using the
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result of Lemma 5.5,

|L+−2
k | ≤ CEx0

[
EFtk

[∣∣4]
k+1X

∣∣4]1/2
PFtk

(
Ω+−
k

)1/2] ≤ C hn Ex0PFtk
(
Ω+−
k

)1/2
.

5.5.4. The term L+−3
k . For the term L+−3

k , we may perform a Taylor’s expansion to the term

∇xu+(θk+1, Xtk)−∇xu+(θk+1, π
γ+
Γ (X̂tk+1

)).

Using Corollary 2.20 and the Cauchy-Schwarz inequality, we find that

(5.19) |L+−3
k | ≤ CEx0

[∣∣4]
k+1X

∣∣∣∣Xtk − π
γ+
Γ (X̂tk+1

)〉
∣∣ IΩ+−

k

]
≤ CEx0

[∣∣4]
k+1X

∣∣2 IΩ+−
k

]
.

Finally, as for the term L+−2
k , we find that

|L+−3
k | ≤ C hnEx0PFtk

(
Ω+−
k

)1/2
.

Using the same method for the other side Ω−+
k , we find that

Ex0R(1)
k ≤ C hnE

x0
(
PFtk

(
Ω+−
k

)1/2
+ PFtk

(
Ω−+
k

)1/2)
.

5.6. Summing up. The term Ex0R(2)
k can be estimated using the same techniques used in the

previous section and we omit the details.
Using now the fact that ∂tu− Lu = 0, we finally find that

(5.20) εx0T ≤ C hn E
x0

n−1∑
k=0

(
PFtk

(
Ω+−
k

)1/2
+ PFtk

(
Ω−+
k

)1/2)
+ C

√
hn.

Observe – using the result of Lemma 5.5 – that

PFtk
(
Ω+−
k

)1/2
= PFtk

(
Xtk ∈ D+, X̂tk+1

∈ D−
)1/2

≤ PFtk
(
||X̂tk+1

−Xtk || ≥ d
(
Xtk ,Γ

))1/2

≤ K(T ) exp

(
−1

2

d2
(
Xtk ,Γ

)
hn

)

and the same kind of inequality holds true for PFtk
(
Ω−+
k

)1/2
.

Finally,

εx0T ≤ K(T )hn Ex0
n−1∑
k=0

exp

(
−1

2

d2
(
Xtk ,Γ

)
hn

)
+ C

√
hn,

and we conclude the proof of Theorem 5.1 using the result of Lemma 5.6 (note that if we sum up all
the dependancies of our constants, we indeed have that K in (5.1) depends on d, λ, Λ∗, f and T ).
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6. Numerical experiments. In these examples d = 2 and the domain D is the open unit
disc, i.e.,

D = {(x1, x2) ∈ R : x2
1 + x2

2 < 1}.

Note that the boundary of D is the unit circle ∂D = {(x1, x2) ∈ R : x2
1 + x2

2 = 1}.
The subdomains D+ and D− are defined by

D+ = {(x1, x2) ∈ D with x2 > 0} and D− = {(x1, x2) ∈ D with x2 < 0},

so that the interface is Γ = {(x1, 0) ∈ R2 : −1 ≤ x1 ≤ 1}.
The diffusion matrix is defined by

a(x) = a+(x)Ix∈D+ + a−(x)Ix∈D̄− ,

with
a±(x) = P ∗±D±(x)P±

where P± are rotation (therefore orthogonal) matrices

P± =

(
cos(θ±) − sin(θ±)
sin(θ±) cos(θ±)

)
(for θ± ∈ [0, 2π)), and D±(x) are diagonal matrix-valued functions

D±(x) =

(
λ1
± + ε±x2 0

0 λ2
± + ε±x2

)
where λ1

±, λ
2
± > 0 and ε± < λi± for i = 1, 2. Note that this ensures that a(x) satisfies the uniform

ellipticity assumption (E).
We take θ+ = π

4 , θ− = π
3 , λ1

+ = 1, λ2
+ = 9, λ1

− = 2, λ2
− = 3 , ε+ = 0.5 and ε− = 1.9. This gives

a+(x) =
1

2

(
5 + 0.5x2 4

4 5 + 0.5x2

)
and a−(x) =

1

2

(
11
4 + 1.9x2

√
3

4√
3

4
9
4 + 1.9x2

)
.

Performing our Transformed Euler Scheme.
We have the Cholesky decompositions 2a±(x) = σ±σ

∗
±(x), with

σ+(x) =

( √
5 + 0.5x2 0

4/
√

5 + 0.5x2

√
5 + 0.5x2 − 16/(5 + 0.5x2)

)
and

σ−(x) =

 √
11
4 + 1.9x2 0

√
3

4 /
√

11
4 + 1.9x2

√
9
4 + 1.9x2 − 3/(44 + 30.4x2)

 ,

so that 2a(x) = σσ∗(x) with σ(x) = σ+(x)Ix∈D+ + σ−(x)Ix∈D̄− . Besides we have

∂a(x) =

(
0

0.25

)
Ix∈D+ +

(
0

0.95

)
Ix∈D̄− .
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Note that when the scheme crosses the interface Γ, we compute the quantities π
γ±
Γ (X̂tk+1

) and

F γ±(X̂tk+1
) in the following way (we will detail the procedure for π

γ+
Γ (X̂tk+1

) and F γ+(X̂tk+1
)).

Recall that we have

X̂tk+1
− πγ+Γ (X̂tk+1

) = F γ+(X̂tk+1
)γ+(π

γ+
Γ (X̂tk+1

)).

But here ν = (0, 1)∗ so that for any x ∈ Γ

γ+(x) =
1

2

(
4

5 + 0.5x2

)
and

(
π
γ+
Γ (X̂tk+1

)
)

2
= 0 so that

(
X̂tk+1

− πγ+Γ (X̂tk+1
)
)

2
=
(
X̂tk+1

)
2
. This yields

F γ+(X̂tk+1
) =

(
X̂tk+1

)
2

2.5
,

and then

π
γ+
Γ (X̂tk+1

) =

( (
X̂tk+1

)
1
− F γ+(X̂tk+1

)× 2

0

)
.

Then we have everything in hand to perform our Tranformed Euler Scheme X.

Comparing with an Euler scheme applied on regularised coefficients. A natural method
with which to compare our tranformed scheme is to regularise first the coefficients and then to
perform a standard (i.e. not transformed) Euler scheme. More precisely consider the operator

C2(Rd;R) 3 f 7→ Lεf = ∇ ·
(
aε∇xf

)
= Tr [H[f ]aε] + (∂aε)∗∇xf

where aε is some smoothed version of a (ε is the regularisation step, see the following discussion
about its choice). Then Lε is the generator of the solution of the SDE

(6.1) dXε
t = σε(Xε

t ) dWt + [∂aε](Xε
t ) dt,

where σε(σε)∗ = 2aε. The process Xε may be approached by a standard (i.e. not transformed)
Euler scheme X

ε
, with time step hn.

Let hn be fixed. In fact ε will be chosen in function of hn. We are first inspired by the random
walk approach proposed in [46]. In this later paper Equation (3.11) indicated that ε has to be
proportional to the square root of the space discretisation step. Then, using a scaling argument we

choose ε = h
1/4
n .

