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NUMERICAL ANALYSIS OF STATIONARY
VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

WEIMIN HAN∗, MIRCEA SOFONEA† , AND DAVID DANAN‡

Abstract. Variational-hemivariational inequalities refer to the inequality problems where both
convex and nonconvex functions are involved. In this paper, we consider the numerical solution of
a family of stationary variational-hemivariational inequalities by the finite element method. For a
variational-hemivariational inequality of a general form, we prove convergence of numerical solutions.
For some particular variational-hemivariational inequalities, we provide error estimates of numerical
solutions, which are of optimal order for the linear finite element method under appropriate solu-
tion regularity assumptions. Numerical results are reported on solving a variational-hemivariational
inequality modeling the contact between an elastic body and a foundation with the linear finite
element, illustrating the theoretically predicted optimal first order convergence and providing their
mechanical interpretations.

Key words. Variational-hemivariational inequality, Clarke subdifferential, Galerkin approxi-
mation, finite element method, convergence, error estimation, Contact Mechanics
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1. Introduction. Variational-hemivariational inequalities are inequality prob-
lems where both convex and nonconvex functions are involved. They were introduced
in the pioneering work [18], and were further studied in [17, 20]. Interest in variational-
hemivariational inequalities arises in the study of various problems in mechanics and
engineering applications. Their study requires arguments of Convex Analysis, includ-
ing properties of the subdifferential of a convex function, and arguments of Nonsmooth
Analysis, including properties of the subdifferential in the sense of Clarke, defined for
locally Lipschitz functions which may be nonconvex.

Recently, a new variational-hemivariational inequality is studied in [10]. The in-
equality involves two nonlinear operators and two nondifferentiable functionals, of
which at least one is convex. Solution existence, uniqueness and data continuous de-
pendence are shown. Moreover, the finite element method is studied for solving the
inequality problem. For the first time in the literature, an optimal order error estimate
is derived for the linear element solution of a hemivariational inequality under appro-
priate solution regularity assumptions. A more general variational-hemivariational
inequality is analyzed in [16]. Solution existence and uniqueness are proved, to-
gether with a result on the continuous dependence of the solution on the data. The
variational-hemivariational inequalities studied in [10, 16] are motivated by applica-
tions in Contact Mechanics.

The purpose of this paper is to consider numerical approximations of stationary
variational-hemivariational inequality problems by the finite element method, sub-
stantially extending the relevant result found in [10]. For the general variational-
hemivariational inequality studied in [16], we show the convergence of the numerical
solution. Then, for some particular variational-hemivariational inequalities, we also
derive error estimates, which are of optimal order for the linear elements. We provide
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numerical examples to illustrate the performance of the numerical method, including
numerical convergence orders. One of the numerical examples also serves the purpose
of showing the transition from variational inequalities to hemivariational inequalities.

The rest of the paper is organized as follows. In Section 2 we review some
preliminary material needed later on in the study of variational-hemivariational in-
equalities, and recall an existence and uniqueness result for the general variational-
hemivariational inequality from [16]. In Section 3 we introduce numerical methods for
solving various variational-hemivariational inequalities, prove convergence and derive
error estimates wherever feasible. In Section 4 we introduce several contact problems,
in which the material’s behavior is modeled with a nonlinear elastic constitutive law
and the contact conditions are in a subdifferential form. We list the assumptions on
the data and use the abstract result in [16] to prove the unique weak solvability to
the problem. In addition, we apply our results in Section 3 in the numerical analysis
of the contact model. Finally, in Section 5 we present numerical simulations which
represent an evidence of our error estimates and convergence results. The simulations
illustrate the transition from the variational to the hemivariational case and give rise
to interesting mechanical interpretations.

2. Preliminaries. All linear spaces in this paper are real. For a normed space
X we denote by ‖ · ‖X its norm, by 0X its zero element, by X∗ its topological dual,
and by 〈·, ·〉X∗×X the duality pairing of X and X∗. When no confusion may arise,
we simply write 〈·, ·〉 instead of 〈·, ·〉X∗×X . Weak convergence is indicated by the
symbol ⇀. For two normed spaces X and Y , L(X,Y ) denotes the space of all linear
continuous operators from X to Y .

We recall that an operator A : X → X∗ is pseudomonotone if it is bounded and
un ⇀ u in X together with lim sup 〈Aun, un − u〉X∗×X ≤ 0 imply

〈Au, u− v〉X∗×X ≤ lim inf 〈Aun, un − v〉X∗×X ∀ v ∈ X.

A function ϕ : K ⊂ X → R is lower semicontinuous (l.s.c.), if for any sequence
{xn} ⊂ K and any x ∈ K, xn → x in X implies ϕ(x) ≤ lim inf ϕ(xn). For a convex
function ϕ, the set

∂̃ϕ(x) := {x∗ ∈ X∗ | ϕ(v)− ϕ(x) ≥ 〈x∗, v − x〉X∗×X ∀ v ∈ X}

is called the subdifferential of ϕ at x ∈ X. If ∂̃ϕ(x) is non-empty, an element x∗ ∈
∂̃ϕ(x) is called a subgradient of ϕ at x.

Let ψ : X → R be a locally Lipschitz function. The generalized (Clarke) direc-
tional derivative of ψ at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv)− ψ(y)

λ
.

The generalized subdifferential of ψ at x is a subset of the dual space X∗ given by

∂ψ(x) := { ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉X∗×X ∀ v ∈ X }.

We have the formula ([6]).

(2.1) ψ0(x; v) = max {〈ζ, v〉 | ζ ∈ ∂ψ(x)} .

More details on the properties of the subdifferential mappings, both in the convex
and Clarke sense, can be found in the books [6, 7, 8, 15, 17, 19, 23].
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We turn now to the study of variational-hemivariational inequalities. LetX,Xϕ, Xj

be normed spaces and K ⊂ X. Given operators A : X → X∗, γϕ : X → Xϕ,
γj : X → Xj , and functionals ϕ : K ×K → R, j : X → R, we consider the following
problem.

Problem (P) Find an element u ∈ K such that
(2.2)
〈Au, v − u〉+ ϕ(γϕu, γϕv)− ϕ(γϕu, γϕu) + j0(γju; γjv − γju) ≥ 〈f, v − u〉 ∀ v ∈ K.

For the study of Problem (P), we introduce the following assumptions on the
data.

(A1) X is a reflexive Banach space, and K is a closed and convex subset of X
with 0X ∈ K.

(A2) Xϕ is a Banach space and γϕ ∈ L(X,Xϕ): for a constant cϕ > 0,

(2.3) ‖γϕv‖Xϕ ≤ cϕ‖v‖X ∀ v ∈ X.

(A3) Xj is a Banach space and γj ∈ L(X,Xj): for a constant cj > 0,

(2.4) ‖γjv‖Xj ≤ cj‖v‖X ∀ v ∈ X.

(A4) A : X → X∗ is pseudomonotone and there exists a constant mA > 0 such
that

(2.5) 〈Av1 −Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2X ∀ v1, v2 ∈ X.

(A5) ϕ : Kϕ ×Kϕ → R is such that ϕ(z, ·) : Kϕ → R is convex and l.s.c. on Kϕ

for all z ∈ Kϕ, and there exists a constant αϕ ≥ 0 such that

ϕ(z1, z4)− ϕ(z1, z3) + ϕ(z2, z3)− ϕ(z2, z4)(2.6)

≤ αϕ‖z1 − z2‖Xϕ‖z3 − z4‖Xϕ ∀ z1, z2, z3, z4 ∈ Kϕ.

