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Abstract

Large spatial datasets are becoming ubiquitous in environmental sciences with the explosion in
the amount of data produced by sensors that monitor and measure the Earth system. Consequently,
the geostatistical analysis of these data requires adequate methods. Richer datasets lead to more
complex modeling but may also prevent from using classical techniques. Indeed, the kriging pre-
dictor is not straightforwarldly available as it requires the inversion of the covariance matrix of the
data. The challenge of handling such datasets is therefore to extract the maximum of information
they contain while ensuring the numerical tractability of the associated inference and prediction
algorithms. The different approaches that have been developed in the literature to address this
problem can be classified into two families, both aiming at making the inversion of the covariance
matrix computationally feasible. The covariance tapering approach circumvents the problem by
enforcing the sparsity of the covariance matrix, making it invertible in a reasonable computation
time. The second available approach assumes a low rank representation of the covariance function.
While both approaches have their drawbacks, we propose a way to combine them and benefit from
their advantages. The covariance model is assumed to have the form low rank plus sparse. The
choice of the basis functions sustaining the low rank component is data driven and is achieved
through a selection procedure, thus alleviating the computational burden of the low rank part.
This model expresses as a spatial random effects model and the estimation of the parameters is
conducted through a step by step approach treating each scale separately. The resulting model can
account for second order non stationarity and handle large volumes of data.

1 Introduction

While a spatial datum was expensive to obtain in the traditional application fields of Geostatistics (e.g.
drilling wells for oil reserve estimation), with the increasing deployment of remote sensing platforms
and sensors networks, spatial data-base paradigms have moved from small to massive, often of the
order of gigabytes per day. Therefore, methods for the geostatistical analysis of these kinds of data
have to be developed. Indeed, richer datasets allows for more complex modeling but may also prevent
from using straightforwardly classical techniques. The challenge of handling such datasets is to extract
the maximum of information they contain while ensuring the numerical tractability of the associated
inference and prediction algorithms. As an example, satellite image restoration is a challenging problem
for geostatisticians, as it involves large amounts of data and possible non stationarity over the domain
of interest, both in space and time.

The classical spatial predictor in geostatistics is the kriging, see e.g. (Matheron, 1970; Chilès and
Delfiner, 2012). It applies when the phenomenon under study can be modeled by a second order random
field. The first order moment accounts generally for large scale fluctuations of the phenomenon. It
is described in a basis of known functions of the space-time, e.g. polynomials or exhaustively known
covariates. They are generally called the drift functions. The covariance of the random field describes
the regularity of the medium to small scale variability of the phenomenon.
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The inference is generally conducted as follows: the drift functions are chosen. Then a parametric
covariance model is selected and fitted. This step can also be straightforwardly automatized through
the use of model selection and fitting algorithms. This step is conducted either through a method of
moments (Desassis and Renard, 2013) or maximum-likelihood under a Gaussian hypothesis (Mardia
and Marshall, 1984). This inference step is made more complex for several reasons in the context
of large datasets. The phenomenon may exhibit a nonstationary covariance structure that has to be
inferred (Fouedjio et al, 2015, 2016). The computation of the likelihood is also made impossible as
it involves the computation of the determinant and the inverse of the covariance matrix of the data,
whose size is n×n, where n is the number of data. An approximation of the likelihood by compositing
can then be necessary (Stein et al, 2004; Varin et al, 2011; Eidsvik et al, 2014).

Once the covariance model is known, the kriging interpolator is built as the best linear unbiased
predictor of the random field at a new location. It coincides with the conditional expectation under
Gaussian hypothesis. It consists of a weighted average of the data. The computation of the weights
involves the inversion of the covariance matrix, whose size is n×n. This approach is therefore intractable
when n becomes large, as the computational complexity of the inversion scales with n3.

Several approaches have been developed in the literature to address this problem. These approaches
can be classified into two families, both aiming at making the inversion of the covariance matrix
computationally feasible.

The first one circumvents the problem by enforcing the sparsity of the covariance matrix (Furrer
et al, 2006), making it invertible in a reasonable computation time (O(n)). This implies however that
the covariance model that is fitted to the data is compactly supported with a short range (Gneiting,
2002), neglecting possible medium scale variability. In other words, the fitted covariance is constrained
to this particular structure and may not reflect the whole complexity of the phenomenon fluctuations.
More precisely, while accurate in densely sampled areas, this method generally fails at providing correct
predictions in scarcely sampled areas, as the correlation between remote locations decreases quickly
towards zero, especially at the edges of the domain (Stein, 2013). This approach simplifies the inference.
In particular, it makes the maximum-likelihood approach tractable as the inverse covariance matrix is
made accessible (Kaufman et al, 2008).

The second available approach assumes, on the contrary, a low rank representation of the covariance
function. Many low rank approaches have been proposed over the years, among which we can cite the
fixed rank kriging (Cressie and Johannesson, 2008), the predictive processes (Banerjee et al, 2008)
and also more recent works (Katzfuss, 2017; Nychka et al, 2015; Romary, 2013). It assumes that
the covariance function can be represented on a limited number, say p, of basis functions. Adding a
nugget effect, i.e. a local unstructured noise, to the modeling makes the inversion of the covariance
matrix feasible through the Woodbury matrix inversion formula with a complexity O(n × p3), where
p is small, relatively to n. The latter approach tends to overestimate the regularity of the spatial
phenomenon, failing to capture its local behavior. Again, the whole complexity of the phenomenon
fluctuations may not be correctly reproduced in this framework, as the small scale fluctuatione are
considered unstructured and modelled by a nugget effect. The generated predictions are generally too
smooth, failing at reproducing the small scale fluctuations, see (Stein, 2014). It is worth noting that
the low rank approach provides a non stationary covariance model by construction. Concerning the
inference, chiefly two approaches are available: either a conventional model is fitted and a low rank
approximation is consequently computed (Banerjee et al, 2008; Romary, 2013), or the inference is
conducted through an expectation-maximization (EM) algorithm (Katzfuss and Cressie, 2011). Direct
method of moments approach is also available (Cressie and Johannesson, 2008).

