
HAL Id: hal-01799749
https://hal.science/hal-01799749v1

Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HLL v.2.7 Modelling Language Specification
Julien Ordioni, Nicolas Breton, Jean-Louis Colaço

To cite this version:
Julien Ordioni, Nicolas Breton, Jean-Louis Colaço. HLL v.2.7 Modelling Language Specification. [0]
STF-16-01805, RATP. 2018. �hal-01799749�

https://hal.science/hal-01799749v1
https://hal.archives-ouvertes.fr

S UMMARY
This document, based on an original document from Prover Technology, details the syntax and

semantics of the formal modelling language “High Level Language” (HLL).

R E V I S I O N H I S TO RY
Version Date Modification Author

0.1 2016-07-28 First version. J. Ordioni
0.2 2016-08-21 Update of chapter 1 N. Benaissa
0.3 2016-09-05 Intermediate version J. Ordioni
0.4 2017-02-17 New chapter about the terms and conditions.

Modifications following the remarks of the verifier and ap-
prover.

J. Ordioni

0.5 2017-02-24 Include the original pdf file J. Ordioni
0.6 2017-05-04 Revision J. Ordioni
1.0 2018-04-26 Revision of terms and conditions. Final version J. Ordioni

R E F E R E N C E S
Reference Title Version

[D1] T-810712-LFD-HLL High Level Language, Syntax and Semantics, Logical
Foundations Document from Prover Technology

Issue 2 Rev 7

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

Publication of the HLL v.2.7 Modelling Language Specification Version 1.0
May 24, 2018

1/68

Contents

1 Context 3

2 Intellectual ownership, terms and conditions 3

3 RATP contact 3

4 HLL v.2.7 Modelling Language Specification 4

5 Prover Technology original Logical Foundation Document 5

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

Publication of the HLL v.2.7 Modelling Language Specification Version 1.0
May 24, 2018

2/68

1 Context

Since the 90’s, the RATP experiments show that formal methods can be used efficiently for safety
development and assessment purposes. RATP was involved from the birth to the industrialization
of the B Method, still used today to develop safety critical systems like CBTC. The constant improve-
ment of computer techniques and hardware components allows RATP to imagine and use new formal
methods to develop, validate and assess software systems. In 2005 RATP bought to Prover Technol-
ogy a toolkit based on the new formal language HLL (High Level Language) to assess its supplier’s
safety critical software.
Since then, HLL has been used in a vast number of railway safety related projects and has conse-
quently demonstrated its efficiency.

RATP believes that HLL can be enhanced and further developed by extending its use to a larger
audience such as the academic community, suppliers and transportation authorities. Keeping the
access to HLL restricted might jeopardize the guarantee of the durability od the language and its
associated tools will more likely become outdated.
Thus, publishing this language specification will open the door to additional users and feedbacks and
help integrating a variety of tools. The aim is to create a community around HLL with a rich and wide
environment.

Consequently, RATP as owner and user of theHLL Logical Foundation Document [D1] authorizes
third party users to have access to this language specification.

2 Intellectual ownership, terms and conditions

This document is the property of RATP and the enclosed document [D1] is the propriety of both
Prover Technology and RATP. You may create derivative tools or software from this HLL language
specification: RATP and Prover Technology will not be responsible for any of the consequences of
these works. This document comes “as is”, with no warranties. There is no warranty that this docu-
ment will fulfill any of your particular purposes or needs.

You may distribute this document in its wholeness (document AND enclosed document). If you
distribute this document, the same intellectual ownership, terms and conditions described in this
chapter are maintained, you will not grant other rights.

All rights not expressly granted to you in this chapter are reserved.

3 RATP contact

Please ask the contact below to be informed about revisions of this documents.

Julien Ordioni, Head of the Software Safety Assessment Lab
Email: julien.ordioni@ratp.fr
Phone: +33 1 58 77 01 19
Fax: +33 1 58 77 02 20
Postal address:
Julien Ordioni
RATP – Engineering Department
LAC VC42 – 54 rue Roger Salengro

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

Publication of the HLL v.2.7 Modelling Language Specification Version 1.0
May 24, 2018

3/68

mailto:julien.ordioni@ratp.fr

94724 Fontenay-sous-Bois Cedex
FRANCE

4 HLL v.2.7 Modelling Language Specification

The document below specifies the syntactical and semantical aspects of the High Level Language
(HLL). Although this document is intended to guide HLL modelers as well as implementers of HLL
related tools, the document itself is not designed to serve as a tutorial.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

Publication of the HLL v.2.7 Modelling Language Specification Version 1.0
May 24, 2018

4/68

An original document of

High Level Language

Syntax and Semantics

Logical Foundations Document

Nicolas Breton, Jean-Louis Colaço

March 13, 2012

T-810712-LFD-HLL

Issue 2 Rev 7

Pages: 63

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

5/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

2
LFD

Prepared by Nicolas Breton, Jean-Louis Colaço
Distributed to Steering Committee, Project Members, Quality

Manager
To be approved by Steering Committee, Quality Manager

Revision History

In the following table, revisions marked with a star have been approved.

Version Date Reason for change
2.7* March 13, 2012 issues: 262. Add missing case for collec-

tions in functions defined on types.

2.6 February 24, 2012 issues: 1243, 1244. Modification of the
typing rule (case) to forbid multiple occur-
rence of the same variable in a pattern. Fix
rule (c-definition), was two restrictive the
assignability condition was missing.

2.5 February 1, 2012 Add a missing check on rules for quantifiers
(no simultaneous multi-introduction of an
identifier in the scope). Revisit the other
rules that already defined this check (lhs-
iterators, lhs-parameters, lambda par func-
tion and lambda par array). Reorder items
in the definition of H in rule system. Add a
missing condition on memories and inputs
about empty sorts.

2.4 December 19, 2011 New syntax for the with (issue: 1063),
Integration of RATP remarks given in
FA 12 LFD-HLL AQL-Prover 03, reorga-
nization of the syntax, introduction of
lambda definitions, some precisions about
array projection and function application.
Issue 1127

2.3 August 23, 2011 Integration of RATP remarks given in
FA Qualif v04 LFD-HLL AQL-Prover 01

2.2 May 17, 2011 Issues: 237, 239, 241, 245, 247, 248, 249,
250, 251, 252, 254, 256, 257, 258, 259, 260,
261, 263, 264, 265, 267, 268, 271, 272, 273,
274, 275, 276, 277, 278, 280, 281

2.1 April 28, 2011 Issues: 157, 126, 125, 123, 122, 121, 120,
119, 117, 115, 114, 113, 112, 111, 103, 104,
105, 106, 107, 87, 90, 91, 93

2.0 February 28, 2011 Major extension of the language with:
quantifiers, pre, namespaces, functions,
sorts and new switch-case.

1.16 November 4, 2010 Improvement of the postfix array type no-
tation specification.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

6/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

3
LFD

Version Date Reason for change
1.15 October 27, 2010 Fix BNF, the terminating ”s” was missing

for the keyword ”obligations”.

1.14 September 20, 2010 Change static flag for cast; this operator
is not consider as static anymore. Change
the semantics of memories constrained by
an implementation type, the implicit cast
is removed.

1.13 January 18, 2010 Add a comment to the typing rule of defi-
nitions, as recommended by RATP in FA-
03 LFD-HLL rqs RATP.

1.12 December 30, 2009 Integration of RATP remarks in FA-
03 LFD-HLL rqs RATP. Modification of
the syntax to allow uncapitalised section
names, as raised by the parser review.

1.11 November 12, 2009 Minor spelling corrections.

1.10 October 5, 2009 Adding missing rules for type int and col-
lections. Fix the constraints in rules (int-
signed) and (int-unsigned), were shifted.

