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I. INTRODUCTION

3D pose estimation is a common task in the Computer Vision applications. In the case of a rigid object, pose estimation seeks to capture the appearance of an object under certain viewing conditions. This task is challenging for natural images due to the ambiguity of an object representation in 2D, poor texture and varying view-points.

With the introduction of consumer 3D sensors, this problem has been revisited by researchers developing a broad range of new descriptors. They may be both handcrafted [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF] or automatic [START_REF] Wohlhart | Learning descriptors for object recognition and 3d pose estimation[END_REF], and capture information from both global and local scales.

Non-rigid object pose estimation is inherently more complicated. A human body is an articulated object, and its motion can be build up from rigid and non-rigid motion parts. Articulated pose estimation seeks to estimate the configuration of a human body in a given image or video sequence. Recognition of body postures is an important step towards the fully automatic classification of human motion.

A canonical work on human posture estimation using RGBD camera data is the one by Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], where authors propose a real-time algorithm which segments a human body from a corresponding depth map and locates skeleton joints. Their algorithm shows good results and its variations are widely used today, however, it has certain limitations: in presence of severe occlusions and noise, the positions of the joints can not be estimated correctly; it gives approximate joint positions and therefore coarse pose estimation and is not able to capture very subtle variations between postures. For this reason, joint-based posture estimation methods, while being very simple and powerful, are failing if the initial joints were estimated wrongly, which gives the way to low-level attributes based methods.

This paper proposes a simple yet effective descriptor for pose recognition based directly on point cloud data. The algorithm takes a holistic pose estimation approach, capturing the slightest posture changes using accumulated point cloud features. Our descriptor is based on the space occupancy for cells of a modified 3D regular grid, super-imposed on a point cloud. It is translation, scale, and rotation invariant.

Originally, we aim at a descriptor which can be used for a gait analysis. The proposed design should be able to reliably detect different postures in a human gait, where the precision of skeleton data is not sufficient (the Kinect reliability is evaluated by [START_REF] Cippitelli | Kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view[END_REF] for the side and front [START_REF] Mentiplay | Gait assessment using the microsoft xbox one kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables[END_REF] views). The second problem addressed is the symmetry of the gait which should be evaluated based on the point cloud data. However, resulting descriptor is very general and can be used as an intermediate step in a great number of computer vision applications such as action recognition, gait analysis, smart homes, assessing the quality of sports actions, human-computer interaction and others, where posture estimation is an essential intermediate step. This work presents the descriptor in the context of action recognition, and postures are estimated from frames of video sequences from MSR Action3D database.

The paper is organized as follows. Section II overviews existing methods for human posture recognition. Section III introduces the descriptor and its parameters. Section IV describes the data used in experiments proposed in section V. Section VI summarizes the results, proposes possible applications and outlines the future work.

II. RELATED WORK

Pose recognition in natural imaging is a very challenging task. Most methods for human pose estimation are based on variations of so called pictorial structures model, which represents human body configuration as a collection of connected rigid parts [START_REF] Chen | Articulated pose estimation by a graphical model with image dependent pairwise relations[END_REF], [START_REF] Jhuang | Towards understanding action recognition[END_REF], [START_REF] Agarwal | Recovering 3d human pose from monocular images[END_REF], [START_REF] Pishchulin | Poselet conditioned pictorial structures[END_REF]. To model an articulation, parts of the structure are parameterized by spatial location and orientation.

Holistic approaches [START_REF] Agarwal | Recovering 3d human pose from monocular images[END_REF], [START_REF] Pishchulin | Poselet conditioned pictorial structures[END_REF] and middle-part [START_REF] Yang | Articulated pose estimation with flexible mixtures-of-parts[END_REF] based methods form the other research direction in posture recognition. Holistic approaches aim to directly predict positions of body parts from image features without relying on an intermediate part-based representation. Part-based approaches first detect intermediate parts independently or with some constraints on body joints spatial relations.

