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A theoretical study of the decay of plane gaseous detonations is presented. The anal-
ysis concerns the relaxation of weakly overdriven detonations toward the Chapman
Jouguet (CJ) regime when the supporting piston is suddenly arrested. The initial condi-
tion concerns propagation velocities D that are not far from that of the CJ wave DCJ ,
0 < (D/DCJ − 1) � 1. The unsteady inner structure of the detonation wave is taken
into account analytically for small heat release, i.e. when the propagation Mach number
of the CJ wave MuCJ is small, 0 < (MuCJ − 1) � 1. Under such conditions the flow is
transonic across the inner structure. Then, with small differences between heat capacities
(Newtonian limit), the problem reduces to an integral equation for the velocity of the
lead shock. This equation governs the detonation dynamics resulting from the coupling
of the unsteady inner structure with the self-similar dynamics of the centered rarefaction
wave in the burnt gas. The key point of the asymptotic analysis is that the response time
of the inner structure is shown to be larger than the reaction time. How and to what
extent the result is relevant for real detonations is discussed in the text. In a preliminary
step the steady state approximation is revisited with a particular attention paid to the
location of the sonic condition.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

The relaxation of a gaseous overdriven detonation toward the self-sustained Chapman-
Jouguet (CJ) regime when the supporting piston is suddenly arrested is a old problem,
too complicated for analytical solution to be obtained in the general case. The mechanism
has been understood qualitatively long ago; as soon as the the front is overtaken by the
rarefaction wave the strength of the detonation is weakened and its velocity decreases
down to the CJ velocity. The sonic condition at the end of the exothermal reaction of the
self-propagating CJ regime protects the inner detonation structure from further damping,
see the early Russian literature in Shchelkin & Troshin (1965). Because of the difficulties
involved in the nonlinearities and in the transonic reaction zone, no satisfactory analytical
study of this difficult hyperbolic problem has been performed yet. Solving this problem
is an essential step in the understanding of the dynamic of detonation waves.

Considering the detonation as an hydrodynamic discontinuity (limit of infinitely fast
reaction, zero detonation thickness), the long time behavior was analyzed by Levin &
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Chernyi (1967) for detonation velocities D much larger than the sound speed in the initial
mixture, D � au and close to the CJ velocity DCJ , (D−DCJ)/DCJ � 1. These authors
showed how drastic the geometrical effects are; the CJ wave is obtained at finite distance
in spherical geometry while, in planar geometry, it is reached asymptotically at infinite
distance. Twenty years before, the decay of a weak shock wave propagating in an inert
gas was obtained by Chandrasekhar (1943) and Friedrichs (1948) in the limit of weak
shock, showing that the shock strength decreases like the inverse of the square root of
the time. Restricting attention to propagation regimes close to the final state (CJ wave
for detonations or acoustic wave for inert shocks), the key simplification is the negligible
variations of both the entropy and the Riemann invariant (the one associated with the
characteristic propagating toward the burnt gas). Under such conditions the rarefaction
wave taking place in the burnt gas between the detonation front and the piston at rest
can be approximated by a self-similar solution of the Euler equations, namely a centered
rarefaction wave, which is not disturbed by the decelerated lead front. The validity of
this approximation for detonations is due to the marginal character of the CJ regime.
Recently, still for an infinitely fast reaction rate, the study of the initiation of detonation
by an external energy source has been extended by Liñan et al. (2012) to take into
account a finite time of energy deposit. A by-product of this analysis is to show that,
in agreement with Levin & Chernyi (1967), the detonation velocity in planar geometry
relaxes asymptotically toward the CJ velocity like the inverse of the square of the time.

The approximation of detonations treated as discontinuities is too restrictive. Finite
reaction rate is known to produce drastic effects because the reaction is highly sensitive
to temperature. For example, small modifications of the inner structure by the front cur-
vature were found by He & Clavin (1994) to have a drastic effect on the critical condition
for direct initiation of detonation since those variations are related to a nonlinear tem-
perature sensitivity. Moreover the instability threshold of one-dimensional pulsations of
the inner structure limits the relevance of the discontinuous model. This was clearly illus-
trated by the pioneering numerical analyses of Medvedev (1969) who showed the strong
influence of a finite reaction rate on the relaxation of plane overdriven detonations.

The objective of the present article is to present an analytical study of the detonation
decay when the unsteadiness of the inner structure is taken into account. The existing
theoretical analyses, as the one of Larin & Levin (1971), are not satisfactory because
they used the so-called square-wave model in which all of the heat release occurs instan-
taneously after a temperature-dependent induction time. Such phenomenological models
are pathological and produce a singular dynamics. The deformation of a smooth distribu-
tion of the rate of heat release was shown to be an essential ingredient for the detonation
dynamics, see Clavin & He (1996), Clavin et al. (1997), and Appendix B.2.

Analytical studies of the unsteady inner structure of detonations have been performed
in a systematic way during the two last decades but only in two limiting cases: for
strongly overdriven regimes in Clavin & He (1996), Mu � MuCJ , and in the opposite
limit, for small heat release in Clavin & Williams (2002), 0 < (MuCJ − 1) � 1. Here
Mu ≡ D/au denotes the propagation Mach number and MuCJ the CJ regime. The former
case , Mu �MuCJ , is not useful for the relaxation toward the CJ regime. When extended
to multidimensional geometry, see Clavin & Williams (2009), the numerical study of the
weakly nonlinear regimes of the model of small heat release shows cellular patterns similar
to those observed in ordinary detonations, see Faria et al. (2015). This model, which was
derived in a systematic way in the limit of small heat release, retains all the physical
mechanisms controlling the dynamics of real detonations, see Clavin & Searby (2016)
and Clavin (2017). Physical insights into the relaxation toward the CJ regime, extracted
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from the analytical study of this simplified model, are relevant for real detonations at
least qualitatively, as discussed in § 5.

In this article, the asymptotic analysis of the detonation decay taking into account the
unsteady detonation structure is performed in a limit involving two small parameters:
ε→ 0 for an initial overdriven detonation sufficiently close to the CJ regime and ε→ 0 for
a small heat release with the ordering ε � ε. In addition the Newtonian approximation
is used as a distinguished limit in view of suppressing the compressional heating. The
latter is not the essential mechanism controlling the deformation of the rate of heat
release and it can be neglected for a qualitative description of the detonation dynamics.
As a preliminary step in the analytical study, the analysis of Levin & Chernyi (1967)
(infinite reaction rate) which was performed for MuCJ � 1, is extended to small heat
release, 0 < (MuCJ − 1)� 1, focusing the attention to the validity of the discontinuous
model in this limit. Using a method similar to that of Friedrichs (1948) for weak shocks,
new insights into the detonation decay are provided, especially for the location of the
sonic point which is an important matter in the forthcoming analysis.

The paper is self-contained. The general formulation is presented in § 2. The decay of
discontinuous detonation fronts (infinitely fast reaction) is revisited without restriction
concerning MuCJ in § 3 with particular attention to the sonic condition and to small
heat release. The unsteady inner structure is taken into account in § 4. Conclusions
are presented in § 5 focusing the attention to unstable detonations. The background in
compressible fluid dynamics is briefly recalled in Appendix A. The detonation model for
small heat release and its linear analysis are also briefly recalled in Appendix B.

2. Formulation

Consider an overdriven detonation in planar geometry propagating with the supersonic
velocity D(t) in the fresh mixture at rest constituted by an ideal gas, D > DCJ > au.
Assume that the piston supporting the detonation has a constant velocity vp and that the
distance d separating the piston from the detonation is much larger than the detonation
thickness ldeto, d� ldeto. When the detonation is initially stable the detonation velocityD
is also constant and the distance d increases linearly with the time, d(t) = (D−vp)t+cst.

The problem addressed here is the relaxation toward the CJ regime when the piston
is suddenly arrested, so that a rarefaction wave starts to develop in the burnt gas. The
effect upon the detonation wave is delayed by the time lag ti necessary for the leading
edge of the rarefaction wave to overtake the detonation. This delay is well defined thanks
to the separation of length scales between the flow in the burnt gas and the detonation
thickness ldeto, d� ldeto. If the deceleration of the piston (from the constant velocity vp to
zero) takes place in an infinitely small time interval (i.e. instantaneously) the rarefaction
wave takes initially the self-similar form of the isentropic solution of the Euler equations,
called centered rarefaction wave, see the text book of Courant & Friedrichs (1948) and
Appendix A.2. The flow velocity increases linearly in space across the rarefaction wave
from zero (piston at rest) to vp, and depends on space x and time t through x/t, see
Fig. 1. The thickness of the centered rarefaction wave increasing linearly with the time,
its leading edge catches the tail of the detonation structure at finite time, t = ti. This is
because the velocity of the leading edge of the centered wave is sonic relatively to the gas
flow while the flow of burnt gas behind the overdriven detonation is subsonic relatively
to the lead shock. The velocity of the lead shock starts to decrease at t = ti so that the
flow of burnt gas is no longer isentropic at t > ti and the rarefaction wave is no longer
self-similar. Hopefully the variation of entropy can be neglected close to the CJ regime
which is a marginal solution in the parameters space of ”pressure-specific volume”.
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2.1. Constitutive equations

Introducing the differential operator

D

Dt
≡ ∂

∂t
+ u

∂

∂x
, (2.1)

and neglecting the viscosity and the conductivity, the equations governing the one-
dimensional flow of a reacting gaseous mixture, considered as an ideal gas p/ρ = (cp−cv)T
with constant specific heats per unit of mass cp and cv, γ ≡ cp/cv = cst., take the form

1

ρ

D

Dt
ρ+

∂u

∂x
= 0,

D

Dt
u = −1

ρ

∂p

∂x
(2.2)

D

Dt

[
lnT − (γ − 1)

γ
ln p

]
=

qm
cpT

ẇ

tr
,

D

Dt
Y =

ẇ

tr
, (2.3)

where ρ, u, p, T , Y , qm, tr and ẇ are respectively the density, the flow velocity in
the laboratory frame, the pressure, the temperature, the progress variable (Y = 0 in
the initial mixture and Y = 1 in the burnt gas), the chemical heat release per unit
mass of mixture, the reaction time and the non-dimensional reaction rate. The first
equation in (2.3) is the equation for the conservation of energy, written in the form of a
production of entropy by the rate of heat release. The problem is closed by the chemical
kinetics controlling the heat release. In the simplest case of a one-step irreversible reaction
sensitive to the temperature, neglecting the pressure effect for simplicity, the reaction rate
ẇ is a function of Y and T , ẇ(Y, T ) > 0, where 1−Y is the reduced mass fraction of the
reactive species. At the initial temperature Tu the system is frozen, ẇ(Y, Tu) = 0, in a
composition Y = 0, far from the chemical equilibrium in the burnt gas, Y = 1, T = Tb,
ẇ(1, Tb) = 0. The formulation is easily extended to a multiple-step chemical scheme.

Introducing the sound speed a =
√
γp/ρ and eliminating the temperature in the left-

hand side of (2.3) using (cp − cv)T = p/ρ, the density can be eliminated from the Euler
equations (2.2) to take the form of two nonlinear hyperbolic equations for p and u,
extending the Riemann characteristic equations to reacting mixtures,

1

γ

D±

Dt
ln p± 1

a

D±

Dt
u =

qm
cpT

ẇ(Y, T )

tr
, (2.4)

where the two following differential operators have been introduced

D±

Dt
≡ ∂

∂t
+ (u± a)

∂

∂x
, (2.5)

see Clavin & Searby (2016). In an inert gas (ẇ = 0) the linearized version of (2.4) reduces
to the acoustic waves propagating in two opposite directions.