Finally, Markov random field models depend on the observation locations, and realignment to a
much finer grid with missing values is required for irregular locations (Lindgren et al, 2011; Sun and
Stein, 2016), which induces an additional cost for both inference and prediction.

In this work, we propose to use covariance models that combines the advantages of both approaches.
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Indeed, using additively a compactly supported short range covariance and a low rank component
in the modeling of the covariance allows capturing both local and medium scale fluctuations of the
phenomenon and therefore improving the prediction accuracy. In this settings, the covariance matrix is
still invertible through the Woodbury formula at the same computational cost as the low rank approach
(O(n×p3)). This is not a new idea. It has been already proposed in (Stein, 2008), where a few Legendre
polynomials are used on the sphere, in (Sang and Huang, 2012) where the remainder of a predictive
process approximation is tapered and more recently in (Ma and Kang, 2017). The originality of our
work is to take advantage of a scale separation between the sparse and low rank terms. Consequently,
the inference of both terms can be conducted almost separately, making it computationally efficient.

Further more, in low rank approximations, the choice of the basis functions is generally taken
arbitrarily. The set of basis functions is either built from a fixed family of functions (Cressie and
Johannesson, 2008; Nychka et al, 2002; Stein, 2008) or from colums of stationary isotropic covariance
matrices (Banerjee et al, 2008; Katzfuss, 2017). Here, the choice of the basis functions sustaining the
low rank component is data driven and achieved through a selection procedure, which results in prac-
tice in a low number of functions, hence decreasing the associated computational burden. Moreover,
this provides an important flexibility to the model allowing it to capture a large variety of possible
fluctuations including varying anisotropy and smoothness, as illustrated in the examples.

The paper is organized as follows. The first part reviews briefly existing approaches and describes
the proposed one. The second part details the developed inference procedure. Finally, the performances
of the approach are assessed on synthetic examples and a real dataset.

2 Modeling

We assume that the phenomenon under study can be modeled by a second order random field of the
form:

Z(x) = µ(x) + Y (x), x ∈ X ⊂ Rd, (1)

where µ(x) is a deterministic trend and Y (x) is a centered second order random field with covariance
function Cov(Y (x), Y (y)) = C(x, y). More specifically, the trend can be expressed as a weighted sum
of drift functions:

µ(x) =
L∑
l=1

βlfl(x), (2)

where (βl)l=1,...,L and (fl)l=1,...,L are deterministic and L is fixed. The drift functions are functions of
the space, such as polynomials, and/or auxiliary variables accounting for a systematic behaviour of
the phenomenon under study. The first drift function is generally the indicator of X , accounting for
a constant mean. A selection of the relevant functions can be performed preliminarily using standard
variable selection techniques such as forward, backward, stepwise methods (see e.g. Saporta, 2006) or
penalization approaches (see e.g. Hastie et al, 2009) if the candidates are many. This modelling is
common in Geostatistics where the trend accounts for the large scale fluctuations while the second
term accounts for smaller scale fluctuations occurring around the drift.

2.1 Reminder on kriging

Under these settings, given a set of observations z = (z(x1), . . . , z(xn))t from a realization of Z sam-
pled at locations (x1, . . . , xn) ∈ X n, the universal kriging predictor provides the best linear unbiased
predictor in the sense of the mean squared error at a new location x0. It is a weighted sum of the
observations:

Z∗ = Λtz, (3)
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whose weights Λ = (λ1, . . . , λn) are solution of the universal kriging system, straightforwardly obtained
minimizing the mean squared prediction error under unbiasedness constraints:(

C F
F t 0

)(
Λ
µ

)
=

(
C0

f0

)
(4)

where C is the covariance matrix associated to the observations, i.e. with entries Cij = C(xi, xj), (i, j) ∈
{1, . . . , n}2, C0 is the vector of covariances between Z(x0) and the observations, f0 = (f1(x0), . . . , fl(x0))t,

F =

f1(x1) . . . fL(x1)
...

. . .
...

f1(xn) . . . fL(xn)

 ,

and µ = (µ1, . . . , µL)t is the vector of Lagrange multipliers accounting for the unbiasedness constraints.
The solution to this system is obtained by block inversion:

Z∗ = Ct0C
−1z + (f t0 − Ct0C−1F )(F tC−1F )−1F tC−1z, (5)

where it can be seen that one matrix-vector and one matrix-matrix products involving the inverse
covariance matrix are required. When n is large, as the number of operations involved in the compu-
tation of C−1 scales with n3, the computation of Z∗ is made intractable, unless a particular form for
C is adopted. The prediction variance or kriging variance can also be computed as:

V(Z(x0)− Z∗) =C(0)− Ct0C−1C0+

(f0 − F tC−1C0)t(F tC−1F )−1(f0 − F tC−1C0), (6)

where C(0) = V(Z(x)), corresponding to the punctual variance. We remind that, (5) and (6) are
identical to the conditional expectation and conditional variance under the Gaussian hypothesis.

Two main families of approaches have been designed to overcome this limit and are desribed in the
following subsections. We then develop an approach where they are combined.

2.2 Covariance tapering

Introduced in Furrer et al. Furrer et al (2006), covariance tapering is an approximation to the standard
linear spatial predictor. The idea is to taper the spatial covariance function to zero beyond a certain
range using a positive definite but compactly supported function. This terms to deliberately introduce
zeros into the matrix C to make it sparse. The linear system (4) with a sparse (enough) covariance
matrix can be solved efficiently.