Recently researchers significantly advanced posture recognition from natural images with the increasing popularity of machine learning based approaches [START_REF] Tompson | Joint training of a convolutional network and a graphical model for human pose estimation[END_REF], [START_REF] Chéron | P-cnn: Pose-based cnn features for action recognition[END_REF], [START_REF] Chen | 3d human pose estimation= 2d pose esti-mation+ matching[END_REF]. Cheron et al [START_REF] Chéron | P-cnn: Pose-based cnn features for action recognition[END_REF] proposed a new Pose-based Convolutional Neural Network descriptor (P-CNN) for 2D action recognition. A pre-trained CNN learns the features corresponding to 5 preselected body parts based on quantized motion flow data for each frame. Chen and Ramanan [START_REF] Chen | 3d human pose estimation= 2d pose esti-mation+ matching[END_REF] extend an estimated 2D model, using a neural network, to 3D using a simple Nearest Neighbor pose matching algorithm. A good review on recent advances in 3D articulated pose estimation is proposed by Sarafianos et al. [START_REF] Sarafianos | 3d human pose estimation: A review of the literature and analysis of covariates[END_REF].

Despite the significant progress made, full-body pose estimation from natural images remains a difficult and a largely unsolved problem due to numerous difficulties in real-life applications: the many degrees of freedom of the human body model, the variance in appearance, the changes in view-points, and lastly, an absence of data about an objects' shape. 3D data gives new important information which allows for improving posture recognition results. Depth-based pose estimation can be categorized into two classes.

Generative approaches [START_REF] Ye | Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera[END_REF], [START_REF] Ganapathi | Real-time human pose tracking from range data[END_REF] use a geometric or probabilistic human body model and estimate a pose by minimizing the distance between the human model and the input depth map. Human pose estimation is performed by optimizing the objective function for geometric model fitting by the means of variants of iterative closest point [START_REF] Ganapathi | Real-time human pose tracking from range data[END_REF] and graphical models [START_REF] Li | Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network[END_REF] or pictorial structures [START_REF] Charles | Learning shape models for monocular human pose estimation from the microsoft xbox kinect[END_REF]. A recent method by Wang et al. [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF] uses several hand-crafted descriptors to recognize 5 distinct postures from the data obtained by a Kinect camera. Their algorithm is based on a simple 3D-2D projection method and star skeleton technique. Their final posture descriptor is composed of the skeleton feature points together with the center of gravity. A pre-trained Learned Vector Quantization (LVQ) neural network is used for classification.

Discriminative approaches [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF] perform classification on a pixel level and attempt to detect instances of body parts. Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] trained a random forest classifier for body part segmentation from a single depth image and used Mean Shift [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF] to estimate joint locations. Chang et al. [START_REF] Chang | Fast random-forest-based human pose estimation using a multi-scale and cascade approach[END_REF] propose a fast random-forest-based human pose estimation method, where classifier is applied directly to pixels of the segmented human depth image. Jung et al. [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF] used randomized regression trees and made their algorithm even faster by estimating the relative direction to each joint to avoid computationally demanding aggregating pixel-wise tree evaluations.

Most of the work on 3D pose estimation uses a single depth camera. The most successful examples of single view pose estimation are [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Ye | Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera[END_REF], [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF], [START_REF] Chang | Fast random-forest-based human pose estimation using a multi-scale and cascade approach[END_REF] and most of them use randomized trees and shape context features for pixel-wise classification which leads to real-time solutions.

Lately, multi-view depth image based posture recognition approaches acquired the attention of researchers [START_REF] Shafaei | Real-time human motion capture with multiple depth cameras[END_REF], [START_REF] Peng | Multi-view 3d pose estimation from single depth images[END_REF]. The recent framework proposed by [START_REF] Shafaei | Real-time human motion capture with multiple depth cameras[END_REF] uses several Kinect sensors and a deep CNN architecture. Multi-view scenarios allow to reconstruct 3D point clouds in the reference space. The authors use curriculum learning [START_REF] Bengio | Curriculum learning[END_REF] to train the system on purely synthetic data. Curriculum learning modifies the order of the training procedure, gradually increasing the complexity of the instances, which hypothetically improves the convergence speed and the quality of the final local minima.

It is clear that the currently prevailing strategy is to use Machine Learning methods, specifically randomized trees [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF], [START_REF] Tang | Latent regression forest: Structured estimation of 3d articulated hand posture[END_REF], and a huge amount of training data. Modern posture recognition methods [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Shafaei | Real-time human motion capture with multiple depth cameras[END_REF] have shown to be both effective and efficient in real-time posture estimation.

This work introduces a new descriptor that estimates 3D human pose from a single point cloud. We are not attempting to beat machine-learning based algorithms [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF], but mostly propose a simple alternative, which does not require an a priori human body model. In contrast to [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF], we do not use a descriptor for a given posture but aim to use a general 3D point cloud structure. Unlike other popular descriptors [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Jung | Random tree walk toward instantaneous 3d human pose estimation[END_REF] which use depth image features, our descriptor is based on a 3D structure and therefore can be used in a multi-camera scenario.