2.2. Boundary conditions and multiple scales analysis

Because of the difference of time scales between the elastic collisions and the inelastic
collisions that are responsible for the chemical heat release, a detonation wave is consti-
tuted by an inert shock front followed by a reaction zone (ZND structure). Considering
the lead shock as a discontinuity in the flow of inert gas, the conditions in the compressed
gas at the shock front, called Neumann state and denoted by N, take the form

pN
pu

= 1 +
2γ

γ + 1
(M2

u − 1),
ρN
ρu

=
1 + (M2

u − 1)

1 + γ−1
γ+1 (M2

u − 1)
,

uN
au

=

(
1− ρu

ρN

)
Mu, (2.6)

where the subscript u denotes the fresh mixture at rest, Mu(t) ≡ D/au. These well known
Rankine-Hugoniot conditions are obtained by the conservation of mass, ρN (D − uN ) =
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ρuD, momentum and total energy across the discontinuity. The propagation is supersonic,
Mu > 1, with an increase of entropy, sN > su, imposed by the dissipative mechanisms
inside the inner structure of the shock, see textbooks.

In addition to the boundary conditions at the Neumann state (2.6), Y = 0, ẇ(0, TN ) 6=
0, p = pN , ρ = ρN , and u = uN , a boundary condition is required in the burnt gas for
solving the detonation dynamics. Generally the latter condition corresponds to the state
of the burnt gas at rest nearby the piston. The problem simplifies when the length scale
lext of the flow in the burnt gas (roughly the thickness of the rarefaction wave) is larger
than the detonation thickness ldeto ≈ aN tr, lext � ldeto, so that the problem is addressed
by a multiple scales analysis. The solution can be decomposed into two regions, a thin
zone for the internal structure of the detonation wave (ẇ 6= 0) and a large zone for the
external flow uext(x, t) of the rarefaction wave in the burnt gas (ẇ = 0). The problem
is then solved by matching the inner solution with the external flow. Introducing the
equation for the trajectory of the shock front x = xf (t), the study of the inner structure
of the detonation is performed using the non-dimensional coordinate of order unity ξ =
(x − xf (t))/ldeto. For a detonation propagating from left to right, ẋf ≡ dxf/dt > 0,
u > 0, as in Fig. 1, the initial mixture and the compressed gas corresponds respectively
to ξ > 0 and ξ < 0. The matching region corresponds to −lext � x− xf (t)� −ldeto. In
terms of the inner variable ξ, the boundary condition in the burnt gas to be used in the
analysis of the inner structure corresponds to

ξ → −∞ : u = ub (2.7)

where ub is determined by the matching condition with the external flow uext(xf (t) +
ldetoξ, t). To leading order in the limit lext � ldeto, the variations of the external flow for
variations of ξ of order unity are negligible,

ub(t) ≈ uext(xf (t), t). (2.8)

Notice that ub(t) is an outcome of the analysis even when the external flow field uext(x,t)
is prescribed. To the leading order of the multiple length-scale analysis, lext/ldeto � 1,
the instantaneous velocity of the lead shock D(t) = dxf/dt is obtained by the inner
solution of (2.2)-(2.3) with the boundary conditions (2.6) at ξ = 0 (Neumann state) and
(2.7)-(2.8) at ξ → −∞ (burnt gas).

3. Decay of discontinuous detonation fronts

Before taking the unsteady inner structure into account, it is worth extending the
pioneering analysis of Levin & Chernyi (1967) for Mu � 1 (detonation structure in
steady state) to the case of small heat release Mu − 1 � 1, which is the approximation
used in § 4. If the piston is brought to an instantaneous halt, the analysis of the detonation
decay is drastically simplified when the burnt gas can be approximately described by a
centered rarefaction during the whole decay. Thanks to the marginal character of the CJ
regime, this approximation is valid when the propagation Mach number is sufficiently
close to MuCJ as recalled now.

3.1. Quasi-isentropic condition in the burnt gas

Consider an overdriven detonation close to the CJ regime, characterized by the small
parameter ε

ε ≡
(
M2
u −M2

uCJ

)(
M2
uCJ − 1

) � 1. (3.1)
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The pressure and the density in the burnt gas, expressed in terms of the propagation
Mach number Mu, can be written in the form of an expansion in powers of ε1/2, see
Appendix A.1. Introducing the notations

A1 ≡
γ(M2

uCJ − 1)

1 + γM2
uCJ

, and A2 ≡
√
M2
uCJ + 1

M2
uCJ

, (3.2)

Eq. (A 7) leads to the departure of pb and νb ≡ 1/ρb from their CJ value in the form

(pb − pbCJ )

pbCJ
=A1[A2

√
ε+ ε] +O(ε3/2) (3.3)

γ
(νb − νbCJ )

νbCJ
=−

[
(pb − pbCJ )

pbCJ
−A1

(
M2
u −M2

uCJ

)
M2
uCJ

]
M2
uCJ

M2
u

, (3.4)

where the second term in the bracket in the right-hand side of (3.4) is of order ε. According
to the thermodynamic relation δs/cv = δp/p + γδν/ν, Eqs. (3.3)-(3.4) show that the
isentropic condition is verified at the leading order in the limit ε� 1, δs/cv � δp/p,

ε� 1 : δpb/pbCJ = O(
√
ε), δsb/cv = (δpb/pbCJ ) + γ(δνb/νbCJ ) = O(ε), (3.5)

where δpb = pb − pbCJ and δνb = νb − νbCJ .
The condition in (3.1) for a quasi-isentropic approximation,

(
M2
u −M2

uCJ

)
�
(
M2
uCJ − 1

)
,

includes the limit of small heat release (MuCJ − 1)� 1 which is used in § 4,(
M2
u −M2

uCJ

)
�
(
M2
uCJ − 1

)
� 1. (3.6)

3.2. The rarefaction wave behind a slightly overdriven detonation

Consider a slightly overdriven detonation propagating initially with a constant velocity
Do > DCJ satisfying the condition ε � 1. From now on, ε is defined by (3.1) when Mu

is replaced by the initial propagation Mach number Do/au,

ε ≡ (D2
o −D2

CJ)/(D2
CJ − a2

u)� 1. (3.7)

When the velocity of the detonation front D(t) is decreasing, DuCJ 6 D < Do the
quantity (D2−D2

CJ)/(D2
CJ −a2

u) is smaller than ε but of the same order as ε. According
to (A 12)-(A 14), the flow uo(x, t) in the centered rarefaction wave, generated in the burnt
gas as soon as the piston is suddenly stopped at t = 0, takes the form of a self-similar
solution of the isentropic Euler equations recalled in Appendix A.2, see also Fig.1,

0 < t < ti : 0 6 x 6 apot : uo = 0, (ubo + abo)t < x < Dot+ xo : uo = ubo, (3.8)

apot 6 x 6 (ubo + abo)t : uo(x, t) =
2

(γ + 1)

[x
t
− apo

]
, (3.9)

where ubo and abo are respectively the flow velocity and the sound speed in the burnt
gas adjacent to the detonation front propagating with the constant velocity Do and
apo = abo − (γ − 1)ubo/2 is the sound speed in the quiescent gas adjacent to the piston
at rest. The subscript o means that this flow is associated with the period for which
the detonation still propagates with its initial constant velocity Do, the instantaneous
position of the detonation front xf (t) being t < ti : xf = Dot+ xo where xo denotes the
position of the detonation at t = 0 i.e. when the piston is suddenly stopped, see Fig. 1.
The flow behind the detonation, x 6 xf (t), is usually no longer given by (3.9) as soon
as the leading edge of the rarefaction wave interacts with the detonation front, i.e. for
t > ti. Generally, during the decrease of the detonation velocity dxf/dt ≡ D(t) from Do
down to DCJ (t > ti : DCJ 6 D(t) < Do), both the entropy and the Riemann invariant
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J− ≡ ub − 2ab/(γ − 1) start to vary with D(t). However when the initial detonation
velocity Do is close to DCJ , these variations are negligible at the leading order in the
limit (3.7), ε� 1, as shown now. The ideal gas law ab/abCJ =

√
(pb/pbCJ )(ρbCJ/ρb) and

the mass conservation ρb(D − ub) = ρuD yield

− 2

γ − 1

δab
abCJ

= − 1

γ − 1

[
δpb
pbCJ

+ δ

(
ρbCJ
ρb

)]
, (3.10)

δub
abCJ

= − ρuD
ρbCJabCJ

δ

(
ρbCJ
ρb

)
+

(
1− ρu

ρb

) DCJ
abCJ

δD
DCJ

. (3.11)

Using the sonic condition of the CJ wave, DCJ − ubCJ = abCJ , ρbCJabCJ = ρuDCJ , and
neglecting terms of order smaller than ε, Eq. (3.11) yields

δub
abCJ

= −δ
(
ρbCJ
ρb

)
+

δD
DCJ

. (3.12)

Adding (3.10) and (3.12) then shows

δJ−
abCJ

= − 1

γ − 1

δs

cv
+

δD
DCJ

+ terms smaller than ε. (3.13)

When the detonation velocity decreases, the order of magnitude of the variation δJ−/abCJ
is, according to (3.13), the same as for δs/cv. Then, according to (3.5), δs/cv = O(ε),
the variation of J−, δJ−/abCJ = O(ε), is smaller than the variation of the flow velocity,
δub/abCJ = O(

√
ε), see (3.3)-(3.4). The order of magnitude for the sound speed in the

quiescent gas adjacent to the piston at rest is, according to (A 9) and (A 14)-(A 16),

(apo − apCJ )/abCJ = O(ε). (3.14)

Neglecting terms of order ε, the situation is somehow similar to the case of weak shocks
described by Friedrichs (1948); the flow behind the detonation has a constant entropy
and a constant Riemann invariant J−. For such flows the C+ characteristics (along which
the Riemann invariant J+ is constant) are straight lines, see Courant & Friedrichs (1948)
and Appendix A.2. Therefore the rarefaction wave for t > ti is just the continuation of
that for t < ti. In other words, restricting attention to the leading order in the limit
ε→ 0, the decelerating detonation does not influence the burnt gas flow, which keeps on
to be part of the centered rarefaction for t < ti when the detonation was moving at the
constant velocity Do, see Fig.1.

3.3. Sonic condition during the decay

When the modification to the centered rarefaction wave is neglected the trajectory of the
detonation front xf (t) is simply determined by requiring that the flow velocity (3.9) at
x = xf (t) satisfies the jump conditions across a detonation (hydrodynamic discontinuity)
propagating at the velocity D = dxf/dt, uo(xf , t) = ub(t),

ub(t) =
2

(γ + 1)

[xf
t
− apo

]
. (3.15)

Subtracting the first equation in (A 16) from (3.15) and neglecting terms of order ε yields

ub − ubCJ =
2

γ + 1

[xf
t
−DCJ

]
, (3.16)

where, according to (3.14), the quantity (apo − apCJ )/abCJ has been neglected in front
of (ub − ubCJ )/abCJ = O(

√
ε). The expression of the left-hand side of (3.16) in terms of
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D o
t+

x o

ti

xo x

(ubo
+

abo
) t

0

D C
J

t

x

u

t < ti t > ti

t

0

D o
t+

x o

x f
(t
)

x f
(t
)

�xf

�xfi

(DCJ � apo) t

ubCJ
= DCJ � abCJ

ubCJ

ubo
ub

(ubo
+ abo

) t

(u b
+

a b
) t

uo(x, t) u(x, t)

Ctrail
o +

Clead
o +

Fresh mixture at rest

in the burnt gas

Burnt
gas

at rest

C
+

C+

apot

a p
o
t

�xf�

�xf�

D C
J
t+

�
x f

�

Rarefaction wave

Figure 1. Top: Straight characteristics C+ in the phase plane x-t of the centered rarefaction
wave. Notice the particular characteristic x = DCJ t. The big thick line corresponds to the
trajectory x = xf (t) of the detonation considered as a discontinuity and the two other thick
lines correspond to the trailing edge and leading edge of the initial centered rarefaction wave. The
origin of time is the time at which the piston is suddenly arrested and xo denotes the position
of the detonation at this moment. The time at which the leading edge of the rarefaction wave
overtakes the detonation is denoted ti. The size of the rarefaction wave just prior the interaction
with the detonation front is Li = (ubo + abo − apo)ti = [(γ + 1)/2]uboti. Bottom: instantaneous
profiles of the flow velocity in the burnt gas.