How the zeros are introduced is crucial. In particular, the positive definiteness of any sparse
modification of the covariance matrix must be maintained. Let Cτ be a covariance function that is
identically zero outside a particular range described by τ . The tapered covariance function is the
product of Cτ and the initial covariance function C:

Ctap(x, y) = C(x, y)Cτ (x, y) (7)

The intuition behind this choice is both that the product Ctap preserves some of the shape of C (in
particular, its behaviour near the origin) and that it is identically zero outside of a fixed range. Ctap

is a valid covariance function, as the product of two positive definite functions. Finally, Ctap allows
to build a sparse covariance matrix that can be inverted using sparse linear algebra techniques (e.g.
sparse Choleski decomposition), to compute (4) and (6).
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The theoretical justification of tapering relies on a result for kriging with misspecified covariance
(Stein, 1993), stating roughly that as far the behavior at the origin of the covariance is well repre-
sented then the kriging predictor reaches optimality under infill asymptotics settings, that is when the
prediction is performed on a bounded domain with increasingly denser data locations.

The main drawback of this approach is that it neglects the long range structure that the data may
present. While this has negligible effect in densely sampled areas the effect can be significant in less
sampled areas. Further more, the range of the taper τ is set such that the resulting covariance is
sparse enough and needs to be reduced as the number of data increases. Consequently, the prediction
accuracy can suffer from gaps between data locations when the sampling is not uniformly dense.

2.3 Low rank approaches

Many low rank approaches have been proposed over the past few years, among which we can cite
the fixed rank approach (Cressie and Johannesson, 2008), predictive processes (Banerjee et al, 2008)
and also more recent works (Katzfuss, 2017; Nychka et al, 2015). Precisely, under this framework the
covariance matrix of the observed random vector can be written:

C = σ2I + P B P t, (8)

where I is the identity, P a known n× p matrix, B a p× p covariance matrix. Such a model naturally
arises by considering a spatial process Z such that

Z(x) =

p∑
i=1

ηi Pi(x),

where the Pi are known basis functions and (η1, . . . , ηp)
T is multivariate normal with mean 0 and

covariance B.
p must be sufficiently small, so that the inverse of C can be computed. Indeed, C−1, via the

Woodbury-Morrison formula, takes the following form:

C−1 = σ−2I − σ−2P{σ2B−1 + P tP}−1P t, (9)

which only involves inverting the p× p matrices, ensuring a fast computation of (4) and (6), as far as
p is small enough.

The inference the parameters σ2 and B can be conducted by a method of moments (Cressie and
Johannesson, 2008) or by maximum likelihood estimation through an expectation-maximization (EM)
algorithm (Katzfuss and Cressie, 2011; Braham et al, 2017).

An important point is the choice of the basis functions Pi. A wide set of options is available: Cressie
and Johannesson (Cressie and Johannesson, 2008) propose using bi-square functions, the W-wavelet
basis functions are considered in (Nychka et al, 2002), Stein (Stein, 2008) uses a normalized Legendre
polynomials basis on the sphere. In the proposed combination approach described below, we show that
the choice of the basis functions can be data driven, using penalized least squares.

Finally, it is important to emphasize that this approach will neglect the small scale fluctuations
of the signal of interest. Indeed, the fine scale fluctuations are represented by an unstructured noise.
This generally results in a loss of prediction accuracy and oversmooth prediction maps.

2.4 Combination

Knowing the advantages and drawbacks of theses two approaches, it seems natural to try to combine
them, so that the variability of the random field can be captured at all scales. This has been proposed
in (Sang and Huang, 2012) where the remainder of a predictive process approximation is tapered.
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We suggest here to proceed in the opposite way, first considering the small scale fluctuations before
investigating the modeling of the larger scales.

The predictor can be computed for large datasets as the covariance matrix is of the same form as
in (8), where the identity is replaced by a sparse matrix. More specifically, the form C = A+ PBP t,
still allows to use the Woodbury-Morrison matrix identity that takes then the following form:

C−1 = A−1 −A−1P (B−1 + P tA−1P )−1P tA−1. (10)

Furthermore, if A is sparse, P is n × p and B is p × p, with p � n, the numerical complexity of
(10) scales with p3 × n. Indeed, (10) involves only the inversion of the sparse matrix A and the p× p
matrices B and (B−1 + P tA−1P ).

It is interesting to notice that the constraints imposed on the covariance model by its scalability
with the number of data lead to the definition of a particular form of covariance function where the
fluctuations of the random field are decomposed among several components:

C(x, y) = A(x, y) + P (x)tBP (y) + σxσyδxy, (11)

where A is a continuous, compactly supported covariance function (it vanishes when |x − y| is larger
than a given, fixed range), B is a symmetric p × p positive definite covariance matrix, P is a set of
basis functions and σx is a, possibly nonstationary, nugget effect.

Specifically, the A covariance function is built using the construction used in covariance tapering,
namely as the product of any covariance function with a compactly supported one (e.g. the spherical
model):

A(x, y) = Cθ(x, y)Cτ (x, y), (12)

where Cθ is any covariance function, possibly non stationary (Paciorek and Schervish, 2006; Fouedjio
et al, 2016; Porcu et al, 2009) and Cτ is a compactly supported correlation function with a short
fixed range (Gneiting, 2002). This construction induces the corresponding covariance matrix A to be
sparse, with a density controlled by the fixed scale parameter of Cτ . This construction is the same
as tapering (Furrer et al, 2006) but its use is somehow different: rather than bulding a compactly
supported approximation of a non compactly supported covariance function, we only use a compactly
supported covariance function to model the small scale fluctuation.

The first and last term of (11) allow to model the short scale fluctuations of the phenomenon under
study which is necessary to interpolate accurately the data in densely sampled areas. Indeed, as will
be seen in section 4, the low rank term only in (11) fails to capture the fine scale structure. Moreover,
for most classes of covariance models that is when the sampling becomes denser and denser in a fixed
domain, the quality of the kriging interpolator is essentially guided by the short scale behaviour (Stein,
1999).

The second term of (11) allows to capture the intermediate scale fluctuations, between those mod-
eled by A and by the drift. This representation is non stationary by construction. The scale of the
fluctuations modeled by this term is determined by the choice of the basis functions constituting P .
Therefore, they must be chosen with care and not too numerous so as to keep the inversion numerically
attractive.