Here, Kϕ := γϕ(K) is a non-empty, closed and convex set of Xϕ.
(A6) j : Xj → R is locally Lipschitz, and there are constants c0, c1, αj ≥ 0 such

that

‖∂j(z)‖X∗
j
≤ c0 + c1‖z‖Xj ∀ z ∈ Xj ,(2.7)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj‖z1 − z2‖2Xj ∀ z1, z2 ∈ Xj .(2.8)

(A7)

(2.9) αϕc
2
ϕ + αjc

2
j < mA.

(A8)

(2.10) f ∈ X∗.

Note that in the statement of Problem (P) the function ϕ(u, ·) is assumed to be
convex whereas the function j is locally Lipschitz and is, in general, nonconvex. For
this reason, we refer to the inequality (2.2) as a variational-hemivariational inequal-
ity. Moreover, note that Problem (P) contains as particular cases, various problems
considered in the literature. We comment that the spaces Xϕ and Xj are introduced
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to facilitate error analysis of numerical solutions of Problem (P) in later sections. For
applications in contact mechanics, the functionals ϕ(·, ·) and j(·) are integrals over
the contact boundary Γ3. In such a situation, Xϕ and Xj can be chosen to be L2(Γ3)d

and/or L2(Γ3). The assumption (2.9) is a smallness assumption, which is a variant
of a similar condition in [16], due to the use of the spaces Xϕ and Xj in the problem
setting. By slightly modifying the proof in [16], we have the following existence and
uniqueness result.

Theorem 2.1. Under assumption (A1)–(A8), Problem (P) has a unique solution
u ∈ K.

Note that for a locally Lipschitz function j : Xj → R, the inequality (2.8) is
equivalent to

(2.11) 〈∂j(z1)− ∂j(z2), z1 − z2〉X∗
j×Xj ≥ −αj ‖z1 − z2‖2Xj ∀ z1, z2 ∈ Xj ,

known as the relaxed monotonicity condition (cf. [15] and the references therein).
In addition, if j : Xj → R is a convex function, then (2.8) or (2.11), equivalently,
are satisfied with αj = 0, due to the monotonicity of the (convex) subdifferential.
Since 0X ∈ K, we derive the following relations from (2.5), (2.7) and (2.11), for some
constant c:

〈Av, v〉X∗×X ≥ mA‖v‖2X − c ‖v‖X ∀ v ∈ X,(2.12)

〈∂j(z), z〉X∗
j×Xj ≥ −αj‖z‖

2
Xj − c0‖z‖Xj ∀ z ∈ Xj .(2.13)

3. Numerical approximations. In this section, we consider numerical schemes
for solving Problem (P). We keep assumptions (A1)–(A8) so that Problem (P) has a
unique solution u ∈ K.

Let Xh ⊂ X be a finite dimensional subspace with h > 0 denoting a spatial
discretization parameter. Let Kh = Xh ∩K. Then Kh is a closed and convex subset
of Xh and 0X ∈ Kh. We consider the following Galerkin approximation of Problem
(P).

Problem (Ph) Find an element uh ∈ Kh such that

〈Auh, vh − uh〉+ ϕ(γϕu
h, γϕv

h)− ϕ(γϕu
h, γϕu

h) + j0(γju
h; γjv

h − γjuh)(3.1)

≥ 〈f, vh − uh〉 ∀ vh ∈ Kh.

The arguments of the proof of Theorem 2.1 can be applied in the setting of
the finite dimensional space Xh, and we know that under assumptions (A1)–(A8),
Problem (Ph) has a unique solution uh ∈ Kh.

Proposition 3.1. For some constant M > 0, ‖uh‖X ≤M ∀h > 0.
Proof. We let vh = 0X in (3.1) to get

(3.2) 〈Auh, uh〉 ≤ ϕ(γϕu
h, 0)− ϕ(γϕu

h, γϕu
h) + j0(γju

h;−γjuh) + 〈f, uh〉.

For any z ∈ Kϕ, take z1 = z3 = z and z2 = z4 = 0X in (2.6),

(3.3) ϕ(z, 0X)− ϕ(z, z) ≤ αϕ‖z‖2Xϕ − ϕ(0X , z) + ϕ(0X , 0X).

Use the lower bound ([1, p. 433])

ϕ(0X , z) ≥ c3 + c4‖z‖Xϕ ∀ z ∈ Xϕ
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for some constants c3 and c4, not necessarily positive. Then from (3.3), we have

(3.4) ϕ(z, 0X)− ϕ(z, z) ≤ αϕ‖z‖2Xϕ + c
(
‖z‖Xϕ + 1

)
.

Write z1 = z and take z2 = 0X in (2.8),

j0(z;−z) ≤ αj‖z‖2Xj − j
0(0X ; z).

Further, use (2.7) to get

(3.5) j0(z;−z) ≤ αj‖z‖2Xj + c0‖z‖Xj .

Use (2.12), (3.4), (3.5), (2.3) and (2.4) in (3.2) to obtain(
mA − αϕc2ϕ − αjc2j

)
‖uh‖2X ≤ c

(
‖uh‖X + 1

)
.

Since mA − αϕc2ϕ − αjc2j > 0, we deduce from the above inequality that ‖uh‖X is
uniformly bounded with respect to h.

The uniform boundedness of the numerical solutions will be useful in error analysis
of the numerical method.

The focus of this section is error analysis for the numerical solution defined by
Problem (Ph). We will assume, in addition, that A : X → X∗ is Lipschitz continuous,
i.e. for some constant LA > 0,

(3.6) ‖Au−Av‖X∗ ≤ LA‖u− v‖X ∀u, v ∈ X.

Note that under conditions (3.6) and (2.5), the operator A is pseudomonotone ([25,
Proposition 27.6]). We also assume that for fixed z ∈ Kϕ, ϕ(z, ·) is Lipschitz contin-
uous: for some function Lϕ : Kϕ → R+,

(3.7) |ϕ(z, z1)− ϕ(z, z2)| ≤ Lϕ(z) ‖z1 − z2‖Xϕ ∀ z1, z2 ∈ Kϕ.

Finally, we assume {Kh} approximates K in the following sense:

(3.8) ∀ v ∈ K, ∃ vh ∈ Kh such that vh → v in X as h→ 0.

All the additional assumptions are valid for a wide variety of contact conditions, cf.
Section 4.

3.1. Convergence. We begin with an application of (2.5) with v1 = u and
v2 = uh to obtain, for any vh ∈ Kh,

mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ 〈Au, vh − u〉(3.9)

+ 〈Au, u− uh〉+ 〈Auh, uh − vh〉.

From (2.2) with v = uh ∈ K,

〈Au, u− uh〉 ≤ ϕ(γϕu, γϕu
h)− ϕ(γϕu, γϕu)(3.10)

+ j0(γju; γju
h − γju)− 〈f, uh − u〉.