Mu = (dxf/dt)/au is obtained from (3.3)-(3.4) using the mass conservation, ub(D) =
(1− ρu/ρb)D. Retaining only the leading order term in the limit (3.1) yields

ub − ubCJ
au

=
2

γ + 1

(
M2
uCJ − 1

)
2MuCJ

A2

√
ε+ terms of orderε (3.17)

≈ 2

γ + 1

1

A3

√
1

au

d

dt
(xf −DCJ t), where A3 ≡

M
3/2
uCJ√

(M4
uCJ − 1)/2

(3.18)
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and where the expression Mu −MuCJ = a−1
u d (xf −DCJ t) /dt has been used. Putting

together (3.16) and (3.18) yields a differential equation for the front position xf (t),√
1

au

d(xf −DCJ t)
dt

= A3
(xf −DCJ t)

aut
. (3.19)

For future consideration it is worth writing this equation in non-dimensional form by
introducing a reference timescale tref which is arbitrary at this level√

dα

dτ
=

1√
2

α

τ
where τ ≡ t

tref
, α ≡ 2A2

3

(xf −DCJ t)
autref

> 0. (3.20)

Using the beginning of the interaction as initial condition, t = ti : xf = Doti + xo (see

Fig.1), written in non-dimensional form, τ = τi : α = αi where αi ≡ 2A2
3

[(Do−DCJ )ti+xo]
autref

,

integrating (3.20), yields

τ > τi :
1

α
=

1

2

(
1

τ
− 1

τi

)
+

1

αi
, (3.21)

and in the long time limit

lim
τ→∞

α = α∞ where
1

α∞
≡ 1

αi
− 1

2τi
. (3.22)

According to the definition of α in (3.20), the asymptotic value α∞ can also be expressed
in terms of the length ∆xf∞ = limt→∞(xf −DCJ t) in Fig.1, α∞ = 2A2

3∆xf∞/(autref ).
The initial condition αi can be expressed in terms of the initial distance from the det-
onation and the sonic point ∆xfi ≡ (Do − DCJ)ti + xo, αi = 2A2

3∆xfi/autref so that
∆xf∞ and ∆xfi are linked by the relation

1

∆xf∞
≡ 1

∆xfi
− A2

3

auti
. (3.23)

According to (3.21), the asymptotic behavior in the long time limit takes the form

limτ→∞(α− α∞) ≈ −α2
∞/(2τ) (3.24)

t� ti : 2A2
3
xf−DCJ t
autref

≈ α∞ − α2
∞
2

tref
t ⇒ D−DCJ

au
≈ A2

3

(
∆xf∞
aut

)2

, (3.25)

showing that the detonation velocity decreases toward the velocity of the self propagating
front like the inverse of the time squared. A similar long time behavior was obtained by
Levin & Chernyi (1967) and by Liñan et al. (2012) for Mu � 1.

According to (3.21)-(3.25), the distance ∆xf from the detonation front to the point
where the flow velocity is sonic (relatively to the front), D−u = a, increases with the time
from ∆xfi to ∆xf∞, ∆xfi < ∆xf∞, see (3.23). The distance ∆xf thus never becomes
shorter than ∆xfi. In other words, during the decay, the sonic condition a + u = D is
satisfied at finite distance from the front and the distance ∆xf never shrinks to zero.
The sonic condition DCJ − ubCJ = abCJ becomes satisfied at the detonation front only
in the limit t → ∞ when the slope of the flow velocity in the burnt gas becomes zero,
see the self-explanatory Figure 1. This result, obtained at the leading order in the limit
ε→ 0 and not mentioned before, will be useful in the following.
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4. Retarded decay of detonation waves for small heat release

The inner structure of the detonation wave introduces natural time and length scales,
the chemical reaction time tr and the detonation thickness ldeto = autr. According to (2.4)
the general formulation of the unsteady inner structure takes the form of two hyperbolic
equations for the pressure p(x, t) and the flow velocity u(x, t) while Eq. (2.3) for the
temperature T (x, t) takes the form of an entropy wave propagating toward the burnt
gas with the flow velocity. These three modes, namely the two nonlinear acoustic waves
(propagating in opposite directions) and the entropy wave, are fed by the rate of chemical
heat release which is strongly sensitive to temperature. The dynamics of the detonation
can be viewed as resulting from loops controlling the temperature at the Neumann state;
any disturbance issued from the lead shock is propagated toward the burnt gas by both
the entropy wave and the acoustic waves while the resulting perturbations are sent back
to the lead shock by the acoustic waves propagating in the opposite direction. Because
the heat release is distributed in space there is a continuous family of such loops. The
problem is too complicated for general analytical solutions to be obtained. Near the
CJ condition the dynamics was solved analytically by Clavin & Williams (2002) in the
limiting case of small heat release per unit mass and in the Newtonian approximation.
The decay of detonations is studied here in this limit. For the sake of completeness the
2002 analysis is summarized in Appendix B.1.

4.1. Detonation model

The analysis is performed using the distinguished limit,

ε2 ≡ qm/(cpTu)� 1, (γ − 1)/ε = h ⇒ (MuCJ − 1) = ε+O(ε2) (4.1)

where h is of order unity or smaller in the limit ε→ 0, the ordering of (MuCJ − 1) being
obtained from (A 5). The first relation indicates that the relative variation of temperature
is of order ε2 so that, assuming a polytropic gas, the relative variation of the sound speed
is also of order ε2, a/au = 1 + O(ε2). In the limit (4.1) the flow is transonic across
the whole detonation structure with two main simplifications: firstly the variation of
the sound speed can be neglected and secondly the dynamical problem is one of two
timescales as discussed now. The dynamics of the inner structure of detonations results
from feed-back loops in the reference frame attached to the lead shock. The disturbances
issued from the perturbed leading shock are propagated downstream, toward the reaction
zone, by both the entropy wave and the downstream running acoustic wave. The resulting
disturbances of the reaction rate are sent back to the lead shock by the upstream running
acoustic wave for closing the loop. Moreover, in the limit (4.1), the propagation velocity
(in the reference frame of the lead shock) of the two downstream running waves are
both of the order of the sound speed which is larger than the propagation velocity of the
upstream running acoustic wave. The time lag introduced by the downstream running
waves which is of the order of the transit time tr ≈ ldeto/au, is smaller by a factor ε
than the time lag introduced by the upstream running acoustic wave of order tr/ε. At
the leading order in the limit (4.1), the effects of the downstream running waves are
considered as instantaneous. The time scale of the dynamics of the inner structure (and
thus of the intrinsic dynamic of the shock wave) is the longest time delay in the loops.
Therefore the period of oscillations of weakly unstable detonations is

tref = tr/ε, (4.2)

see the discussion below (B 4)-(B 6) in Appendix B.1 for more details. For a stable deto-
nations tref is the typical time delay of the linear response to external disturbances.

Then it is convenient to introduce the following reduced coordinates of order unity;
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the non-dimensional time τ reduced by tref and the non-dimensional distance from the
lead shock ξ reduced by autr

τ ≡ t

tref
= ε

t

tr
, ξ ≡ x− xf (t)

autr
,

∂

∂t
=

1

tr

(
ε
∂

∂τ
− 1

au

dxf
dt

∂

∂ξ

)
,

∂

∂x
=

1

autr

∂

∂ξ
,

(4.3)
where the x-coordinate is orientated as in Fig. 1, corresponding to ξ < 0 in the shocked
gas and dxf/dt = D(t) > 0. To avoid confusion, notice that this orientation of the x-
coordinate, which was used in the pioneering works of Courant & Friedrichs (1948) and
Levin & Chernyi (1967), is the opposite to the one in Clavin & Williams (2002) and
Clavin & Williams (2009). It is also convenient to introduce reduced unknowns; the non-
dimensional distance of the lead shock from the sonic point α(τ), the non-dimensional
difference of velocity between the lead shock and the CJ velocity α̇τ (τ) ≡ dα/dτ > 0 and
the non-dimensional flow velocity shifted by the constant term (DCJ − au) > 0, µ(ξ, τ),

α ≡ xf (t)−DCJ t
autr

> 0, α̇τ ≡
dxf
dt −DCJ
εau

, µ ≡ 1

εau
[u− (DCJ − au)] > 0. (4.4)

The definition of α in (4.4) is the same as in (3.20), 2A2
3 ≈ 1/ε in the limit (4.1).

Introducing the instantaneous distribution of reaction rate w(ξ, α̇τ ) = ẇ(Y, T ), Clavin
& Williams (2002) showed that, to leading order in the limit (4.1), the intrinsic dynamics
of the inner structure is reduced to solving a single partial differential equation for the
non-dimensional flow velocity µ(ξ, τ), see Appendix B.1,

∂µ

∂τ
+ (µ− α̇τ )

∂µ

∂ξ
=

1

2
w(ξ, α̇τ ). (4.5)

The usual nonlinear term of the Burgers type characterizes transonic flows as in Bdzil &
Stewart (1986). The unknown velocity of the lead shock α̇τ (τ) is obtained by using the
boundary conditions (2.6) at the lead shock in (B 3) and (2.7)-(2.8) in the burnt gas,

ξ = 0 : µ = 1 + 2 α̇τ (τ), ξ → −∞ : µ = µb. (4.6)

Here only the first order correction to µ is retained at the Neumann state (ξ = 0),
anticipating that α̇τ is a small quantity when the propagation regime is sufficiently close
to the CJ regime, see (4.14). The pulsations of the detonation is controlled by the thermal
sensitivity of the rate of the chemical heat release. The instantaneous distribution of the
rate of heat release w(ξ, α̇τ ) to be introduced into the right-hand side of (4.5) is obtained
in Appendix B.1 by the solution of (2.3) with the boundary conditions (2.6) at ξ = 0
when the compressional heating is negligible. In the following we will use the approximate
expression in (B 13), obtained by a scaling law,

w(ξ, α̇τ ) ≈ ebα̇τwCJ(ξebα̇τ ), (4.7)

where wCJ(ξ) is the distribution of heat release rate in the unperturbed CJ wave (α̇τ = 0)
and, according to (B 12), e−bα̇τ is the non-dimensional induction length, the coefficient b
measuring the thermal sensitivity. The boundary condition µb in (4.6) is determined in
§ 4.5 by matching the inner solution with the external flow in the burnt gas. It is worth
looking first to the steady state.
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4.2. Steady states

Consider first the steady case of a detonation moving at constant velocity D, α̇τ = m
where, according to (4.4), m is a positive constant,

α̇τ = m ≡ D −DCJ
εau

> 0, (4.8)

the overbar identifying the steady states. The expression of the flow velocity in the burnt
gas µb in terms of the detonation velocity m is obtained by integrating the steady version
of (4.5) (∂µ/∂τ = 0), d(µ − m)2/dξ = w, from the burnt gas at ξ = −∞ to the lead

shock ξ = 0, using the normalized condition
∫ 0

−∞ w(ξ,m)dξ = 1, valid to the leading

order in the limit ε � 1, since w(ξ,m) = ẇ(Y , T ) and dY /dξ = −ẇ(Y , T ) + O(ε) with
Y |ξ=0 = 0 and Y |ξ=−∞ = 1. This yields (µ−m)2

ξ=0 − (µ−m)2
ξ=−∞ = 1. Assuming that

the departure from the CJ velocity is sufficiently small m� 1, ξ = 0 : µ = 1 + 2m, the
integration across the detonation structure then leads to

(1 +m)2 − (µb −m)2 = 1 ⇒ µb = m+
√

(1 +m)2 − 1, (4.9)

where the + sign is chosen according to the ZKF solution. According to (4.9) the flow
velocity in the burnt gas takes the form

m� 1 ⇒ µ2
b ≈ 2m, µb ≈

√
2m, (4.10)

which is in agreement with (3.3)-(3.4) for small ε. The square root in the expression of
µb illustrates the marginal character of the CJ regime.