Finally, the nugget component of (11) is classically used to model a measurement error, for instance
due to the internal variability of the sensor used, or to model a non-continuous behaviour of the
regionalized variable, hence the term "nugget". We can allow the value of the nugget to vary smoothly
across the domain of interest and filter it out at observation locations in prediction.
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2.5 Random field model

Assuming the covariance model of (11), the random field model can be rewritten as follows:

Z(x) = µ(x) +

p∑
i=1

ηiPi(x) + S(x) + σxε(x), (13)

where η = (η1, . . . , ηp)
t is a vector of centered, square-integrable random variables with covariance

matrix B, (Pi)i=1,...,p is a set of basis functions, S is a centered second order random field with
covariance A (12), and ε(x) is a centered, square-integrable, non structured random function with
variance 1. Moreover, to respect the model (11) S, η and ε have to be uncorrelated. Z can hence be
decomposed into four terms, each corresponding to a different scale of fluctuations.

2.6 Which basis functions?

In low rank approaches, the basis functions are usually set in advance. As said in the introduction,
there is a wide set of options for the basis functions to be used but the choice remains arbitrary. We
propose a data driven way to select the basis functions among a vast family of candidates, possibly
including anisotropies.

First note that equation (13) can be rewritten as

Z(x)− µ(x) =

p∑
i=1

ηiPi(x) + Y (x), (14)

where Y (x) = S(x) + σxε(x) has only short spatial correlations. In other words, we can express the
detrended data as a regression model with a random effect. We propose therefore to operate a data
driven selection of basis functions from a large set of candidates, using variable selection methods
currently used in variable selection problems such as the LASSO (Tibshirani, 1996). This point will
be further detailed in the next section.

Thinking about the Karhunen-Loève expansion (Loève, 1955) makes this idea natural. Indeed, any
centered second order random field admits the following representation:∑

i∈I
ξiλiφi(x), (15)

where I is at most countable, (ξi)i∈I are standard uncorrelated random variables, (λi)i∈I is the set
of the of the covariance function of the field and the (φi)i∈I is the set of the associated eigenvectors.
The rate of decay of the eigenvalues is fast for covariances with smooth behavior, see e.g. (Romary
and Hu, 2007; Romary, 2009). Conversely, when considering a realization of a Gaussian random field,
most of the ξi take values close to zero in the representation (15), as standard Gaussian random
variables. Consequently, only a small number of components are "relevant" in the representation of
the realization. Consequently, modeling this scale of variation with a low number of carefully selected
basis functions seems to make sense.

3 Inference and prediction

In this section, we will assume that µ(x) = 0 without loss of generality. Indeed, the ordinary least
square (OLS) estimate of the trend, can be computed and subtracted from the data to get a centered
dataset. In the context of a large spatial dataset, the additional variance due to the use of a non
efficient estimator is generally negligible.
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Table 1: Inference steps

1. Fit the parameters of the small scale component (range and variance) by
variogram fitting

2. Select the basis functions by the LASSO

3. Estimate B and σ2 with fixed P by ML

4. Change the penalty in 2. and update the selection

5. Estimate B with fixed P and σ2 by ML

The parameters to be inferred are the covariance matrix B, the parameters of the covariance
function A and the nugget σx. We describe here a step by step inference method. We also propose an
approach to select the most relevant basis functions P among a large dictionary of candidates.

We will first consider that the covariance σ2Aθ(x, y) = σ2
φR(x, y)+σxσyδxy = Cov(S(x)+ε(x), S(y)+

ε(y)), where θ is the set of small scale covariance parameters, including σ2
φ, the parameters the corre-

lation function R and σx. In the stationary case, σx = σε is constant over the domain. In other words,
we will group the nugget and the short scale fluctuations term, as the inference related to these two
terms will be conducted conjointly. The special case of an observation error modeled by a nugget effect
will be dealt with in a dedicated paragraph.

We consider a large vector of data z = (z(x1), . . . , z(xn)). Under Gaussian hypothesis, the full
log-likelihood writes

Lz(σ
2, θ, B) =− 1

2
ln det(σ2Aθ + P tBP )

+
1

2σ2
zt
(
A−1
θ −

1

σ

2

A−1
θ P (B−1 +

1

σ

2

P tA−1
θ P )−1P tA−1

θ

)
z. (16)

Maximizing directly the log-likelihood function is not straightforward and cannot be computed analyt-
ically. Making appear the coefficients η of the basis functions as latent variables allows to decompose
the likelihood, indeed:

η ∼ N (0, B)

Z|η ∼ N (P tη, σ2Aθ).

Consequently, an EM algorithm can be implemented to estimate the parameters. Nevertheless, to
do this, the basis functions need to be known beforehand. One solution could be to add a penalty
term in (16) but this would only have add more complexity. To simplify the parameter inference, we
therefore rely on a step by step algorithm where we treat the different scales separately, thus lowering
the computational burden. The several consecutive steps are presented in table 1 and detailed in the
following paragraphs.

We could have stopped at step 3. in table 1 while keeping a fixed σ2 while estimating B. Estimating
both σ2 and B within the EM step aims at balancing the explained variations between the small scale
component and the basis functions, while mitigating the possible parameter estimation errors caused
by variogram fitting. Indeed, the fitted variogram of the short scale component try to explain the whole
observed variability, at the considered lags, without taking into account the additional basis functions.
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Consequently, the penalty is generally set at a too large value at first guess and the number of basis
functions selected is too low. Updating the value of σ2 within the EM algorithm allows assigning a
better weight to the short scale variations. A new selection of basis functions can then be performed in
accordance with this new weight and the covariance matrix of its random coefficients is then estimated.
It is possible to iterate the process, updating σ2 and redoing a selection, but this does not prove useful
in practice.

3.1 Inference of the small scale structure

The first step of the inference approach consists in fitting the, possibly non stationary, small scale
covariance structure Aθ.

When considering a stationary compactly supported covariance to model the small scale structure,
several options are available for the estimation of the parameters. Maximum likelihood can be consid-
ered as well as variogram fitting. The latter proves to be less computer demanding and will therefore
be used in the application section.