From (3.1),

〈Auh, uh − vh〉 ≤ ϕ(γϕu
h, γϕv

h)− ϕ(γϕu
h, γϕu

h)(3.11)

+ j0(γju
h; γjv

h − γjuh)− 〈f, vh − uh〉.
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Using (3.10) and (3.11) in (3.9), we have

(3.12) mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+R(vh) + Iϕ(vh) + Ij(v
h),

where

R(vh) := 〈Au, vh − u〉+ ϕ(γϕu, γϕv
h)− ϕ(γϕu, γϕu)(3.13)

+ j0(γju; γjv
h − γju)− 〈f, vh − u〉,

Iϕ(vh) := ϕ(γϕu, γϕu
h) + ϕ(γϕu

h, γϕv
h)− ϕ(γϕu, γϕv

h)− ϕ(γϕu
h, γϕu

h),(3.14)

Ij(v
h) := j0(γju; γju

h − γju) + j0(γju
h; γjv

h − γjuh)− j0(γju; γjv
h − γju).(3.15)

Notice that for ε > 0 arbitrarily small, there is a constant c depending on ε such that

〈Au−Auh, u− vh〉 ≤ LA‖u− uh‖X‖u− vh‖X
≤ ε ‖u− uh‖2X + c ‖u− vh‖2X .

We further deduce from (3.12) that

(3.16) (mA − ε) ‖u− uh‖2X ≤ c ‖u− vh‖2X +R(vh) + Iϕ(vh) + Ij(v
h).

Let us bound the terms Iϕ(vh) and Ij(v
h). By (2.6), we have

Iϕ(vh) ≤ αϕ‖γϕu− γϕuh‖Xϕ‖γϕuh − γϕvh‖Xϕ
≤ αϕc2ϕ

(
‖u− uh‖2X + ‖u− uh‖X‖u− vh‖X

)
.

Thus,

(3.17) Iϕ(vh) ≤
(
αϕc

2
ϕ + ε

)
‖u− uh‖2X + c ‖u− vh‖2X

for another constant c depending on ε > 0. We will apply the subadditivity of the
generalized directional derivative:

j0(z; z1 + z2) ≤ j0(z; z1) + j0(z; z2) ∀ z, z1, z2 ∈ Xj .

Using

j0(γju
h; γjv

h − γjuh) ≤ j0(γju
h; γju− γjuh) + j0(γju

h; γjv
h − γju),

we have

Ij(v
h) ≤

[
j0(γju; γju

h − γju) + j0(γju
h; γju− γjuh)

]
(3.18)

+
[
j0(γju

h; γjv
h − γju)− j0(γju; γjv

h − γju)
]
.

By (2.8),

j0(γju; γju
h − γju) + j0(γju

h; γju− γjuh) ≤ αj‖γju− γjuh‖2Xj ;

by (2.7), ∣∣j0(γju
h; γjv

h − γju)
∣∣ ≤ (c0 + c1‖γjuh‖Xj

)
‖γju− γjvh‖Xj ,∣∣j0(γju; γjv

h − γju)
∣∣ ≤ (c0 + c1‖γju‖Xj

)
‖γju− γjvh‖Xj .
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Thus, from (3.18), we have

(3.19) Ij(v
h) ≤ αj‖γju− γjuh‖2Xj + c ‖γju− γjvh‖Xj

for some constant c > 0 independent of h, where we used the fact that ‖γjuh‖Xj is
uniformly bounded (cf. Proposition 3.1). Combine (3.16), (3.17), and (3.19),(
mA − αϕc2ϕ − αjc2j − 2 ε

)
‖u− uh‖2X ≤ c ‖u− vh‖2X + c ‖γju− γjvh‖Xj +R(vh).

Since αϕc
2
ϕ + αjc

2
j < mA, we can choose ε = (mA − αϕc2ϕ − αjc2j )/4 > 0 and get

(3.20) ‖u− uh‖2X ≤ c
[
‖u− vh‖2X + ‖γju− γjvh‖Xj +R(vh)

]
∀ vh ∈ Kh.

The residual term (3.13) can be bounded as follows:∣∣R(vh)
∣∣ ≤ [‖Au‖X∗ + Lϕ(γϕu) cϕ +

(
c0 + c1‖γju‖Xj

)
cj + ‖f‖X∗

]
‖u− vh‖X .

Thus, from (3.20), we have two constants c1, c2 > 0, depending on the data of the
problem and the solution, such that

(3.21) ‖u− uh‖2X ≤ c1‖u− vh‖2X + c2‖u− vh‖X ∀ vh ∈ Kh.

By (3.8), we can choose a sequence {vh} ⊂ Kh that converges to u. From (3.21), we
then conclude the convergence

‖u− uh‖X → 0 as h→ 0.

Note that while (3.21) implies the convergence of the numerical method, it does
not lead to optimal convergence order for error estimation.

3.2. Error estimation for the particular case K = X. In the special case
K = X, we have Kh = Xh, and the original problem (2.2) and its approximation
(3.1) become

〈Au, v − u〉+ ϕ(γϕu, γϕv)− ϕ(γϕu, γϕu)(3.22)

+ j0(γju; γjv − γju) ≥ 〈f, v − u〉 ∀ v ∈ X

and

〈Auh, vh − uh〉+ ϕ(γϕu
h, γϕv

h)− ϕ(γϕu
h, γϕu

h)(3.23)

+ j0(γju
h; γjv

h − γjuh) ≥ 〈f, vh − uh〉 ∀ vh ∈ Xh.

We replace v by 2u− v in (3.22),

〈Au, u− v〉+ ϕ(γϕu, 2γϕu− γϕv)− ϕ(γϕu, γϕu)

+ j0(γju; γju− γjv) ≥ 〈f, u− v〉 ∀ v ∈ X.

Thus,

〈Au, vh − u〉 ≤ ϕ(γϕu, 2γϕu− γϕvh)− ϕ(γϕu, γϕu)

+ j0(γju; γju− γjvh)− 〈f, u− vh〉 ∀ vh ∈ Xh.
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Using this inequality in (3.12), we have

(3.24) mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ Ĩϕ(vh) + Ĩj(v
h),

where

Ĩϕ(vh) := Iϕ(vh) + ϕ(γϕu, 2γϕu− γϕvh) + ϕ(γϕu, γϕv
h)− 2ϕ(γϕu, γϕu),(3.25)

Ĩj(v
h) := j0(γju; γju

h − γju) + j0(γju; γju− γjvh) + j0(γju
h; γjv

h − γjuh).(3.26)

Recall that Iϕ(vh) is defined in (3.14) and it is bounded in (3.17). We use (3.7) to
find

ϕ(γϕu, 2γϕu− γϕvh) + ϕ(γϕu, γϕv
h)− 2ϕ(γϕu, γϕu) ≤ 2Lϕ(u) ‖γϕu− γϕvh‖Xϕ .

This implies, combined with (3.17), that

(3.27) Ĩϕ(vh) ≤
(
αϕc

2
ϕ + ε

)
‖u− uh‖2X + c ‖u− vh‖2X + 2Lϕ(u) ‖γϕu− γϕvh‖Xϕ .

Applying the inequality

j0(γju
h; γjv

h − γjuh) ≤ j0(γju
h; γju− γjuh) + j0(γju

h; γjv
h − γju),

we have

Ĩj(v
h) ≤

[
j0(γju; γju

h − γju) + j0(γju
h; γju− γjuh)

]
+
[
j0(γju; γju− γjvh) + j0(γju

h; γjv
h − γju)

]
.

This is similar to (3.18) and we have the following analogue of (3.19):

(3.28) Ĩj(v
h) ≤ αjc2j‖u− uh‖2X + c ‖γju− γjvh‖Xj .

Combining (3.24), (3.27) and (3.28), we get

mA‖u− uh‖2X ≤ ‖Au−Auh‖X‖u− vh‖X +
(
αϕc

2
ϕ + αjc

2
ϕ + ε

)
‖u− uh‖2X

+ c ‖u− vh‖2X + 2Lϕ(u) ‖γϕu− γϕvh‖Xϕ + c ‖γju− γjvh‖Xj .