1.9 September 14, 2009 Introduction of tags for the requirements.
Fixes of issues found by the validation ac-
tivity. Revisit the typing rule (Case with
Default) to make explicit that cases val-
ues are pairwise different. Fix (array-
declaration) rule, sizes must be constant.

1.8 June 8, 2009 Introduction of tags for the requirements.
Fixes of issues found by the validation ac-
tivity.

1.7 April 17, 2009 Modification of the semantics of integer
memories, it depends now on the way it
is declared (a range or an implementation
type). Improvement of the presentation of
integer types. Integration of the feedbacks
from the approbation team (iteration 3).

1.6 April 7, 2009 change the associativity of the power oper-
ator, now it associates to the right.

1.5 April 7, 2009 Integration of the feedbacks from the ap-
probation team (iteration 2).

1.4 April 4, 2009 Integration of the feedbacks from the ap-
probation team.

1.3 March 30, 2009 Fix typos, revisit the section about other
static checks.

1.2 March 27, 2009 Fix a lot of typos found by peer review.

1.1 March 20, 2009 Remove operator ← (left implication)
Change the associativity of i →, now it
is right associative. Complete the HLL se-
mantics.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

7/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

4
LFD

Version Date Reason for change
1.0 March 19, 2008 Initial Version.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

8/68

Contents

1 Introduction 8
1.1 Purpose . 8
1.2 How to read this document . 8
1.3 Definitions . 8
1.4 Requirement identification . 9
1.5 Overview . 9

2 Syntax 10
2.1 Notation . 10
2.2 HLL syntax specification . 10
2.3 Comments . 13
2.4 Pragmas . 13
2.5 Operator Precedence and Associativity 14
2.6 Identifiers . 14

3 Sections in HLL 14

4 Namespaces and scoping rules 15
4.1 HLL Namespaces . 15
4.2 User namespaces . 18

5 HLL types semantics 19
5.1 Basic types . 19
5.2 Enumerated types . 19
5.3 Sorts . 20
5.4 Tuples and structures . 20
5.5 Arrays . 20
5.6 Function types . 21
5.7 Named types . 21
5.8 Collection types . 21
5.9 HLL types . 21
5.10 Definitions on types . 22

6 Type checking rules 25
6.1 Preliminary definitions . 25
6.2 Typing rules . 27

6.2.1 Typing expressions . 27
6.2.2 Typing definitions . 32
6.2.3 Typing declarations . 33
6.2.4 Typing types . 33
6.2.5 Typing type definitions . 34
6.2.6 Typing the entire model . 35

7 Additional static checks 35
7.1 Partial stream definition . 36
7.2 Unicity of stream definitions . 36
7.3 Named type references and definitions 36
7.4 Scoping rules (or namespaces) . 36

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

9/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

6
LFD

8 Sorts: a hierarchy of enumerations 37
8.1 Specifying a sort hierarchy . 37
8.2 Sorts and the switch-case expression 38

9 Mapping semantics 39
9.1 Arrays . 40
9.2 Function . 41
9.3 Making recursive definitions terminate 42
9.4 Note about causality in the presence of mappings 43

10 Local binders 43
10.1 Quantifying over integer ranges . 43
10.2 Quantifying over enumerations . 44
10.3 Arithmetic extensions . 45
10.4 Anonymous function and array definition (lambda) 45
10.5 The pigeon-hole example . 47
10.6 The sudoku example . 47
10.7 Summary of quantifier semantics . 48

11 Arithmetics in HLL 48

12 Stream semantics 48
12.1 Input streams . 49
12.2 Combinatorial definition . 49
12.3 Memory definition . 49
12.4 Initial and next definitions . 49
12.5 Next definition only . 50
12.6 Next expression : X(e) . 50
12.7 Unit delay expression : pre(e) . 50
12.8 Definition of a data memory . 50
12.9 Array definitions . 51
12.10 Determinism and nil values in HLL . 51

13 Causality 52
13.1 Temporal dependencies between scalar streams 52
13.2 Composite types, mappings and causality 53

14 Predefined combinatorial operator semantics 53
14.1 Logical operators . 54
14.2 Population count . 55
14.3 Polymorphic comparison operators =, ==, !=, <> 55
14.4 Shift operators <<, >> . 55
14.5 Arithmetic operators +, -, * and unary minus - 56
14.6 Integer comparison operators >, >=, <, <= 56
14.7 Maximum $max . 56
14.8 Minimum $min . 56
14.9 Absolute value $abs . 56
14.10 Euclidian division / . 56
14.11 Remainder % . 57
14.12 Floor division /> . 57
14.13 Ceiling division /< . 57

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

10/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

7
LFD

14.14 Bitwise logical operators: $not, $and, $or, $xor 57
14.15 Power (ˆ) . 58
14.16 Cast . 58
14.17 bin2u . 58
14.18 bin2s . 59
14.19 u2bin . 59
14.20 s2bin . 59
14.21 If-then-else . 59
14.22 Array projection . 60
14.23 Function application . 60
14.24 (... with ... := ...) . 61
14.25 Elementhood : a:D . 61

A List of requirements 62

B List of reserved keywords 62

References 63

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

11/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

8
LFD

1 Introduction

This document presents the syntactical and semantical aspects of the HLL1 modelling
language. HLL is the continuation of the work done on Tecla (see [1] for a presentation
of Tecla), it is both a sub-language (not all the primitives are present) and an extension
(for instance arrays of arrays are allowed); but the core principles are those of Tecla.

HLL allows to define streams (or sequences) of boolean or integer values in a declarative
style; it offers a powerful mechanism to define arrays of streams. It aims at modelling
sequential behaviours and expressing temporal properties on these behaviours.

1.1 Purpose

The purpose of the document is to provide a complete definition of HLL in order to be
used for the implementation of tools considering this language as a source or a target.

1.2 How to read this document

The presentation of the HLL language proposed in this document is mainly dedicated
to implementors, thus it targets more the absence of ambiguity than a pedagogical
presentation.

For the end-user of HLL and particularly for the beginner, we propose to read the
sections in the following order:

1. section 2

2. section 3

3. section 11

4. section 12

5. section 14

6. section 9

7. section 13

The rest of the document can be used as a reference manual only. Formalisation is here
to reduce ambiguity for implementors and it is not needed for the end-user to invest a
lot in a deep understanding to get a good representation of what HLL is.

1.3 Definitions

EBNF Extended Backus-Naur Form
HLL High Level Language
LFD Logical Foundations Document
MSB Most Significant Bit of a binary word
LSB Least Significant Bit of a binary word

1HLL stands for High Level Language

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

12/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

9
LFD

1.4 Requirement identification

In this document, specific requirements are identified in order to provide a list of points

that characterizes HLL. The identification is done with a tag on the form HLL-xx
(where xx is an integer value) added in the right margin at the level of a section or
subsection title. The requirement is defined by the whole content of the (sub)-section it
is attached to.

The list of requirements present in the document is recalled in Appendix A.

1.5 Overview

• Section 2 gives the syntax of HLL, as an EBNF grammar.

• Section 4 defines the namespaces and the scoping rules of the language.

• Section 5 presents the types and type constructors available in HLL.

• Section 6 gives the formal rules defining the language’s type system.

• Section 7 specifies additional (in the sense covered neither by the syntax nor the
type system) semantic checks.

• Section 9 presents and discusses the semantics of array and function definitions.

• Section 11 defines the semantics of HLL arithmetics.

• Section 12 gives the semantics of the core stream language.

• Section 13 specifies the notion of causal HLL models.