4.3. Flow velocity in the burnt gas

For the decay of detonation, the unknown function α̇τ (τ) > 0 is obtained from (4.5)-
(4.6) when the boundary condition in the burnt gas µb is expressed in terms of α̇τ (τ) by
matching the inner solution with the external flow. For an inert gas (w = 0) there is a
particular solution of (4.5) of the form

w = 0 : µext(ξ, τ) =
ξ + α(τ)

τ
. (4.11)

In the limit (4.1), the expression (4.11) is precisely that of the centered rarefaction
wave (3.9) in the transonic region where ξ is of order unity as shown by using the
approximations apo/au ≈ 1 and γ ≈ 1 and the definition of τ in (4.3),

u

au
+ 1 ≈ (x− xf )/(autr)

t/tr
+
xf/(autr)

t/tr
=
ε

τ

[
ξ +

xf −DCJ t
autr

]
+
DCJ
au

(4.12)

leading to (4.11) because, according to (4.4), one has u/a+ 1 = DCJ/au + εµ.
The external flow in the burnt gas therefore takes the form (4.11) if the entropy emitted

at ξ = 0 is constant so that the centered rarefaction wave is not disturbed by the dynamics
of the detonation. According to the discussion in § 3, this assumption is verified when
the propagation velocity is sufficient close to the CJ velocity, ε� 1.

4.4. Double limit

One is thus led to analyze the detonation decay near the CJ regime ε � 1, for small
heat release ε ≡

√
qm/(cpTu) ≈ (MuCJ − 1) � 1, see (3.7) and (4.1). The problem is

thus investigated in the double limit ε→ 0 and ε→ 0. Considering an initial overdriven
detonation (velocity Do) verifying (3.7), the propagation Mach number of the decaying
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detonation satisfies the ordering

(Mu−MuCJ )/(MuCJ−1) = O(ε) ⇒ (Mu−MuCJ ) = (D−DCJ)/au = O(εε). (4.13)

The regimes under consideration correspond to the double limit (3.6) and, according to
(4.4), the reduced velocity of the shock front α̇τ is a small quantity of order ε

(Mu −MuCJ )� (MuCJ − 1)� 1 ⇒ α̇τ = O(ε), (4.14)

with, according to (4.8)-(4.10), µb = O(
√
ε), in agreement with (3.3)-(3.4). The terms of

order ε2 at ξ = 0 being neglected in (4.6), the relation ε2 � εε should be used in (4.13)
for consistency. Then, the double limit to be considered in the asymptotic analysis is

ε→ 0 and ε� ε. (4.15)

Retaining the terms of order ε2 would have introduced more tedious calculations but no
new physical insights.

To summarize, the decay of detonation is obtained in the limit (4.15) by the solution of
(4.5) satisfying the boundary conditions (4.6), µb being given by the matching condition
with the external flow in (4.11). Anticipating on the basis of the results in § 3.3 that
α(τ) goes to a constant when τ increases, the flow velocity in (4.11) goes to zero when
τ →∞ for any value of ξ of order unity. The value µ = 0 corresponds effectively to the
sonic condition of CJ waves DCJ − ubCJ = abCJ , limε→0 µbCJ = 0, as shown from the
expression of µ in (4.4) when using the relation au ≈ abCJ , valid in the limit (4.15).

4.5. Simplification coming from the initial condition

Matching the inner flow with (4.11) becomes simpler when α� 1, xf (t)−DCJ t� autr
(∆xf � autr in the notations of Fig.1), namely when the distance between the lead shock
and the point where the sonic condition holds is larger than the detonation thickness. This
is automatically satisfied for typical initial conditions, namely when the initial distance
between the detonation and the piston at t = 0 (time at which the piston is suddenly
arrested) is larger than the detonation thickness, xo � autr, see Fig. 1. Under such
conditions the term ξ (of order unity in the internal structure) is negligible in front
of α in (4.11). The external flow close to the detonation is nearly uniform and takes
the form µext ≈ α(τ)/τ . This approximation is equivalent to neglecting the gradient of
the reduced velocity of the flow compared to the inverse of the detonation thickness,
∂µext/∂ξ = 1/τ � 1. Matching then leads to a boundary condition (4.6) in the burnt
gas similar to (2.7)-(2.8) with

µb(τ) =
α(τ)

τ
= O(

√
ε), (4.16)

where the same order of magnitude of the flow velocity in the burnt gas as in the steady
state near the CJ regime, has been used, µb = O(

√
ε). This condition is compatible with

α � 1 when considering instant of times sufficiently large, τ � 1/
√
ε. This condition is

automatically satisfied for t > ti if ti � tr/(ε
√
ε) that corresponds to an initial distance

xo large compared to the detonation thickness ldeto ≈ autr,
xo � autr ⇔ ti � tr/(ε

√
ε) i.e. τi � 1/

√
ε ⇒ α� 1, (4.17)

as shown from the relation xo/(auti) ≈ ε
√

2ε, which is obtained from the relation
xo = [abo − (Do − ubo)] ti in Fig. 1 when using (3.3)-(3.4) with (A 4)-(A 5) and (3.7),
neglecting the terms of order ε2 in (4.1), (M2

uo − 1) ≈ ε(1 + ε). To summarize, for or-
dinary initial conditions, xo � autr, the problem is reduced to solve (4.5) using the
boundary conditions (4.6) with (4.16).
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The solution for a detonation considered as an hydrodynamic discontinuity in § 3 is
recovered by the quasi-steady state approximation, namely when the unsteady term is
neglected in (4.5). Integrating (4.5) across the detonation structure, from −∞ to 0, using

the condition of normalization,
∫ 0

−∞ w(ξ, α̇τ )dξ = 1, yields

1

2
(µ− α̇τ )2|ξ=0

ξ=−∞ =
1

2
⇒ 1

2
(µ2|ξ=0 − µ2

b)− (µ|ξ=0 − µb)α̇τ =
1

2
, (4.18)

and Eq. (3.20) is effectively recovered by the boundary conditions (4.6) (4.16) when the
terms smaller than α̇τ = O(ε) are neglected, α̇τ ≡ dα/dτ = (1/2)(α/τ)2.

4.6. Instantaneous distribution of the rate of heat release

Another simplification concerns the instantaneous distribution of the heat release rate
w(ξ, α̇τ ) in the right-hand side of (4.5). Its determination becomes more easy if the
compressional heating in the thermal equation (2.3) can be neglected which, is the cases
if (γ − 1) is sufficiently small, h� 1 in (4.1) as it will be assumed from now on,

(γ − 1)/ε� 1. (4.19)

Following the work of Clavin & He (1996), the analysis, recalled in Appendix B.1, leads
to (4.7). According to (4.6) and (4.16), µ(ξ, τ) is of order unity close to the lead shock
and of order

√
ε at the end of the reaction zone. Therefore, according to (4.14), the

non-dimensional velocity α̇τ (τ) = O(ε) is smaller than µ(ξ, τ). For stable detonations
against planar disturbances only the linear term in the expansion of the instantaneous
reaction rate (4.7) in powers of δα̇τ (τ) is retained at the leading order in the limit (4.15).
The corresponding expression of the variation δw(ξ, α̇τ ) is similar to that in the stability
analysis of Clavin & Williams (2002). Neglecting the terms smaller than ε, Eq. (4.5) then
takes the form

∂µ

∂τ
+ [µ− α̇τ (τ)]

∂µ

∂ξ
=

1

2
ω(ξ) +

b

2
Ω(ξ)δα̇τ (τ) where Ω(ξ) ≡ d

dξ
[ξω(ξ)] (4.20)∫ 0

−∞
Ω(ξ)dξ = 0,

∫ 0

−∞
ω(ξ)dξ = 1, (4.21)

where the coefficient b in front of Ω(ξ) in (4.20) is a measure of the sensitivity to the
Neumann temperature, see (B 12)-(B 13). The function ω(ξ) is the distribution of heat
release rate in the unperturbed overdriven detonation, and Ω(ξ) characterizes the defor-
mation of the distribution of the overdriven detonation in steady state when the Neumann
temperature is modified from its unperturbed value, see (B 10)-(B 11).

An implicit relation between the non-dimensional shock position (relative to the sonic
point), α(τ) � 1, and its velocity (relative to that of the CJ wave), α̇τ (τ) ≡ dα/dτ =
O(ε), is then obtained during the decay (τ > τi, τi ≡ εti/tr � 1/

√
ε) by solving the

partial differential equation (4.20) for the flow velocity field µ(ξ, τ) with the two boundary
conditions (4.6) using (4.16). When Eq. (4.20) is fully linearized and when the boundary
condition (4.16) is replaced by an unperturbed uniform flow, ξ → −∞ : µ = µb = cst., the
stability analysis of Clavin & Williams (2002) against planar disturbances is recovered,
see Appendix B.2.

4.7. Linear dynamics at the beginning of the decay

The initial condition of the detonation decay is a steady weakly overdriven detonation for
small heat release in the limit (4.15). Assume to begin with that this initial detonation
is stable. Unstable detonations will be considered in § 4.8. Denoting αi the position of
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the lead shock at time τi when the rarefaction wave catches the unperturbed overdriven
detonation, the initial conditions are, according to (4.8)-(4.10),

τ = τi : α = αi, D = Do, dα/dτ = ε, αi/τi =
√

2ε, (4.22)

where the last relation comes from (4.10) and (4.16). During the interaction between
the rarefaction wave and the overdriven detonation the flow velocity at the end of the
reaction zone, µb(τ), is, according to (4.16), τ > τi : µb(τ) = α/τ < αi/τi. During a
short period of time after τi this flow takes the form µb = µb + δµb, with µb = αi/τi and

δµb(τ) =
α(τ)

τ
− αi
τi
≈ αi
τi

[
δα

αi
− (τ − τi)

τi

]
(4.23)

where the term δα/αi ≡ (α − αi)/αi is smaller than (τ − τi)/τi by a factor
√
ε because

dα/dτ = O(ε), δα = O(ε(τ − τi)), and, according to (4.22), αi/τi = O(
√
ε), so that

δα/αi = O(
√
ε(τ − τi)/τi). Therefore, during a short period of time, the small variation

of the non-dimensional flow at the end of the reaction zone takes the form

0 <
τ − τi
τi

� 1, ξ → −∞ : δµ = δµb(τ) = −
√

2ε

(
τ − τi
τi

)
. (4.24)

and the linear dynamics around the initial state at τ = τi is solution of the fully linearized
version of (4.20). This linear equation is given in (B 19) when the distribution ω(ξ) is
replaced by the steady distribution ωo(ξ) of the unperturbed overdriven detonation before
its interaction with the rarefaction wave. The initial dynamics is the linear response to
the disturbance (4.24) in the burnt gas. It is controlled by Eq. (B 32) in Appendix B.3,
obtained as a straightforward extension of the linear dynamics of Clavin & Williams
(2002) for the stability analysis that is briefly recalled in Appendix B.2. As explained in
Appendix B.3, Eq. (B 32) for the linear response is obtained from y(z, τ) ≡ µδµ(z, τ) after
having introduced the linear disturbances δµ, µ = µ(ξ)+δµ(ξ, τ), the linear perturbation

δα̇τ (τ) ≡ dδα(τ)/dτ , α̇τ = ε + δα̇τ (τ), the change of variable z =
∫ ξ

0
dξ/µ(ξ), ∂/∂z =

µ(ξ)∂/∂ξ and the function g(z) in (B 21),
∫ 0

−∞ g(z)dz = µ(0)−µb. The initial dynamics is

thus described by (B 32) in which, according to (4.10), µb =
√

2ε, µbδµb = −2ε(τ−τi)/τi,

0 <
(τ − τi)
τi

� 1 : 2δα̇τ (τ) =

∫ 0

−∞
g(z′)δα̇τ (τ + z′)dz′ − 2ε

(τ − τi)
τi

. (4.25)

The last term (forcing term) in (4.25) is of order ε so that the solution of the linear
equation (4.25) is also of order ε, δα̇τ (τ) = O(ε), as it should be in the double limit
(4.14). Considering stable detonations to planar disturbances, the attention is limited
to small sensitivity to temperature, b < bc where bc is the critical value denoting the
instability threshold, recalled below (B 27). For τ 6 τi, the shock velocity Do is constant,
δα̇τ (τ) = 0, and there is no forcing term, so that the lower bound of the integral can be
replaced by −(τ − τi)

0 <
(τ − τi)
τi

� 1 : 2δα̇τ (τ) =

∫ 0

−(τ−τi)
g(z′)δα̇τ (τ + z′)dz′ − 2ε

(τ − τi)
τi

. (4.26)

The decrease of the velocity for τ > τi is driven by the last term and is modulated by
the integral describing the response of the internal structure.