Then we set
aε(x) = a(x)1|x2|>ε +Aε(x)1|x2|≤ε

where

Aε(x) =
1

2

(
31
8 − 0.7ε+ x2( 9

8ε + 1.2)
√

3
8 + 2 + x2(2

ε −
√

3
8ε )√

3
8 + 2 + x2(2

ε −
√

3
8ε ) 29

8 − 0.7ε+ x2(11
8ε + 1.2)

)
.

Note that the thus defined coefficient aε is continuous and piecewise differentiable. Then we have
∂aε = ∂a(x)1|x2|>ε + ∂Aε(x)1|x2|≤ε where

∂Aε(x) =

(
1
ε −

√
3

16ε
11
16ε + 0.6

)
,
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and 2aε(x) = σε[σε]∗(x) with σε(x) = σ(x)1|x2|>ε + Σε(x)1|x2|≤ε and

Σε(x) =


√

31
8 − 0.7ε+ x2( 9

8ε + 1.2) 0

√
3

8
+2+x2( 2

ε
−
√
3

8ε
)√

31
8
−0.7ε+x2( 9

8ε
+1.2)

√
29
8 − 0.7ε+ x2(11

8ε + 1.2)−
(√

3
8

+2+x2( 2
ε
−
√
3

8ε
)
)2

31
8
−0.7ε+x2( 9

8ε
+1.2)

 .

With these coefficients it is easy to perform a standard Euler Scheme on the SDE (6.1).

We will compare both methods on the two following examples. Benchmarks will be provided by
a deterministic approximation of the solutions of the PDE of interest.

Example 1. We wish here to treat the elliptic transmission problem

(E0
T,bounded D)



Lu(x) = 0 ∀x ∈ D

〈a+∇xu+(y)− a−∇u−(y), ν(y)〉 = 0 ∀y ∈ Γ

u(y+) = u(y−) ∀y ∈ Γ

u(x) = f(x) ∀x ∈ ∂D.

We take the function f to be
f(x) = sin(3x1) + cos(4x2).

Consider then on one side our study of the convergence in the parabolic case, and on the other side
the Feynman-Kac representation for elliptic PDEs available in the smooth case (see for instance
Theorem 5.7.2 in [16]). One can hope that

Ex[f(Xτ )] −−−−→
hn→0

u(x),

where X denotes our scheme and τ = inf{t ≥ 0 : Xt /∈ D}.
We thus compute a Monte Carlo approximation of Ex[f(Xτ )] on one side (with N = 106 paths).

Note that in this Monte Carlo procedure we have used a boundary shifting method, on order to
reduce the bias introduced by the approximation of the exit time τ = inf{t ≥ 0 : Xt /∈ D} by τ
(see [14] Subsection 5.4.3, and the references therein).

On the other side Ex[f(X
ε
τε)], with τ ε = inf{t ≥ 0 : X

ε
t /∈ D}, provides another approximation

of u(x) (note that we use again a boundary shifting method).
Benchmarks are provided by the software FREEFEM with which we compute an approximation

of u(x) by a finite element method, using around 1.5 × 106 triangles and 7 × 105 vertices (finite
elements basis consists of polynomial functions of order 1).

Table 1 shows the results. It seems that our Transformed Euler scheme converges quicker to the
benchmark than the standard Euler scheme applied on regularized coefficients.

Example 2. We now turn to some parabolic example (but we keep the same matrix-valued coef-
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Point x Finite Element Euler Scheme on regularized coefficients Transformed Euler Scheme
(7.105 vertices) (hn = 10−n, n = 4, 5, 6) (hn = 10−n, n = 2, 4, 5, 6)

x = (0, 0.5)∗ -0.1207 - -0.136356
-0.115913 -0.121001
-0.117946 -0.121299
-0.118792 -0.120821

x = (0.9, 0.05)∗ 0.92527 - 0.824901
0.915937 0.924759
0.922813 0.925370
0.923853 0.925389

x = (−0.3,−0.5)∗ -0.745461 - -0.737754
-0.738184 -0.746226
-0.739099 -0.745676
-0.742611 -0.745829

Table 1
Approximated values of the solution u(x) of (E0T,,bounded D) at points x = (0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗

computed with a finite element method (7.105 vertices), a standard Euler scheme applied on a regularisation aε of a,
and our tranformed Euler scheme (with N = 106 Monte Carlo sample, and different values of hn).

ficient a):

(PT,bounded D)



∂tu(t, x)− Lu(t, x) = 0 ∀(t, x) ∈ (0, T ]×D

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0 ∀(t, y) ∈ (0, T ]× Γ (?)

u(t, y+) = u(t, y−) ∀(t, y) ∈ [0, T ]× Γ

u(t, x) = 0 ∀(t, x) ∈ (0, T ]× ∂D

u(0, x) = u0(x) ∀x ∈ Rd.

Here we will take T = 0.1 and
u0(x) = 10 ∗ (1− |x|2).

Note that the parabolic problem (PT,bounded D) is posed in a bounded domain, unlike in our theo-
retical study. But we have found that convenient for numerical purposes.

Note also that u0 belongs to H1
0 (D) and is therefore compatible with the uniform Dirichlet

boundary condition in (PT,bounded D). But it does not belong to the domain D(A), as it does not
satisfy the transmission condition (?).

Nevertheless one can hope that

Ex[u0(Xt) 1t≤τ ] −−−−→
hn→0

u(t, x)

(here we use for example 4.4.5 in [14] and use again the notation τ of Example 1).
Again we compute a Monte Carlo approximation of the expectations Ex[u0(Xt) 1t≤τ ] on one

side and of Ex[u0(X
ε
t ) 1t≤τε ] on the other side (with N = 106 paths and using again the boundary

shifting method).
We use FREEFEM to compute an approximation of u(t, x) by a finite element method (dis-

cretization in space) and a Crank-Nicholson scheme (discretization in time), using around 9× 109

triangles and 4.5× 105 vertices, and 300 time steps.
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Point x Finite Element / Euler Scheme on regularised coefficients Transformed Euler Scheme
Crank-Nicholson (hn = 10−n, n = 5, 6, 7) (hn = 10−n, n = 4, 5, 6, 7)

(4.5× 105 vertices,
300 time steps)

x = (0, 0.5)∗ 2.26288 - -
2.26766 2.28299
2.26332 2.27562
2.26233 2.26621

x = (0.9, 0.05)∗ 0.2564 - -
- -

0.269654 0.263835
0.263029 0.258807

x = (−0.3,−0.5)∗ 4.24525 - -
- -

4.23472 4.23862
4.23981 4.24483

x = (0, 0.05)∗ 4.02857 - -
4.03452 4.0381
4.02488 4.03255
4.02483 4.02936

Table 2
Approximated values of the solution u(T = 0.1, x) of (PT,bounded D) at points

x = (0, 0.5)∗, (0.9, 0.05)∗, (−0.3,−0.5)∗, (0, 0.05)∗ computed with a finite element / Crank-Nicholson scheme method
(4.5× 105 vertices, 300 times steps), a standard Euler scheme applied on a regularisation aε of a, and our

tranformed Euler scheme (with N = 106 Monte Carlo sample, and different values of hn).

Table 2 shows the results, for t = T . Again it seems that our tranformed Euler scheme converges
quicker to the benchmark, even if for some reason it is less obvious at point x = (0, 0.5)∗.

Remark on the not corrected scheme applied to discontinuous coefficients. Note that
if we suppress the correction at the interface step in our scheme we get wrong results (see Tables
3 and 4; it seems that this procedure converges to a wrong value).