Using the smallness assumption (2.9) and the Lipschitz condition (3.6), we deduce
from the above inequality that

‖u− uh‖2X(3.29)

≤ c
(
‖u− vh‖2X + ‖γϕu− γϕvh‖Xϕ + ‖γju− γjvh‖Xj

)
∀ vh ∈ Xh.

This is a basis for deriving error estimates.

4. Error analysis for contact problems. We illustrate applications of the
framework developed in Section 3 on convergence and error estimation for numerical
solutions of a number of static contact problems with elastic materials. Let Ω be
the reference configuration of the elastic body, assumed to be an open, bounded,
connected set in Rd (d = 2, 3). The boundary Γ = ∂Ω is assumed Lipschitz continuous
and is partitioned into three disjoint and measurable parts Γ1, Γ2 and Γ3 such that
meas (Γ1) > 0. The body is in equilibrium under the action of a total body force of
density f0 in Ω and a surface traction of density f2 on Γ2, is fixed on Γ1, and is in
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contact on Γ3 with a foundation. Different contact conditions lead to different contact
problems, as discussed below.

We use Sd for the space of second order symmetric tensors on Rd. Also, “·” and
‖ · ‖ will represent the canonical inner product and the Euclidean norm on the spaces
Rd and Sd. We denote by u : Ω → Rd and σ : Ω → Sd the displacement field and
the stress field, respectively. In addition, we use ε(u) to denote the linearized strain
tensor. Let ν be the unit outward normal vector, defined a.e. on Γ. For a vector field
v, we use vν := v · ν and vτ := v− vνν for the normal and tangential components of
v on Γ. Similarly, for the stress field σ, its normal and tangential components on the
boundary are defined as σν := (σν) · ν and στ := σν − σνν, respectively. Then for
the contact problems under consideration, we have the elastic constitutive law

(4.1) σ = Fε(u) in Ω,

the equilibrium equation

(4.2) Divσ + f0 = 0 in Ω,

the displacement boundary condition

(4.3) u = 0 on Γ1,

and the traction boundary condition

(4.4) σν = f2 on Γ2.

The relations (4.1)–(4.4) will be supplemented by a set of boundary conditions on Γ3.
Note that in (4.1)–(4.4) and sometimes below, we do not indicate explicitly the

dependence of various functions on the spatial variable x ∈ Ω ∪ Γ. In (4.1), F : Ω ×
Sd → Sd is the elasticity operator and is assumed to have the following properties:

(4.5)



(a) there exists LF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,
‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;

(b) there exists mF > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,
(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2;

(c) F(·, ε) is measurable on Ω for all ε ∈ Sd;
(d) F(x,0) = 0 for a.e. x ∈ Ω.

To study the contact problems, we need some function spaces. For the stress
and strain fields, we use the space Q = L2(Ω;Sd), which is a Hilbert space with the
canonical inner product

(σ, τ )Q :=

∫
Ω

σij(x) τij(x) dx, σ, τ ∈ Q;

the associated norm is denoted by ‖ · ‖Q. The displacement fields will be sought in
the space

V =
{
v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1

}
or its subset. Since meas (Γ1) > 0, it is known that V is a Hilbert space with the
inner product

(u,v)V :=

∫
Ω

ε(u) · ε(v) dx, u,v ∈ V
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and the associated norm ‖ · ‖V . For v ∈ H1(Ω;Rd) we use the same symbol v for the
trace of v on Γ. By the Sobolev trace theorem we have

‖v‖L2(Γ3;Rd) ≤ ‖γ‖ ‖v‖V ∀v ∈ V,

‖γ‖ being the norm of the trace operator γ : V → L2(Γ3;Rd).
We consider several choices of the boundary conditions on the contact boundary

Γ3, leading to different contact problems which are examples of Problem (P) or its
special cases.

a) Frictional contact with normal compliance and unilateral constraint.
The first set of contact boundary conditions is ([16])

uν ≤ g, σν + ξν ≤ 0, (uν − g) (σν + ξν) = 0, ξν ∈ ∂jν(uν) on Γ3,(4.6)

‖στ‖ ≤ Fb(uν), −στ = Fb(uν)
uτ
‖uτ‖

if uτ 6= 0 on Γ3.(4.7)

Here g > 0, ∂jν is the Clarke subdifferential of a function jν , and the friction bound
Fb is a positive function. The condition (4.6) models the contact with a foundation
made of a rigid body covered by a layer made of elastic material, say asperities. The
relation uν ≤ g restricts the allowed penetration, where g represents the thickness of
the elastic layer. When there is penetration, as long as the normal displacement does
not reach the bound g, the contact is described with a multivalued normal compli-
ance condition −σν = ξν ∈ ∂jν(uν). Thus, the unknown ξν may be interpreted as
the opposite of the normal stress on the contact surface. Examples of normal com-
pliance contact conditions in the subdifferential form −σν ∈ ∂jν(uν) can be found
in [15]. Thus, the contact condition (4.6) represents a combination of the Signorini
contact condition (which models the contact with a rigid foundation) and the nor-
mal compliance condition (which models the contact with a deformable foundation).
Details on the normal compliance and Signorini contact conditions can be found in
[11, 15, 21, 23]. The contact is assumed to be frictional and is described with a version
of Coulomb’s law of dry friction, (4.7). The friction bound Fb may depend on the
normal displacement uν , cf. [22] for explanation.

On the potential function jν : Γ3 × R→ R, we assume

(4.8)



(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂jν(x, r)| ≤ c0 + c1|r| for a.e. x ∈ Γ3,
for all r ∈ R with c0, c1 ≥ 0;

(d) j0
ν(x, r1; r2 − r1) + j0

ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ R with αjν ≥ 0.

On the penetration bound g : Γ3 → R and the friction bound Fb : Γ3 × R → R+,
we assume

(4.9) g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3,

(4.10)


(a) there exists LFb > 0 such that
|Fb(x, r1)− Fb(x, r2)| ≤ LFb |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) Fb(·, r) is measurable on Γ3, for all r ∈ R;
(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ Γ3.
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On the densities of body forces and surface tractions we assume

(4.11) f0 ∈ L2(Ω;Rd), f2 ∈ L2(Γ2;Rd).

Define f ∈ V ∗ by

(4.12) 〈f ,v〉V ∗×V = (f0,v)L2(Ω;Rd) + (f2,v)L2(Γ2;Rd) ∀v ∈ V.

Corresponding to the constraint uν ≤ g on Γ3 in (4.6), we introduce a subset of the
space V :

(4.13) U := {v ∈ V | vν ≤ g on Γ3} .

By a standard approach (cf. [11, 15]), the following weak formulation of the first
contact problem can be derived.

Problem (P1). Find a displacement field u ∈ U such that

(F(ε(u)), ε(v − u))Q +

∫
Γ3

Fb(uν) (‖vτ‖ − ‖uτ‖) dΓ(4.14)

+

∫
Γ3

j0
ν(uν ; vν − uν) dΓ ≥ 〈f ,v − u〉V ∗×V ∀v ∈ U.

To apply the theory presented in the previous sections, we let X = V , K = U ,
Xϕ = L2(Γ3)d with γϕ the trace operator from V to Xϕ, Xj = L2(Γ3) with γjv = vν
for v ∈ V . Then, αϕ = LFb and αj = αjν . Let λ1,V > 0 be the smallest eigenvalue of
the eigenvalue problem

u ∈ V,
∫

Ω

ε(u)·ε(v) dx = λ

∫
Γ3

u·v dΓ ∀v ∈ V,

and let λ1ν,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,
∫

Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uνvνdΓ ∀v ∈ V.