4.8. Nonlinear decay towards the CJ regime

The main outcome of the linear analysisis is to transform the partial differential equation
(4.20) for the flow velocity field µ(ξ, τ) into an integral equation (4.25) for the detonation
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velocity δα̇τ (τ). As explained at the end of Appendix B.2, the linear approximmation
(B 32) cannot be used during the final stage of the decay because, according to the sonic
condition in the CJ wave, one gets µbCJ = 0, so that the linear forcing term is zero. The
nonlinear character is also illustrated by the nonlinear form of the self-similar solution
(3.20). Before considering unstable detonations, consider first stable CJ detonations.
Close to the CJ regime, α̇τ = 0, an extension of the integral equation can be anticipated
by replacing the forcing term in the burnt gas µbδµb in (B 32) by its nonlinear version
µ2
b/2 with, according to (4.16), µb(τ) = α(τ)/τ ,

τ � τi : 2α̇τ (τ) =

∫ 0

−∞
g(z′)α̇τ (τ + z′)dz′ + (1/2) [α(τ)/τ ]

2
. (4.27)

The physical interpretation of (4.27) is simple. The result (3.20) for a detonation con-
sidered as an hydrodynamic discontinuity, α̇τ = (1/2)(α/τ)2, is recovered from the
quasi-steady state approximation of (4.27). When the variation of α̇τ (τ) on the time
scale of the acoustic wave across the detonation structure is neglected in the inte-

gral term α̇τ (τ + z′) → α̇τ (τ), the normalization condition
∫ 0

−∞ g(z′)dz′ = 1 + O(ε)
(µNCJ = 1 + O(ε), µbCJ = 0) yields effectively (3.20). For a stable CJ detonation, the
integral term represents the linear response of the inner structure to the unsteady rar-
efaction wave in the external flow of burnt gas.

Recalling the order of magnitudes α̇τ = O(ε) in (4.14) and α/τ = O(
√
ε) in (4.16),

the derivative with respect to τ of the nonlinear term (α/τ)2 in (4.27) is of order ε/τ
which is smaller than ε for ordinary initial conditions, τi � 1/

√
ε, see (4.17). Therefore

retaining time delays in the nonlinear term (α/τ)2 of the same order of magnitude as
the response time, similar δµb(τ − |zb|) in (B 31), would introduce corrections that are
negligible to leading order in the asymptotic analysis in the limit (4.15).

Let’s show now that Eq. (4.27) is effectively obtained at the leading order in the
asymptotic analysis from (4.5)-(4.6) using the boundary condition (4.16) in the bunt gas
ξ → −∞. Introducing the decomposition µ = µCJ(ξ) + δµ(ξ, τ) into (4.20) and retaining
the nonlinear term δµ∂(δµ)/∂ξ yields

µ∂µ/∂ξ = µCJ∂µCJ/∂ξ + ∂(µCJδµ)/∂ξ + δµ∂(δµ)/∂ξ, (4.28)

µCJ

[
∂µ

∂τ
+ µ

∂µ

∂ξ

]
=

[
∂

∂τ
+

∂

∂z

]
(µCJµ) + µCJ

dµCJ
dz

+
1

2

∂(δµ)2

∂z
(4.29)

where the change of variable ξ → z, introduced in (B 20), has been used. It is worth
mentioning in passing that no singularity of the wave breaking type can be produced
in the shocked gas by the kinematic term ∂µ/∂τ + µ∂µ/∂ξ because the flow velocity
µ(ξ, τ) > 0 is an increasing function of ξ. Introducing the quantity

y(z, τ) ≡ µCJδµ+ (δµ)2/2, (4.30)

Eq.(4.29 ) takes the form

µCJ

[
∂µ

∂τ
+ (µ− α̇τ )

∂µ

∂ξ

]
=

[
∂

∂τ
+

∂

∂z

]
y+

1

2
µCJwCJ − α̇τ

dµCJ
dz
− α̇τ

∂(δµ)

∂z
− δµ∂(δµ)

∂τ
.

(4.31)
Anticipating that the leading order terms are of order ε, ∂µ/∂τ = O(ε), the last two
terms in the right-hand side of (4.31) are negligible because they are smaller than ε,
as shown by using the following results: -i) The CJ regime is characterized by α̇τ = 0,
µCJ(ξ) = O(1) close to the Neumann state and µbCJ = 0 in the burnt gas. -ii) According
to (4.14), α̇τ = O(ε). -iii) According to (4.6) and (4.16), δµ is of order ε close to the
Neuman state (ξ = 0) and of order

√
ε in the burnt gas. -iv) According to (4.16), the
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derivative of µ with respect to time in the burnt gas, ∂µb/∂τ = O(
√
ε/τ), is smaller than√

ε for ordinary initial conditions, τi � 1/
√
ε, see (4.17). Eq. (4.31) then yields

µCJ

[
∂µ

∂τ
+ (µ− α̇τ )

∂µ

∂ξ

]
=

1

2
µCJw(ξ, τ) =

[
∂

∂τ
+

∂

∂z

]
y +

1

2
µCJwCJ − α̇τµCJ

dµCJ
dξ

.

(4.32)
As in (4.20), and for the same reason, the reaction rate w(ξ, τ) can be linearized around
the steady CJ solution. Therefore, introducing the function g(z) in (B 21), defined here
for the unperturbed CJ wave, the equation for y(z, τ), defined in (4.30), takes a form
similar to the linear analysis

∂y

∂τ
+
∂y

∂z
= gCJ(z)α̇τ (τ), (4.33)

but with a different boundary condition in the burnt gas. According to (4.30), the bound-
ary condition (4.6), µbCJ = 0, δµb = µb, leads to z → −∞ : y → (δµb)

2/2 = µ2
b/2, so

that, according to (4.16), the solution of (4.33) should satisfy the boundary conditions

z = 0 : y = 2α̇τ (τ) = 2ε, z → −∞ : y = (1/2)[α(τ)/τ ]2 = O(ε), (4.34)

where the contribution of the nonlinear term (δµ)2 in y has been neglected at the Neu-
mann state ξ = 0 because it is there of order ε2. To summarize, in the detonation decay
toward a stable CJ wave in the limit (4.15) and (4.19), the nonlinear effects come only
from the flow in the burnt gas. Following the same development as in the linear response
in Appendix B.2, Eq (4.27) is then directly obtained from (4.33)-(4.34).

The difference between the initial distribution g(z) and gCJ(z) is of order
√
ε and can

be neglected to leading order. An equation for dα/dτ ≡ (D(τ) − DCJ)/εau, including
the long time limit (4.27) and the linear evolution (4.25) just after the initial condition,
τ = τi : D = Do, dα/dτ = ε, α = αi, αi/τi =

√
2ε, takes the form

τ > τi : 2
dα

dτ
=

∫ 0

−(τ−τi)
g(z′)

dα(τ + z′)
dτ

dz′ +
1

2

α(τ)2

τ2
+ ε

∫ −(τ−τi)

−∞
g(z′)dz′,(4.35)

which corresponds to (4.25) in which the last term in the right-hand side and δα̇τ =
(D −Do)/εau are replaced by the nonlinear term (1/2)[(α/τ)2−(αi/τi)

2] and (dα/dτ)−ε
respectively. The initial condition, dα/dτ = ε, is effectively recovered at τ = τi in (4.35),

since (α/τ)2/2 = ε and ε
∫ 0

−∞ g(z)dz = ε while the first term in the right-hand side
vanishes. In the long time limit, τ � τi, the last term in the right -hand side of (4.35)
vanishes as soon as τ − τi is larger than a value of order unity since g(z′) is zero outside
the detonation structure, so that (4.27) is recovered. Introducing a shift of origin and the
unknown function a(t), α̇τ = εda/dt, da/dt = O(1) and using (4.22),

t ≡ τ − τi, a(t) ≡ α(τ)− αi
ε

, αi/τi =
√

2ε, (4.36)

Eq. (4.35) takes the form

t > 0 : 2
da(t)

dt
=

∫ 0

−t

g(z′)
da(t + z′)

dt
dz′ +

1 +

√
ε/2

τi
a(t)

1 + t/τi

2

+

∫ −t

−∞
g(z′)dz′,(4.37)

satisfying the initial conditions t = 0 : a = 0,da/dt = 1. Here g(z) is defined in (B 21)
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for the steady solution of the CJ wave,

g(z) ≡
[
b

2

d

dξ
[ξwCJ(ξ)] +

d

dξ
µCJ(ξ)

]
µCJ(ξ), (4.38)

where the variable z is defined in (B 20), z =
∫ ξ

0
dξ′/µCJ(ξ′). Eq. (4.37) is valid for a

stable CJ detonation and, according to (4.17), for τi � 1/
√
ε.

A straightforward extension of (4.37) to unstable CJ detonations (b > bc) is obtained
from (4.32) when the distribution of reaction rate w(ξ, τ) in (4.7) is no longer linearized,

t > 0 : 2ȧt(t) =

∫ 0

−t

G(z′, ȧt(t + z′))dz′ +

1 +

√
ε/2

τi
a(t)

1 + t/τi

2

+

∫ −t

−∞
G(z′, 1)dz′(4.39)

where the notation ȧt ≡ da/dt (εȧt = α̇τ ) has been introduced,

G(z, ȧt) ≡
µCJ(ξ)

2ε

[
eεbȧtωCJ(ξeεbȧt)− ωCJ(ξ)

]
+

dµCJ(ξ)

dz
ȧt. (4.40)

Here also the quasi-steady state approximation is recovered when the delay in the first

integral term is negligible,
∫ 0

−∞G(z′, ȧt(t))dz
′ = ȧt(t). For a given initial time τi, for

example τi = 1/ε, Eq. (4.39) involves two scalar parameters: b for the thermal sensitivity
and ε � 1 for the initial proximity of the CJ regime. The distribution of the rate of
heat release in the steady-state solution of the CJ wave ωCJ(ξ), dµCJ/dz = ωCJ/2,
is also involved in this integral equation describing the decay of detonation toward the
CJ regime, ȧt(t) = O(1), ȧt(0) = 1, limt→∞ ȧt = 0. Anticipating that the quasi-steady
state approximation (3.22) provides a correct order of magnitude, limt→∞ α = α∞ ≈
(1 +

√
ε/2)αi, limt→∞ a ≈ αi/

√
2ε = τi, the term

√
ε/2 a(t)/τi ≈

√
ε/2 is expected to

be negligible in the numerator of the bracket in (4.39). Therefore, to the leading order of
the asymptotic analysis in the limits (4.14) and (4.19), the small parameter ε disappears
from (4.37),

t > 0 : 2ȧt(t) =

∫ 0

−t

g(z′)ȧt(t + z′)dz′ + (1 + t/τi)
−2

+

∫ −t

−∞
g(z′)dz′. (4.41)

For unstable detonations, which is typically the case in real situations, the small param-
eter ε appears only in the nonlinear term G(z, ȧt) which controls the amplitude of the
nonlinear oscillations,

t > 0 : 2ȧt(t) =

∫ 0

−t

G(z′, ȧt(t + z′))dz′ + (1 + t/τi)
−2

+

∫ −t

−∞
G(z′, 1)dz′. (4.42)

When the instability threshold is characterized by a critical value of b of order unity,
namely when the distribution ωCJ(ξ) is sufficiently smooth, the amplitude of the non-
linear oscillations |ȧt| becomes large for b = O(1/ε). In the spirit of asymptotic analyses,
the solutions are limited to the unstable region in which the amplitude of oscillations are

such that the term
∫ 0

−∞G(z′, ȧt(t + z′))dz′ is of order unity.