• Section 14 defines all the combinatorial primitives offered by HLL.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

13/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

10
LFD

2 Syntax

2.1 Notation

The syntax is given using the following subset of the EBNF notation:

• a nonterminal is written <symbol>;

• a symbol definition is introduced by ::= with the defined symbol as a left-hand
side;

• a terminal symbol is given by a string separated with quotes ("terminal string");

• the pipe, | represents the alternative;

• the square brackets the optional items ([<may-be-used>]);

• the braces represent 0 or more times repetitions ({<item>});

• the braces extended with + represent 1 or more times repetitions ({<item>}+).

For the terminals thar are described with a regular expression, the right-hand side of
the rule starts with regexp:.

2.2 HLL syntax specification
HLL-1

An HLL model is given as a text satisfying the following grammar:

<HLL> ::= {<section>}

<section> ::= <constants> ":" {<constant> ";"}

| <types> ":" {<type_def> ";"}

| <inputs> ":" {<input> ";"}

| <declarations> ":" {<declaration> ";"}

| <definitions> ":" {<definition> ";"}

| <outputs> ":" {<expr> ";"}

| <constraints> ":" {<constraint> ";"}

| <proof> <obligations> ":" {<expr> ";"}

| <namespaces> ":" {<id> "{" <HLL> "}"}

<constants> ::= "Constants" | "constants"

<types> ::= "Types" | "types"

<inputs> ::= "Inputs" | "inputs"

<declarations> ::= "Declarations" | "declarations"

<definitions> ::= "Definitions" | "definitions"

<constraints> ::= "Constraints" | "constraints"

<proof> ::= "Proof" | "proof"

<obligations> ::= "Obligations" | "obligations"

<outputs> ::= "Outputs" | "outputs"

<namespaces> ::= "Namespaces" | "namespaces"

<constant> ::= "bool" <id> ":=" <expr>

| "int" <id> ":=" <expr>

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

14/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

11
LFD

<type_def> ::= <type> <name> {"," <name>}

| <enumerated> <id>

| "sort" [<sort_contrib> "<"] <id>

<name> ::= <id> {<name_suffix>}

<name_suffix> ::= "[" <expr_list> "]"

| "(" <type_list> ")"

<type> ::= "bool"

| <integer>

| <tuple>

| <structure>

| <array>

| <path_id>

| <function>

<integer> ::= "int"

| "int" <sign>

| "int" <range>

<sign> ::= "signed" <id_or_int>

| "unsigned" <id_or_int>

<id_or_int> ::= <id>

| <int_literal>

<range> ::= "[" <expr> "," <expr> "]"

<enumerated> ::= "enum" "{" <id_list> "}"

<tuple> ::= "tuple" "{" <type_list> "}"

<structure> ::= "struct" "{" <member_list> "}"

<sort_contrib> ::= <path_id_list>

| "{" <id_list> "}"

<array> ::= <type> "^" "(" <expr_list> ")"

<function> ::= "(" <type> {"*" <type>} "->" <type> ")"

<type_list> ::= <type> {"," <type>}

<member_list> ::= <id> ":" <type> {"," <id> ":" <type>}

<input> ::= [<type>] <input_name> {"," <input_name>}

<input_name> ::= <name>

| "I" "(" <name> ")"

<declaration> ::= [<type>] <name> {"," <name>}

<constraint> ::= <expr>

| "I" "(" <expr> ")"

<definition> ::= <lhs> ":=" <rhs>

| "I" "(" <lhs> ")" ":=" <rhs>

| "X" "(" <lhs> ")" ":=" <rhs>

| <lhs> ":=" <rhs> "," <rhs>

<lhs> ::= <id> {<formal_param>}

<formal_param> ::= "[" <id_list> "]"

| "(" <id_list> ")"

<rhs> ::= <expr>

| <collection>

<collection> ::= "{" <rhs> {"," <rhs>} "}"

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

15/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

12
LFD

<expr> ::= <closed_expr> { <accessor> }

| <expr> <binop> <expr>

| <expr> ":" <domain>

| <unop> <expr>

| "if" <expr> "then" <expr>

{"elif" <expr> "then" <expr>}

"else" <expr>

| "lambda" {<name_suffix>}+ ":" {<formal_param>}+ ":=" <expr>

<closed_expr> ::= <bool_literal>

| <int_literal>

| <path_id>

| "(" <expr> ")"

| "X" "(" <expr> ")"

| <fop> "(" <expr_list> ")"

| "cast" "<" <type> ">" "(" <expr> ")"

| "(" <expr> "with" {<accessor>}+ ":=" <rhs> ")"

| ("pre" | "PRE") ["<" <type> ">"] "(" <expr> ["," <expr>] ")"

| "(" <expr_list> {<case_item>}+ ")"

| <quantif_expr>

<quantif_expr> ::= <quantifier> <quantif_var> {"," <quantif_var>}

("(" <expr> ")" | <quantif_expr>)

<case_item> ::= "|" <pattern_list> "=>" <expr>

<pattern> ::= <expr>

| <path_id> (<id> | "_")

| "_"

<pattern_list> ::= <pattern> { "," <pattern> }

<accessor> ::= "." <id>

| "." <int_literal>

| "[" <expr_list> "]"

| "(" <expr_list> ")"

<quantif_var> ::= <id> ":" <domain>

<domain> ::= <range>

| <path_id>

<binop> ::= "#" | "&" | "#!" | "->" | "<->"

| ">" | ">=" | "<" | "<="

| "=" | "==" | "!=" | "<>"

| "+" | "-" | "*" | "%" | "^" | "<<" | ">>"

| "/" | "/>" | "/<"

<unop> ::= "~" | "-"

<fop> ::= "$min"

| "$max"

| "$abs"

| "$or"

| "$and"

| "$xor"

| "$not"

| "bin2u"

| "u2bin"

| "bin2s"

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

16/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

13
LFD

| "s2bin"

| "population_count_eq"

| "population_count_lt"

| "population_count_gt"

<expr_list> ::= <expr> {"," <expr>}

<id_list> ::= <id> {"," <id>}

<path_id_list> ::= <path_id> {"," <path_id>}

<path_id> ::= <relative_path> <id>

| <absolute_path> <id>

<relative_path> ::= { <id> "::" }

<absolute_path> ::= "::" { <id> "::" }

<id> ::= regexp: [a-zA-Z_][a-zA-Z0-9_]*

| regexp: ’[^\n’]+’

| regexp: "[^\n"]+"

<bool_literal> ::= "true" | "TRUE" | "True"

| "false" | "FALSE" | "False"

<quantifier> ::= "SOME" | "ALL" | "SUM" | "PROD"

| "CONJ" | "DISJ" | "$min" | "$max"

<int_literal> ::= regexp: [0-9]+

2.3 Comments
HLL-2

An HLL text can contain comments in one of the following forms:

• lines containing a "//" (double slash) are ignored starting from the "//" sequence
to the end of the line (including "/*" and "*/");

• characters present between "/*" and "*/" are ignored (including "//"); comments
of this kind can be nested.

The tokens "//", "/*" and "*/" are considered in the order they appear in the file.

Here are some examples that illustrate this specification:

int a; // this "/*" is not seen as a comment start

/* the one at the beginning of this line is

// The previous "//" on this line does not start a comment. */

int a; /* the present text is inside a comment

/* this one too */

this one also */

2.4 Pragmas
HLL-3

All the characters after an "@@" are interpreted as the text of a pragma until the end
of the line.

Pragmas may be used by tools taking HLL as input language, the semantics of such
pragmas is part of tool specifications.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

17/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

14
LFD

2.5 Operator Precedence and Associativity
HLL-4

The relative priority is given in increasing order by the following table where all the oper-
ators of a given line share the same priority; the second column contains the associativity
rule between these operators:

Operator Associativity
if . then . else .