This is because by doing so we simulate paths of

dXt = σ(Xt) dWt + [∂a](Xt) dt,

whose generator is

Tr [H[f ]a] + (∂a)∗∇xf =
d∑

i,j=1

aij ∂
2
xixj +

d∑
j=1

( d∑
i=1

∂xiaij
)
∂xj

and not ∇ · (a∇ ) (note that these two operators are the same in the case of a smooth coefficient a
- at least C1; but for a discontinuous coefficient a this is not the case). In fact not correcting the
scheme does not allow to capture the divergence structure of the operator.
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Point x Finite Element Not Transformed Euler Scheme Transformed Euler Scheme
(7.105 vertices) (hn = 10−n, n = 5, 6) (hn = 10−n, n = 2, 4, 5, 6)

x = (0.9, 0.05)∗ 0.92527 - 0.824901
- 0.924759

0.815699 0.925370
0.816116 0.925389

Table 3
Approximated values of the solution u(x) of (E0T,,bounded D) at point x = (0.9, 0.2)∗ computed with a finite element
method (7.105 vertices), a not-transformed Euler scheme directly applied on the discontinuous coefficients and our

tranformed Euler scheme (with N = 106 Monte Carlo sample, and different values of hn).

Point x Finite Element / Not Transformed Euler Scheme Transformed Euler Scheme
Crank-Nicholson (hn = 10−n, n = 5, 6, 7) (hn = 10−n, n = 4, 5, 6, 7)

(4.5× 105 vertices,
300 time steps)

x = (0, 0.5)∗ 2.26288 - -
2.10057 2.28299
2.08179 2.27562
2.08290 2.26621

Table 4
Approximated values of the solution u(T = 0.1, x) of (PT,bounded D) at point x = (0, 0.5)∗ computed with a finite

element / Crank-Nicholson scheme method (4.5× 105 vertices, 300 times steps), a not-transformed Euler scheme
directly applied on the discontinuous coefficients and our tranformed Euler scheme (with N = 106 Monte Carlo

sample, and different values of hn).

APPENDIX A: APPENDIX

Lemma A.1. Let Γ = Rd−1 × {0} (d > 1). We have

∀v ∈ H
1
2 (Γ), ∀1 ≤ j ≤ d− 1, Djv ∈ H−

1
2 (Γ) with ||Djv||H−1/2(Γ) ≤ C||v||H1/2(Γ),

where C is a universal constant.

Proof. STEP1. We prove that for any v ∈ Hs(Rn), s ∈ R, n ∈ N∗, we have Djv ∈ Hs−1(Rn),
for any 1 ≤ j ≤ n, with ||Djv||Hs−1(Rn) ≤ C||v||Hs(Rn).

We denote F : v 7→ v̂, v ∈ S(Rn).
Let ϕ ∈ S(Rn), 1 ≤ j ≤ n, we have F{(−i2πxj)ϕ(x)}(ξ) = Djϕ̂(ξ) (see [33] p72). From this and

(1.2) it is an exercise to check that we get

∀v ∈ S ′(Rn), D̂jv(ξ) = F{Djv}(ξ) = (i2πξj)v̂(ξ).

Then we get, for any v ∈ Hs(Rn),∫
Rn

∣∣(1 + |ξ|2)
s−1
2 D̂jv(ξ)

∣∣2dξ ≤ 4π2

∫
Rn

(1 + |ξ|2)s−1|ξ|2|v̂(ξ)|2dξ ≤ 4π2

∫
Rn

(1 + |ξ|2)s|v̂(ξ)|2dξ <∞.

Step 1 is proved.
STEP2. It suffices to notice that ||v||H1/2(Γ) = ||vζ ||H1/2(Rd−1), with vζ(x

′) = v(x′, 0), x′ ∈ Rd−1,

that (Djv)ζ = Djvζ , and to use Step 1 with s = 1
2 and ||Djv||H−1/2(Γ) = ||(Djv)ζ ||H−1/2(Rd−1) (cf

[33] p98).
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Proof of Lemma 2.3. To show the result for instance on D+, it suffices to notice that for any
ϕ ∈ C∞c (D+;R) we have

〈(Div)+, ϕ〉H−1(D+),H1
0 (D+) = 〈Div, ϕ〉H−1(Rd),H1

0 (Rd) = −
∫
Rd
vDiϕ = −

∫
D+

v+Diϕ

= 〈Div+, ϕ〉H−1(D+),H1
0 (D+).

One may of course proceed in the same fashion on D−.

In order to prove Lemma 2.4 we first need a lemma.

Lemma A.2. Let u ∈ L2(Rd) with u± ∈ H1(Rd±) and ϕ ∈ C∞c (Rd;R). We have

(A.1) −
∫
Rd±

u±Djϕ =

∫
Rd±

(Dju±)ϕ, ∀1 ≤ j ≤ d− 1,

and

(A.2) −
∫
Rd±

u±Ddϕ = ±
∫

Γ
γ(u±)γ(ϕ) dσ +

∫
Rd±

(Ddu±)ϕ

(we recall that here Γ = Rd−1 × {0}).

Proof. We establish the formulae on D+ = Rd+, as the case Rd− can be treated in a similar
manner. Let (un) a sequence in C∞c (Rd;R), s.t. ||u+−un|D+

||H1(Rd+) → 0, n→∞, where || · ||H1(Rd+)

denotes the usual Sobolev norm. Let ϕ ∈ C∞c (Rd;R). Let 1 ≤ j ≤ d− 1. Using integration by parts
with respect to the j-th variable for smooth functions vanishing at infinity in the ej-direction, we
have

−
∫
Rd+
u+Djϕ = lim

n→∞

(
−
∫
Rd+
unDjϕ

)
= lim

n→∞

(∫
Rd+

(Djun)ϕ
)

=

∫
Rd+

(Dju+)ϕ,

which proves (A.1). Further, we have

−
∫
Rd+
u±Ddϕ = limn→∞

(
−
∫
Rd−1×R+

unDdϕ
)

= limn→∞

(
−
∫
Rd−1

(
limxd→∞(unϕ)(·, xd)

− limxd→0,xd>0(unϕ)(·, xd)
)
dx1 . . . dxd−1 +

∫
Rd+

(Ddun)ϕ
)

= limn→∞

( ∫
Γ γ(un)γ(ϕ) dς +

∫
Rd+

(Ddun)ϕ
)

=
∫

Γ γ(u+)γ(ϕ) dς +
∫
Rd+

(Ddu+)ϕ,

where we have used the continuity of the trace operator at the last line. Equation (A.2) is proved.
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Proof of Lemma 2.4. We first treat the case D± = Rd±. Let u ∈ L2(Rd) with u± ∈ H1(Rd±).
We will prove that for any ϕ ∈ C∞c (Rd;R) and any 1 ≤ j ≤ d, we have

(A.3) 〈Dju, ϕ〉H−1(Rd),H1
0 (Rd) = 〈Dju+, ϕ〉L2(Rd+) + 〈Dju−, ϕ〉L2(Rd−) + δjd

∫
Γ
[u]Γγ(ϕ) dς

(δjd stands for the Kronecker symbol). This is sufficient to provide the result.
Let then ϕ ∈ C∞c (Rd;R). Let 1 ≤ j ≤ d− 1. We have

〈Dju, ϕ〉H−1(Rd),H1
0 (Rd) = −

∫
Rd
uDjϕ = −

∫
Rd+
u+Djϕ−

∫
Rd−

u−Djϕ.

