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Abstract—This paper introduces simple yet powerful algorithm
for global human posture description based on 3D Point Cloud
data. Proposed algorithm preserves spatial contextual informa-
tion about a 3D object in a video sequence and can be used
as an intermediate step in human-motion related Computer
Vision applications such as action recognition, gait analysis,
human-computer interaction. Proposed descriptor captures a
point cloud structure by the means of a modified 3D regular
grid and corresponding cells space occupancy information. The
performance of our method was evaluated on the task of posture
recognition and automatic action segmentation.

I. INTRODUCTION

3D pose estimation is a common task in the Computer Vi-
sion applications. In the case of a rigid object, pose estimation
seeks to capture the appearance of an object under certain
viewing conditions. This task is challenging for natural images
due to the ambiguity of an object representation in 2D, poor
texture and varying view-points.

With the introduction of consumer 3D sensors, this problem
has been revisited by researchers developing a broad range
of new descriptors. They may be both handcrafted [1] or
automatic [2], and capture information from both global and
local scales.

Non-rigid object pose estimation is inherently more com-
plicated. A human body is an articulated object, and its
motion can be build up from rigid and non-rigid motion parts.
Articulated pose estimation seeks to estimate the configuration
of a human body in a given image or video sequence.
Recognition of body postures is an important step towards
the fully automatic classification of human motion.

A canonical work on human posture estimation using
RGBD camera data is the one by Shotton et al. [3], where au-
thors propose a real-time algorithm which segments a human
body from a corresponding depth map and locates skeleton
joints. Their algorithm shows good results and its variations
are widely used today, however, it has certain limitations: in
presence of severe occlusions and noise, the positions of the
joints can not be estimated correctly; it gives approximate joint
positions and therefore coarse pose estimation and is not able
to capture very subtle variations between postures. For this
reason, joint-based posture estimation methods, while being
very simple and powerful, are failing if the initial joints were
estimated wrongly, which gives the way to low-level attributes
based methods.

This paper proposes a simple yet effective descriptor for
pose recognition based directly on point cloud data. The
algorithm takes a holistic pose estimation approach, capturing
the slightest posture changes using accumulated point cloud

features. Our descriptor is based on the space occupancy for
cells of a modified 3D regular grid, super-imposed on a point
cloud. It is translation, scale, and rotation invariant.

Originally, we aim at a descriptor which can be used for a
gait analysis. The proposed design should be able to reliably
detect different postures in a human gait, where the precision
of skeleton data is not sufficient (the Kinect reliability is
evaluated by [4] for the side and front [5] views). The second
problem addressed is the symmetry of the gait which should
be evaluated based on the point cloud data. However, resulting
descriptor is very general and can be used as an intermediate
step in a great number of computer vision applications such
as action recognition, gait analysis, smart homes, assessing
the quality of sports actions, human-computer interaction and
others, where posture estimation is an essential intermediate
step. This work presents the descriptor in the context of action
recognition, and postures are estimated from frames of video
sequences from MSR Action3D database.

The paper is organized as follows. Section II overviews
existing methods for human posture recognition. Section III
introduces the descriptor and its parameters. Section IV de-
scribes the data used in experiments proposed in section V.
Section VI summarizes the results, proposes possible applica-
tions and outlines the future work.

II. RELATED WORK

Pose recognition in natural imaging is a very challenging
task. Most methods for human pose estimation are based on
variations of so called pictorial structures model, which repre-
sents human body configuration as a collection of connected
rigid parts [6], [7], [8], [9]. To model an articulation, parts
of the structure are parameterized by spatial location and
orientation.

Holistic approaches [8], [9] and middle-part [10] based
methods form the other research direction in posture recog-
nition. Holistic approaches aim to directly predict positions
of body parts from image features without relying on an
intermediate part-based representation. Part-based approaches
first detect intermediate parts independently or with some
constraints on body joints spatial relations.

Recently researchers significantly advanced posture recog-
nition from natural images with the increasing popularity of
machine learning based approaches [11], [12], [13]. Cheron
et al [12] proposed a new Pose-based Convolutional Neural
Network descriptor (P-CNN) for 2D action recognition. A
pre-trained CNN learns the features corresponding to 5 pre-
selected body parts based on quantized motion flow data for



each frame. Chen and Ramanan [13] extend an estimated 2D
model, using a neural network, to 3D using a simple Nearest
Neighbor pose matching algorithm. A good review on recent
advances in 3D articulated pose estimation is proposed by
Sarafianos et al. [14].