In presence of short scale non stationarity, a practical way to infer non stationary covariance
structures of the form given in (Paciorek and Schervish, 2006) consists in fitting stationary models
locally as proposed in (Fouedjio et al, 2016) or in (Parker et al, 2016). Interpolating the fitted value
of the parameters over the domain of interest allows to compute the value of the covariance function
between any two points of the domain, which is necessary to compute the kriging interpolator. This
approach only requires that the parameters governing the non-stationarity vary regularly over the
domain, precisely the associated random function, S in our model, can be considered to be locally
second order stationary. This approach can however be time consuming, though an embarrassingly
parallel workload, and the benefits offered by considering a non stationary small scale structure may
not be worth the trouble.

Recalling that the short scale structure should provides a sparse matrix, the range of the compactly
supported correlation function, the taper, has to be small enough. We refer the interested reader to
(Furrer et al, 2006) for the choice of the taper. Basically, it has to be chosen at least as smooth at the
origin as the original model.

Once the parameters of this structure have been inferred, the remaining second order variability
will be modeled using basis functions. Indeed, the short scale structure explains a given part of the
variations of the phenomenon under study and this will guide the choice of the basis functions to be
used.

3.2 Selection of the basis functions

To estimate the matrix B, the basis functions constituting P have to be known. Numerous families of
functions are available: local bi-square functions (Cressie and Johannesson, 2008), wavelets (Nychka
et al, 2002), Legendre polynomials (Stein, 2008), smoothing splines, radial basis functions, cosines, etc.

No clue exists however to choose the correct one for the problem at hand, unless a covariance model
has already been fitted and predictive process can be considered (Banerjee et al, 2008; Katzfuss, 2017).

To alleviate this choice, we propose to select the most relevant basis functions among a large choice
of candidates. This approach has already been proposed in (Hsu et al, 2012), considering however
that the random variables (ηi)i=1,...,p associated to each basis function are independent, resulting in a
diagonal B, which seems too strong an assumption. The estimation of B, the covariance matrix of the
(ηi)i=1,...,p, is treated in the next paragraph.

Here we propose as basis functions a collection of kernels anchored at a set of knots homogeneously
distributed over the domain. We choose to use compactly supported covariance kernels for several
reasons:

• we can build a multiresolution representation by considering several scale parameter values,
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• we can easily introduce anisotropic basis functions,

• we can consider several levels of regularity at the origin (e.g. spherical, wendland, cubic, etc.
kernels),

• compact support makes the storage lighter and the prediction faster.

Practically, we consider a handful of values for the scale parameter and orientation of the anisotropy.
To each value of the scale parameter corresponds a grid where the kernel is anchored. Scale parameter
values and orientations are crossed so as to generate anisotropies. The scale parameter values are
meant to correspond to ranges greater than the one considered in the small scale structure, so as to
achieve scale separation between the two components.

Going back to (14), the problem of selecting the relevant basis functions among a dictionary of
candidates terms to solve the following penalized regression problem:

arg min
β
‖(z − µ̂)− Pβ‖22 + λ‖β‖1, (17)

where β is a vector of estimates of the (ηi)i=1,...,p and λ is a penalty term. The rationale for this is
that if the covariance of the random field admits a low rank representation, then the random field can
be expressed as a random linear combination of the basis functions. Solving (17) makes it possible to
select the active components in this representation. We choose to use a L1 penalty so as to proceed to
a more drastic selection than that would have been obtained with the L2 norm (Hastie et al, 2009).

Practically, (17) is minimized though a coordinate descent algorithm such as implemented in the R
package glmnet (Friedman et al, 2010). This type of algorithm has proven to be numerically efficient
for solving convex optimization problems such as (17). The value of the penalty term is set by cross-
validation. As we already know, at this step, the variance σ2 explained by the small scale structure,
we propose to set the penalty at the value necessary to explain the remaining variance. Further more,
as the regularization path is computed for a vector of penalty values, we do not need to recompute the
LASSO when the value of σ2 is updated. This will be further explained in section 4.

It is worth noting that we are not interested in the estimated values of β, rather by the relevance
of the associated basis function in the explanation of the fluctuations of z − µ. Furthermore, as the
remaining terms S and ε deal with smaller scale structure, they do not interfere in this selection
procedure. For huge datasets, the computational effort of this step can be alleviated using stochastic
gradient algorithms where the optimization is conducted iteratively over subsets of data, see e.g. Bottou
(2010).

3.3 Inference of the medium scale structure

Once the p basis functions have been selected, the covariance matrix of their components has to be
estimated and the weight of the small scale structure updated. As proposed in (Katzfuss and Cressie,
2011), we choose to perform maximum likelihood estimation through an expectation-maximization
(EM) algorithm. The EM objective function writes:

Q(Θ,Θl) =− n+ p

2
ln(2π)− 1

2σ2
ztA−1

θ z +
1

σ2
ztA−1

θ Pµ− 1

2
ln det(σ2Aθ)

− 1

2
Tr
(

(
1

σ2
P tA−1

θ P +B−1)(C + µµt)

)
− 1

2
ln det(B), (18)

where Tr(X) is the trace of matrix X, C = V(η|Z = z,Θl) =
(

1
σ2
l
P tA−1

θ P +B−1
l

)−1
and µ = E(η|Z =

z,Θl) = 1
σ2
l
CP tA−1

θ z.
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The update formulas for the parameters σ2 and B are:

σ2
new =

1

n
E
(
(Z − Pξ)tA−1

θ (Z − Pξ)|Z,Θl

)
=

1

n

(
ZtA−1

θ Z − 2ZtA−1
θ Pµ+ Tr((P tA−1

θ P +B−1)(C + µµt))
)
, (19)

Bnew = C + µµt. (20)

The algorithm is initialized with the value of σ2 obtained at the first step and B as the identity
and run until a stopping criterion is met. The stopping criterion we use is defined as:

min

(
|σ2
l+1 − σ2

l |,
|σ2
l+1 − σ2

l |
σ2
l+1

)
+ min

∣∣∣∣log

(
det(Bl+1)

det(Bl)

)∣∣∣∣ ,
∣∣∣∣∣∣
log
(

det(Bl+1)
det(Bl)

)
log det(Bl+1)

∣∣∣∣∣∣
 . (21)

We decide to stop the algorithm when the criterion is less than a given tolerance value for 20 iterations
in a row.