<-> #! left
-> right
left
& left
> >= < <= = == != <> : left
<< >> left
+ - left
* / /< /> % left
^ right
unary operators: ~, -

Remark: the associativity for the comparison operators (<, >, <=, >=) is given only
to give an unambiguous mapping of an HLL text to a syntactic tree. In practice, any
expression that involves this associativity will not type check because a<b is a boolean
while comparisons apply on integers. All these verifications are specified by the type
system.

2.6 Identifiers
HLL-5

The HLL syntax offers three syntactic forms for identifiers : alpha-numeric, quoted and
double quoted. In the two last forms, the quotes are part of the identifier.

For instance, A, ’A’ and "A" represent three distinct identifiers that can be used to
represent three different entities in the same namespace in a given model.

3 Sections in HLL
HLL-6

As described in the EBNF presented in Section 2, an HLL file is organised as a sequence
of sections. These sections are of one of the following kinds:

• constant definitions (constants)

• type definitions (types)

• input declarations (inputs)

• stream declarations (declarations)

• stream definitions (definitions)

• constraint expressions (constraints)

• output expressions (outputs)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

18/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

15
LFD

• proof obligations (proof obligations)

• namespace definitions (namespaces)

Each kind of section can appear several times in the file, for instance a model can contain
two sections of type definitions; all the types defined by one of these two sections are
visible at any point in the model. In the sections, the order of the items does not affect
the meaning of the model. From a semantical point of view, declarations and definitions
are treated as an unordered pool. In other words, the order present in the file is not
relevant in the sequel of this document 2.

Constants defined in constants sections can only reference other constants; a constant
cannot be defined with a stream even if it appears that this stream has a constant value.
Constants are mainly used to parametrise a model with dimensions or boolean flags.

Inputs, declarations and type definitions contain type expressions that can need integer
values for the array dimensions. These expressions must be built from constant and
literal (in the sense defined by the syntactic entity <int-literal>) values only (no
reference to a stream is allowed). This discipline is enforced by the type system described
in Section 6.

4 Namespaces and scoping rules

This section defines the different namespaces and scopes that exist in HLL. This is an
important notion that defines the way identifiers allow to bind a usage point in the
model with a definition.

4.1 HLL Namespaces

The HLL language has four namespaces :

1. one for stream identifiers, enumeration values, sort values, iterator variables and
quantified variables;

2. one for type identifiers;

3. one for namespace identifiers;

4. one for structure field labels.

The namespace for field labels is local to a structure type expression i.e. if a type T is
a structure with a field named m, one can define anywhere else another structures type
U with a field m.

The namespace for streams, iterator variables and quantifier variables offers nested scop-
ing:

1. the top level one with all the stream and constant definitions;

2In the implementation of a tool based on HLL this order may be relevant to fulfill a functional
requirement; in such a case the tool specification shall be explicit on this point.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

19/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

16
LFD

2. the local one for the definition right-hand side;

3. and those introduced by the quantifiers.

The scoping rule for the namespace of streams at the level of a definition is formalised
by the two definitions below.

Definition 1 (local parameters variables). We define the function IV that computes
the set of variables present in a left-hand side of a definition or in the formal parameters
of a lambda. of a left-hand side (lhs). A left-hand side lhs is defined by:

<lhs> ::= <id> <formal_params>

<formal_params> ::= {("[" <id_list> "]") | ("(" <id_list> ")")}

Based on this syntactical form for lhs, the function IV is inductively defined by:

IV (v) = ∅ where v is an identifier
IV (v f) = IV (f) where v is an identifier

and f a list of formal parameters
IV (f1 f2) = IV (f1) ∪ IV (f2)

IV (lhs[i1, . . . , ik]) = IV (lhs) ∪ {i1, . . . , ik}
IV (lhs(i1, . . . , ik)) = IV (lhs) ∪ {i1, . . . , ik}

For a definition, we call free variables the variables that appear in its right-hand side
and are not bound. For instance, in the definition a[i][j] := i - j * x, x is a free
variable while i and j are bound in the left-hand side of the definition.3

Definition 2 (Free variables). We define the function FV that computes the set of free
variables, in the namespace of streams, present in an expressions, a type or a definitions.

3Note that this notion of free variable is local to a definition and has nothing to do with the notion
of model inputs.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

20/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

17
LFD

It is defined inductively by:

FV (l) = ∅ where l is a literal
FV (op(e1, . . . , en)) =

⋃
i∈[1..n] FV (ei)

where op is any n-ary operator (n ≥ 1)
and ei are expressions

FV (pre < t > (e)) = FV (t) ∪ FV (e)
FV (cast < t > (e)) = FV (t) ∪ FV (e)

FV (f(e1, . . . , en)) = FV (f) ∪ (
⋃
i∈[1..n] FV (ei))

FV (a[e1, . . . , en]) = FV (a) ∪ (
⋃
i∈[1..n] FV (ei))

FV (e.m) = FV (e)
where e is a stream expression
and m a structure label

FV (v) = {v} where v is a stream identifier
FV (lhs := e) = FV (e) \ IV (lhs)

FV (QTF i1 : D1, . . . , in : Dn e) = (
⋃
k∈[1..n] FV (Dk)) ∪ (FV (e) \ {i1, . . . , in})

where QTF is an HLL quantifier
FV ([e1, . . . , en]) =

⋃
i∈[1..n] FV (ei)

FV ((t1, . . . , tn)) =
⋃
i∈[1..n] FV (ti)

FV (lambda s1 . . . sm :f1 . . . fn := e) = (FV (e) \
⋃
k∈[1..n] IV (fk)) ∪ (

⋃
k∈[1..m] FV (sk))

FV (

(e1, . . . , em
|p1=>ce1
· · ·
|pn=>cen)

) = (
⋃
i∈[1..n](FV (cek) \Vpat(pk)))

FV (T) = ∅ where T is a type identifier
FV ([e1, e2]) = FV (e1) ∪ FV (e2)

FV (bool) = ∅
FV (int) = ∅

FV (enum . . .) = ∅
FV (sort . . .) = ∅

FV (named . . .) = ∅
FV (tˆ(e))) = FV (t) ∪ FV (e)

FV (struct(l0 : t0, . . . , ln : tn)) =
⋃
i∈[0..n] FV (ti)

FV (tuple(t0, . . . , tn)) =
⋃
i∈[0..n] FV (ti)

FV ({t0, . . . , tn}) =
⋃
i∈[0..n] FV (ti)

FV (t1 × · · · × tn → t) = FV (t) ∪ (
⋃
i∈[1..n] FV (ti))

where Vpat() is a function that takes a pattern and returns the set of variables it intro-
duces:

Vpat(v) = ∅
Vpat(S) = ∅
Vpat(S v) = {v}

Vpat(p1, p2) = FV (p1) ∪ FV (p2)

Based on these functions we can define the linking rule for a definition “lhs := e;”
the free variables of this definition (FV (lhs := e)) are bound to the top level streams
(inputs, outputs, local streams) while the other are bound locally in the ones (IV (lhs))
are bound to the iterator variables.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

21/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

18
LFD

Another restriction for iterator variables: for a given array definition, all the iterator
variables must be different. This point will be checked by the typechecking rules. For
instance a[i,j][j]:=... is incorrect since the iterator variable j appears twice on the
left-hand side of the definition.

4.2 User namespaces
HLL-30

An HLL model can be organised as a hierarchy of named namespaces that allows to
introduce new types or streams without any risk of name conflicts with another part of
the model.

Such namespaces are introduced in a specific namespaces section; and may contain any
kind of HLL sections including namespaces in this new scope (see syntax in section 2).

An identifier declared in a namespace can be referenced with the path to the namespace
that declares it; this path can be either relative (ex. localBox::drawer24::x) or abso-
lute (ex. ::topBox::drawer42::x). The top level namespace is the one defined by the
HLL file. In a given namespace, all the entities declared locally to this namespace must
have different identifiers (except for the user namespaces that can be opened several
times) and can hide any identifier introduced by an upper one.