5. Discussion of the results and perspective

This paper concerns the decay of weakly overdriven detonations toward the CJ regime.
The asymptotic analysis is performed in one-dimensional (planar) geometry for small heat
release ε→ 0 in the distinguished limit (4.15) and (4.19 ) and for ordinary initial condi-
tions in (4.17). Written in terms of the non-dimensional variables (4.3)-(4.4) and (4.36),
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the instantaneous velocity of the lead shock is solution of integral equations, see (4.37)-
(4.42). These equations describe the intrinsic dynamics of the inner structure excited
by the external disturbance in the burnt gas resulting from the rarefaction wave. The
quasi-steady state approximation (3.20) is recovered when the response time of the inner
structure is neglected. Eqs. (4.39) and (4.42) include both stable and unstable detona-
tions and describe the whole decay from the time at which the rarefaction wave catches
the detonation up to the end of the relaxation toward the CJ regime. The threshold of
the pulsating instability is approached from the side of the stable domain by increasing
the temperature sensitivity of the reaction rate, i.e. by increasing the parameter b in
(B 12) which is involved in the functions g(z) and G(z, ȧt), see (4.38) and (4.40). The
instability threshold corresponds to a critical value bc which is typically of order unity
if the distribution of the rate of heat release is sufficiently smooth. Stable detonations
and the pulsating detonations are characterized by b < bc and b > bc respectively. In-
troducing the oscillatory mode that bifurcates at b = bc, σo = −1/τo + iωo, the non
dimensional oscillatory frequency ωo 6= 0 is of order unity for typical distributions of the
heat release rate in gaseous detonations. The relaxation rate 1/τo ≡ −Reσo (positive
in the stable domain, b < bc) goes to zero when approaching the instability threshold,
(bc − b)→ 0+ : ωoτo →∞, ωo = O(1), see the end of Appendix B.2.

The limit of a small heat release which is used in the asymptotic analysis is not realis-
tic. However the results are relevant (at least qualitatively) for real detonations since the
detonation model obtained from the asymptotic analysis includes all the essential mech-
anisms controlling the dynamics of real detonations. The basic simplification resulting
from the two timescales approximation is meaningful for real gaseous detonations near
the CJ regime. In real CJ detonations the flow Mach number (relative to the lead shock)
increases from 0.25 at the Neumann state to 1 at the end of the reaction. Because of this
fast velocity of the flow of compressed gas, the delay in weakly overdriven detonation
which is introduced by the acoustic mode for propagating the disturbances of the reaction
zone back to the lead shock is typically much longer than that in the two other modes
propagating in the opposite direction. Taking a realistic heat release into account in an
analytical study is technically more difficult, essentially because of the variation of the
sound speed. However this would not change drastically the result but just modifies the
value (but not the order of magnitude) of the delay in the loops between the lead shock
and the reaction zone, leading to a more complicated kernel in the integral term. The
key mechanism, namely the variation of the flow velocity associated with the deformation
of the distribution of heat release rate when the shock velocity varies, is well described
in the analysis. Numerical calculations of the structure of hydrogen-oxygen detonations
have shown that the compressional heating do not modify drastically this deformation
which is mainly controlled by the variation of the Neumann temperature, see Fig.2 in
Clavin & He (1996).

On the basis of the following arguments, one could have expected that the decay of
stable detonations is strongly influenced by the relaxation of the inner structure when the
instability threshold is approached. Retaining only the oscillatory mode, σo = −1/τo +
iωo, bifurcating at b = bc (1/τo|b=bc = 0) and discarding all the modes that are more
stable, the dynamics is approximated by an ordinary differential equation representing a
weakly damped oscillator (ωoτo � 1) excited by an external force,

d2α̇τ
dτ2

+
2

τo

dα̇τ
dτ

+ ω2
oα̇τ =

ω2
o

2

α2
∞
τ2

, (5.1)

in which α has been substituted with α∞ in the right-hand side, α2/τ2 → α2
∞/τ

2, in
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Figure 2. Numerical solution of (4.39) for ε = 0.01, τi = 100, and b = 1.25 < bc ≈ 1.27 (stable
detonation) and for an internal structure of the CJ solution in steady state given in Fig.4 in
§B.1. The non-dimensional time t and the non-dimensional position of the moving shock front
a(t), plotted in red, are defined in (4.36). The position a(t) is the non-dimensional distance
between the shock and the sonic point propagating at the CJ velocity a(t), limt→∞ a(t) = τi.
No difference is noticeable with the solution of (4.42) for the same values of the parameters. The
non-dimensional propagation velocity at ≡ da/dt is plotted in black. The detonation velocity
decreases continuously with time to the CJ velocity, at = 0. There is no noticeable difference with
the quasi-steady state relaxation studied in § 3 corresponding to (4.42) when the integral terms
are neglected. This is because the flow velocity at the exit of the internal structure, prescribed
by the slow rarefaction wave and playing the role of a slow external forcing term, (1 + t/τi)

−2

in (4.42), evolves on a time scale much larger than tref by a factor 100 . So that the time delay
induced by the response of the inner structure is negligible.

agreement with (4.41)-(4.42). Near the instability threshold the solution of (5.1)

ωoτo � 1 : α̇τ (t) =

{
α̇τ |t=0e−t/τo cos(ωot) + dα̇τ/dτ |t=0e−t/τo sin(ωot)

+
α2

∞
2 ωo

∫ t

0
dt′

(t′+τi)2
e−(t−t′)/τo sin [ωo(t− t′)] ,

(5.2)

is different from the relaxation in steady state α̇τ (t) =
α2

∞
2

1
(t+τi)2

, essentially because

of a weakly damped oscillation that persists for a long time even for α̇τ |t=0 = 0 and
dα̇τ/dτ |t=0 = 0, the difference being even more striking in the marginal case, 1/τo = 0.
For very stable detonations, far enough from the instability threshold, which is not the
case of real detonations, the self similar solution (3.20) is reached montonically after a
time which is longer than the period of the oscillatory mode,

τoωo � 1, ωoτ � 1/(τoωo) : α̇τ (τ) ≈ α2
∞

2τ2

[
1 +O

(
1

τoω2
oτ

)]
.

However the numerical solution of (4.39) shows that, in the domain of validity of the
asymptotic analysis, the decay of a stable detonation is not well represented by (5.1),
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Figure 3. Numerical solution of (4.39) for ε = 0.01, τi = 100, and b = 1.5 > bc ≈ 1.27
(weakly unstable detonation) and for an internal structure of the CJ solution given in Fig.4.
No difference is noticeable with the solution of (4.42). In the figure the non-dimensional time t
and the non-dimensional position of the moving shock front a(t) are defined in (4.36); they are
the same as in (4.39) and (4.42). The non-dimensional instantaneous velocity of the lead shock
at ≡ da/dt and its position a(t) are plotted in black and red respectively. The dimensional
period of the nonlinear oscillations of the unstable detonation is 1.355 tref , see the zoom in
the figure, tref being the time scale (4.2) of the inner dynamics of the detonation, which is
the slowest time scale in the internal feed-back loop mentioned in § 4.1. The external flow is
the rarefaction wave in the burnt gas evolving very slowly with a time scale even much larger
than the internal time scale tref , by a factor 100. The flow velocity at the exit of the internal
structure is prescribed by the rarefaction wave and plays the role of a slow external forcing
term, (1 + t/τi)

−2 in (4.42). So that the relaxation of the mean position in blue, averaged on
few periods of oscillation, corresponds to the quasi-steady relaxation of fig. 2.

even near the instability threshold. An example of weakly stable detonation is presented
in Fig.2 where, a short time after the interaction with the rarefaction wave, the character-
istic time of evolution becomes much longer than the response time. Therefore the delay
in the integral term is negligible and the detonation decay is slaved by the quasi-steady
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state approximation. In contrast with (5.1)-(5.2), the amplitude of the underlying oscil-
lations is too small to be meaningful. A more spectacular result concerns the detonation
decay toward an unstable CJ wave (real CJ detonations are typically unstable). Here the
intrinsic dynamic of the inner structure plays an essential role and the phenomenon is
well described by the asymptotic analysis. An example of numerical solution of (4.39) for
a weakly unstable detonation is presented in Fig.3. A short time after the initial condi-
tion, the solution shows strong nonlinear oscillations (period 1.355) superimposed on the
quasi-steady relaxation. As it should be near the instability threshold the frequency of
the pulsations is close to ωo ≈ 4.5 given in Appendix B.2. It has also been checked that
the numerical solutions of (4.39) for sufficiently small ε are effectively the same as the
solutions of (4.42).

The principal limitation of the analysis is the planar geometry. The analysis could
be extended to detonations that are unstable to multidimensional disturbances but this
would require much more tedious calculations. More interesting is the spherical geometry
since the relaxation to the CJ regime is expected to be drastically modified by the
curvature of the detonation wave. The present analysis is a first step toward the analytical
study of the detonation decay coupling curvature and unsteady effects. Such an extension
of the asymptotic analysis is worth investigating in the context of direct initiation of
detonations since the pioneering analyses, which have been performed in the quasi-steady
state approximation, have exhibited a critical value of the detonation radius.
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Appendix A. Background

A.1. Planar detonations propagating at constant velocity

The conditions in the burnt gas of a planar detonation whose inner structure is in steady-
state are easily obtained from (2.2)-(2.3). Introducing the notations

Mu ≡
D
au
, P ≡ (γ + 1)

2γ

(
pb
pu
− 1

)
, V ≡ (γ + 1)

2

(
ρu
ρb
− 1

)
, (A 1)

where the subscripts u and b identify respectively the initial fresh mixture and the burnt
gas at the detonation front, the equation for the conditions in the burnt gas take the
form, according to Clavin & Searby (2016),

PV + P + V = Q, P = −M2
uV where Mu ≡

D
au

and Q ≡ γ + 1

2

qm
cpTu

, (A 2)

Mu and qm being respectively the propagation Mach number and the reduced chemical
heat release per unit mass. The quadratic equation for P has real roots if

(M2
u − 1)2 − 4QM2

u > 0, (A 3)

showing that planar detonation propagating at constant velocity exists for a supersonic
velocity larger than a minimum value DCJ , called Chapman-Jouguet velocity and known
by Mikhel’son since the end of the nineteen century, see the early Russian literature in



Decay of detonation wave 23

Shchelkin & Troshin (1965), D > DCJ , Mu >MuCJ ≡ DCJ/au,

2P =(M2
u − 1) +

√
(M2

u − 1)2 − 4M2
uQ, (M2

uCJ − 1)2 = 4M2
uCJQ, (A 4)

M2
uCJ =1 + 2Q+

√
(1 + 2Q)2 − 1 ⇔ MuCJ =

√
Q+

√
Q+ 1. (A 5)

The + sign in the expression of P in (A 4) is imposed when considering the ZND structure
of the detonation wave, see Clavin & Searby (2016). Eliminating Q from (A 4), using the
notations ε ≡ (M2

u −M2
uCJ )/(M2

uCJ − 1) and PCJ ≡ (M2
uCJ − 1)/2 for the marginal

value of P, yields

P − PCJ
PCJ

=
√
ε

√[
M2
uCJ + 1

M2
uCJ

+ ε

]
+ ε. (A 6)

In the limit ε� 1 an expansion in powers of
√
ε yields

(P − PCJ) /PCJ = A2

√
ε+ ε+O(ε3/2). (A 7)

where the parameter A2 is defined in (3.2).

Considering the self similar solution of a piston-supported detonation in which the flow
is uniform between the piston and the detonation front, the flow velocity ub is equal to the
piston velocity ub = vp. The supersonic velocity of the overdriven detonation, D > DCJ ,
is related to the the piston velocity by the mass conservation, ρb(D − ub) = ρuD with,
according to the subsonic condition in the burnt gas, (D − ub) < ab, ρuD < ρbab where
ab is the sound speed in the burnt gas. The marginal CJ regime is characterized by the
sonic condition in the burnt gas, D = DCJ ⇒ (DCJ − ubCJ ) = abCJ , ρuDCJ = ρbCJabCJ .