Then we may take

cϕ = λ
−1/2
1,V , cj = λ

−1/2
1ν,V .

Applying Theorem 2.1, we know that under the assumptions (4.5), (4.8), (4.10), and

(4.15) LFbλ
−1
1,V + αjνλ

−1
1ν,V < mF ,

Problem (P1) has a unique solution u ∈ U .
We now consider the finite element method of solving Problem (P1). For simplic-

ity, assume Ω is a polygonal/polyhedral domain and express the three parts of the
boundary, Γk, 1 ≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

Γk = ∪iki=1Γk,i, 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of Ω into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3,
in the sense that if the intersection of one side/face of an element with one set Γk,i
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has a positive measure with respect to Γk,i, then the side/face lies entirely in Γk,i.
Construct the linear element space corresponding to T h:

V h =
{
vh ∈ C(Ω)d | vh|T ∈ P1(T )d, T ∈ T h, vh = 0 on Γ1

}
,

and the related finite element subset Uh = V h ∩ U . Assume g is a concave function.
Then

Uh =
{
vh ∈ V h | vhν ≤ g at node points on Γ3

}
.

Note that 0 ∈ Uh. Define the following numerical method for Problem (P1).
Problem (Ph1). Find a displacement field uh ∈ Uh such that

(F(ε(uh)), ε(vh − uh))Q +

∫
Γ3

Fb(u
h
ν )
(
‖vhτ‖ − ‖uhτ‖

)
dΓ(4.16)

+

∫
Γ3

j0
ν(uhν ; vhν − uhν ) dΓ ≥ 〈f ,vh − uh〉V ∗×V ∀vh ∈ Uh.

For an error analysis, we assume

(4.17) u ∈ H2(Ω)d, σν ∈ L2(Γ3)d.

Note that for many application problems, σν ∈ L2(Γ3)d follows from u ∈ H2(Ω)d;
e.g., this is the case where the material is linearly elastic with suitably smooth coef-
ficients, or where the elasticity operator F depends on x smoothly. We apply (3.20)
to derive an error estimate. For this purpose, we need to bound the residual term
defined in (3.13):

R(vh) = (F(ε(u)), ε(vh − u))Q +

∫
Γ3

Fb(uν)
(
‖vhτ‖ − ‖uτ‖

)
dΓ

+

∫
Γ3

j0
ν(uν ; vhν − uν) dΓ− 〈f ,vh − u〉V ∗×V .

We follow the procedure found in [11]. Take v = u±w with w in the subset Ũ of U
defined by

Ũ :=
{
w ∈ C∞(Ω)d | w = 0 on Γ1 ∪ Γ3

}
,

and derive from (4.14) that

(F(ε(u)), ε(w))Q = 〈f ,w〉V ∗×V ∀w ∈ Ũ .

Therefore,

DivF(ε(u)) + f0 = 0 in Ω,(4.18)

σν = f2 on Γ2.(4.19)

Then multiply (4.18) by v − u with v ∈ U , integrate over Ω, and integrate by parts,∫
∂Ω

σν·(v − u) dΓ−
∫

Ω

F(ε(u))·ε(v − u) dx+

∫
Ω

f0·(v − u) dx = 0,
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i.e.,

(4.20)

∫
Ω

F(ε(u))·ε(v − u) dx = 〈f ,v − u〉V ∗×V +

∫
Γ3

σν·(v − u) dΓ.

Thus,

R(vh) =

∫
Γ3

[
σν·(vh − u) + Fb(uν)

(
‖vhτ‖ − ‖uτ‖

)
+ j0

ν(uν ; vhν − uν)
]
dΓ,

and then,

(4.21)
∣∣R(vh)

∣∣ ≤ c ‖u− vh‖L2(Γ3)d .

Finally, from (3.20), we derive the inequality

(4.22) ‖u− uh‖2V ≤ c
(
‖u− vh‖2V + ‖u− vh‖L2(Γ3)d

)
∀vh ∈ Uh.

Under additional solution regularity assumption

(4.23) uν |Γ3,i ∈ H2(Γ3,i;Rd), 1 ≤ i ≤ i3,

we have the optimal order error bound

(4.24) ‖u− uh‖V ≤ c h.

We comment that similar results hold for the frictionless version of the model,
i.e., where the friction condition (4.7) is replaced by

στ = 0 on Γ3.

Then the problem is to solve the inequality (4.14) without the term∫
Γ3

Fb(uν) (‖vτ‖ − ‖uτ‖) dΓ.

The condition (4.15) reduces to

αjνλ
−1
1ν,V < mF .

The inequality (4.22) and the error bound (4.24) still hold for the linear finite element
solution.

b) Frictional contact with normal compliance. Instead of (4.6)–(4.7), the fol-
lowing contact boundary conditions were considered in [10]:

(4.25) −σν ∈ ∂jν(uν), ‖στ‖ ≤ Fb(uν), −στ = Fb(uν)
uτ
‖uτ‖

if uτ 6= 0 on Γ3,

where the potential function jν is assumed to satisfy (4.8), whereas the friction bound
Fb is assumed to satisfy (4.10). Note that in contrast with the contact boundary
condition (4.6) which involves a unilateral constraint on the displacement field, the
contact condition in (4.25) does not involve such a restriction. It can be viewed as a
limiting case of the (4.6) when g → ∞. The weak formulation of the corresponding
contact problem is the following.
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Problem (P2). Find a displacement field u ∈ V such that

(F(ε(u)), ε(v − u))Q +

∫
Γ3

Fb(uν) (‖vτ‖ − ‖uτ‖) dΓ(4.26)

+

∫
Γ3

j0
ν(uν ; vν − uν) dΓ ≥ 〈f ,v − u〉V ∗×V ∀v ∈ V.

This problem and its numerical approximations were studied in [10], where the
functional jν was assumed to be Lipschitz continuous. We can apply the theory
developed in Section 3 for error analysis of numerical solutions of Problem (P2), with
Xϕ = L2(Γ3)d and Xj = L2(Γ3), without the need of assuming jν to be Lipschitz
continuous.

c) Frictionless contact with normal compliance. The frictionless version of the
contact boundary conditions (4.25) are

(4.27) −σν ∈ ∂jν(uν), στ = 0 on Γ3.

These conditions can be obtained from (4.25) when the friction bound vanishes, i.e.
when Fb ≡ 0. Such a condition represents an idealization of the process, since even
completely lubricated surfaces generate shear resistance to tangential motion. The
weak formulation of the corresponding contact problem is the following.

Problem (P3). Find a displacement field u ∈ V such that

(4.28) (F(ε(u)), ε(v − u))Q +

∫
Γ3

j0
ν(uν ; vν − uν) dΓ ≥ 〈f ,v − u〉V ∗×V ∀v ∈ V.