3.4 Update of the selection and final model

In the previous step, the amount of variability explained by the small scale structure modeled by σ2

is updated. It can be lowered or increased depending on the data. It is thus possible, and sometimes
desirable, to update the selection of the basis functions accordingly.

As said earlier, the whole regularization path is computed in the selection step. Consequently,
when the value σ2 is updated in the EM algorithm, there is no need for any further computation to
update the selection. The penalty value has only to be set so that the basis functions explains the
updated remaining variance.

Then, the EM algorithm is run once again to get the final estimate of the matrix B, while the value
of σ2 is left unchanged. It is possible to iterate the process, updating σ2 and redoing a selection, but
this does not prove useful in practice.

3.5 Prediction

It is worth noting that most of the quantities needed for the prediction have already been computed
in the EM step. Indeed, under the Gaussian hypothesis, the kriging predictor is identical to the
conditional expectation and the kriging variance to the conditional variance. These quantities can be
straightforwardly computed knowing P(η|z). Consequently the kriging predictor at a new location x0

writes:
E(Z(x0)|z) = P t0µ+A0A

−1(z − P tµ), (22)

where S0 is the small scale component value at x0, µ = E(η|z), P0 is the vector of the basis functions
at x0 and A0 is the covariance of the small scale structure between the target and the observation.
Similarly, the kriging variance writes:

V(Z(x0)|z) = σ2 −A0A
−1A0 − 2A0A

−1P tCP0 + P t0CP0, (23)

where C = V(η|z). These formulas provides the most efficient way to compute these quantities.
They only require to compute the cholesky decompositions of the sparse matrix A and the small
matrix C. It is interesting to note that although the covariance model is built so that we can use the
Woodbury-Morrison formula to solve the kriging system, this formula is not used explicitly to compute
the predictor and the prediction variance.
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3.6 Filtering a measurement error

When an observation error exists, it is important to filter it out from the prediction, including at
observation locations. In that case, the observation error is modeled by a nugget effect. A first idea
could be to fit the variance of the nugget at the variogram fitting step and to keep it fixed in the update
of the variance term in the EM step. In other words, we would have σ2Aθ(x, y) = σ2

φR(x, y) + σ2
εδxy,

where σε is fixed. When doing this unfortunately, there is no closed form expression for the update
formula of σ2. Therefore a numerical optimization is needed at each iteration of the EM, which slows
down the calculations.

Here we propose a alternative scheme. We first rewrite the small scale covariance as σ2Aθ(x, y) =

σ2
φ

(
R(x, y) + σ2

ε

σ2
φ
δxy

)
. Then, we fix the value of σ2

ε

σ2
φ
as its first estimates σ̂2

ε

σ̂2
φ

old prior to go through the

inference steps described above, where we get a new estimate σ̂2
φ

new
. Finally, as the nugget variance is

generally correctly fitted at the variogram fitting step and we do not want to change it, we reinject it
in the estimated small scale covariance so that it takes the following form:

σ̂2A
θ̂
(x, y) = σ̂2

φ

new

1 +
1

σ̂2
φ

old
− 1

σ̂2
φ

new

R(x, y) + σ̂2
εδxy. (24)

By doing this, we keep constant the nugget effect and update the weight of the small scale component.
We can reasonably assume that this simplification has a negligible effect on the computation of the
likelihood in the EM algorithm.

Finally, to filter the error from the observation, the kriging is performed considering the following
small scale covariance matrix:

σ̂2
φ

new

1 +
1

σ̂2
φ

old
− 1

σ̂2
φ

new

R(x, y). (25)

4 Application

In this section, we provide experiments of the proposed method and comparison with existing ap-
proaches, on two simulated and one real datasets. The different approaches have been implemented in
R with an extensive use of the packages spam (Furrer and Sain, 2010), glmnet (Friedman et al, 2010)
and RGeostats (Renard et al, 2010). The computations have been performed a laptop computer with
3rd generation Intel Core i7-3687U processor (year 2013) and 8 GB of memory.

4.1 Nested covariance

In this first example, we consider a simulated Gaussian random field (GRF) on [0, 1]2, centered with
covariance

C(x, y) = 0.5sph(|x− y|, 0.05) + 0.5 exp(|x− y|, 0.1), (26)

where sph stands for the spherical covariance function, exp for the exponential covariance function and
the arguments are the distance and the scale parameter. This kind of nested covariance is often used
in practice to model variables that exhibit variations at two different scales

The GRF is simulated on a 200x200 grid and sampled at 5000 points, as shown in figures 1a and
1b

From this dataset, we infer the combination model described in paragraph 2.4 following the steps
detailed in 3. The first step consits in computing the empirical variogram at short distances and fitting
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(b) Sampling at 5000 locations

Figure 1: Reference simulation and sampling

a tapered variogram with a small range. This step is illustrated in figure 2a. The structured inferred
for the small scale component is:

A(x, y) = σ2 expθ(x, y)sph0.025(x, y) (27)

The quantity σ2 can be interpreted as the amount of variability explained by the short scale
structure. As can be seen, from figure 2a, this value is overestimated but will be updated later. To
explain the remaining variability, we will select a set of basis functions from a large set of candidates.
The dictionary of candidates is built combining several ingredients: two kinds of compactly supported
basis functions built from the cubic and spherical covariance models, two ranges are considered for
each one, 0.5 and 0.2, and four different anisotropy angles 0, π/4, π/2, 3π/4. The basis functions are
computed over knots forming two different grids whose discretization step is set according to the range
of the basis function.

This makes a total of 2658 candidates basis functions. The relevant functions are selected by
the LASSO using the cv.glmnet function of the package glmnet (Friedman et al, 2010). Using this
function, a 5-fold cross-validation is performed so as to assess the stability of the selection procedure.
Then, the penalty is set so that the basis functions explain the remaining variance, as shown in figure
2b. We can see that 24 basis functions are selected as a first guess.