Despite the significant progress made, full-body pose esti-
mation from natural images remains a difficult and a largely
unsolved problem due to numerous difficulties in real-life
applications: the many degrees of freedom of the human body
model, the variance in appearance, the changes in view-points,
and lastly, an absence of data about an objects’ shape. 3D data
gives new important information which allows for improving
posture recognition results. Depth-based pose estimation can
be categorized into two classes.

Generative approaches [15], [16] use a geometric or proba-
bilistic human body model and estimate a pose by minimizing
the distance between the human model and the input depth
map. Human pose estimation is performed by optimizing the
objective function for geometric model fitting by the means
of variants of iterative closest point [16] and graphical models
[17] or pictorial structures [18]. A recent method by Wang et
al. [19] uses several hand-crafted descriptors to recognize 5
distinct postures from the data obtained by a Kinect camera.
Their algorithm is based on a simple 3D-2D projection method
and star skeleton technique. Their final posture descriptor is
composed of the skeleton feature points together with the
center of gravity. A pre-trained Learned Vector Quantization
(LVQ) neural network is used for classification.

Discriminative approaches [3], [20] perform classification
on a pixel level and attempt to detect instances of body parts.
Shotton et al. [3] trained a random forest classifier for body
part segmentation from a single depth image and used Mean
Shift [21] to estimate joint locations. Chang et al. [22] propose
a fast random-forest-based human pose estimation method,
where classifier is applied directly to pixels of the segmented
human depth image. Jung et al. [20] used randomized regres-
sion trees and made their algorithm even faster by estimating
the relative direction to each joint to avoid computationally
demanding aggregating pixel-wise tree evaluations.

Most of the work on 3D pose estimation uses a single
depth camera. The most successful examples of single view
pose estimation are [3], [15], [20], [22] and most of them use
randomized trees and shape context features for pixel-wise
classification which leads to real-time solutions.

Lately, multi-view depth image based posture recognition
approaches acquired the attention of researchers [23], [24].
The recent framework proposed by [23] uses several Kinect
sensors and a deep CNN architecture. Multi-view scenarios
allow to reconstruct 3D point clouds in the reference space.
The authors use curriculum learning [25] to train the system on
purely synthetic data. Curriculum learning modifies the order
of the training procedure, gradually increasing the complexity
of the instances, which hypothetically improves the conver-
gence speed and the quality of the final local minima.

It is clear that the currently prevailing strategy is to use
Machine Learning methods, specifically randomized trees [3],

[20], [26], and a huge amount of training data. Modern posture
recognition methods [3], [23] have shown to be both effective
and efficient in real-time posture estimation.

This work introduces a new descriptor that estimates 3D
human pose from a single point cloud. We are not attempting
to beat machine-learning based algorithms [3], [20], but mostly
propose a simple alternative, which does not require an a
priori human body model. In contrast to [19], we do not use
a descriptor for a given posture but aim to use a general 3D
point cloud structure. Unlike other popular descriptors [3], [20]
which use depth image features, our descriptor is based on
a 3D structure and therefore can be used in a multi-camera
scenario.

III. DESCRIPTOR

We propose a handcrafted compact and discriminative de-
scriptor for a single point cloud. The most similar descriptor to
ours is the Space-Time Occupancy Patterns method proposed
by Vieira et al. [27] for the task of action recognition.
Similar to this work, we propose to divide the 3D space by
a regular grid and base our descriptor on spatial occupancy
information. However, in [27] researchers compute the final
descriptor vector by re-assigning weights based on cells where
motion occurred. We are concentrated on a description of each
static frame in order to recognize the posture in it. Other
differences include the method of 3D space partitioning and
descriptor cell initialization. Our partitioning is inspired by the
3D partitioning for human recognition from 3D point clouds
proposed in [28]. Vieira et al. specifically design their method
for video sequences, taking the time dimension into account.
We assume that every initial frame posture is more important
and temporal information can be encoded later in the process
depending on the specific application. For the gait analysis and
action recognition, a Hidden Markov Model can be coupled
with a descriptor to capture the temporal information.