A namespace can be defined in several parts, for example:

namespaces:

a_namespace {

...

}

another_namespace {

...

}

...

namespaces:

a_namespace { // the namespace is re-opened

...

}

Since HLL supports implicit declaration of scalar variables, the scoping rules for names-
paces must consider this specificity. In the rules, we distinguish simple identifier and
path, each involving different resolution mechanisms. These rules are:

1. in a given namespace, a simple identifier refers to the closest entity (stream or
type), in the sense of the namespace hierarchy, declared or defined locally or in an
upper level;

2. in a given namespace, a relative path identifier is first looked up locally by searching
from the level it occurs in, if it is not found, the path is then looked up from the
root of the model;

3. a local (to a namespace) definition of a type or contribution to a sort hides the
definition of a type with the same identifier in any level above;

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

22/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

19
LFD

4. a local (to a namespace) declaration or definition of a stream, including the values
of the locally defined enumerations or sorts, hides the declaration of a stream with
the same identifier in any level above;

5. if a simple stream identifier is not declared, defined or used in any visible namespace
but used in an expression, it is implicitly declared in the namespace where it is
used, and visible in the namespaces below;

6. a declared stream can only be defined in the namespace that declares it, if it is
not defined, it will be considered as an implicit input.

5 HLL types semantics

This section defines the type language of HLL.

5.1 Basic types

HLL provides a boolean type bool defined by the set of values {TRUE, FALSE}. The set
of boolean types contains a unique item: Tbool = {bool}.
The type int contains all the positive and negative integer values (Z); in practice, for a
given model this set is bounded (see Section 11).

An integer type in HLL may be constrained by a range or an implementation:

• ranges are specified by a pair of constant values [a, b] (with a ≤ b),

• implementations specify a size in bits and wether negative values are representable.
In terms of the set of representable integers, we have:

int signed n =
([
−2n−1, 2n−1 − 1

])
with n > 0

int unsigned n = ([0, 2n − 1]) with n ≥ 0

The set Ti of the integer types is defined by:

Ti = {int} ∪
⋃
a≤b

{int([a, b])} ∪
⋃
n>0

{int(signed n)} ∪
⋃
n≥0

{int(unsigned n)}

In the sequel, we will denote by int an unconstrained integer type, int(R) an integer
type constrained by a range and int(I) an integer constrained by an implementation.

Note: Implementation and range information is used to bound the arithmetics of the
model. At the typechecking level, the information on ranges is not relevant; two integer
types are equivalent regardless of the specified range or representation (see Definition 7).

5.2 Enumerated types

The enumerated types are defined by:

Tenum = {enum(T ; l1, . . . , ln) |n > 0 ∧ (∀i ∈ [1..n], li ∈ L) ∧ (∀i, j ∈ [1..n], i 6= j ⇒ li 6= lj)}

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

23/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

20
LFD

where L is the set of possible labels for enumerated values and T is the name of the
enumerated type.

5.3 Sorts

A sort type represents a set of values as an enumerated type does. The difference is in
the way the list of value is built; in the case of sorts this list is specified by giving both
the values it introduces and the set of subsorts. For a given sort the corresponding set
of value contains the values introduced for this sort and all the values of the subsorts.
We first introduce T 0

sort that represents the set of sort types as they appear in the source:

T 0
sort =

{
sort(S;L; Sub) | L ⊆ LS ∧ (∀S′ ∈ Sub, sort(S′; . . .) ∈ T 0

sort)
}

where LS is the set of possible labels for sort values. Intuitively, sort(S;L; Sub) means
sort S contains all the labels in L and all the labels of the sorts present in Sub; it gather
all the contribution to S that are present in the considered HLL model. The order
between sort is based on the declared order and not on the underlying order induced
by the sort as set of label interpretation. This definition is well founded because cyclic
type definitions are forbidden (see restriction in 7.3).

Let vs be the smallest partial order on T 0
sort such that:

∀S′ ∈ Sub, sort(S′;L′; Sub′) vs sort(S;L; Sub)

Let (Tsort,ts,vs) be the smallest upper semilattice containing T 0
sort. The following prop-

erties hold:
Tsort = T 0

sort ∪ {τ1 ts τ2 | τ1 ∈ Tsort ∧ τ2 ∈ Tsort}

∀σ, σ′ ∈ Tsort σ vs σ′ ⇔ σ′ = σ ts σ′

5.4 Tuples and structures

The tuple types are defined by:

Ttuple = {tuple(τ0, . . . , τn) |n ≥ 0 ∧ ∀i ∈ [0..n], τi ∈ Te}

The structure types are defined by:

Tstruct =

{
struct(l0 : τ0, . . . , ln : τn) |n ≥ 0

∧(∀i ∈ [0..n], li ∈ L ∧ τi ∈ Te)
∧(∀i, j ∈ [0..n], i 6= j ⇒ li 6= lj)

}

Note about tuples and structures: Tuples and structures are very similar (still
incompatible); they only differ in the way one accesses the fields. In the case of a tuple,
this access is positional (starting at index 0) and in the case of a structure, the access
is through the name of the field. In both cases, the order of the fields matters.

5.5 Arrays

Arrays are mappings that associate a stream to each tuple of integer values in the
definition domain. The array types are defined by:

Tarray = {τˆ(d1, . . . , dn) | τ ∈ Te ∧ n > 0 ∧ ∀i ∈ [1..n] di ≥ 0}

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

24/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

21
LFD

In the array type τˆ(d1, . . . , dn), τ is the type of the array elements, and the array has
n dimensions such that dimension i has size di in the sense that the possible indices at
that dimension is restricted by di.

The array indices start at 0. Thus if a is an array of type τˆ(d1, . . . , dn), it can be
accessed by a tuple of indices [i1, . . . , in] such that ∀k ∈ [1..n], ik ∈ [0..dk − 1].

5.6 Function types

Functions are mappings that associate a stream to each tuple of scalar values in the
definition domains.

The function types are defined by:

Tfun = {τ1 × · · · × τn → τ |n > 0 ∧ τ ∈ Te ∧ ∀i ∈ [1..n] τi ∈ Ts}

Where τ1×· · ·×τn → τ is the type of a function that takes n arguments of type τ1 . . . τn
and produces a value of type τ .

5.7 Named types

A type can be named by associating a type name with a type expression in the types

section.

The named types are defined by:

Tnamed = {named(l, τ) | τ ∈ Te ∧ l ∈ L}

A name acts as an alias except when it designate an enum or a sort; in that last case,
the name introduces a new type.

5.8 Collection types

Collection types are used to represent the type information of a definition’s right-hand
side. A special type and a special assignability relation must be defined since the same
right-hand side can be used to define either a tuple, a structure or an array depending
on the declared type of the left-hand side.

To define this overloading, we introduce a special collection type:

Tcollection = {collection(τ0, . . . , τn) |n ≥ 0 ∧ ∀i τi ∈ Tcollection ∪ Te}

5.9 HLL types

The set of all HLL types is defined by:

Te = Ts ∪ Ttuple ∪ Tstruct ∪ Tarray ∪ Tnamed ∪ Tfun

Where Ts is the set of scalar types defined by:

Ts = Tbool ∪ Ti ∪ Tenum ∪ Tsort

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

25/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

22
LFD

5.10 Definitions on types

We introduce here some definitions on types that we need to specify the type checking
rules.

Definition 3 (Sized types). A type is sized if all the integer components appearing in its
definition are specified with a range or size. The predicate Sized defined below formalises
this definition:

Sized(bool) = >
Sized(int) = ⊥ see note below.