The next step consists in running the EM algorithm to estimate the covariance matrix B of the
random coefficients of the basis functions and update the value of σ2. This allows to adjust the part
of the variations explained by the small scale component. The EM algorithm is run for this selection
until the stopping criterion is met, with a tolerance value set at 10−3. The updated variogram is shown
in figure 3a, where we can see that the fit is now more precise at small distances. A new set of basis
functions is selected accordingly, that represents 287 basis functions, as can be seen in figure 3b.

The EM algorithm is run once again with the new set of basis functions to estimate B, while the
value of σ2 is kept fixed. Then the kriging predictor can be computed on the 200x200 discretization
grid of the unit square. We also computed the map obtained using the tapering term only (27), the
basis functions only, where these are selected setting the penalty value at the largest value such that
the error is within 1 standard error of the minimum (560), and the conditional expectation obtained
using the true covariance. The kriging maps are depicted in figure 4.
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Figure 2: First fitting of the model
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Figure 3: Model update

While there are few visible differences between the maps obtained with covariance tapering, the
combination and the true model, it can be seen in figure 4b that the map obtained with the low rank
model is much smoother. This is due to the bad representation of the small scale fluctuations using
only the basis functions. In that case, the small scale fluctuations are modeled by an unstructured
noise whose variance is close to the σ2 term estimated in the combination approach.

We also computed the difference maps between the three fast approaches and the conditional
expectation (figure 5).

Finally, we compute the mean squared prediction error (MSPE) obtained by the four methods.
They are shown in table 2, together with the details of each model. We can notice here that the

14



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tapering

−3

−2

−1

0

1

2

3

(a) Covariance tapering

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Low rank

−3

−2

−1

0

1

2

3

(b) Low rank model
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(c) Combination
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(d) Conditional expectation

Figure 4: Kriging maps

low rank approach obtains the worse result among the different methods implemented, while using a
large number of basis functions. As explained earlier, it fails at capturing the small scale fluctuations,
modelling them as a nugget effect with a large variance and therefore filters out this information while
predicting, resulting in an oversmooth kriging map.

4.2 Non stationary Matérn covariance

Recently, new non stationary covariance constructions have been proposed, see e.g. (Fouedjio et al,
2016; Porcu et al, 2009). These models allow to make vary the anisotropy or even the regularity of the
random field over the domain considered. The inference of such model relies on local methods (local
variogram fitting or local likelihoods) combined with an interpolation of the locally fitted parameters.
This procedure turns out to be computationally intensive. The resulting dense covariance matrices are
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(c) Combination

Figure 5: Difference maps

Table 2: Summary

model small scale structure number of basis functions MSPE

Covariance tapering range 0.025 0 0.24
Low rank nugget 0.40 560 0.35
Combination range 0.025 287 0.19
Conditional expectation 0.17

also cumbersome to compute. For our second example, we consider a GRF on [0, 1]2, centered, with
covariance

Cov(Z(x), Z(y)) = φxy
21−ν(x,y)√

Γ(ν(x))Γ(ν(y))
Mν(x,y)

(√
Qxy(x− y)

)
, (28)

where Σx is a positive definite matrix accounting for the local anisotropy at location x, φxy =

|Σx|1/4|Σy|1/4
∣∣∣Σx+Σy

2

∣∣∣−1/2
, Qxy(h) = ht

(
Σx+Σy

2

)−1
h, Mν(x,y)(h) = hν(x,y)Kν(x,y)(h), Kν(x,y) is the

modified Bessel function of the second kind and ν(x, y) = ν(x)+ν(y)
2 .

A simulation method for this type of covariance has been recently proposed in (Emery and Ar-
royo, 2017). The simulation is obtained as a weighted sum of cosine waves, with random frequencies
computed from an instrumental stationary spectral density and random phases. A location specific
importance weight is applied so as to respect the local spectral density of (28).

To build our example, we first simulate a map of varying parameters over the unit square. The two
scale parameters and the anisotropy angle are simulated as uniform transforms of a Gaussian random
field with a gaussian covariance and a large scale parameter. The scale parameters are comprised
between 0.1 and 1.1, while the anisotropy angle is allowed to vary between 0 and π. The smoothness
parameter varies linearly between 0.5 and 2 along the vertical direction. The varying parameters are
plotted in figure 6.

10000 cosine waves are used to generate the realisation plotted in figure 7. We can clearly see the
effect of the varying anisotropy and smoothness parameters. Besides, some artifacts appear at the top
of the domain, where the smoothness parameter is the lowest. They are due to a too small number
of cosines in the simulation, which implies a incomplete sampling of the highest frequencies. This is
not an important problem in this example however as these artifacts will be treated as patterns in the
original image. This realisation is sampled at 5000 locations uniformly distributed over the domain,
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Figure 6: Covariance parameters

as in the previous example.
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(b) Sampling at 5000 locations

Figure 7: Reference simulation and sampling

The inference is conducted following the same steps as in the previous example. Moreover, the
same set of 2658 basis functions is used to constitute the dictionary of candidates.

We can see in figure 8a that the variogram fit is not good, which is due to the low value for the
range of the taper compared to what should be the range. In particular, a too large weight is associated
to the small scale component, which results in the selection of only 23 basis functions.

After the EM algorithm, the updated value of σ2 provides a better fit of the variogram and 69 basis
functions are now selected.

The difference in the kriging maps shown in figure 10 are clearly visible. The small value chosen for
the tapering range causes the prediction to be equal to the mean when the distance from observation
locations increase. The low rank model provides on the contrary an oversmooth map. The combination
allows capturing both scales of variation and offers a result closer to the conditional expectation.
In terms of mean square prediction error (MSPE), an important improvement is obtained with the
combination as can be read in table 3.
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Figure 8: First fitting of the model
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Figure 9: Model update

4.3 Total column ozone dataset

We now apply our approach to total column ozone (TCO) data acquired from an orbiting satellite
mounted with a passive sensor registering backscattered solar ultraviolet radiation. The dataset we
consider here has been previously analyzed in Cressie and Johannesson (2008), Bolin and Lindgren
(2011) and Eidsvik et al (2014) among others. It consists of n = 173 405 measurements.