III. DESCRIPTOR

We propose a handcrafted compact and discriminative descriptor for a single point cloud. The most similar descriptor to ours is the Space-Time Occupancy Patterns method proposed by Vieira et al. [START_REF] Vieira | Stop: Space-time occupancy patterns for 3d action recognition from depth map sequences[END_REF] for the task of action recognition. Similar to this work, we propose to divide the 3D space by a regular grid and base our descriptor on spatial occupancy information. However, in [START_REF] Vieira | Stop: Space-time occupancy patterns for 3d action recognition from depth map sequences[END_REF] researchers compute the final descriptor vector by re-assigning weights based on cells where motion occurred. We are concentrated on a description of each static frame in order to recognize the posture in it. Other differences include the method of 3D space partitioning and descriptor cell initialization. Our partitioning is inspired by the 3D partitioning for human recognition from 3D point clouds proposed in [START_REF] Essmaeel | 3d descriptor for an orientedhuman classification from complete point cloud[END_REF]. Vieira et al. specifically design their method for video sequences, taking the time dimension into account. We assume that every initial frame posture is more important and temporal information can be encoded later in the process depending on the specific application. For the gait analysis and action recognition, a Hidden Markov Model can be coupled with a descriptor to capture the temporal information.

To construct our descriptor for each depth map video frame, we perform the following steps. First, the 2D-3D transformation is done to obtain a point cloud in 3D space from a depth map. We use a standard equation for basic geometric transformations:

X = Z * (j -c x ) f x ; Y = Z * (i -c y ) f y ; Z = z; (1) 
where X, Y, Z are the point coordinates in 3D, j and i are the pixel coordinates, and c x , c y , f x and f y are the intrinsic matrix parameters obtained by a calibration of the Kinect camera.

Then the 3D spatial partitioning is performed. The center of gravity in 3D is calculated and projected to the ground plane:

C(X, Y, Z) = n 1 X, Y, Z n (2) 
where n is the total number of points in the point cloud. A 3D cylinder of varying dimensions with a base center in the computed centroid projection defines the space partitioning limits. The height and radius of the cylinder are varying to adjust for the height of a person. The data about human body proportions ratio is used. Height of a person is estimated, simply via the minimum and maximum value calculated for the first static point cloud of a video sequence. To have an equal grid for all frames of a video sequence, the normal is fixed based on the viewing point. The partitioning in sectors starts from the same position for each video frame. Figure 2 shows an example of 3D partitioning for one of the frames from MSR3D dataset. The only parameters of the descriptor are the number of sections, the number of sectors and the number of circles. An example of the parameters is shown in Figure 1.

The final descriptor is obtained by calculating the number of points in each formed 3D cell. The descriptor is normalized by the total number of points in the point cloud in order to compensate for possible noise or shape differences.

The OpenNI Framework [START_REF] Consortium | Openni, the standard framework for 3d sensing[END_REF] is used by many 3D cameras and provides the user with automatic body recognition and skeleton joints extraction functionality. Therefore, we are not addressing the task of background subtraction in our work and assume that it is a prior step. For this paper, the data from an RGBD camera, where the human is located and the background is subtracted, were used for testing the proposed descriptor.

Our descriptor design allows it to be used in a multiple camera views scenario to grant more reliable and accurate pose description. For example, such partitioning was successfully employed earlier for human recognition from complete point clouds [START_REF] Essmaeel | 3d descriptor for an orientedhuman classification from complete point cloud[END_REF] based on histograms of normal orientations.