Sized(int(R)) = >
Sized(int(I)) = >

Sized(enum. . .) = >
Sized(sort . . .) = >

Sized(named(, τ)) = Sized(τ)
Sized(τˆ()) = Sized(τ)

Sized(struct(l0 : τ0, . . . , ln : τn)) = ∀i ∈ [0..n]Sized(τi)
Sized(tuple(τ0, . . . , τn)) = ∀i ∈ [0..n]Sized(τi)

Sized(collection(τ0, . . . , τn)) = ∀i ∈ [0..n]Sized(τi)
Sized(τ1 × · · · × τn → τ) = Sized(τ)

where > (resp. ⊥) represents the logical value true (resp. false) that the predicate takes.

Note about tool behaviour regarding sized types: The previous definition ba-
sically says that this predicate is true when applied to a type that have a specified size
for all the integers it contains (given as a bit representation or as a range of values). It
is possible for a tool that takes HLL as an input language to provide a way (option or
pragma) to specify a default integer size to be used each time such a size is needed and
not present in the model. When such a feature is used the predicate Sized is true for
every type.

Definition 4 (Scalar types). We define a predicate over types that is true (>) when the
type is scalar. It is defined recursively by:

Scalar(bool) = >
Scalar(int) = >

Scalar(enum. . .) = >
Scalar(sort . . .) = >

Scalar(named(, τ)) = Scalar(τ)
Scalar(ˆ()) = ⊥

Scalar(struct(l0 : τ0, . . . , ln : τn)) = ⊥
Scalar(tuple(τ0, . . . , τn)) = ⊥

Scalar(collection(τ0, . . . , τn)) = ⊥
Scalar(τ1 × · · · × τn → τ) = ⊥

Definition 5 (Type without functional type). We define a predicate over types that is

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

26/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

23
LFD

true (>) when the type does not contain a function type. It is defined recursively by:

noFunc(bool) = >
noFunc(int) = >

noFunc(enum. . .) = >
noFunc(sort . . .) = >

noFunc(named(, τ)) = noFunc(τ)
noFunc(τˆ()) = noFunc(τ)

noFunc(τ1 × · · · × τn → τ) = ⊥
noFunc(struct(l0 : τ0, . . . , ln : τn)) = ∀i ∈ [0..n],noFunc(τi)

noFunc(tuple(τ0, . . . , τn)) = ∀i ∈ [0..n],noFunc(τi)
noFunc(collection(τ0, . . . , τn)) = ∀i ∈ [0..n],noFunc(τi)

This predicate, that characterises the presence of a function type in a given HLL type,
is used to restrict the inputs/outputs of a model.

Definition 6 (Type without empty sorts). We define a predicate over types that is true
(>) when the type does not contain a function type. It is defined recursively by:

noEmptySort(bool) = >
noEmptySort(int) = >

noEmptySort(enum. . .) = >
noEmptySort(sort(S;L; Sub)) = L 6= ∅ ∨ ∃S′ ∈ Sub,noEmptySort(S′)

noEmptySort(named(, τ)) = noEmptySort(τ)
noEmptySort(τˆ()) = noEmptySort(τ)

noEmptySort(τ1 × · · · × τn → τ) = noEmptySort(τ) ∧ ∀i ∈ [1..n],noEmptySort(τi)
noEmptySort(struct(l0 : τ0, . . . , ln : τn)) = ∀i ∈ [0..n],noEmptySort(τi)

noEmptySort(tuple(τ0, . . . , τn)) = ∀i ∈ [0..n],noEmptySort(τi)
noEmptySort(collection(τ0, . . . , τn)) = ∀i ∈ [0..n],noEmptySort(τi)

This predicate characterises the presence of an empty sort type in a given HLL type,
it is used to restrict the inputs/memories of a model that must all be of an inhabited
type.

Definition 7 (Compatibility). The compatibility between two types τ and τ ′, denoted
τ ≡ τ ′, is the equivalence relation (reflexive, transitive and symmetric) inductively de-
fined by:

int ≡ int(R) ∀R
int ≡ int(I) ∀I

tuple(τ0, . . . , τn) ≡ tuple(τ ′0, . . . , τ
′
n) iff ∀i ∈ [0..n] τi ≡ τ ′i

struct(l0 : τ0, . . . , ln : τn) ≡ struct(l0 : τ ′0, . . . , ln : τ ′n) iff ∀i ∈ [0..n] τi ≡ τ ′i
τˆ(d1, . . . , dn) ≡ τ ′ˆ(d1, . . . , dn) iff τ ≡ τ ′

τ1 × · · · × τn → τ ≡ τ ′1 × · · · × τ ′n → τ ′ iff ∀i ∈ [1..n]τi ≡ τ ′i ∧ τ ≡ τ ′
collection(τ0, . . . , τn) ≡ collection(τ ′0, . . . , τ

′
n) iff ∀i τi ≡ τ ′i

enum(T ; . . .) ≡ enum(T ′; . . .) iff T = T ′

sort(S; . . . ; . . .) ≡ sort(S′; . . . ; . . .)
named(l, τ) ≡ τ

Note that the last case distinguishes enumerations and sorts from other named types;
two enumerated type expressions are compatible if they refer to the same enumeration
name and two sorts are always compatible (the type compatibility relation does need to
look inside enumeration or sort definitions).

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

27/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

24
LFD

Definition 8 (Union). The union on sorts extends to types as specified by the following
definition:

τ ts τ = τ
σ ts σ′ = defined by definition of Tsort

tuple(τ0, . . . , τn) ts tuple(τ ′0, . . . , τ
′
n) = tuple(τ0 ts τ ′0, . . . , τn ts τ ′n)

struct(l0 : τ0, . . . , ln : τn) ts struct(l0 : τ ′0, . . . , ln : τ ′n) = struct(l0 : τ0 ts τ ′0, . . . , ln : τ ts τ ′n)
collection(τ0, . . . , τn) ts collection(τ ′0, . . . , τ

′
n) = collection(τ0 ts τ ′0, . . . , τn ts τ ′n)

τˆ(d1, . . . , dn) ts τ ′ˆ(d1, . . . , dn) = τ ts τ ′ˆ(d1, . . . , dn)
(τ1 × · · · × τn → τ) ts (τ1 × · · · × τn → τ ′) = τ1 × · · · × τn → (τ ts τ ′)

Where σ and σ′ are sorts.

All the cases that do not match one of the cases given in this list are undefined.

Definition 9 (Subsorting). The subsorting relation vs is the partial order (reflexive,
transitive, antisymmetric) of the upper semilattice (Tsort,ts,vs) defined in 5.3.

Definition 10 (Subtyping). The subtyping relation between two types τ and τ ′, denoted
τ � τ ′, is the partial order (reflexive, transitive and antisymmetric) inductively defined
by:

σ � σ′ iff σ vs σ′
named(l, τ) � τ ′ iff τ � τ ′

τ � named(l, τ ′) iff τ � τ ′
tuple(τ0, . . . , τn) � tuple(τ ′0, . . . , τ

′
n) iff ∀i τi � τ ′i

collection(τ0, . . . , τn) � collection(τ ′0, . . . , τ
′
n) iff ∀i τi � τ ′i

struct(l0 : τ0, . . . , ln : τn) � struct(l0 : τ ′0, . . . , ln : τ ′n) iff ∀i τi � τ ′i
τˆ(d1, . . . , dn) � τ ′ˆ(d1, . . . , dn) iff τ � τ ′

τ1 × · · · × τn → τ � τ ′1 × · · · × τ ′n → τ ′ iff

{
∀i ∈ [1..n] τi � τ ′i ∧ τ ′i � τi
∧ τ � τ ′

τ1 ts τ2 � τ iff τ1 � τ ∧ τ2 � τ

where σ and σ′ represent sorts.