Using then u± ∈ H1(Rd±) and the fact that ϕ vanishes at infinity in the ej-direction, we get, using
an integration by parts formula (see Lemma A.2),

〈Dju, ϕ〉H−1(Rd),H1
0 (Rd) =

∫
Rd+

(Dju+)ϕ+

∫
Rd−

(Dju−)ϕ.

Further, we have in the same manner

〈Ddu, ϕ〉H−1(Rd),H1
0 (Rd) = −

∫
Rd
uDdϕ = −

∫
Rd+
u+Ddϕ−

∫
Rd−

u−Ddϕ,

but here integration by parts will provide different results, as ϕ± vanish at Rd−1 × {±∞} but not
at Rd−1 × {0}. Indeed we have from Lemma A.2,

(A.4) −
∫
Rd−1×R+

u+Ddϕ =

∫
Γ
γ(u+)γ(ϕ) dς +

∫
Rd+

(Ddu+)ϕ

In the same manner we have

(A.5) −
∫
Rd−

u−Ddϕ = −
∫

Γ
γ(u−)γ(ϕ) dς +

∫
Rd−

(Ddu−)ϕ.

Summing (A.4) and (A.5) we get (A.3). If Γ is bounded and smooth one may cover it by a finite
number of balls, use change of coordinates, cutoff functions and several times the result for D± =
Rd±. We will then get the desired result.

In order to prove Propositions 2.15 and 2.16 we need a set of technical results.
For 1 ≤ l ≤ d we introduce the l-th partial difference quotient

∆l,hu (x) =
u(x+ hel)− u(x)

h
, h ∈ R.

We gather in the following lemma the results we will need about difference quotients.

Lemma A.3. Let u, v ∈ L2(Rd) and 1 ≤ l ≤ d.
i) If Dlu ∈ L2(Rd) then ||∆l,hu||L2(Rd) ≤ ||Dlu||L2(Rd) for all h ∈ R.
ii) If there is a constant M such that ||∆l,hu||L2(Rd) ≤ M for all h sufficiently small, then Dlu

is in L2(Rd), with ||Dlu||L2(Rd) ≤M .
iii) For all h ∈ R we have ∆l,h(uv) = ∆l,hu v(·+ hel) + u∆l,hv.
iv) For all h ∈ R we have

∫
Rd u∆l,hv = −

∫
Rd v∆l,−hu.
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Proof. Point iii) follows from elementary computations and Point iv) from a change of variable
in the integral

∫
Rd u∆l,hv.

For Points i) and ii) see the proof of Lemma 4.13 in [33].

The following lemma allows to weaken the assumptions on the coefficients in Proposition 2.6, un-
der the condition that the function under investigation is smooth. It allows to prove the forthcoming
Lemma A.5.

Lemma A.4. Let G2 an open bounded subset of Rd with G2 ∩ Γ 6= ∅. Let χ ∈ C∞c (G2;R). Let
some coefficients auij satisfy (au±)ij ∈ H1(D2

±) (where D2
± = G2 ∩ D±; note that χ± ∈ H2(D2

±)).
Then, using Einstein’s convention for summation over repeated indexes,∫

D+

(au+)ijDjχ+Div = −
∫
D+

(Di((a
u
+)ijDjχ+) v −

(
νiγ[(au+)ijDjχ+], γ(v)

)
Γ
, ∀v ∈ H1(D+)

and∫
D−

(au−)ijDjχ−Div = −
∫
D−

(Di((a
u
−)ijDjχ−) v +

(
νiγ[(au−)ijDjχ−], γ(v)

)
Γ
, ∀v ∈ H1(D−).

Proof. We prove the result on D2
+., w.l.g. For each 1 ≤ i, j ≤ d one may construct a sequence

((au,n)ij)n in C∞c (Rd;R) such that ||(au,n)ij|D2
+
− (au)ij|D2

+
||H1(D2

+) → 0 as n → ∞. Then the

(au,n+ )ij ’s are obviously Lipschitz in D2
+ and from Proposition 2.6 we have∫

D+

(au,n+ )ijDjχ+Div = −
∫
D+

(Di((a
u,n
+ )ijDjχ+) v −

(
νiγ[(au,n+ )ijDjχ+], γ(v)

)
Γ
, ∀v ∈ H1(D+).

We will now pass to the limit in the above equality when n → ∞. We drop the subscript + on
functions in order to lighten notations. To start with, as the Djχ are bounded, it is obvious that the
(au,n)ijDjχ converge to (au)ijDjχ in H1(D2

+). So that it is immediate that
∫
D+

(au,n+ )ijDjχ+Div

converges to
∫
D+

(au+)ijDjχ+Div. Further, using the continuity of the trace operator γ : H1(D+)→
H1/2(Γ) it is clear that γ[(au,n)ijDjχ] converges to γ[(au)ijDjχ] in H1/2(Γ). Therefore by Cauchy-
Schwarz,

(
νiγ[(au,n+ )ijDjχ+], γ(v)

)
Γ

converges to
(
νiγ[(au+)ijDjχ+], γ(v)

)
Γ
. To treat the third and

last term it suffices to develop (Di((a
u,n)ijDjχ) into

Di((a
u,n)ij)Djχ+ (au,n)ijDiDjχ.

Using again the boundedness of the Diχ’s and DiDjχ’s, this is easily seen to be converging in
L2(D2

+) to Di((a
u)ij)Djχ+(au)ijDiDjχ = Di((a

u)ijDjχ) (note that the (au)ijDjχ are in H1(D2
+)).

The proof is completed.

Lemma A.5. Assume we are under the assumptions of Proposition 2.15. Let a cutoff function
χ ∈ C∞c (G2;R), 0 ≤ χ ≤ 1, with χ ≡ 1 on G1 (the derivatives of χ are bounded by some constant
depending on dist(G1, ∂supp(χ))).

Then the assumption
[
Bνu

]
Γ
∈ H

1
2 (Γ2) implies that [Bν(χu)]Γ ∈ H

1
2 (Γ2).

Proof. We aim at proving that

(A.6) [Bν(χu)]Γ = χ
[
Bνu

]
Γ

+

d∑
j=1

{
γ
[
(Djχ)+(a+)dju+

]
− γ
[
(Djχ)−(a−)dju−

]}
in H−1/2(Γ).
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As 0 ≤ χ ≤ 1 with bounded derivatives, the (a±)ij ’s are of class C1(D2
±;R), and we have

[
Bνu

]
Γ
∈

H
1
2 (Γ2) and u± ∈ H1(D±), we will get the desired result. In fact (A.6) will follow simply from

(A.7) B±ν u = χB±ν u+
d∑
j=1

γ
[
(Djχ)±(a±)dju±

]
in H−1/2(Γ)

(note that in (A.7) for example χB+
ν u is the element of H−1/2(Γ) defined by

〈χB+
ν u , φ〉H−1/2(Γ),H1/2(Γ) = 〈B+

ν u , γ(χ)φ〉H−1/2(Γ),H1/2(Γ)

for any φ ∈ H1/2(Γ)).
Thus we aim at proving (A.7) on D+ = Rd+ (D− is treated in the same manner). Let v ∈

C∞c (Rd;R) and consider its restriction v+ on D+. From now on we drop the subscript + on functions
and conormal derivatives. Using Proposition 2.9 we have(

Bν(χu), γ(v)
)

Γ
= −E+(χu, v)−

∫
D+

A+(χu) v

(note that we know that A+(χu) ∈ L2(D+) thanks to (A.9), f̄ ∈ L2(D+) and u ∈ H1(Rd)). But,
using Einstein’s convention for summation over repeated indexes, Dj(χu) = (Djχ)u + χDju and
χDiv = Di(χv)− (Diχ)v, we get

(
Bν(χu), γ(v)

)
Γ

= −E+(u, χv)−
∫
D+

aijuDjχDiv +

∫
D+

aijDjuDiχ v −
∫
D+

A+(χu) v.