IV. TRAINING AND TESTING DATA

MSR Action3D Dataset [START_REF] Li | Action recognition based on a bag of 3d points[END_REF] was selected to perform the experiments and evaluate the proposed descriptor. This is one of the most used RGBD human action-detection and recognition datasets. It is also one of the first RGBD datasets capturing motions (dated 2010) and it contains a big amount of different actions performed by different persons. It consists of 20 action types performed by 10 subjects 2 or 3 times. The actions are: high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw, draw an x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up & throw. The resolution of the video is not very high, namely 320x240 and so is the frame rate, namely 15 fps. The data was recorded with a depth sensor similar to the Kinect device and contains color and depth video sequences. The sequences are pre-segmented for the background and foreground. An example of superimposed point clouds corresponding to 3 actions from MSR Action 3D dataset is shown in Figure 4. Skeleton joints data are also provided with a higher framerate than the depth maps. However, many joints are wrongly estimated, as can be seen in Figure 3. For our experiments, we had to further manually segment the dataset into key postures in 3D. There is no accurate database with full body human poses as depth maps publicly available, despite several works where the features which represent the posture are learned from real and synthetic examples [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], [START_REF] Ganapathi | Real time motion capture using a single time-of-flight camera[END_REF], neither the data nor the implementation of these methods are available. Recently a new multi-kinect posture dataset was published [START_REF] Shafaei | Real-time human motion capture with multiple depth cameras[END_REF], however, this one is huge and is not dedicated to the global pose estimation but body parts segmentation. Since we are not using any deep learning and proposing a hand-crafted descriptor, we considered that a well-known and widely used MSR Action 3D will be sufficient to perform the test and training to show the capabilities and limitations of our method. In this work, we are aiming to perform a pose recognition without a skeleton aligning or human-body parts segmentation. The number of sequences for Table I: Postures selected from the MSR3D dataset each action in MSR Action 3D dataset is between 27 and 30. We separated the data in a training and testing set, and selected between 3 to 7 key poses for each action. For the posture recognition test, 18 well distinguishable poses were selected. The resulting dataset structure is explained in Table I. All the data acquired from person 3 were excluded from the dataset because half of the depth information was missing. Subjects 1-7 from the dataset are used for training and 8-10 for testing. The resulting dataset is not very big but corresponds to our goal to evaluate the descriptive capacities of the proposed solution.

V. EXPERIMENTS

We perform 3 series of experiments: unsupervised clustering of frames into k-postures in a video sequence, posture recognition in one action sequence and posture recognition for a set of postures.

A. Unsupervised K-means Clustering

A simplistic way to compare any two pose descriptors is to calculate a Euclidean distance between them. At first, we observed the dynamics of the distance changes on all the frames of a single video sequence from the dataset. Figure 5 visualizes the distance computations for the sequence 'Horizontal Wave' of MSR Action 3D dataset. It can be seen that there are 5 distinctive postures in this action. The result shows that there is a small distance between similar postures (i.e. consequent frames, frames in the beginning and the end of the sequence corresponding to the same 'neutral' posture). To exploit this trend further, a simple test with K-means is performed, which shows that the descriptor captures the posture difference well. Automatic key positions were obtained by performing the Kmeans clustering for 3 video sequences when one person is performing an action 3 times. The optimal number of basis K was estimated using the elbow method. Figure 6 shows the results of this experiment. Qualitative visual analysis shows that automatically detected poses correspond well with the 5 most different poses in the action 'Horizontal Wave' selected manually.

These tests work well for each person performing a single action multiple times, but the test for the whole data gives worse results, probably due to the fact that the neutral posture is dominant in the dataset and people tend to perform similar actions differently. Hence, we obtain more intermediate clusters which do not correspond precisely to key-postures. Nevertheless, the obtained results are interesting enough to continue the tests and try to evaluate complete posture recognition based on the proposed descriptor.

B. Retrieval performance for one action

A simple Support Vector Machine (SVM) classifier was trained in order to classify the postures. We choose the One vs All architecture when a model is learned to recognize each posture against all the others. 10-fold cross validation SVM was trained and then tested with a separate test data. F-measure, recall and precision were used to evaluate the performance of the classifier. The main criteria for our task is precision, but we included recall and F-measure parameters in order to evaluate a possibility to use the descriptor in a scenario where accurate retrieval of all postures is essential. The F-measure is a trade-off between precision, the probability that an estimated label is correct, and recall, the probability that an existing posture was correctly labeled by the classifier, The results for each posture recognition for the action 'Horizontal Wave' are summarized in Table II. Train and test data for this sequence were segmented manually according to the scheme introduced in the previous section. This simple test shows excellent results in terms of precision for all but one posture.

C. Retrieval Performance for a set of selected postures

The test for a single action posture estimation shows good results, hence we conducted an extended version of this test containing a bigger number of various postures. A full test for 18 postures was performed with an SVM. Feature vectors of the selected postures were used for training and testing. Figure 8 shows the confusion matrix for the classes obtained by the SVM. The descriptor parameters (number of sections, circles and sectors) were tuned for the best performance. We obtained the best results with 12 sections, 10 circles and 10 sectors, corresponding average precision is 0.94. The parameters tuning is straight-forward, we mostly noticed that for postures selected the most important one is the number of sections which helps to separate the volume by vertical planes. However, different combinations of parameters can give slightly better or worse results in terms of precision, recall and F-measure. Corresponding curves obtained for different parameters are shown in Figure 7.