The informal understanding of this relation is that, if τ � τ ′, then any value of type τ
can be used where a value of type τ ′ is required (substitutability).

The following assignability relation defines the type correctness for an HLL definition
where the first type represents the declared left-hand side type and the second the
right-hand side one.

Definition 11 (Assignability). The assignability relation between two types τ and τ ′,
denoted τ�τ ′ (pronounce τ ′ is assignable to τ) is the pre-order (reflexive and transitive)
inductively defined by:

τ � τ ′ iff τ ′ � τ
tuple(τ0, . . . , τn) � collection(τ ′0, . . . , τ

′
n) iff ∀i τi � τ ′i

struct(l0 : τ0, . . . , ln : τn) � collection(τ ′0, . . . , τ
′
n) iff ∀i τi � τ ′i

τˆ(d) � collection(τ0, . . . , τd−1) iff ∀i ∈ [0..d− 1] τ � τi
τˆ(d1, . . . , dn)(n>1) � collection(τ0, . . . , τd1−1) iff ∀i ∈ [0..d1 − 1] τˆ(d2, . . . , dn) � τi

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

28/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

25
LFD

6 Type checking rules

This section defines the type checking rules of HLL. An HLL model is considered as
correct only if it follows the typing discipline described in this section.

Before presenting the rules, we introduce some preliminary notions used in the type
system specification.

6.1 Preliminary definitions

A static flag qualifies a stream expression, it distinguishes expressions that can be com-
puted statically by considering constant definitions only, from those that can be com-
puted statically by considering both constants and stream definitions and those that
are not static at all. In HLL, any expression represent a stream, some are used in a
position that requires the ability to evaluate them once and for all; it is then specified in
the corresponding typing rule the additional constraints on static flags4. The definition
below introduces a notation for these flags.

Definition 12 (static flag). A static flag b can take three possible values (b ∈ {0, 1, 2})
that indicates if an expression is static (1), if it is a pure constant and literal5 values
combination (2) and if it is not static (0). b1 u b2 combines two static flags in the
following way:

b1 b2 b1 u b2
0 0

0 0
1 1 1
1 2 1
2 1 1
2 2 2

Static flags are ordered by the relation v such that: 0 v 1 v 2.

Note about the separation of static and constants: Intuitively a constant flag
(2) represents a notion that is stronger than static since it means “composed of streams
defined in constants sections only”. We distinguish between static and constant expres-
sions in order to allow the type system to detect incorrectly sized arrays. In order to
keep the definition of the type system simple, sizes of arrays must be specified using con-
stants. Static expressions are however allowed in other constructs, such as population
counts.

Definition 13 (Typing environments). A typing environment H is a partial mapping
that associates pairs (type, static flag) to identifiers; Dom(H) represents the domain of
H, i.e. the set of identifiers mapped by H; when x ∈ Dom(H), H(x) represents the type
and flags associated to x in H if any and bool otherwise:

H(x) =

{
τ, b if (x : τ, b) ∈ H
bool, 0 otherwise.

An environment can be given by extension as the set of pairs that defines the mapping
(e.g. {x : bool, 0, y : int, 2}); the empty environment is denoted {}.

4in a typing rule without explicit constraints on static flags, the involved expressions represent any
stream of the specified type.

5a literal is a syntactical entity belonging either to <int-literal> or <bool-literal>.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

29/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

26
LFD

Definition 14 (Environment merging). Given two environments H1 and H2 the merging
H1 ⊕H2, defined if Dom(H1) ∩Dom(H2) = ∅, represents an environment such that:

Dom(H1 ⊕H2) = Dom(H1) ∪Dom(H2)

∀x ∈ Dom(H1 ⊕H2), (H1 ⊕H2)(x) =

{
H1(x) if x ∈ Dom(H1)
H2(x) if x ∈ Dom(H2)

Definition 15 (Environment hiding). Given two environments H1 and H2 we can build
an environment H1;H2, defined by:

Dom(H1;H2) = Dom(H1) ∪Dom(H2)

∀x ∈ Dom(H1;H2), (H1;H2)(x) =

{
H1(x) if x ∈ Dom(H1)
H2(x) otherwise

Definition 16 (Judgements). To express the typechecking rules of an HLL system, the
following judgements are introduced:

1. H
dcl

` decl : H ′ states that the declaration list decl is well typed in the typing
environment H and defines the typing environment H ′;

2. H
exp

` expr : (τ, b) states that the expression expr has type τ and static flag b when
typed in the environment H;

3. H
lhs

` lhs : (τ, b,H ′) states that the left-hand side lhs is well typed in the environ-
ment H, has type τ , static flag b and defines the environment H ′ that contains the
iterator variables type declarations (IV (lhs));

4. H
cst

` cst : H ′ states that the constant declaration list cst is well typed in the
environment H and defines the environment H ′;

5. U,H
def

` def : H ′ states that the definition def is well typed and defines the en-
vironment H ′ in the typing environment H and the set of undeclared variables
U ;

6. H
typ

` t states that the type t is legal (e.g. array bounds are static, structures do
not have name conflicts in the names of their fields, etc. . .),

7. H
tdef

` typedef : H ′, D states that the type definition typedef is well defined in the
environment H and defines the typing environment H ′ (i.e. introduction in the
typing environment of the enumeration and sort values); D maps type identifiers
with the corresponding type expression; type equivalence must be understood modulo
this mapping;

8. H
pat

` pattern : (τ,H ′) states that the switch case pattern is well typed in the typing
environment H, that it matches values of type τ and defines the typing environment
H ′.

9. H
D
` D : (τ, b) state that the domain D is well typed in the typing environment H,

that the values it covers has type τ and the set of values it contains has static flag
b.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

30/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

27
LFD

6.2 Typing rules
HLL-7

An HLL model is considered as correct with respect to the typing discipline if there
exists a proof tree whose root is the model itself, using the type rules defined in this
section.

6.2.1 Typing expressions

H(x) = (τ, b)

H
exp

` x : (τ, b)
(context)

H
exp

` e : (τ, b) τ � τ ′

H
exp

` e : (τ ′, b)
(type subsumption)

This subsumption rule specifies that an expression of type τ can always safely be con-
sidered as an expression of type τ ′ provided that τ is a subtype of τ ′ (τ � τ ′).

H
exp

` e : (τ, b) b′ v b

H
exp

` e : (τ, b′)
(static subsumption)

This subsumption rule specifies that a static expression can, if needed, be considered as
a non-static expression or that a constant expression can be considered either as static
or non-static.

H
exp

` TRUE : (bool, 2)
(bool literal 1)

H
exp

` FALSE : (bool, 2)
(bool literal 2)

H
exp

` lint : (int, 2)
(int literal)

where lint represents an integer literal (token <int-literal> in the EBNF).

H
exp

` e : (bool, b) H
exp

` e′ : (bool, b′)

H
exp

` e ◦ e′ : (bool, b u b′)
(bool binop)

where ◦ ∈ {#, &, #!, ->, <-> }

H
exp

` e : (int, b) H
exp

` e′ : (int, b′)

H
exp

` e ◦ e′ : (int, b u b′)
(int binop)

where ◦ ∈ { +, -, *, %, ^, /, />, /< }

H
exp

` e : (int, b) H
exp

` e′ : (int, b′) 1 v b′

H
exp

` e ◦ e′ : (int, b u b′)
(int shift)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

31/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

28
LFD

where ◦ ∈ { >>, << }

H
exp

` e : (int, b) H
exp

` e′ : (int, b′)

H
exp

` op(e, e′) : (int, b u b′)
(int bitwise)

where op ∈ { $and, $or, $xor}

H
exp

` e : (τ, b) H
exp

` e′ : (τ, b′) noFunc(τ)

H
exp

` e ◦ e′ : (bool, b u b′)
(equality relational binop)

where ◦ ∈ { =, ==, !=, <> }
Note that comparison of function is not allowed.