Using again Proposition 2.9 one gets(
Bν(χu), γ(v)

)
Γ

=(
Bνu, γ(χ)γ(v)

)
Γ

+

∫
D+

(A+u)χv −
∫
D+

aijuDjχDiv +

∫
D+

aijDjuDiχ v −
∫
D+

A+(χu) v.

Then using surjection and density arguments we will get (A.7) if we prove that
(A.8)∫

D+

(A+u)χv −
∫
D+

aijuDjχDiv +

∫
D+

aijDjuDiχ v −
∫
D+

A+(χu) v =
(
γ
[
(Djχ)adju

]
, γ(v)

)
Γ
.

But using now ν = (0, . . . , 0, 1)∗, χ ∈ C∞c (G2;R), aiju ∈ H1(D2
+), and Lemma A.4 one gets

−
∫
D+

aijuDjχDiv −
∫
D+

(Au+χ) v =
(
γ
[
(Djχ)adju

]
, γ(v)

)
Γ

where we have denoted Au+χ = Di(aijuDjχ) ∈ L2(D+). We now claim that, as an element of

H̃−1(D+), the form H1(D+) 3 ϕ 7→
∫
D+

(Au+χ)ϕ coincides on D+ with

H1(D+) 3 ϕ 7→ −
∫
D+

(A+u)χϕ+

∫
D+

A+(χu)ϕ−
∫
D+

aijDjuDiχϕ,
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which will provide (A.8). Let then ϕ ∈ C∞c (D+;R) (see Remark 2.8). We have∫
D+

(Au+χ)ϕ = −
∫
D+

aijuDjχDiϕ

= −
∫
D+

aijDj(χu)Diϕ+
∫
D+

aijχDjuDiϕ

= −
∫
D+

aijDj(χu)Diϕ+
∫
D+

aijDjuDi(χϕ)−
∫
D+

aijDju(Diχ)ϕ

=
∫
D+

A+(χu)ϕ−
∫
D+

(A+u)χϕ−
∫
D+

aijDju(Diχ)ϕ,

where we have used successively uDjχ = Dj(χu) − χDj(u) and χDiϕ = Di(χϕ) − (Diχ)ϕ. The
proof is completed.

Proof of Proposition 2.15. We only treat the case D± = Rd±. Indeed if this is not the case
one may use change of coordinates of class Cr+2 to change the equation in a new one, on new

domains D2′
± , with new coefficients of class Cr+1(D2′

± ;R), and Γ′2 = D2′
+ ∩ D2′

− a portion of the
hyperplan xd = 0 (see Exercise 4.2 in [33]). And in that case the value of the functions outside
G′2 = D2′

+ ∪ Γ ∪ D2′
− is of no importance, as in the sequel we will multiply everything by a cutoff

function with compact support in G′2. For this proof, we will only consider D± = Rd±.
The proof proceeds by induction on r ∈ N.

STEP1. We establish the result for r = 0. Note that by convention H0(Dj
±) = L2(Dj

±), j = 1, 2.

We fix a cutoff function χ ∈ C∞c (G2;R), 0 ≤ χ ≤ 1, with χ ≡ 1 on G1 (the derivatives of χ are
bounded by some constant depending on dist(G1, ∂supp(χ))).

SUBSTEP a) We first prove that DlDi(χu) ∈ L2(Rd) for any 1 ≤ l ≤ d − 1, 1 ≤ i ≤ d. As
u ∈ H1(G2) and χ ∈ C∞c (G2;R) and we have already Di(χu) ∈ L2(Rd) for any 1 ≤ i ≤ d. Thus,
using Lemma A.3-ii), we are done if we find M s.t. ||∆l,h(Di χu)||L2(Rd) ≤ M for all h sufficiently
small, and all 1 ≤ l ≤ d− 1, 1 ≤ i ≤ d.

As u+ −A+u+ = f+ on D2
+ we have for any ϕ in C∞c (D2

+;R)

〈u+ −A+u+, χ+ϕ〉H−1(D2
+),H1

0 (D2
+) = 〈f+, χ+ϕ〉L2(D2

+).

Thus, for any ϕ in C∞c (D2
+;R) we have

〈(χu)+ −A+(χu)+, ϕ〉H−1(D2
+),H1

0 (D2
+) = 〈f̄+, ϕ〉L2(D2

+),

with

f̄+ = (χf)+ +
d∑

i,j=1

(a+)ijDiχ+Dju+ +Di

(
(a+)ij(Djχ+)u+

)
∈ L2(D2

+)

(here we have used successively (2.6), with D2
+ replacing D+, and the facts that for any 1 ≤ i, j ≤ d,

Di(χ+ϕ) = ϕDiχ+ + χ+Diϕ, χ+Dju+ = Dj(χu)+ − (Djχ+)u+ and∫
D2

+

(a+)ij(Djχ+)u+Diϕ = −
∫
D2

+

Di[(a+)ij(Djχ+)u+]ϕ ;

note that (a+)ij(Djχ+)u+ is in H1(D2
+) as u+ ∈ H1(D+), χ+ is smooth and (a+)ij is of class

C1(D2
+;R)).
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One may proceed in the same manner on D2
−. But as (χu)± and f̄± have support in D2

± we have
in fact that

(A.9) (χu)± −A±(χu)± = f̄± on D±.

We set f̄ = f̄+ + f̄−. According to Lemma 2.10 we have

(A.10) 〈χu, v〉L2(Rd) + E(χu, v) = 〈f̄ , v〉L2(Rd) −
([
Bν(χu)

]
Γ
, γ(v)

)
Γ
, ∀v ∈ H1(Rd).

Let 1 ≤ l ≤ d− 1 and h ∈ R. We take v = −∆l,−h(∆l,h(χu)) in (A.10). Using successively Points
iv) and iii) in Lemma A.3, together with linearity arguments, we get

(A.11)

(
[Bν(χu)]Γ, γ(∆l,−h(∆l,h(χu)))

)
Γ
−
∫
Rd f̄∆l,−h(∆l,h(χu))

=
∫
Rd |∆l,h(χu)|2 +

∑d
i,j=1

∫
Rd ∆l,h(aijDj(χu))∆l,h(Di(χu))

=
∫
Rd |∆l,h(χu)|2 +

∑d
i,j=1

∫
Rd aijDj(∆l,h(χu))Di(∆l,h(χu))

+
∑d

i,j=1

∫
Rd(∆l,haij)Di(χu)(·+ hel)∆l,h(Di(χu))

But thanks to (E) we have

||∆l,h(χu)||2L2(Rd) + λ

d∑
i=1

||Di(∆l,h(χu))||2L2(Rd)

≤
∫
Rd
|∆l,h(χu)|2 +

d∑
i,j=1

∫
Rd
aijDj(∆l,h(χu))Di(∆l,h(χu)),

which combined with (A.11) leads to

c||∆l,h(χu)||2
H1(Rd)

≤
∫
Rd
|f̄ | ·

∣∣∆l,−h(∆l,h(χu))
∣∣

+
∑d

i,j=1 |∆l,haij | · |Dj(χu)(·+ hel)| · |∆l,h(Di(χu))|
+
∣∣∣([Bν(χu)]Γ, γ(∆l,−h(∆l,h(χu)))

)
Γ

∣∣∣.
We first focus on the third RHS term. We have∣∣([Bν(χu)]Γ, γ(∆l,−h(∆l,h(χu)))

)
Γ

∣∣ ≤ ∣∣∣∣[Bν(χu)]Γ
∣∣∣∣
H1/2(Γ2)

∣∣∣∣γ(∆l,−h(∆l,h(χu)))
∣∣∣∣
H−1/2(Γ2)

.