We compare covariance tapering, fixed rank kriging (FRK) and the proposed combination approach.
The predicition is performed on a 180 × 288 grid. The latitude ranges from -89.5 to 89.5 in 1◦

steps, while longitude ranges from -179.375 to 179.375 in 1.25◦ steps. This represents 51 840 prediction
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(d) Conditional expectation

Figure 10: Kriging maps

sites in total.
Covariance tapering is implemented using a Wendland2 (Gneiting, 2002) covariance with a taper

range set at 275 km, which represents a 2.5◦ distance. Indeed, the data exhibit a rather smooth
behavior that can be well represented by a regular covarariance function. The parameter estimation
is performed through variogram fitting. FRK is performed with 4 resolution bi-square basis functions,
representing a total of 3608 basis functions. The combination is built using the same fine scale structure
as in covariance tapering and by selecting the basis functions among those used in FRK. 331 basis
functions are selected. The EM step is run only once since the first fit of the variogram is deemed
satisfying.

Figure 12 shows the prediction maps of TCO and the prediction standard deviations obtained
by each three methods. We can observe that FRK predictions (fig. 12c) are much smoother than
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Figure 11: Difference maps

Table 3: Summary

model small scale structure number of basis functions MSPE

Covariance tapering range 0.025 0 0.048
Low rank nugget 0.03 560 0.036
Combination range 0.025 287 0.008
Conditional expectation 0.002

combination (fig. 12e) and tapering (fig. 12a) predictions, where more details are visible. The latter
presents however artifacts where the satellite coverage is less dense, especially visible along lines going
south-southwest all around the globe. This effect is due to the use of a too small tapering range with
respect to the range of the data. This causes the prediction to equals the mean when the data locations
are too far apart. This effect is erased in the prediction map of the combination while preserving the
accuracy in less dense areas.

The prediction standard deviations are much higher near the poles because of the lack of data. An
increased estimated uncertainty in regions of missing data is especially visible for covariance tapering
and the combination (figs. 12b and 12f) whereas this effect is almost imperceptible for FRK (fig.
12d). In the latter case, the predicted standard deviation is almost constant over the globe with
a very low value compared to the two other methods. Finally, we can notice that the predicted
standard deviation obtained with the combination show some areas with high value, mostly in the
southern hemisphere. They correspond to the locations of the selected basis functions explaining local
important departure from the mean of the TCO. They may seem a desirable effect as they correspond
to additional parameters with respect to the covariance tapering approach.

Table 4 summarizes the parameter estimation results of all three methods and shows the MSPE
values obtained on the validation dataset. Both covariance tapering and combination uses a nugget
effect with variance one while their small scale structures differ from the weight assigned to the Wend-
land2 term, which is smaller for the combination. Less than 10% of the proposed basis functions are
selected by the LASSO. Covariance tapering and FRK show similar results in terms of accuracy while
the combination slightly outperforms both with the lowest MSPE.

Concerning the computation times, covariance tapering is the fastest with a running time of about
10, comprising about 9 minutes for parameter estimation and 1 minute for prediction. Better results
could have been obtained by increasing the tapering range but the increased memory workload caused
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(a) Covariance tapering prediction

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

long

la
t

4

6

8

10

12

14

16

(b) Covariance tapering standard deviation
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(c) FRK prediction
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(e) Combination prediction
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(f) Combination standard deviation

Figure 12: Total Column Ozone data: Prediction and prediction standard deviation maps.

the computing time to increase considerably (more than one hour) due to swapping when solving
the kriging system. The combination and FRK run in approximately the same time, around 20
minutes. Regarding the combination, the EM algorithm reaches the stopping criterion in about two
minutes with the 331 selected basis functions within some hundredth of iterations, while 5 minutes are
necessary to build the dictionary of basis functions, without parallelization, and 20 seconds for the lasso.
Building the prediction map takes about 2 minutes. Concerning FRK, we run the EM algorithm for
10 iterations only to reduce the computing time and obviously do not reach the convergence criterion.
This emphasizes the advantage to work with a low number of basis functions.

5 Conclusion

We have exposed here an original approach to interpolate large spatial datasets that somehow rec-
onciliates existing approaches. It benefits from the advantages of both covariance tapering and low
rank modeling, while alleviating the computational burden associated with the latter by using a lim-
ited number of basis functions. The model is thus able to represent each scale of variation of the
phenomenon under study and achieves a good prediction accuracy. We have developed an inference
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Table 4: Summary

model small scale structure number of basis functions MSPE

Covariance nugget 4 + 0 24.63
tapering 125Wendland2(275)

Fixed rank nugget 28 3608 24.09

Combination nugget 4 + 331 21.64
80Wendland2(275)

approach adapted to this model. The two components are inferred almost separately through a step
by step procedure. Both inference and prediction steps are fast to compute.

In each of the three application examples, combining covariance tapering and low rank decompo-
sition outperformed covariance tapering and the low rank approach alone. It is true that allowing a
larger tapering range would have improved the results of the former. However using a too large taper-
ing range can reduce drastically the speed of the prediction by increasing the memory load. Therefore,
our approach can be seen as a way to improve the results given by the covariance tapering by giving
it a light low rank flavor: the examples indeed show that adding some basis functions to the model
allow to erase the flaws obtained when using a too small taper in less sampled areas. The examples
also show the versatility of the model: the same initial set of basis functions is used for the nested
covariance model and the non stationary Matérn covariance model while obtaining good prediction
results for each one.

Comparing computing times between different approaches for the kriging of large datasets can be
troublesome. They depend on the implementation of each method and on the choice of the parameters
value, namely the range in covariance tapering and the number of basis functions in fixed rank kriging.
However, the application to the total column ozone dataset show that our method provides comparable
computing times with exisiting appproaches, all implemented in R and run on a limited capacity
computer.
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