To construct our descriptor for each depth map video frame,
we perform the following steps. First, the 2D-3D transfor-
mation is done to obtain a point cloud in 3D space from a
depth map. We use a standard equation for basic geometric
transformations:

X = Z ∗ (j − cx)

fx
;Y = Z ∗ (i− cy)

fy
;Z = z; (1)

where X, Y, Z are the point coordinates in 3D, j and i are the
pixel coordinates, and cx, cy , fx and fy are the intrinsic matrix

Figure 1: Descriptor spatial partitioning: 3 circles, 8 sectors,
3 sections. Projected center of gravity is shown in red.



parameters obtained by a calibration of the Kinect camera.
Then the 3D spatial partitioning is performed. The center of
gravity in 3D is calculated and projected to the ground plane:

C(X,Y, Z) =

∑n
1 X,Y, Z

n
(2)

where n is the total number of points in the point cloud. A
3D cylinder of varying dimensions with a base center in the
computed centroid projection defines the space partitioning
limits. The height and radius of the cylinder are varying to
adjust for the height of a person. The data about human body
proportions ratio is used. Height of a person is estimated,
simply via the minimum and maximum value calculated for
the first static point cloud of a video sequence. To have an
equal grid for all frames of a video sequence, the normal is
fixed based on the viewing point. The partitioning in sectors
starts from the same position for each video frame.

Figure 2 shows an example of 3D partitioning for one of
the frames from MSR3D dataset. The only parameters of the
descriptor are the number of sections, the number of sectors
and the number of circles. An example of the parameters is
shown in Figure 1.

The final descriptor is obtained by calculating the number
of points in each formed 3D cell. The descriptor is normalized
by the total number of points in the point cloud in order to
compensate for possible noise or shape differences.

The OpenNI Framework [29] is used by many 3D cameras
and provides the user with automatic body recognition and
skeleton joints extraction functionality. Therefore, we are not
addressing the task of background subtraction in our work
and assume that it is a prior step. For this paper, the data
from an RGBD camera, where the human is located and the
background is subtracted, were used for testing the proposed
descriptor.

Our descriptor design allows it to be used in a multiple
camera views scenario to grant more reliable and accurate pose
description. For example, such partitioning was successfully
employed earlier for human recognition from complete point
clouds [28] based on histograms of normal orientations.

IV. TRAINING AND TESTING DATA

MSR Action3D Dataset [30] was selected to perform the
experiments and evaluate the proposed descriptor. This is
one of the most used RGBD human action-detection and
recognition datasets. It is also one of the first RGBD datasets
capturing motions (dated 2010) and it contains a big amount
of different actions performed by different persons. It consists
of 20 action types performed by 10 subjects 2 or 3 times. The
actions are: high arm wave, horizontal arm wave, hammer,
hand catch, forward punch, high throw, draw an x, draw tick,
draw circle, hand clap, two hand wave, side-boxing, bend,
forward kick, side kick, jogging, tennis swing, tennis serve,
golf swing, pick up & throw. The resolution of the video
is not very high, namely 320x240 and so is the frame rate,
namely 15 fps. The data was recorded with a depth sensor
similar to the Kinect device and contains color and depth

Figure 2: 3D spatial partitioning in 12 sections. Projected
center of gravity is shown in red, fixed point view direction is
shown by a green arrow.

video sequences. The sequences are pre-segmented for the
background and foreground. An example of superimposed
point clouds corresponding to 3 actions from MSR Action
3D dataset is shown in Figure 4. Skeleton joints data are
also provided with a higher framerate than the depth maps.
However, many joints are wrongly estimated, as can be seen
in Figure 3. For our experiments, we had to further manually
segment the dataset into key postures in 3D. There is no
accurate database with full body human poses as depth maps
publicly available, despite several works where the features
which represent the posture are learned from real and synthetic
examples [3], [31], neither the data nor the implementation
of these methods are available. Recently a new multi-kinect
posture dataset was published [23], however, this one is huge
and is not dedicated to the global pose estimation but body
parts segmentation. Since we are not using any deep learning
and proposing a hand-crafted descriptor, we considered that a
well-known and widely used MSR Action 3D will be sufficient
to perform the test and training to show the capabilities and
limitations of our method. In this work, we are aiming to
perform a pose recognition without a skeleton aligning or
human-body parts segmentation. The number of sequences for



Figure 3: Examples of wrong skeleton estimation for MSR 3D
dataset, actions ’High Arm Wave’, ’Horizontal Arm Wave’,
’Hammer’. A person is always facing the camera straight and
his legs are not crossed.