Indeed remember that by assumption
[
Bνu

]
Γ
∈ H

1
2 (Γ2), which implies∣∣∣∣[Bν(χu)]Γ

∣∣∣∣
H1/2(Γ2)

=: K̃ <∞

thanks to Lemma A.5. Besides, one can see that∣∣∣∣γ(∆l,−h(∆l,h(χu)))
∣∣∣∣
H−1/2(Γ2)

=
∣∣∣∣∆l,−hγ(∆l,h(χu)))

∣∣∣∣
H−1/2(Γ)

≤
∣∣∣∣Dlγ(∆l,h(χu))

∣∣∣∣
H−1/2(Γ)

≤ k
∣∣∣∣γ(∆l,h(χu))

∣∣∣∣
H1/2(Γ)

≤ k
∣∣∣∣∆l,h(χu)

∣∣∣∣
H1(D±)

≤ k
∣∣∣∣∆l,h(χu)

∣∣∣∣
H1(Rd)
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(here we have used for the first inequality, a version of Exercise 4.4 in [33], adapted to Rd± and
tangential derivatives; for the second inequality we have used Lemma A.1 in the Appendix). In the
sequel we set K = kK̃.

Note now that as aij ∈ C1(D̄2
+;R)∩C1(D̄2−;R), for all 1 ≤ i, j ≤ d we have that |∆l,haij | ≤ C

for some constant C not depending on h. Using now Young’s inequality and Point i) of Lemma A.3
we get

c||∆l,h(χu)||2
H1(Rd)

≤ 1

2ε
||f̄ ||2L2(Rd) +

ε

2
||∇(∆l,h(χu))||2L2(Rd) +

Cd2δ

2
||∇(∆l,h(χu))||2L2(Rd)

+
Cd2

2δ
||∇(χu)||2L2(Rd) +K2 η

2
+

1

2η
||∆l,h(χu)||2H1(Rd)

for any ε, δ, η > 0, and thus

c||∆l,h(χu)||2
H1(Rd)

≤ 1

2ε
||f̄ ||2L2(Rd) +

ε

2
||∆l,h(χu)||2H1(Rd) +

Cd2

2δ
||∇(χu)||2L2(Rd)

+
Cd2δ

2
||∇(∆l,h(χu))||2L2(Rd) +K2 η

2
+

1

2η
||∆l,h(χu)||2H1(Rd).

Adjusting now ε, δ and η we get constants c′, C ′ > 0, not depending on h s.t.

c′||∆l,h(χu)||2H1(Rd) ≤ C
′(||f̄ ||2L2(Rd) + ||∇(χu)||2L2(Rd) +K2

)
and thus, considering M = C ′

(
||f̄ ||2

L2(Rd)
+ ||∇(χu)||2

L2(Rd)
+K2

)
/c′ we have

∀1 ≤ i ≤ d, ||Di(∆l,h(χu))||2L2(Rd) = ||∆l,h(Di(χu))||2L2(Rd) ≤M.

As M does not depend on h we have indeed proved that DlDi(χu) ∈ L2(Rd) for any 1 ≤ l ≤ d− 1,
1 ≤ i ≤ d. Remembering that χ ≡ 1 on G1 this proves DlDiu ∈ L2(G1) for any 1 ≤ l ≤ d − 1,
1 ≤ i ≤ d.

SUBSTEP b) We consider the restriction (χu)+ of (χu) to D+. We already have Dd(χu)+ ∈
L2(D+), as (χu) ∈ H1(Rd) (and using again Lemma 2.3). We will show that D2

dd(χu)+ ∈ L2(D2
+).

One may prove in the same manner that D2
dd(χu)− ∈ L2(D2

−).
Using (χu)+ −A+(χu)+ = f̄+ and (2.6) we have for any ϕ ∈ C∞c (D+;R)∫

D+

(a+)ddDd(χu)+Ddϕ =

∫
D+

(f̄+ − (χu)+)ϕ−
∑

(i,j) 6=(d,d)

∫
D+

(a+)ijDj(χu)+Diϕ.

From now on we drop the subscript + on functions, in order to lighten the notations. Reinterpreting
immediately the preceding equation we have for any ϕ ∈ C∞c (D2

+;R)

(A.12) −〈Dd(addDd(χu)), ϕ〉H−1(D2
+),H1

0 (D2
+) =

∫
D2

+

(f̄ − (χu))ϕ+
∑

(i,j) 6=(d,d)

∫
D2

+

Di(aijDj(χu))ϕ.

Note that in the above expression we have used the fact that for any (i, j) 6= (d, d), the weak
derivative Di(aijDj(χu)) is in L2(D2

+). Indeed remember that DiDj(χu) ∈ L2(D2
+) thanks to

SUBSTEP a) and that aij is in C1(D2
+;R).
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We now use the fact that for any distribution v′ ∈ H−1(D2
+) and any w ∈ C1(D2

+;R) the
distribution wv′ is simply defined by 〈wv′, ϕ〉 = 〈v′, wϕ〉 for any ϕ ∈ C∞c (D2

+;R) (and if v′ ∈
L2(D2

+) and w ∈ C(D2
+;R) the distribution wv′ is simply defined by 〈wv′, ϕ〉 =

∫
D+

wv′ϕ for any

ϕ ∈ C∞c (D2
+;R)). Thus if w ∈ C1(D2

+;R) and v′ ∈ L2(D2
+) we have Dd(wv

′) = (Ddw)v′ + wDdv
′

and using this in (A.12) we get

− 〈addD2
dd(χu), ϕ〉H−1(D2

+),H1
0 (D2

+)

=

∫
D2

+

(f̄ − (χu))ϕ+

∫
D2

+

(Ddadd)Dd(χu)ϕ+
∑

(i,j)6=(d,d)

∫
D+

Di(aijDj(χu))ϕ,

that is to say we have finally for any ϕ ∈ C∞c (D2
+;R)

(A.13)

−〈D2
dd(χu), ϕ〉H−1(D2

+),H1
0 (D2

+) =

∫
D2

+

1

add

{
(f̄−(χu))+(Ddadd)Dd(χu)+

∑
(i,j)6=(d,d)

Di(aijDj(χu))
}
ϕ.

Using now Remark 1.4 and the fact that add ∈ C1(D2
+;R), one may conclude that indeed Ddd(χu)

is in L2(D2
+) (note that we have already stressed that for any (i, j) 6= (d, d), the weak derivative

Di(aijDj(χu)) is in L2(D2
+)). This implies Dddu+ ∈ L2(D1

+) (we use the subscript again). Taking
in account SUBSTEP a) we have indeed proved that u± ∈ H2(D1

±).

STEP2. Take r ∈ N∗. Assuming the result is true at r − 1 we prove its validity at rank r.