Note that, in contrast with the inequality (4.26) which involves both a convex
and a nonconvex function, the inequality (4.28) is governed by a nonconvex function
only; it is an example of a pure hemivariational inequality. In applying the theory of
Section 3 in the study of this inequality, we choose Xj = L2(Γ3) and there is no Xϕ.

d) Frictionless contact with subdifferential boundary conditions and uni-
lateral constraint. We turn now to a new model of frictional contact described with
two subdiferential boundary conditions, associated with a unilateral constraint for the
normal displacement field. The boundary conditions are formulated as follows:

σν = σ1
ν + σ2

ν + σ3
ν , −σ1

ν ∈ ∂̃ϕν(uν), − σ2
ν ∈ ∂jν(uν),(4.29)

uν ≤ g, σ3
ν ≤ 0, σ3

ν(uν − g) = 0, on Γ3,

στ = 0 on Γ3.(4.30)

Here g is a prescribed bound, ϕν and jν are given functions, and ∂̃ϕν , ∂jν denote the
convex subdifferential of ϕν and the Clarke subdifferential of the jν , respectively. A
relevant example of the contact condition which can be cast in the general subdiffer-
ential framework (4.29) follows.

Example 4.1. We adopt assumptions a)–e) below in which equalities and in-
equalities hold on the contact surface Γ3.

a) The foundation is made of a rigid body covered by a layer of soft material, say
asperities. Therefore, the penetration is restricted, i.e.

(4.31) uν ≤ g,
14



where g > 0 represents the thickness of the soft layer. We consider the nonhomoge-
neous case, i.e., g is allowed to be a function of the spatial variable x ∈ Γ3.

b) The normal stress has an additive decomposition of the form

(4.32) σν = σDν + σRν ,

where the term σDν describes the reaction of the soft layer and σRν describes the
reaction of the rigid body.

c) The part σDν has, in turn, an additive decomposition of the form

(4.33) σDν = σ1
ν + σ2

ν ,

where

(4.34) −σ1
ν = qν(uν), −σ2

ν = pν(uν).

Here qν and pν are continuous positive functions, vanishing for a negative argument.
Moreover, qν is an increasing function and pν is allowed to be nonmonotone. Equalities
(4.33), (4.34) show that the function σDν follows a normal compliance contact condition
of the form

(4.35) −σDν = qν(uν) + pν(uν).

d) The part σRν satisfies the Signorini condition in a form with a gap function, i.e.

(4.36) σRν ≤ 0, σRν (uν − g) = 0.

The contact conditions (4.34) can be expressed in terms of the subdifferential
operators. Introduce functions ϕν : R→ R and jν : R→ R by

(4.37) ϕν(r) =

∫ r

0

qν(s) ds, jν(r) =

∫ r

0

pν(s) ds ∀ r ∈ R.

Then, as explained in [15, 23] we have ∂̃ϕ(r) = qν(r), ∂νj(r) = pν(r) for all r ∈ R.
Thus, (4.34) leads to a subdifferential condition of the form

(4.38) −σ1
ν ∈ ∂̃ϕν(uν), −σ2

ν ∈ ∂j(uν).

Denote σRν = σ3
ν . Then, gathering relations (4.32), (4.33), (4.38), (4.31) and

(4.36) we obtain that uν and σν satisfy the contact condition (4.29). We conclude
that the contact model based on assumptions (4.31)–(4.36) can be cast in this abstract
subdifferential setting, as claimed.

Remark 4.2. We can write the contact condition in Example 4.1 in an equiva-
lent form, which shall be useful for the mechanical interpretation of the numerical
results we present in Section 5. We use equalities (4.33) and (4.34) to see that
σDν = −qν(uν) − pν(uν). We replace this equality in (4.32) to find that σRν =
σν + qν(uν) + pν(uν). Then we substitute this equality in (4.36) and use condition
(4.31) to obtain that

(4.39) uν ≤ g, σν + qν(uν) + pν(uν) ≤ 0, (σν + qν(uν) + pν(uν))(uν − g) = 0.

Denote

(4.40) kν(r) = qν(r) + pν(r), r ∈ R.
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Then, (4.39) becomes

(4.41) uν ≤ g, σν + kν(uν) ≤ 0, (σν + kν(uν))(uν − g) = 0.

This represents the normal compliance contact condition with unilateral constraint.
It was first introduced in [9] under the assumption that kν is a Lipschitz continuous
increasing functions. Here, kν is only assumed to be locally Lipschitz continuous and
it may be non-monotone.

Note that various examples of contact conditions can be considered in the form
(4.29), some of them involving multivalued functions. For this reason, we proceed our
analysis by considering the contact conditions in the general form (4.29). There, the
function jν is assumed to satisfy (4.8) and ϕν : Γ3 × R → R satisfies the following
conditions:

(4.42)


(a) ϕν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ẽ ∈ L2(Γ3) such that ϕν(·, ẽ(·)) ∈ L1(Γ3).

(b) ϕν(x, ·) is convex on R for a.e. x ∈ Γ3.

By a standard procedure, we derive the following variational formulation of the
problem (4.1)–(4.4), (4.29), (4.30).

Problem (P4). Find a displacement field u ∈ U such that∫
Ω

F(ε(u)) · ε(v − u) dx(4.43)

+

∫
Γ3

ϕν(vν) dΓ−
∫

Γ3

ϕν(uν) dΓ +

∫
Γ3

j0
ν(uν ; vν − uν) dΓ

≥
∫

Ω

f0 · (v − u) dx+

∫
Γ2

f2 · (v − u) dΓ ∀v ∈ U.

The unique solvability of Problem (P4) is given by the following existence and
uniqueness result.

Theorem 4.3. Assume (4.5), (4.8), (4.9), (4.11), (4.42) and, in addition, assume
the smallness condition

(4.44) αjνλ
−1
1ν,V < mF .

Then Problem (P4) has a unique solution u ∈ U .
Proof. We apply Theorem 2.1 with X = V , K = U being the set defined by

(4.13),

A : V → V ∗, 〈Au,v〉 =

∫
Ω

Fε(u) · ε(v) dx for u,v ∈ V,

ϕ : V × V → R, ϕ(u,v) =

∫
Γ3

ϕν(vν) dΓ for u,v ∈ V,

j : V → R, j(v) =

∫
Γ3

jν(vν) dΓ for v ∈ V,

f ∈ V ∗, 〈f ,v〉 =

∫
Ω

f0 · v dx+

∫
Γ3

f2 · v dx for v ∈ V.
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Observe that hypothesis (4.5) implies that the operator A satisfies condition (2.5)
with αA = mA = mF . Moreover, condition (4.42) implies that ϕ satisfies (2.6) with
αϕ = 0. Next, hypothesis (4.8)(a) guaranties that the function j is well defined,
and conditions (4.8)(b) and (c) imply that (2.7) holds. For more details in proving
these properties we refer the reader to Theorem 3.47 in [15]. Condition (2.8) is a
consequence of the relation

j0(u;v) ≤
∫

Γ3

j0
ν(x, uν(x); vν(x)) dΓ ∀u,v ∈ V,

combined with the hypotheses (4.8)(d). Thus, we conclude that j satisfies condition
(2.7) with αj = αjν‖γ‖2. Moreover, using (4.9), it is easy to see that the set (4.13)
is a nonempty, closed, convex set in V . In addition, (4.12) implies (2.10). Finally, we
see from above that assumption (4.44) implies the smallness condition (2.9). Theorem
4.3 is now a direct consequence of Theorem 2.1.

The results in Section 3 apply in the study the numerical approximation of the
contact problems (P2)–(P4) as was done for the contact problem (P1) earlier in the
section. In particular, under the solution regularity assumptions (4.17) and (4.23),
we have the optimal order error bound (4.24).

5. Numerical simulations. In this section we present numerical simulation re-
sults. We restrict ourselves to provide numerical simulations in the study of Problems
(P4) and (P2).

