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ABSTRACT

Needle segmentation in ultrasound images may be the indis-
pensable step to solve other problems, such as the detection
of radioactive seeds in ultrasound images for brachytherapy
treatment. In this paper we propose a novel method to lo-
calize accurately curved paths of flexible needles in three-
dimensional (3D) ultrasound images. Our method is based
on an automatic thresholding step where the bayesian clas-
sifier theory is applied to select a needle’s voxels from the
background. The next step consists in detecting the needle
and representing its curvature. Here we propose to fit a para-
metric polynomial of low degree to representing the parabolic
curvature. We describe a first evaluation on a data set of 9 pa-
tients.

Index Terms— Needle segmentation, 3D Ultrasound im-
age, Bayesian classifier, Prostate brachytherapy.

1 Introduction
Prostate cancer is the second most frequently diagnosed can-
cer in men worldwide, with 1.1 million new cases in 2012 [1].
In Europe, prostate cancer is the first leading type of cancer in
terms of new cases and the third leading cause of cancer death
among males [2]. In 2012 the highest incidence rates were es-
timated in Northern and Western European countries such as
Norway (193 per 100,000) and France (187 per 100,000) [2].
Among the wide range of possible treatments[3], brachyther-
apy with permanent seeds (also called low-dose brachyther-
apy) is considered an effective treatment modality for low risk
prostate cancer with low urinary toxicity[4].

Physicians use brachytherapy needles to implant seeds
into the patient’s prostate. Parallel needles are inserted
through a grid named “template”. Needles insertion and seeds
placement are performed under the control of ultrasound im-
ages -most often a set of parallel axial images (figure1) result-
ing in a reconstructed 3D volume-. Because brachytherapy
aims at delivering a specific and homogeneous radiation dose
to the prostate whilst limiting the dose delivered to organ at
risks (urethra, rectum and bladder), it is based on a planning
phase determining the optimal placement of seeds. Due to

the limited precision of seed placement, planning generally
needs to be updated during the procedure. In the perspec-
tive of an automated process, needle position monitoring
is a mandatory preliminary stage. Furthermore needles are
frequently used in other interventional procedures such as
biopsy and their automatic detection is of primary interest. In
this paper we propose a novel method for automatic needle
segmentation in 3D ultrasound images. This modality, widely
used because of its non-invasiveness, its ability to visualize
moving soft tissue in real-time and its low-cost, suffers from
intrinsic limitations: noise, artifacts-due to the anatomy or to
needles for instance-, signal attenuation with depth and high
variability depending on the user and the patient. All these
reasons make the needle detection challenging.

Several approaches have been proposed for segmentation
and localization of needles in 3D ultrasound images. Novotny
et al. [6] proposed to apply the PCA algorithm method on the
clusters of thresholded voxels and to identify the needle as the
longest line on the brightest cluster. Hough Transform (HT)
was also used to localized straight needles, Zhou et al. [7]
proposed two improvements of the classical HT by introduc-
ing 3D and randomizing aspects. It is important to underline
that although needles are initially straight, they can bend dur-
ing insertion in the living tissue. Ding et al. [8] proposed to
segment the needle in two orthogonal planes. This method
was developed by Aboofazeli et al. [9] to detect a curved
needle. They used a ray casting process to obtain projected
2D images. Ayvaci et al.[10] first proposed machine learning
techniques to detect a biopsy needle. They minimized an en-
ergy function from MRI/TRUS fusion guided biopsy videos.
Zhao et al. [11] proposed a comparison study of biopsy nee-
dle localization methods in 3D ultrasound images.

Most methods start with a binarization step which con-
sists in classifying voxels into two classes given their inten-
sity. Voxels with level grey higher than a threshold τ belong
to the needle whilst the others correspond to the organs. Since
all further steps process the binarized images, the choice of τ
has a very high impact on the segmentation performance. As
mentioned previously, this choice is made difficult due to high
variability depending on the patient and ultrasound acquisi-
tion parameters tuning. τ might even vary in a single image
due to signal attenuation. We thus propose to apply a bayesian



classifier to obtain thresholded voxels (section 2.1) for im-
proved accuracy and robustness to image variability. Then,
the needle is detected among the thresholded voxels as a spa-
tial parametric polynomial curve fitting (section 2.2). Results
are described in section 3.

2 Methods

The proposed method processes each needle separately by
considering a region of interest (ROI) constructed around the
planned trajectory of the needle. The insertion direction in
the template allows defining a parallelepipedic bounding box
where the needle has to be searched for.

2.1 Thresholding

A set of voxels X , with intensity I(X) ⊆ R and their coor-
dinates X ⊆ R3 is divided into binary groups: needle voxels
(Xn) and background voxels (Xb).