Let f± ∈ L2(D±) with f± in Hr(D2
±) and assume that

[
Bνu

]
Γ
∈ H

1
2

+r(Γ2) and the the co-

efficients (a±)ij belong to Cr+1(D2
±;R). Thus, in particular, f± are in Hr−1(D2

±) and
[
Bνu

]
Γ
∈

Hr− 1
2 (Γ2). Thus, by induction hypothesis, we have u± ∈ Hr+1(D1′

±), writing D1′
± = G1′ ∩ D± for

any open connected subset G1′ with G1 ⊂ G1′ ⊂ G1′ ⊂ G2.

SUBSTEP a) Let 1 ≤ i0 ≤ d − 1. To lighten notation we denote D := Di0 . We wish to show
that Du± ∈ H1+r(D1

±). Note that Du± = (Du)± and that we already know by STEP1-a) that
DiDu is in L2(G1′) for any 1 ≤ i ≤ d, so that Du is in H1(G1′). So the idea is now to use the
induction hypothesis on Du.

Remember that u+−A+u+ = f+ on D2
+. Let ϕ ∈ C∞c (D1′

+ ;R), note that Dϕ ∈ C∞c (D1′
+ ;R), and

use Dϕ as a test function in (2.6). This writes (again we drop the subscript + on functions)∫
D1′

+

uDϕ+
d∑

i,j=1

∫
D1′

+

aijDjuDi(Dϕ) =

∫
D1′

+

fDϕ,
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which we immediately rewrite in

−
∫
D1′

+

Df ϕ = −
∫
D1′

+

Duϕ+
d∑

i,j=1

∫
D1′

+

aijDjuD(Diϕ)

= −
∫
D1′

+

Duϕ−
d∑

i,j=1

〈D(aijDju) , Diϕ〉H−1(D1′
+ ),H1

0 (D1′
+ )

= −
∫
D1′

+

Duϕ−
d∑

i,j=1

∫
D1′

+

aijD(Dju)Diϕ−
d∑

i,j=1

∫
D1′

+

D(aij)DjuDiϕ

= −
∫
D1′

+

Duϕ−
d∑

i,j=1

∫
D1′

+

aijDj(Du)Diϕ+

d∑
i,j=1

∫
D1′

+

Di(D(aij)Dju)ϕ.

Here we have first used the facts that u, f ∈ H1(D1′
+) and ϕ ∈ C∞c (D1′

+ ;R). Second we have used

DDju ∈ L2(D1′
+) and aij ∈ C1(D2

+;R), 1 ≤ i, j ≤ d, so that one can easily check that the

distribution D(aijDju) is equal to aijDj(Du) +D(aij)Dju ∈ L2(D1′
+). Third we have used the fact

that Di(D(aij)Dju) ∈ L2(D1′
+), thanks to the smoothness of (a+)ij and u+.

As ϕ was arbitrarily chosen in C∞c (D1′
+ ;R) we have in fact proved that

∀ϕ ∈ C∞c (D1′
+ ;R),

∫
D1′

+

Duϕ+ E+(Du,ϕ) =

∫
D1′

+

(
Df +

d∑
i,j=1

Di(D(aij)Dju)
)
ϕ.

This means that (we use the subscript + again)

(Du)+ −A+(Du)+ = f̃+ on D1′
+

with

f̃+ = Df+ +
d∑

i,j=1

Di(D((a+)ij)Dju+).

Notice now that thanks to f+ ∈ Hr(D2
+), u+ ∈ Hr+1(D1′

+) and the smoothness of a we can claim

that f̃+ ∈ Hr−1(D1′
+). Proceeding in the same way on the domain D− we prove that

(Du)− −A−(Du)− = f̃− on D1′
−

with f̃− ∈ Hr−1(D−). In order to use the induction hypothesis it remains now to check that

(A.14)
[
Bν(Du)

]
Γ
∈ Hr− 1

2 (Γ1′)

(here we have denoted Γ1′ = Γ ∩ G1′). Using the technical Lemma A.6 (it is stated just after this
proof; note that u± ∈ H2(D1′

±), as u± ∈ Hr+1(D1′
±) with r > 0) we get,[

Bν(Du)
]
Γ

= B+
ν (Du)− B−ν (Du) ∈ H−1/2(Γ1′)

= DB+
ν (u)−

∑d
j=1 γ

[
D((a+)dj)Dju+

]
−DB−ν (u) +

∑d
j=1 γ

[
D((a−)dj)Dju−

]
= D

[
Bνu

]
Γ
−
∑d

j=1 γ
[
D((a+)dj)Dju+ −D((a−)dj)Dju−

]
.
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Remember now that by assumption
[
Bνu

]
Γ
∈ H

1
2

+r(Γ2), and, again, that u± ∈ Hr+1(D1′
±), so that

Dju± ∈ Hr(D1′
±) for any 1 ≤ j ≤ d. Using in addition the smoothness of a± it is clear that we

have (A.14).
Using now the induction hypothesis we conclude that (Du)± are in Hr+1(D1

±). Thus we have
proved that

∀1 ≤ i ≤ d− 1, Diu+ ∈ H1+r(D1
+) and Diu− ∈ H1+r(D1

−).

SUBSTEP b) To conclude that u± are in H2+r(D1
±) it remains to prove that Ddu± are in

H1+r(D1
±). Let us consider Ddu+. As we have already, thanks to SUBSTEP a), that DiDdu+ =

DdDiu+ is in Hr(D1
+) for any 1 ≤ i ≤ d − 1, it remains to show that D2

ddu+ is in Hr(D1
+). But

Equation (A.13) shows that

D2
ddu+ = − 1

(a+)dd

{
(f+ − u+) + (Dd(a+)dd)Ddu+ +

∑
(i,j) 6=(d,d)

Di((a+)ijDju+)
}

on D1
+.

But, using f+, u+ ∈ H1+r(D1
+) and SUBSTEP a), the RHS term is easily seen to be in Hr(D1

+).
One can proceed in the same way on D1

−, and thus the proof by induction is completed.

Lemma A.6. In the context of the proof of Proposition 2.15, STEP2-a), let u ∈ L2(Rd) with
u± ∈ H2(D1′

±). Let 1 ≤ i0 ≤ d− 1. Then

B±ν (Di0u) = Di0B±ν (u)−
d∑
j=1

γ
[
Di0((a±)dj)Dju±

]
in H−1/2(Γ′1).

Proof. Let 1 ≤ i0 ≤ d − 1. We denote D = Di0 and prove the result on D+ = Rd+. Let

v ∈ C∞c (G1′ ;R) and consider its restriction v+ on D1′
+ . From now on we drop the subscript +

on functions and conormal derivatives and use Einstein’s convention for summation over repeated
indexes, when possible.

Note that since u ∈ H2(D1′
+) and the aij ’s are in C2(D2

+;R), we have, using Proposition 2.6,

(Bνu, γ(Dv))Γ = −E+(u,Dv)−
∫
D+

A+uDv.

Now observe that v ∈ H2(D+) so that γ(Dv) = Dγ(v). Note also that

(DBν(u), γ(v))Γ = − (Bν(u), Dγ(v))Γ ,

since γ(v) ∈ C∞c (Γ′1;R). So that

(A.15) − (DBνu, γ(v))Γ = −E+(u,Dv)−
∫
D+

A+uDv.