Posture Training Test
1 Staying relaxed 160 54
2 Forward Kick 102 50
3 Hand lifted 450 29 13
4 Right hand up 137 64
5 Right hand to the left 80 71
6 Clap 59 25
7 Hands wide open 35 13
8 Pick from the ground 33 34
9 Half bend 80 53
10 Full bend 65 69
11 Right leg kick 60 40
12 Right leg kick on side 49 34
13 Throw from the back 134 78
14 Right hand up 42 28
15 Both hands left half bend 62 30
16 Both hands to the left half bend 62 30
17 Both hands to the right half bend 88 37
18 Throw from the front 54 33

Table I: Postures selected from the MSR3D dataset

each action in MSR Action 3D dataset is between 27 and
30. We separated the data in a training and testing set, and
selected between 3 to 7 key poses for each action. For the
posture recognition test, 18 well distinguishable poses were
selected. The resulting dataset structure is explained in Table
I. All the data acquired from person 3 were excluded from
the dataset because half of the depth information was missing.
Subjects 1-7 from the dataset are used for training and 8-10 for
testing. The resulting dataset is not very big but corresponds to
our goal to evaluate the descriptive capacities of the proposed
solution.

V. EXPERIMENTS

We perform 3 series of experiments: unsupervised clustering
of frames into k-postures in a video sequence, posture recog-
nition in one action sequence and posture recognition for a set
of postures.

A. Unsupervised K-means Clustering

A simplistic way to compare any two pose descriptors is to
calculate a Euclidean distance between them. At first, we ob-
served the dynamics of the distance changes on all the frames

Figure 4: 3 actions from MSR Action 3D dataset shown as
point clouds: high arm wave, horizontal wave, golf swing.

of a single video sequence from the dataset. Figure 5 visualizes
the distance computations for the sequence ’Horizontal Wave’
of MSR Action 3D dataset. It can be seen that there are 5
distinctive postures in this action. The result shows that there
is a small distance between similar postures (i.e. consequent
frames, frames in the beginning and the end of the sequence
corresponding to the same ’neutral’ posture). To exploit this
trend further, a simple test with K-means is performed, which
shows that the descriptor captures the posture difference well.
Automatic key positions were obtained by performing the K-
means clustering for 3 video sequences when one person is
performing an action 3 times. The optimal number of basis
K was estimated using the elbow method. Figure 6 shows the
results of this experiment. Qualitative visual analysis shows
that automatically detected poses correspond well with the 5
most different poses in the action ’Horizontal Wave’ selected
manually.

These tests work well for each person performing a single
action multiple times, but the test for the whole data gives
worse results, probably due to the fact that the neutral posture
is dominant in the dataset and people tend to perform sim-
ilar actions differently. Hence, we obtain more intermediate
clusters which do not correspond precisely to key-postures.
Nevertheless, the obtained results are interesting enough to
continue the tests and try to evaluate complete posture recog-
nition based on the proposed descriptor.

B. Retrieval performance for one action

A simple Support Vector Machine (SVM) classifier was
trained in order to classify the postures. We choose the One
vs All architecture when a model is learned to recognize
each posture against all the others. 10-fold cross validation
SVM was trained and then tested with a separate test data.
F-measure, recall and precision were used to evaluate the
performance of the classifier. The main criteria for our task
is precision, but we included recall and F-measure parameters
in order to evaluate a possibility to use the descriptor in a
scenario where accurate retrieval of all postures is essential.
The F-measure is a trade-off between precision, the probability
that an estimated label is correct, and recall, the probability
that an existing posture was correctly labeled by the classifier,



Figure 5: Pairwise descriptor distance. The video sequence
starts and finishes by the same posture. The distance between
consequent frames is smaller and distinct ’key’ positions can
be viewed as peaks of the graph.

Posture initial arm
450 kick

arm
front
left

arm right

Precision 0.94 0.81 1 1 1

Recall 1 0.8 0.76 1 0.71

F-measure 0.97 0.82 0.86 1 0.83

Table II: Classification results for 5 postures of the action
’Horizontal Wave’ show good results in terms of precision.

calculated with the following formula:

F =
2(Precision×Recall)

Precision+Recall
(3)

The results for each posture recognition for the action
’Horizontal Wave’ are summarized in Table II. Train and test
data for this sequence were segmented manually according to
the scheme introduced in the previous section. This simple test
shows excellent results in terms of precision for all but one
posture.