Xn = {x ∈ X : I(x) ≥ τ}

Xb = {x ∈ X : I(x) < τ}
(1)

To define τ automatically for various data sets, several
authors proposed to use histogram value. For example Beigi
et al. [12] chose the threshold value based on the cumula-
tive sum of the number of pixels. Ultrasound image contains
bright artifacts which intensities may be greater than needle
intensities, resulting in wrong classification of these voxels.
To solve this problem, authors used speckle reduction tech-
niques, which are high complexity procedures. So we propose
to apply instead a Bayesian classifier to accomplish threshold-
ing without any preprocessing step.

2.1.1 Gaussian mixture model

Histogram value (figure 2) shows the existence of two sep-
arated peaks which describe the background and the needle.
The histogram can be modeled using an additive Gaussian
mixture model:

P (y) =

M∑
i=1

πXipi(y) (2)

Where y = I(x) is the intensity of x ∈ X , M is the number
of mixed components, πXi is the coefficient of ith component

and pi(y) = 1√
2πσi

e
− (y−µi)

2

2σ2
i is the density that defines the

ith component. To select the needle peak we use a Bayesian
classifier where we assume that there are exactly two classes.

Fig. 1: 2D axial image,
the needles perpendicu-
lar to the slice are fig-
ured as the points radiat-
ing linear artifacts

Fig. 2: Typical his-
togram in a bounding
box with needle and
background peaks

2.1.2 Naive Bayes classification

Bayesian classifiers assign the most likely class to a given
observed feature [13]:

CBayes(y) = argmax
Xi

P (Cl = Xi | I(x) = y) (3)

Where Cl ={Xn (Needle), Xb (Background)}.
Naive Bayes classifier assumes that the intensities I(X) are
independent within each class, so the posterior probability of
each class is calculable as follows based on Bayes theorem:

P (Cl = Xi|I(x) = y) =
πXiP (I(x) = y|Cl = Xi)

P (I(x) = y)
(4)

Therefore, in the case of binary classification, naive Bayesian
classifier assigns to each voxel the class which maximizes

argmax
Xi

{πXn P (I(x)=y | Cl=Xn)
P (I(x)=y) ,

πXb P (I(x)=y | Cl=Xb)
P (I(x)=y) }.

So naive Bayesian classification is summarized by the fol-
lowed inequalities :

πXnP (I(x) = y|Cl = Xn)
Xn
≷
Xb

πXbP (I(x) = y|Cl = Xb)

(5)
Voxel x ∈ X is classified in Xn if the posterior probabil-

ity ofXn is larger thanXb. The application of this probabilis-
tic model requires the knowledge of several parameters which
vary from image to another, or even from one needle ROI to
another in the same image. These parameters are optimized
according to a criterion of maximum likelihood to approach
as much as possible the sought distribution. This procedure is
often done iteratively via the expectation-maximization algo-
rithm (EM [14]) explained as follows.

The aim of EM is to estimate the unknown parameters
representing the mixing value between the Gaussians (the
means, the variances and the prior probabilities) which maxi-
mize the posterior probability given an observed feature. EM
algorithm is a dedicated iterative process, which computes



the maximum-likelihood of an observed vector of features for
each iteration. Jeff A. Bilmes [15] developed in his tutorial
the procedure of the EM parameter estimation.

πnewXi =
1

N

N∑
j=1

p(Xi|xj , θ`)

µnewXi =

∑N
j=1 xjp(Xi|xj , θ`)∑N
j=1 p(Xi|xj , θ`)

σnewXi =

∑N
j=1 xjp(Xi|xj , θ`)(xj − µnewXi

)2∑N
j=1 p(Xi|xj , θ`)

(6)

WhereN is the number of voxels within the ROI and θ` is the
vector of parameters to be estimated at the `th iteration.
The algorithm proceeds by using the newly derived param-
eters, calculated as equations (6), as the guess for the next
iteration until convergence. EM typically converges to a local
optimum estimated when parameters values stabilize:
|θ` − θ`+1| < ε. While EM converges to a local optimum, it
requires a meaningful initialization.

We want the means (µXn , µXb ) to converge to the val-
ues of peaks corresponding to the needle and the background
classes. Histogram of figure 2 shows us that the background
class is the dominant one, so any initialization value of µXi
between the peaks values will converge to the background
peak. The best initialization value of µXn to reach the needle
peak is 255. Any initialization of µXb between peaks values
[120, 210] converges to the background peak. Furthermore we
choose the initialization values of the variances (σXn , σXb ) to
be sure that EM remains able to converge to the values of
peaks of the two classes. We selected (σXn , σXb ) = (7,60).
These values are drawn from the variance values observed
on histograms of bounding boxes of the first image and were
robust when applied to the other images. Finally prior prob-
ability of the needle class πXn is drawn from the number of
voxels which correspond to the needle within a boundary box:
(πXn , πXb ) = (0.03,1-πXn ). Using EM algorithm we are able
to estimate parameters required to construct naive Bayesian
classifier. Therefore, needle voxels are identified from needle
volume (left of figure 3), and the point cloud corresponding to
the thresholded needle is shown in the right of figure 3, when
inequality (5) is satisfied.