The numerical algorithm we use is described in [2, 3, 4, 5]. The numerical solution
is based on an iterative procedure which leads to a sequence of convex programming
problems. For each “convexification” iteration, the value of the normal compliance
function is fixed to a given value depending on the normal displacement solution uν
found in the previous iteration. Then, the resulting nonsmooth convex iterative prob-
lems are solved by classical numerical methods. Furthermore, the frictional contact
conditions are treated by using a numerical approach based on the combination of the
penalized method and the augmented Lagrangian method. We consider additional
fictitious nodes for the Lagrange multiplier in the initial mesh. The construction of
these nodes depends on the contact element used for the geometrical discretization
of the interface Γ3. In the examples presented below, the discretization is based on
“node-to-rigid” contact element, which is composed by one node of Γ3 and one La-
grange multiplier node. For more details on the discretization step and Computational
Contact Mechanics, we refer to [12, 13, 14, 24].

Physical setting and values of parameters. Let Ω = (0, L) × (0, L) ⊂ R2 with
L > 0 and

Γ1 = ({0} × [0, L]) ∪ ({L} × [0, L]), Γ2 = [0, L]× {L}, Γ3 = [0, L]× {0}.

The domain Ω represents the cross section of a three-dimensional elastic body sub-
jected to the action of tractions in such a way that the plane stress hypothesis is
valid. On Γ1 = ({0} × [0, L]) ∪ ({L} × [0, L]), the body is clamped and, therefore,
the displacement field vanishes there. Vertical tractions act on Γ2 = [0, L] × {L}.
No body forces are assumed to act on the body during the process. The body is in
contact with an obstacle on Γ3 = [0, L]×{0}. The contact conditions used correspond
both to Problems (P4) and (P2) and will be described below. The material response
is governed by a linear constitutive law defined by the elasticity tensor F given by

(Fτ )ij =
Eκ

(1 + κ)(1− 2κ)
(τ11 + τ22)δij +

E

1 + κ
τij , 1 ≤ i, j ≤ 2, ∀ τ ∈ S2.
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Here, E and κ are Young’s modulus and Poisson’s ratio of the material and δij denotes
the Kronecker delta. For the computation below, we use the following data:

L = 1m, E = 70GPa, κ = 0.3,

f0 = (0, 0)GPa, f2 = (0,−4)GPa·m on Γ2.

For the numerical simulation we use linear finite elements on uniform triangulations
of the domain Ω. The contact boundary Γ3 is divided in 1/h parts, h being the spatial
discretization parameter. The numerical solutions presented below correspond to the
case h = 1/64 where the spatial domain is discretized into 16384 elements for a total
number of degrees of freedom equal to 16770.

Numerical simulations for Problem (P4). The contact is frictionless; it follows
a normal compliance condition as far as the penetration is less than the bound g
and, when this bound is reached, it follows a unilateral constraint. The behavior of
the foundation is an elastic-rigid one and corresponds to an obstacle made of a hard
material covered by a layer composed of a soft material, say asperities, with thickness
g, as depicted in Figure 5.1.

Γ3
Rigid Obstacle

Γ1 Γ1

Γ2

g

Asperities

x

x
1

2

Deformable bodyΩ

Fig. 5.1. Reference configuration of the two-dimensional body

For the numerical simulations we choose g = 0.02m. In addition, we choose the
contact condition (4.39) which represents a particular case of the contact condition
(4.29), as explained in Example 4.1 and Remark 4.2. For simplicity, we consider only
the homogeneous case, i.e., we skip the dependence on the function on the spatial
variable x. Let

(5.1) qν(r) = αβr+, r ∈ R,
18



(5.2) pν(r) = αp(r), p(r) =


0 if r < 0,

r if r ∈ [0, 0.01],

0.02− r if r ∈ (0.01, 0.02],

r − 0.02 if r > 0.02.

Here and below r+ represents the positive part of r, i.e. r+ = max {r, 0} and α > 0,
β ≥ 0 are stiffness coefficients of the foundation.

Obviously, qν is a Lipschitz continuous increasing function; pν is Lipschitz con-
tinuous and is not monotone. Define the functions ϕν : R → R and jν : R → R by
equalities (4.37). It follows that ϕν(r) = αβ(r+)2/2 for all r ∈ R which, clearly,
satisfies condition (4.42). Note also that jν is a not a convex function. Assumption
(4.8)(a) is obviously satisfied. It is also easy to see that (4.8)(b) and (4.8)(c) hold.
By

(5.3) j0
ν(r1; r2) = pν(r1) r2 ∀ r1, r2 ∈ R,

the condition (4.8)(d) is equivalent to the inequality

(pν(r1)− pν(r2))(r2 − r1) ≤ αjν(r1 − r2)2 ∀ r1, r2 ∈ R with some αjν ≥ 0,

and is thus also equivalent to the statement that the function

(5.4) R 3 r 7→ αjνr + pν(r) ∈ R

is nondecreasing for some αjν ≥ 0. It is easy to show that for pν given by (5.2) and
αjν = α the function (5.4) is nondecreasing. It follows from here that jν satisfies the
hypothesis (4.8)(d) with αjν = α. Assume now that α is chosen to be sufficiently
small. Then it follows that the smallness condition (4.44) holds, too.

We conclude from above that the choice (5.1)–(5.2) leads to a a model of contact
for which the weak formulation is given by the variational-hemivariational inequality
(4.43) and, in addition, the assumptions of Theorem 4.3 are satisfied. Moreover, using
(5.3) we deduce that Problem (P4) can be written, in an equivalent form as follows:
find u such that

u ∈ U,
∫

Ω

F(ε(u)) · ε(v − u) dx(5.5)

+

∫
Γ3

αβ

2

[
(v+
ν )2 − (u+

ν )2
]
dΓ +

∫
Γ3

α p(uν)(vν − uν) dΓ

≥
∫

Ω

f0 · (v − u) dx+

∫
Γ3

f2 · (v − u) dx ∀v ∈ U.

We examine in what follows the feature of the inequality (5.5) in relation to the
values of the parameter β. Consider the function kν defined by (4.40),

kν(r) = α
(
βr+ + p(r)

)
,

where p is the function defined in (5.2). Let ψ : R→ R be the function defined by

(5.6) ψν(r) =

∫ r

0

kν(s) ds ∀ r ∈ R.
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If β ≥ 1, then kν is a continuous increasing function and, therefore, ψν is a convex
function. Moreover, it can be proved that u is a solution of the inequality (5.5) if and
only if

u ∈ U,
∫

Ω

F(ε(u)) · ε(v − u) dx+

∫
Γ3

[ψν(vν)− ψν(vν)] dΓ(5.7)

≥
∫

Ω

f0 · (v − u) dx+

∫
Γ3

f2 · (v − u) dx ∀v ∈ U.

Since ψν is a convex function, the inequality (5.7) is a purely variational inequality.

Next, if 0 ≤ β < 1, then kν is not a monotone function and, therefore, ψν is not
convex. Nevertheless, the function ψν is locally Lipschitz. It can be proved that u is
a solution of the inequality (5.5) if and only if

u ∈ U,
∫

Ω

F(ε(u)) · ε(v − u) dx+

∫
Γ3

ψ0
ν(uν ; vν − uν) dΓ(5.8)

≥
∫

Ω

f0 · (v − u) dx+

∫
Γ3

f2 · (v − u) dx ∀v ∈ U,

where ψ0
ν denotes generalized derivative in the sense of Clarke. Since ψ is nonconvex,

the inequality (5.8) is a purely hemivariational inequality.