A.2. Centered rarefaction waves behind a detonation

The classical solutions of one-dimensional compressible flows in planar geometry are
briefly recalled in this subsection. According to (2.2)-(2.3), the Riemann invariants J±
along the C± characteristic lines in an inert and isentropic flow (ẇ = 0, s = cst.) are

C± :
dx

dt
= u± a, J± = u± 2

γ − 1
a (A 8)

where u and a denote the flow velocity in the laboratory frame and the sound speed. The
centered rarefaction waves are self-similar solutions of the Euler equations in which the
characteristics line C+ are straight lines that intersect in the phase space x-t at a given
point, chosen as the origin, x = (u+ a)t, see Courant & Friedrichs (1948). Consider the
piston-supported detonation mentioned below (A 6). Assuming that the propagation is
in the positive direction of the x-axis, the flow velocity in the burnt gas is positive, u > 0.
As soon as the piston is suddenly arrested (t = 0) a centered rarefaction wave develops
in the burnt gas to make the flow velocity decreasing from ub at the detonation front to
zero in the quiescent gas adjacent to the piston at rest, see Fig.1. This is quite similar to
the well know expanding wave developing when a piston, initially at rest, is moved away
from the gas initially at rest, see Courant & Friedrichs (1948). As long as the detonation
velocity D is constant the Riemann invariant J− is also constant so that the flow velocity
u(x, t) and the sound speed a(x, t) are linked by the relation

J− =
2

γ − 1
a− u =

2

γ − 1
ab − ub = cst., (A 9)
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valid everywhere in the rarefaction wave. Then the Riemann invariant J+ can be ex-
pressed in terms of only one of the two variables, u or a,

J+ =
2

γ − 1
a+ u =

2

γ − 1
ab − ub + 2u, (A 10)

= − 2

γ − 1
ab + ub −

4

γ − 1
a (A 11)

where ub and ab are respectively the constant flow velocity and the constant sound speed
at the detonation front. These relations are valid everywhere in the rarefaction wave.

Consider first the case of a piston which is decelerated continuously with a velocity
up(t) down to zero. Along each characteristic line C+ that is emitted from the piston
and along which J+ is constant, the flow velocity and the sound speed are equal to
their value at the piston (at the moment of emission of the C+ characteristic), u = up,
a = ap. The slope u + a being constant along the characteristics C+ they are straight
lines. This slope varies from one characteristic line to the other when the piston velocity
varies. The rarefaction wave is delimited by a leading edge which is the characteristic
line Clead+ issued from the piston at the time for which its velocity starts to decrease.
The characteristic line Clead+ is the trajectory (dx/dt = ab + ub) of a weak singularity
(discontinuity of the first derivative with respect of x) propagating with the sound speed
ab relatively to the gas.

Consider now the case for which the piston is brought to an instantaneous halt at
t = 0, see Fig. 1 for 0 6 t 6 ti. In this figure the subscript o refers to the initial
detonation velocity D = Do. The acceleration of the piston is a delta function and the
characteristic lines C+ with different slopes are issued from the piston at t = 0, namely
the time at which the piston is suddenly stopped. There is a range of quiescent gas
close to the piston at rest that is separated from the gas in motion inside the expanding
wave by a characteristic line denoted Ctrail+ , which is the trajectory of a weak singularity
propagating with the sound speed ap in the gas at rest near the piston. Eliminating the
sound speed a from (A 9) and the equation of C+, x = (u + a)t, yields a self-similar
expression for the velocity field u(x, t) valid throughout the centered rarefaction wave,

0 < t < ti : 0 6 x 6 apt : u = 0, (ub + ab)t < x < Dt : u = ub, (A 12)

apt < x < (ub + ab)t : u =
2

(γ + 1)

[x
t
− ap

]
, u ∈ [0, ub], (A 13)

where we have used the expression of the sound speed ap in the quiescent gas (adjacent
to the piston at rest), given in terms of up and ab by (A 9) for u = 0

ap = ab −
γ − 1

2
ub. (A 14)

This is valid everywhere behind the detonation front as long as its propagation velocity
is constant. Because of the subsonic condition in the burnt gas at the detonation front,
(D − ub) < ab, the leading edge of the rarefaction wave (propagating at velocity ap +
up > D) overtakes the detonation front (propagating at velocity D) after a delay ti > 0
proportional to the distance between the piston and the detonation at t = 0.

For a CJ detonation, D = DCJ , according to the sonic condition in the burnt gas,
ubCJ = DCJ − abCJ , the leading edge of the centered rarefaction wave propagates at
the same velocity as the detonation front, ubCJ + abCJ = DCJ . The rarefaction wave
cannot overcome the detonation and the distance between the piston and the detonation
remains constant. Consider the limiting case for which this distance is zero (the leading
edge of the rarefaction wave keeps on to be attached to the detonation front from the



Decay of detonation wave 25

beginning). The instantaneous position of both the leading edge and the detonation front
is x = DCJ t, t > 0. According to (A 12)-(A 13) the flow field uCJ(x, t) takes the form,

0 6 x < apCJ t : uCJ = 0, apCJ t 6 x 6 DCIt : uCJ =
2

(γ + 1)

[x
t
− apCJ

]
. (A 15)

The expression of the sound speed in the quiescent gas nearby the piston at rest, obtained
by applying (A 15) at the detonation front, x = DCJ t, uCJ = ubCJ ,

ubCJ =
2

(γ + 1)
(DCJ − apCJ ) ⇒ apCJ = DCJ −

(γ + 1)

2
ubCJ , (A 16)

is in agreement with (A 14) when the sonic condition abCJ = DCJ − ubCJ is used.

Appendix B. Dynamics of plane detonations

In this Appendix, the Clavin & Williams (2002) analysis of the intrinsic dynamics
of detonation for small heat release is briefly re-formulated in a form suitable for the
problem of the decay of detonation. In view of the limit (4.1) and the definition of µ and
π in (4.4) it is worth re-writting the Rankine-Hugoniot relations (2.6) in the form

(uN −DCJ)

au
=

2

γ + 1

[
(M2

u −M2
uCJ ) + (M2

uCJ − 1)

1 + (MuCJ − 1) + (Mu −MuCJ

]
− (MuCJ − 1)− 1, (B 1)

pN
pu

= 1 +
2γ

γ + 1

[
(M2

u −M2
uCJ ) + (M2

uCJ − 1)
]

(B 2)

where (M2
uCJ − 1) ≈ 2ε, (M2

u −M2
uCJ ) ≈ 2εα̇τ , 1 + (uN−DCJ )

au
≈ ε

[
4

γ+1 (1 + α̇τ )− 1
]

to

be completed by assuming that the quantity γ − 1 is negligible,

µN ≈ 1 + 2α̇τ , πN ≈ 2(1 + α̇τ ). (B 3)

B.1. Detonation with small heat release

Introducing the reduced pressure π, 1
γ ln(p/pu) ≡ επ and using the notations in (4.1)-

(4.4), Eqs. (2.4), written in the reference frame attached to the lead shock in (4.3), take
the following form when the terms smaller than ε2 are neglected in the limit (4.1),

ε

[
tr
∂

∂t
+ [−2 + ε(µ− α̇τ )]

∂

∂ξ

]
(π − µ) = ε2ẇ(Y, T ), (B 4)

ε

[
tr
∂

∂t
+ ε(µ− α̇τ )

∂

∂ξ

]
(π + µ) = ε2ẇ(Y, T ), (B 5)

with the boundary condition at the Neumann state (B 3),

ξ = 0 : µ = (1 + 2α̇τ ) +O(ε), π = 2(1 + α̇τ ) +O(ε). (B 6)

Eq. (B 4) shows that the velocity of the simple wave, issued from the lead shock (ξ = 0)
and propagating in the direction of the reaction zone, ξ < 0, is larger (by a factor 1/ε)
than the velocity of the simple wave in (B 5) propagating in the opposite direction. The
latter propagation mechanism is considered as instantaneous in the limit ε → 0. The
leading order of (B 4), ∂(π − µ)/∂ξ = 0, shows that, according to (B 6), the quantity
π − µ is constant, (π − µ) ≈ 1. Introducing the reduced time (4.3) of order unity in the
limit ε→ 0, Eq. (B 5) reduces to the nonlinear equation in (4.5) for µ(ξ, τ).

The instantaneous spatial distribution of the reaction rate w(ξ, α̇τ ) = ẇ(Y, T ) is given
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by the solution of (2.3). Introducing the non-dimensional temperature θ(ξ, τ)

ε2θ ≡ (T − TNCJ )/Tu, (B 7)

where TNCJ is the temperature at the Neumann state of the steady CJ wave, Eqs. (2.3)
take the form

−∂Y
∂ξ

= ẇ(Y, T ) +O(ε), −∂(θ − hµ)

∂ξ
= ẇ(Y, T ) +O(ε) (B 8)

ξ = 0 : Y = 0, T = TN (τ) = TNCJ + ε2θN (τ)Tu with θN (τ) = 2hα̇τ (B 9)

where the relation π−µ ≈ 1, the Rankine-Hugoniot condition (2.6), TN/Tu ≈ 1 + 2[(γ−
1)/(γ+1)](M2

u−1) and (γ−1) ≡ hε, have been used. The problem is simplified when the
ratio of specific heats is sufficiently small, h� 1, for example h = O(ε). Under this condi-
tion the coupling term hµ can be neglected in the second equation in (B 8) and the instan-
taneous distribution of heat release is obtained as in the quasi-isobaric approximation in-
vestigated by Clavin & He (1996) in the context of strongly overdriven detonations. Inte-
grating the system of equations (B 8)-(B 9) without the pressure term leads to the instan-
taneous distribution of heat release rate in the form w(ξ, α̇τ ) = ẇ(Y (ξ, τ), T (ξ, τ)) where
Y (ξ, τ) and T (ξ, τ) are solutions to the steady equations, dY/dξ = dθ/dξ = −ẇ(Y, T ),
using the instantaneous Neumann temperature as boundary condition; ξ = 0 : Y =
0, T = TN (τ). Denoting ω(ξ, TN ) the distribution in the overdriven detonation in steady
state corresponding to the Neumann temperature TN , a family of steady state solutions
is introduced for different propagation velocities (different TN ), and the instantaneous
distribution can be expressed in terms of this family

(γ − 1)� ε : w(ξ, α̇τ ) = ω(ξ, TN (τ)), wCJ(ξ) = ω(ξ, TNCJ ) (B 10)

where TN (τ) is given in terms of the instantaneous velocity of the lead shock D(τ) by
the Rankine-Hugoniot relation. In order to keep the basic ingredient of real detonations,
one assumes that ω(ξ, TN ) is highly sensitivity to the Neumann temperature TN .

For the sake of simplicity, we assume that the family of solutions ω(ξ, TN ) can be con-
structed from the distribution of heat release rate of the unperturbed CJ wave, wCJ(ξ),
by using a scaling law

ω(ξ, TN ) =
ldeto
lind

wCJ

(
ξ
ldeto
lind

)
,

∫ 0

−∞
w(ξ, α̇τ )dξ =

∫ 0

−∞
ω(ξ, TN )dξ = 1, (B 11)

with an induction length lind(TN ) satisfying an Arrhenius law,

lind(TN )

ldeto
= e

E
kB

(
1
TN
− 1
TNCJ

)
≈ e−bα̇τ (τ) with b ≡ 2

E

kBTNCJ

Tu
TNCJ

ε(γ − 1)(B 12)

(γ − 1)� ε : w(ξ, α̇τ ) ≈ ebα̇τwCJ(ξebα̇τ ), δw ≈ b d

dξ
[ξw(ξ)]δα̇τ (B 13)

where (B 9) has been used in (B 12) and the linearization around the unperturbed over-
driven detonation has been introduced in the second equation (B 13)

α̇τ = α̇τ + δα̇τ , w = w(ξ) + δw, w(ξ) = ebα̇τwCJ(ξebα̇τ ),

∫ 0

−∞
w(ξ)dξ = 1. (B 14)

The expression of lind(TN ) in (B 12) is written for a particular choice of the reference
scales tr and ldeto, namely the reaction time at the Neumann state and the induction
length of the steady CJ solution. The assumption of a high sensitivity to temperature
corresponds to b = O(1). The model in (B 13) for the unsteady distribution involves
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a single steady state distribution wCJ(ξ) and a single scalar parameter b > 0. Such a
simplification corresponds to a reaction rate highly sensitive to the Neumann temperature
and moderately sensitive to the temperature elsewhere inside the inner structure of the
detonation. This model represents real detonations qualitatively well and the agreement
with DNS is quantitatively satisfactory in hydrogen-oxygen mixtures, see Fig. 2 in Clavin
& He (1996).