C. Retrieval Performance for a set of selected postures

The test for a single action posture estimation shows good
results, hence we conducted an extended version of this test
containing a bigger number of various postures. A full test
for 18 postures was performed with an SVM. Feature vectors
of the selected postures were used for training and testing.
Figure 8 shows the confusion matrix for the classes obtained
by the SVM. The descriptor parameters (number of sections,
circles and sectors) were tuned for the best performance.
We obtained the best results with 12 sections, 10 circles
and 10 sectors, corresponding average precision is 0.94. The
parameters tuning is straight-forward, we mostly noticed that
for postures selected the most important one is the number
of sections which helps to separate the volume by vertical
planes. However, different combinations of parameters can

Figure 6: a) Three video sequences are shown as a succession
of cluster centers. In first sequence person is starts to perform
the action faster than in sequence 2 and 3; b) 5 key postures of
the action ’Horizontal Wave’ (selected manually); c) 5 clusters
obtained automatically. Pixel values are averaged: the darker
the color is, the more is the pixel occurrence at this position.

give slightly better or worse results in terms of precision, recall
and F-measure. Corresponding curves obtained for different
parameters are shown in Figure 7.

The results show good performance in terms of precision
which is excellent for simple postures. Our results are com-
parable with the results of [19] where authors are using only
5 distinct postures: standing, sitting, stooping, kneeling and
lying. Of these, several postures are similar to ours, plus we
are aiming at more complex and varied postures. We don’t
have access to the original dataset of [19] but we also made
a test with just 3 very different postures and a similar amount
of training and testing data. As before, the training data and
test data are formed from different subjects. Our postures are:
staying, right-hand up, bending. The corresponding numbers of
training and testing images are: 384/125, 246/125, and 98/103.
With this small dataset we obtain excellent results in term of
precision and recall, all the tests are assigned correctly. Our
results and the results from [19] can not be directly compared,



Figure 7: Tuning of the parameters. Precision, recall and F-measure curves for a) the number of section varies, sectors and
circles fixed to 10; b) the number of sectors varies, sections and circles fixed to 10; the number of circles varies, sections and
sectors are fixed to 10.

Figure 8: Confusion matrix for the SVM-based classification
of 18 postures shows good results for all postures but one.

but this test gives an idea about the descriptor capabilities.
Wang et al. test their posture recognition method on 80-100
depth images taken each for 8 persons. The recognition rate
is also very high, with some minor errors (for example, for
the first person the recognition rate is: 79/80, 99/100, 80/80,
80/80, 79/80). It should be mentioned, that [19] uses same
subjects for testing and training, which is probably easier as
we have shown in our tests from the previous section.

VI. CONCLUSION AND FUTURE WORK

This study contributes to research on global human posture
descriptions. We show that body pose may often be adequately
represented without joints estimation. Proposed descriptor can
then be used to improve the results in many applications as
an addition to skeleton-joints estimation methods or on as a
simple alternative to them.

The introduced descriptor works very well for capturing
the 3D spatial arrangement of the point cloud structure. Ex-
periments show that our method achieves competitive results

compared with current state-of-the-art descriptors that use non-
deep learning methods and has a potential for many Computer
Vision applications.

We see the future of it as simple yet effective sub-part
of more complex and complete solutions. Examples include
action recognition and gait analysis which will benefit from
the detection of human poses in a 3D data or automatic
segmentation. The descriptor can also be used to divide a video
along the time axis using the posture information in case of
misalignment. Detected postures can be used to temporally
align the data or as key-words describing the action. In gait
analysis, the descriptor can be used for cycle events detection
or symmetry detection and evaluation [32].

Currently, the main issue of the descriptor is its sensitivity
to noise which is especially important in the case when a
significant part of depth data is missing. An other open issue is
the fact that the Euclidean distance between a pair of descriptor
vectors doesn’t take the 3D spatial neighborhood into account.
This potentially means that two very different postures may
have a near similar Euclidean distance. These issues are to be
addressed in the future work. An application for real-time gait
cycle event recognition and automatic walk cycle temporal
segmentation is also planned along with the new 3D gait
assessment database.
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