We conclude that our contact model leads to a variational formulation (5.5) whose
intrinsic nature depends on the value of the parameter β. For β ≥ 1, the function
kν is increasing and, therefore, using (4.39), (4.40) it follows that we have the case
of a monotone normal compliance contact condition. In contrast, for 0 ≤ β < 1
the function kν is not increasing and using (4.39), (4.40) we have the case of a so-
called non monotone normal compliance contact condition. Our aim in what follows
it to perform simulations in the two cases above and to provide the corresponding
mechanical interpretations.

a) The monotone case. In Figure 5.2 we plot the deformed configuration as well as
the interface forces on Γ3, for α = 40 while in Figure 5.3 we plot that for α = 10. In
both cases we take β = 2 which guarantees that we are in the monotone case.

We note that all nodes in Figure 5.2 are in status of normal compliance, i.e.
0 ≤ uν < 0.02. Moreover, the interface forces increase with respect to the penetration.
This numerical result corresponds with the theoretic one. Indeed, in this case there
is no contact with the rigid foundation, the normal stress reduces to its component
provided by the normal compliance condition and, therefore −σν = kν(uν). Since kν
is an increasing function we deduce that the magnitude of σν is increasing with the
penetration.

In Figure 5.3 part of the nodes are in status of normal compliance (i.e. 0 ≤ uν <
0.02) and part of them are in unilateral contact (i.e. uν = 0.02). This situation arises
since the stiffness of the deformable foundation considered in Figure 5.3 is α = 10
which is lower than the one used in Figure 5.2, where α = 40. As a result, there is a
complete flattening of the asperities in the center of the contact boundary. Moreover,
note that the interface forces increase with respect to the penetration and this agrees
with the theory, since we are in the monotone case. In addition, we note that the
interface forces are more important on the unilateral contact zone since the component
σ3
ν of the stress is active there.
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Fig. 5.2. Problem (P4): Deformed mesh and interface forces for a normal compliance case for
α = 40 and β = 2

Fig. 5.3. Problem (P4): Deformed mesh and interface forces for a normal compliance and
unilateral constraint case for α = 10 and β = 2

b) The nonmonotone case. In Figure 5.4 we plot the deformed configuration as well
as the interface forces on Γ3 for α = 150 and β = 0.5 while in Figure 5.5 that for
α = 40 and β = 0.5. Here we are in the nonmonotone case, since β < 1.
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We note that in Figure 5.4 all nodes are in status of normal compliance, i.e.
0 ≤ uν < 0.02. Nevertheless for part of the nodes we have 0 ≤ uν < 0.01 and for the
other part we have 0.01 ≤ uν < 0.02. We note that for 0 ≤ uν < 0.01 the normal
forces are increasing with respect to the penetration and for 0.01 ≤ uν < 0.02 they
decrease. This behaviour represent the softening property of the deformable layer. It
arises since there −σν = kν(uν) and kν is an increasing function on [0, 0.01], and it is
decreasing on [0, 0.02].

In Figure 5.5 for part of the nodes we have 0 ≤ uν ≤ 0.01, for other part we have
0.01 ≤ uν ≤ 0.02 and, finally, for the remainder part we have uν = 0.02. We note that
for 0 ≤ uν < 0.01 the normal forces are increasing with respect to the penetration
and for 0.01 ≤ uν < 0.02 they decrease. Moreover, the interface forces increase when
uν = 0.02 since, there, the component σ3 of the stress is active.

Fig. 5.4. Problem (P4): Deformed mesh and interface forces for a normal compliance case for
α = 150 and β = 0.5

Finally, in Figure 5.6 we present our numerical results in the case α = 40 and
β = 0. In this case, the non monotonicity reached its peak and, therefore, the average
iterations number of the “convexification” procedure to solve the problem was larger
that the number of iterations we needed in the previous cases. Note that the value of
σν on the contact boundary decreases when 0.01 ≤ uν ≤ 0.02 and converge to zero
for a node located in the transition area between the normal compliance zone and the
unilateral constraint zone.

c) Numerical solution errors. We report relative numerical solution errors in the
energy norm ‖uref − uh‖E/‖uref‖E in Table 5.1 and Figure 5.7, where the energy
norm is defined by

‖v‖E := (F(ε(v)), ε(v))
1/2
Q

which is equivalent to the norm ‖v‖V . Since the true solution u is not available,
we use instead the numerical solution corresponding to a fine discretization of Ω
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Fig. 5.5. Problem (P4): Deformed mesh and interface forces for a normal compliance and
unilateral constraint case for α = 40 and β = 0.5

Fig. 5.6. Problem (P4): Deformed mesh and interface forces for a normal compliance and
unilateral constraint case for α = 40 and β = 0

with h = 1/256 as the “reference” solution uref in computing the solution errors.
This fine discretization corresponds to a problem with 132098 degrees of freedom,
131072 elements and was computed in 2462 CPU time (expressed in seconds) on an
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IBM computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz).
The curve of the relative numerical solution errors is asymptotically linear, which is
consistent with the theoretically predicted optimal linear convergence of the numerical
solution established in Section 4.

h 1/4 1/8 1/16 1/32 1/64

relative error 0.187 0.0891 0.0433 0.0213 0.0105

Table 5.1
Problem (P4): Errors in energy norm for a normal compliance and unilateral constraint case

with friction

0,0156 0,0313 0,0625 0,125 0,25
h

0,0156

0,0313

0,0625

0,125

0,25

|| 
u re

f 
 -

  u
h 

|| E
 /||

 u
re

f 
|| E

Fig. 5.7. Problem (P4): Energy norm errors for frictional contact with normal compliance and
unilateral constraint

Numerical simulations for Problem (P2). In this problem, the contact is fric-
tional with normal compliance. The foundation reacts elastically. A representative
numerical simulation result is shown in Figure 5.8 for

jν(r) =

∫ r

0

kν(s) ds, kν(r) = α(βr+ + p(r)), Fb(r) = µkν(r)

and α = 150, β = 0, 5, µ = 1. Note that this corresponds to a nonmonotone normal
compliance associated to the classical Coulomb’s law of dry friction with the friction
coefficient µ. The normal stress is not aligned along the normal direction due to the
frictional contact.

Numerical solution errors. We report relative numerical solution errors in the energy
norm in Table 5.2 and Figure 5.9. Again, we use the numerical solution with h =
1/256 as the “reference” solution uref in computing the solution errors. This fine
discretization for the “reference” solution uref corresponds to a problem with 132098
degrees of freedom, 131072 elements and was computed in 5700 CPU time (expressed
in seconds) on an IBM computer equipped with Intel Dual core processors (Model
5148, 2.33 GHz). The curve of the relative numerical solution errors is asymptotically
linear, which is consistent with the theoretically predicted optimal linear convergence
of the numerical solution established in Section 4.
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Fig. 5.8. Problem (P2): Deformed mesh and interface forces for a normal compliance case
with friction for α = 150 and β = 0.5

h 1/4 1/8 1/16 1/32 1/64

relative error 0.212 0.104 0.0519 0.0261 0.0128

Table 5.2
Problem (P2): Errors in energy norm for a normal compliance case with friction

0,0156 0,0313 0,0625 0,125 0,25
h

0,0156

0,0313

0,0625

0,125

0,25

|| 
u re

f 
 -

  u
h 

|| E
 /||

 u
re

f 
|| E

Fig. 5.9. Problem (P2): Energy norm errors for frictional contact with normal compliance
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