Let us consider the term E+(u,Dv) in (A). Let us define Ajk` = aj`δk i0 where δk i0 is the Kronecker
symbol. We have,

E+ (u,Dv) =

∫
D+

ajiDiuDj (Di0v) =

∫
D+

ajiDiu Di0 (Djv) =

∫
D+

Ajk`D`uDk (Djv) .
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Applying the first Green identity of Proposition of 2.6 with the j dependent matrix (Ajk`)1≤k,`≤d
instead of (aij)1≤i,j≤d, we see that for any fixed j ∈ {1, . . . , d}

∑
1≤k,`≤d

∫
D+

Ajk`D`uDk (Djv) = −

〈 ∑
1≤k,`≤d

Dk

(
Ajk`D`u

)
, Djv

〉
L2(D+)

−

(
d∑
`=1

γ
(
Ajd`D`u

)
, γ(Djv)

)
Γ

.

But, we see that from the definition of Ajk`, the surface integral
(∑d

`=1 γ
(
Ajd`D`u

)
, γ(Djv)

)
Γ

is

null.
Further,

−

〈 ∑
1≤k,`≤d

Dk

(
Ajk`D`u

)
, Djv

〉
L2(D+)

=−
∑

1≤k,`≤d

∫
D+

Dk

(
Ajk`

)
D`uDjv −

∑
1≤k,`≤d

∫
D+

Ajk`D` (Dku)Djv.

(A.16)

And from the definition of Ajk`,

−

〈 ∑
1≤k,`≤d

Dk

(
Ajk`D`u

)
, Djv

〉
L2(D+)

= −
d∑
`=1

∫
D+

D (aj`)D`uDjv −
d∑
`=1

∫
D+

aj`D` (Du) Djv.

Finally, summing over 1 ≤ j ≤ d, we get

E+ (u,Dv) = −E+(Du, v)−
∫
D+

D(aj`)D`uDjv.

Using this and Proposition 2.9 (note that Du is in H1(D1′
+)) in (A) we get

(Bν(Du), γ(v))Γ = (DBν(u), γ(v))Γ −
∫
D+

A+Duv −
∫
D+

A+uDv +

∫
D+

D(aj`)D`uDjv.

So that, similarly to the proof of Lemma A.5, we will be done if we prove that

(A.17) −
∫
D+

A+Duv −
∫
D+

A+uDv +

∫
D+

D(aj`)D`uDjv = −
(
γ[D(adj)Dju] , γ(v)

)
Γ
.

But, using ν = (0, . . . , 0, 1)∗ and again Proposition 2.6 (this time with the matrix D(aij)1≤i,j≤d
instead of (aij)1≤i,j≤d), we see that∫

D+

D(aj`)D`uDjv +

∫
D+

Dj(D(aj`)D`u) v = − (γ (D(adj)Dju) , γ(v))Γ

(note thatDj(D(aj`)D`u) ∈ L2(D1′
+), thanks to the smoothness of the aj`’s and of u). So that we will

get (A.17) if we see that, as an element of H̃−1(D1′
+), the form H1(D1′

+) 3 ϕ 7→
∫
D1′

+
Dj(D(aj`)D`u)ϕ

coincides on D1′
+ with H1(D1′

+) 3 ϕ 7→ −
∫
D1′

+
A+(Du)ϕ−

∫
D1′

+
A+uDϕ. Let then ϕ ∈ C∞c (D1′

+ ;R).
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We have

−
∫
D1′

+

A+uDϕ =

∫
D1′

+

aj`D`uDjDϕ =

∫
D1′

+

aj`D`uDDjϕ = −
∫
D1′

+

D(aj`D`u)Djϕ

= −
∫
D1′

+

D(aj`)D`uDjϕ−
∫
D1′

+

aj`D(D`u)Djϕ

= −
∫
D1′

+

D(aj`)D`uDjϕ−
∫
D1′

+

aj`D`(Du)Djϕ

=

∫
D1′

+

Dj(D(aj`)D`u)ϕ+

∫
D1′

+

A+(Du)ϕ,

where we have used the fact that D(aj`D`u) = D(aj`)D`u + aj`D(D`u) in L2(D1′
+). The proof is

complete.

Proof of Proposition 2.16. We prove the result for r = 0. Again we fix a cutoff function
χ ∈ C∞(D−;R), 0 ≤ χ ≤ 1, with χ ≡ 1 on D′− and supp(χ) ⊂ D−. Note that again the derivatives
of χ are bounded by some constant depending on dist(D′−, ∂supp(χ)), thus on d′−.

Proceeding as at the beginning of STEP 1 - SUBSTEP a) of the proof of Proposition 2.15 one
may show that χu− −A−(χu−) = f̄− on D− with

f̄− = (χf)− +
d∑

i,j=1

(a−)ijDiχDju− +Di

(
(a−)ij(Djχ)u−

)
∈ L2(D−).

Thus using (2.6) one gets

〈χu−, v〉L2(D−) + E−(χu−, v) = 〈f̄−, v〉L2(D−), ∀v ∈ H1
0 (D−).

In the computations below we drop for a moment the subscript − on the functions. For any
1 ≤ l ≤ d, one may now take v = −∆l,−h(∆l,h(χu)) in the above equation, with h sufficiently small,
namely |h| < dist(supp(χ),Γ). Thus in the same manner than for (A.11) one gets

−
∫
D−

f̄∆l,−h(∆l,h(χu)) =
∫
D−
|∆l,h(χu)|2 +

∑d
i,j=1

∫
D−

aijDj(∆l,h(χu))Di(∆l,h(χu))

+
∑d

i,j=1

∫
D−

(∆l,haij)Di(χu)(·+ hel)∆l,h(Di(χu)).

(Note that this time there is no boundary term). So that combining again (E), Young’s inequality
and the fact that |∆l,haij | ≤ C (for some constant C depending on max1≤i,j,k≤d supx∈D− |∂xkaij(x)|
but not on h) we get

c||∆l,h(χu)||2H1(D−) ≤
1

2ε
||f̄ ||2L2(D−) +

ε

2
||∆l,h(χu)||2H1(D−)

+
Cd2

2δ
||∇(χu)||2L2(D−) +

Cd2δ

2
||∇(∆l,h(χu))||2L2(D−)

for any ε, δ > 0 (the constant c depends on λ). Adjusting now ε and δ we get constants c′, C ′ > 0,
depending d, λ, C, but not on on h s.t.

c′||∆l,h(χu)||2H1(D−) ≤ C
′(||f̄ ||2L2(D−) + ||∇(χu)||2L2(D−)

)
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and thus, considering M = C ′
(
||f̄ ||2L2(D−) + ||∇(χu)||2L2(D−)

)
/c′ we have

∀1 ≤ i ≤ d, ||Di(∆l,h(χu))||2L2(D−) = ||∆l,h(Di(χu))||2L2(D−) ≤M.

Obviously ||f̄−||2L2(D−) ≤ C
′′(||u−||2H1(D−) + ||f−||2L2(D−)

)
with C ′′ depending on d′−.

Thus (Lemma A.3-ii) again) we have proved that DlDi(χu) ∈ L2(D−) for any 1 ≤ l ≤ d,
1 ≤ i ≤ d with

||DlDi(χu−)||2L2(D−) ≤ C−
(
||u−||2H1(D−) + ||f ||2L2(D−)

)
,

with a constant C− depending on the announced quantities. Remembering that χ ≡ 1 on D′− this
shows the result for u− and r = 0. An induction argument in the spirit of STEP 2 of the proof of
Proposition 2.15 takes care of r > 0.
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