The results show good performance in terms of precision which is excellent for simple postures. Our results are comparable with the results of [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF] where authors are using only 5 distinct postures: standing, sitting, stooping, kneeling and lying. Of these, several postures are similar to ours, plus we are aiming at more complex and varied postures. We don't have access to the original dataset of [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF] but we also made a test with just 3 very different postures and a similar amount of training and testing data. As before, the training data and test data are formed from different subjects. Our postures are: staying, right-hand up, bending. The corresponding numbers of training and testing images are: 384/125, 246/125, and 98/103. With this small dataset we obtain excellent results in term of precision and recall, all the tests are assigned correctly. Our results and the results from [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF] can not be directly compared, but this test gives an idea about the descriptor capabilities. Wang et al. test their posture recognition method on 80-100 depth images taken each for 8 persons. The recognition rate is also very high, with some minor errors (for example, for the first person the recognition rate is: 79/80, 99/100, 80/80, 80/80, 79/80). It should be mentioned, that [START_REF] Wang | Human posture recognition based on images captured by the kinect sensor[END_REF] uses same subjects for testing and training, which is probably easier as we have shown in our tests from the previous section.

VI. CONCLUSION AND FUTURE WORK

This study contributes to research on global human posture descriptions. We show that body pose may often be adequately represented without joints estimation. Proposed descriptor can then be used to improve the results in many applications as an addition to skeleton-joints estimation methods or on as a simple alternative to them.

The introduced descriptor works very well for capturing the 3D spatial arrangement of the point cloud structure. Experiments show that our method achieves competitive results compared with current state-of-the-art descriptors that use nondeep learning methods and has a potential for many Computer Vision applications.

We see the future of it as simple yet effective sub-part of more complex and complete solutions. Examples include action recognition and gait analysis which will benefit from the detection of human poses in a 3D data or automatic segmentation. The descriptor can also be used to divide a video along the time axis using the posture information in case of misalignment. Detected postures can be used to temporally align the data or as key-words describing the action. In gait analysis, the descriptor can be used for cycle events detection or symmetry detection and evaluation [START_REF] Auvinet | New lower-limb gait asymmetry indices based on a depth camera[END_REF].

Currently, the main issue of the descriptor is its sensitivity to noise which is especially important in the case when a significant part of depth data is missing. An other open issue is the fact that the Euclidean distance between a pair of descriptor vectors doesn't take the 3D spatial neighborhood into account. This potentially means that two very different postures may have a near similar Euclidean distance. These issues are to be addressed in the future work. An application for real-time gait cycle event recognition and automatic walk cycle temporal segmentation is also planned along with the new 3D gait assessment database.
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 1 Figure 1: Descriptor spatial partitioning: 3 circles, 8 sectors, 3 sections. Projected center of gravity is shown in red.
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 2 Figure 2: 3D spatial partitioning in 12 sections. Projected center of gravity is shown in red, fixed point view direction is shown by a green arrow.
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 3 Figure 3: Examples of wrong skeleton estimation for MSR 3D dataset, actions 'High Arm Wave', 'Horizontal Arm Wave', 'Hammer'. A person is always facing the camera straight and his legs are not crossed.
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 4 Figure 4: 3 actions from MSR Action 3D dataset shown as point clouds: high arm wave, horizontal wave, golf swing.
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 5 Figure 5: Pairwise descriptor distance. The video sequence starts and finishes by the same posture. The distance between consequent frames is smaller and distinct 'key' positions can be viewed as peaks of the graph. Posture initial arm 45 0 kick
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 6 Figure 6: a) Three video sequences are shown as a succession of cluster centers. In first sequence person is starts to perform the action faster than in sequence 2 and 3; b) 5 key postures of the action 'Horizontal Wave' (selected manually); c) 5 clusters obtained automatically. Pixel values are averaged: the darker the color is, the more is the pixel occurrence at this position.
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 7 Figure 7: Tuning of the parameters. Precision, recall and F-measure curves for a) the number of section varies, sectors and circles fixed to 10; b) the number of sectors varies, sections and circles fixed to 10; the number of circles varies, sections and sectors are fixed to 10.
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 8 Figure 8: Confusion matrix for the SVM-based classification of 18 postures shows good results for all postures but one.