2.2 Needle Localization
The second stage consists in localizing the needle within the
thresholded voxels selected by the naive Bayesian classifica-
tion. Most tool localization methods in thresholded 3D ultra-
sound images are based on Hough Transform(HT) for straight
needle [7], and on the model-fitting approach [17],[16] for
curved tool. Random sample consensus (RANSAC) algo-
rithm [18] is used to compute the parameters of the model

Fig. 3: A 3D needle volume (left) before and (right) after
thresholding step

fitting which makes the procedure costly. We chose to use
model fitting to localize the curved needle among the thresh-
olded voxels, and limit candidate crossing points for parame-
ters calculation to still have a real time results.

2.2.1 Parametric curve

The needle axis is represented by a spatial parametric polyno-
mial curve c(t;H) : R −→ R3 of low order n− 1:

c(t;H) =

 h11, ..., h1n

h21, ..., h2n

h31, ..., h3n




1

t

:

tn−1

 , t ∈ R (7)

where H = hi,j is a matrix of the curve’s coefficients and t
is a curve parameter. We use n = 3 to model needles which
exhibit a parabolic curvature. So the matrix H is found by
solving the system of linear equations as follows:

c(ti;H) = pi, 1 ≤ i ≤ 3 (8)

Where pi ∈ R3 are the 3 control points through which the
curve is required to pass and ti = (pi−p1)k0

||k0|| an estimate of
the projection of pi onto the curve as the principal direction
k0 of point cloud. For each possible triplet of control points,
both the matrix of coefficients H and its costC are calculated.
C corresponds to the distance between the point cloud and the
curve.

C(H) =
∑
x∈Xn

d(x;H)2 (9)

where d(x;H) is the distance between point x and the curve
approximated as ||x − c(t;H)||, where t is the projection of
x onto the curve. The curve c(t;H∗) that minimizes C(H) is
selected as the model that best approximates the needle.

H∗ = argmin
H

C(H) (10)

We propose to generate all the triplets of points (p1, p2, p3)
from three regions (X1n, X2n, X3n) ⊂ Xn. These regions
are drawn from the cloud of voxelsXn whereX1n, X2n, X3n

correspond to the beginning, middle and end of the detected
voxels in the needle direction (figure 5).



Fig. 4: Results: (left) two needles completely visible, (right) needle containing an occluded region

Fig. 5: The regions (X1n, X2n, X3n) used to select the triplet
control points (p1, p2, p3)

3 Results
The algorithm was implemented in CamiTK which is an open
source, cross platform generic tool, written in C++[19]. It was
tested on anonymized 3D ultrasound images of 9 real patients.
The image size is about 765x575x65. The bounding box size
is about 50x50x65. The size of a voxel is 0.26x0.26x1. The
number of needles per image is 14.

We evaluated the results of the implemented algorithm us-
ing a manual needle segmentation. Thus, we have firstly mea-
sured the objectivity of our manual segmentation by repeat-
edly segmenting two arbitrary needles in two different im-
ages, at distant time. The standard deviations obtained were
{tip < 0.5 mm, axis < 1◦}.

Images of real patients may contain some needles not
fully detectable, for instance, when crossing a shadowed re-
gion (figure 4). Table 1 provides the number of needles per
category (fully/partially visible) in each image of the data
set. Error in the tip localization for fully visible needles is
in [0.6;2.7]mm with a mean value of 1.4mm, and error in
the needle axis is in [0.5◦;3.5◦] with a mean value of 1.5◦.
Error in the tip localization for partially visible needles is in
[2;8]mm with a mean value of 4.2mm, and error in the needle
axis is in [2◦;7◦] with a mean value of 6◦. The average needle
length being 45 mm; the error in the tip localization is about
3% of the needle length for fully visible needles and about
9.3% for partially visible needles. Each needle detection

Table 1: Number of fully/partially visible needle per image

Patient
Number of needles
fully visible

Number of needles
partially visible

1 to 7 11 3
8 5 9
9 7 7

takes about 1.25 s (un-optimized program implemented on a
system with a 3.50-GHz processor and 32 GB of RAM). The
EM algorithm was able to converge on all the 126 needles
localized showing the robustness of the needle peak detection.

4 Conclusion

We have proposed a novel technique to detect curved needles
without any pre-processing. However, information from the
planning of needle position could allow to optimize the size
of the region of the bounding box. We used naive Bayesian
classifier to select needle voxels among volume voxels. Lo-
calization of the needle within selected voxels is done by spa-
tial parametric polynomial curve of low order. The proposed
algorithm was tested on realistic images of patients. Needle
path would be excellent prior information to localize seeds, it
will be our next objective.
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