In the numerical applications of § 5, we use the distribution wCJ(ξ) corresponding
to a three-step chemical model which represents the real detonation structure better
than the usual one-step model. It is constituted by a slow initiation reaction producing
radicals by decomposition of reactants (reduced mass fraction 1 − Y ) with the non-
dimensional reaction rate kI(1 − Y ), followed by a fast autocatalytic (chain-branching)
reaction producing radicals (reduced mass fraction X) and consuming the reactants with
a temperature sensitive rate governed by an Arrhenius law, kBeβθX(1−Y ), kB � kI , and
finally a fast exothermal (chain-breaking) reaction consuming the radicals and producing
heat with the non-dimensional rate kRX (rate of heat release). According to (B 9), the
relation between the Neumann temperature θN , the velocity of the lead shock α̇τ and
the activation energy E of the chain-branching reaction is

ξ = 0 : θ = θN , β θN = b α̇τ (B 15)

where b is given in (B 12). The CJ detonation structure in steady state is solution of

dY

dξ
= −kI(1− Y )− kBeβθX(1− Y ), (B 16)

dX

dξ
= −kI(1− Y )− kBeβθX(1− Y ) + kRX, (B 17)

dθ

dξ
= −kRX, (B 18)

d
dξ [θ+X−Y ] = 0, with the bounary condition Y = 0, X = 0, θ = θN = 0 at the Neumann
state ξ = 0, yielding Y = 1, X = 0, θ = θb = 1 in the burnt gas at ξ = −∞. The steady-
state distribution of the rate of heat release is given by the solution, wCJ(ξ) = kRX(ξ).
An example of detonation structure is given in Fig.4 for kI = 0.034, kB = 5, kR = 5
and β = 5. The induction length lind(θN ) ≈ k−1

B e−βθN ln
(
kBeβθN /kI

)
takes the same

form as in (B 12 ) if ln(kB/kI) � βθN , which is typically the case, yielding lind(θN ) ≈
e−βθN ln (kB/kI) /kB , δlind/lind ≈ −βδθN = −bδα̇τ .

B.2. Stability analysis

In this subsection the stability analysis of Clavin & Williams (2002) for weakly overdriven
detonations with small heat release is briefly recalled. The linearization around the steady
CJ solution is expected to involve difficulties nearby the burnt gas because of the sonic
condition. However this is not really the case for the stability analysis. Consider a slightly
overdriven detonation characterized by the steady distribution of heat release rate ω(ξ).
According to (4.5)-(4.6) and (B 12)-(B 14), the linear dynamics is described in the limit
(4.1) by (4.20)-(4.21) in which the term µ∂µ/∂ξ is linearized, µ = µ(ξ) + δµ(ξ, τ),

∂

∂τ
δµ+

∂

∂ξ
(µδµ) =

[
b

2
Ω(ξ) +

dµ(ξ)

dξ

]
δα̇τ (τ), Ω(ξ) ≡ d

dξ
[ξω(ξ)] . (B 19)

Introducing the change of variable

z =

∫ ξ

0

dξ

µ(ξ)
,

∂

∂z
= µ(ξ)

∂

∂ξ
(B 20)
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Figure 4. CJ detonation structure (ξ = 0 : θ = 0) in variable ξ obtained from (B 16)-(B 18) for
kI = 0.034, kB = 5, kR = 5 and β = 5. The profiles of the reduce flow velocity µ(ξ) and g(ξ)
defined in (B 21) are also shown in blue and orange respectively.

and the new function y(z, τ) = µδµ, the linear version of (4.20) and of the boundary
condition at the Neumann state in (4.6) reads

y ≡ µ(ξ) δµ,
∂y

∂τ
+
∂y

∂z
= g(z)δα̇τ (τ), g(z) ≡

[
b

2
Ω(ξ) +

dµ(ξ)

dξ

]
µ(ξ) (B 21)

z = 0 : y = 2µ(0)δα̇τ (τ), (B 22)

where the decomposition α̇τ = (D−DCJ)/εau+δα̇τ (τ) has been introduced. The general
solution of (B 21) can be written

z 6 0 : y(z, τ)− y(0, τ − z) = −
∫ 0

z

g(z′)δα̇τ (τ − z + z′)dz′, (B 23)

or, by using the change of variable τ − z → τ (τ → τ − |z|),

y(z, τ − |z|)− y(0, τ) = −
∫ 0

z

g(z′)δα̇τ (τ + z′)dz′. (B 24)

The linear equation describing the stability is obtained from (B 23) when the disturbance
of the flow velocity is assumed to be zero in the burnt gas δµb = 0, yb ≡ µbδµb = 0,

z → −∞ : y = 0. (B 25)

Eq. (B 24) written in the burnt gas then yields

2µ(0)δα̇τ (τ) =

∫ 0

−∞
g(z′)δα̇τ (τ + z′)dz′, (B 26)
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which is still valid for the CJ regime, µb = 0.
Looking for solution in the form δα̇τ (τ) = eστ , Eq. (B 26) leads to a transcendental

equation for the linear growth rate σ (a complex number)∫ 0

−∞
g(z′)eσz

′
dz′ = 2µ(0). (B 27)

The numerical solution shows a discrete set of complex roots σi, i = 1, 2.... For a tem-
perature sensitivity sufficiently small and for a sufficiently smooth distribution ω(ξ), the
detonation is stable against planar disturbances; the real part of all the roots is negative
corresponding to damped oscillatory modes (b < bc: Im σi 6= 0, Re σi < 0 ∀i). A pul-
satory instability occurs when b is slightly increased above a critical value bc at which one
of the oscillatory modes σj becomes neutral, b = bc: Re σj = 0, Im σj 6= 0 of order unity;
b > bc: Re σj > 0. When b is further increased many unstable oscillatory modes develop.
The critical value bc depends on the shape of ω(ξ). It is obtained by the solution of two
equations for the frequency of pulsation ωo at the instability threshold, (Re σc = 0, ωo ≡
Im σc 6= 0) ∫ 0

−∞
g(z′) cos(ωoz

′)dz′ = 2µ(0),

∫ 0

−∞
g(z′) sin(ωoz

′)dz′ = 0. (B 28)

For typical distributions ω(ξ) characterizing real detonations the critical value bc is of
order unity. The stiffer is ω(ξ) the smaller is bc. For the unperturbed CJ detonation
structure shown in Fig. 4, µ(0) = 1, the critical value is bc ≈ 1.27 and the reduced
frequency of pulsation at the instability threshold is ωo ≈ 4.5.

The dynamics becomes pathological in the limit of a singular distribution. For example
an infinite spectrum of discrete unstable modes having growth rates increasing unbound-
edly with increasing frequency characterizes the square-wave model, ω(ξ) = δ(ξ − ξind),
in which all the heat release occurs instantaneously after a temperature-dependent in-
duction delay (square-wave model). In the opposite limit of a smooth distribution ω(ξ)
and in the absence of temperature sensitivity (b = 0), there is a single root which is
real and negative, Re σ < 0, Im σ = 0 so that the detonation is strongly stable with
disturbances relaxing exponentially. This is illustrated by the solution of (B 31) for the
particular example ω(z) = znez/n! yielding σ = −1 + 2−(n+1).

Generally speaking, a smooth distribution of the rate of heat release and its continuous
deformation when the Neumann temperature is changed are the essential ingredients for
the detonation dynamics.

B.3. Linear response

In this subsection we present the linear response in the limit (4.1) of a slightly overdriven
detonation to disturbances in the burnt gas flow. Let’s begin with the response to small
variations of the piston velocity. The linear equation (B 21) is here valid everywhere
behind the lead shock, ξ < 0 i.e. zp < z < 0, including the external flow of burnt gas near
the piston at z = zp, so that the external disturbance y ≡ µδµ in the burnt gas, yext =
µbδµext, should satisfy the hyperbolic equation ∂yext/∂τ+∂yext/∂z = 0. The disturbance
of the external flow then takes the form δµext(τ − z), yext(τ − z) = µbδµext(τ − z), which
is fully determined by the fluctuation of the piston velocity δup(τ) by requiring that
the flow velocity at the piston is equal to the velocity of the piston. Introducing the
instantaneous position of the piston zp(τ), this yields δµext(τ −zp(τ)) = δup(τ)/εau and,
in the linear approximation, δµext(τ−zp(τ)) = δup(τ)/εau. The function δµext(τ) is then
simply obtained by the change of variable τ−zp(τ) ∝ τ because the unperturbed position
of the piston zp(τ) is a linear function of τ . Once the function yext(τ) = µδµext(τ) is
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known, the solution (B 23) of the linear equation (B 21), written in the burnt gas, takes
the form

yext(τ − z)− y(0, τ − z) = −
∫ 0

−∞
g(z′)δα̇τ (τ − z + z′)dz′, (B 29)

where the lower bound of the integral corresponds to the fact that g(z) is zero in the
burnt gas. Using the change of variable τ − z → τ and the boundary condition at the
Neumann state (B 22), Eq.(B 29) yields the equation for the fluctuation of the velocity
of the lead shock δα̇τ (τ) in the form

2µ(0)δα̇τ (τ) =

∫ 0

−∞
g(z′)δα̇τ (τ + z′)dz′ + µbδµext(τ). (B 30)

In the paper we study the detonation decay in which the external flow is approximated
by a centered rarefaction, different from the linearized flow considered here. In view of
this problem, a particular attention should be paid to the solution in (B 30) when it is
expressed in terms of the disturbance of the flow just at the end of the reaction and
denoted δµb(τ). Assume for simplicity that the reaction goes to completion at finite
distance from the lead shock (order of reaction smaller than unity) zb < 0, |zb| = O(1).
By definition of the external disturbance, δµext(τ − zb) = δµb(τ), and, in the linear
approximation δµext(τ − zb) = δµb(τ) so that Eq.(B 30) yields

2µ(0)δα̇τ (τ) =

∫ 0

−∞
g(z′)δα̇τ (τ + z′)dz′ + µbδµb(τ − |zb|). (B 31)

Here |zb| can be viewed as the non-dimensional time lag taken by the acoustic wave
to propagate the disturbance across the unperturbed detonation, from the end of the
reaction back to the lead shock. The integral term represents the additional modification
due to the modification of the distribution of heat release rate.

When considering only the inner structure, Eq. (B 21) is limited to zb 6 z 6 0. In-
troducing the notation µb(τ) = µb + δµb(τ) ≡ µ(zb(τ), τ) for the value of the inner flow
µ(z, τ) at the end of the reaction zone, the same result as in (B 31) is obtained directly
from (B 23) or (B 24) applied at z = zb after using the boundary condition (B 22). For the
response to an unsteady external flow µext(z, t), the forcing term δµb(τ) is given by the
matching condition µb(τ) = µext(0, τ), which is valid at the leading order of a multiple
scale analysis when the length scale of the external flow is larger than the detonation
thickness. The time lag |zb| in the forcing term µbδµb(τ − |zb|) is negligible when this
forcing term is small and varies on a reduced time scale larger than unity (time scale
larger than tr/ε). This is the case in the asymptotic analysis of the text, so that the
equation for δα̇τ (τ) takes a form similar to (B 30)

2µ(0)δα̇τ (τ) =

∫ 0

−∞
g(z′)δα̇τ (τ + z′)dz′ + µbδµb(τ), (B 32)

which is valid for any chemical scheme. Notice that, in contrast with the stability anal-
ysis, the linear response (B 30)-(B 32) cannot work for a CJ wave because of the sonic
condition, µbCJ = 0.
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