H
exp

` e : (int, b) H
exp

` e′ : (int, b′)

H
exp

` e ◦ e′ : (bool, b u b′)
(order relational binop)

where ◦ ∈ { >, >=, <, <= }

H
exp

` e : (bool, b)

H
exp

` ∼ e : (bool, b)
(bool negation)

H
exp

` e : (int, b)

H
exp

` $not(e) : (int, b)
(int bitwise negation)

H
exp

` e : (int, b)

H
exp

` −e : (int, b)
(int negation)

H
exp

` e : (int, b) H
exp

` e′ : (int, b′)

H
exp

` op(e, e′) : (int, b u b′)
(min-max)

where op ∈ { $min, $max}

H
exp

` e : (int, b)

H
exp

` $abs(e) : (int, b)
(abs)

H
exp

` e : (τ,)

H
exp

` X(e) : (τ, 0)
(next)

H
exp

` e : (τ,)

H
exp

` pre(e) : (τ, 0)
(pre 1)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

32/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

29
LFD

H
exp

` e : (τe,) τe � τ Sized(τ) noEmptySort(τ)

H
exp

` pre < τ > (e) : (τ, 0)
(pre 2)

H
exp

` e : (τ,) H
exp

` i : (τ,)

H
exp

` pre(e, i) : (τ, 0)
(pre 3)

H
exp

` e : (τe,) H
exp

` i : (τi,) H
typ

` τ
τe � τ τi � τ Sized(τ) noEmptySort(τ)

H
exp

` pre < τ > (e, i) : (τ, 0)
(pre 4)

H
exp

` e : (τ,)

H
exp

` I(e) : (τ, 0)
(initial)

Note that this rule is only used to type check constraints for which the initial modifier
may be added.

H
exp

` e : (int,) H
typ

` τ τ ≡ int

H
exp

` cast < τ > (e) : (int, 0)
(cast)

H
exp

` e : (boolˆ(n),) H
exp

` p : (int, 2) p ≤ n

H
exp

` op(e, p) : (int, 0)
(bin2)

where op ∈ { bin2s, bin2u }

H
exp

` e : (int,) H
exp

` n : (int, 2)

H
exp

` op(e, n) : (boolˆ(n), 0)
(2bin)

where op ∈ { s2bin, u2bin }

H
exp

` e : (tuple(τ0, . . . , τn),) i ∈ [0..n]

H
exp

` e.i : (τi, 0)
(tuple access)

H
exp

` e : (struct(l0 : τ0, . . . , ln : τn),) i ∈ [0..n]

H
exp

` e.li : (τi, 0)
(struct access)

H
exp

` e : (τˆ(d1, . . . , dn),) ∀i ∈ [1..n], H
exp

` ei : (int,)

H
exp

` e[e1 . . . en] : (τ, 0)
(array access)

H
exp

` e : (τ1 × · · · × τn → τ,) ∀i ∈ [1..n], H
exp

` ei : (τi,)

H
exp

` e(e1 . . . en) : (τ, 0)
(function application)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

33/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

30
LFD

H
exp

` c : (bool, bc) H
exp

` e : (τ, b) H
exp

` e′ : (τ, b′)

H
exp

` if c then e else e′ : (τ, bc u b u b′)
(if-then-else)

∀j ∈ [1..m]e′j : τ ′

∀i ∈ [1..n], (H1
i ⊕ . . .⊕Hm

i);H
exp

` ei : (τi,) ∀i ∈ [1..n], j ∈ [1..m], H
pat

` pji : (τ ji , H
j
i)

∀i ∈ [1..n], j ∈ [1..m], τ ji � τi

H
exp

`

(e1, . . . , en
|p11, . . . , p1n => e′1
|p21, . . . , p2n => e′2
| · · ·
|pm1 , . . . , pmn => e′m)

: (τ ′, 0)

(case)

Note that this rule requires to have τ ji � τi while the compatibility (see section 7) is
enough and in presence of the subsumption rule, it is sometimes possible to satisfy this
relation using type subsumption rule in order to weaken the types of the ei. However the
subtyping relation implies the compatibility and each time it is violated, it corresponds
to trivially dead cases that can be captured during typechecking.

H
exp

` v : (τ, 2) Scalar(τ)

H
pat

` v : (τ, {})
(pattern value)

H
typ

` τ Scalar(τ)

H
pat

` : (τ, {})
(pattern any)

H
typ

` T T ≡ sort . . .

H
pat

` T x : (x : T, 0, {T})
(pattern sort)

H
exp

` e : (τ,) H
exp

` e a1 . . . an : (τ ′′,) H
exp

` e′ : (τ ′,) τ ′′ � τ ′

H
exp

` (e with a1 . . . an := e′) : (τ, 0)
(with)

∀i ∈ [1..n], H
exp

` ei : (bool,) H
exp

` N : (int, 1)

H
exp

` population count {eq,lt,gt}(e1, . . . , en, N) : (bool, 0)
(population count)

H
exp

` e : (τ,) H
D
` D : (τ,) τ ≡ sort · · · ∨ τ ≡ int

H
exp

` e:D : (bool, 0)
(elementhood)

Note elementhood rule rejects the case where the type is an enumeration because in
this case, the type system does the check and this predicate is statically true.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

34/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

31
LFD

∀i ∈ [1..n], H
D
` Di : (τi, 1) {vi : τi, 1 | i ∈ [1..n]};H

exp

` e : (bool,)
∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj

H
exp

` QTF v1:D1, . . . , vn:Dn e : (bool, 0)
(bool quantifier)

where QTF ∈ {SOME, ALL, CONJ, DISJ}

∀i ∈ [1..n], H
D
` Di : (τi, 1) {vi : τi, 1 | i ∈ [1..n]};H

exp

` e : (int,)
∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj

H
exp

` QTF v1:D1, . . . , vn:Dn e : (int, 0)
(int quantifier)

where QTF ∈ {SUM, PROD, $min, $max}

m ≥ n ∀j ∈ [1..m], H
typ

` sj ∀i ∈ [1..n], H
λpar

` fi : si : Hi

H1 ⊕ . . .⊕Hn;H
exp

` e : (τ,) ∃τ ′, (τ ′)(s1...sm) ≡ (τ)
(s1...sn)

H1 ⊕ . . .⊕Hn;H
exp

` lambda s1 . . . sm : f1 . . . fn := e : ((τ)
(s1...sn), 0)

(lambda)

Where the operation (τ)
(s1...sn) is inductively defined by:

(τ)
([e1,...,en]s2...sn)=(τ)

(s2...sn)ˆ(e1, . . . , en)

(τ)
((t1,...,tn)s2...sn)=t1 × . . .× tn → (τ)

(s2...sn)

(τ)
()

=τ

H
typ

` (t1, . . . , tn) ∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj

H
λpar

` (v1, . . . , vn) : (t1, . . . , tn) : {i ∈ [1..n] | vi : ti, 0}
(lambda par function)

H
typ

` [e1, . . . , en] ∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj

H
λpar

` [v1, . . . , vn] : [e1, . . . , en] : {i ∈ [1..n] | vi : int, 1}
(lambda par array)

H
exp

` e1 : (int, b1) H
exp

` e2 : (int, b2)

H
D
` [e1, e2] : (int, b1 u b2)

(domain range)

H
typ

` T T ≡ enum· · · ∨ T ≡ sort · · · ∨ T ≡ bool

H
D
` T : (T, 2)

(domain enum type)

∀i ∈ [1..n], H
exp

` ei : (τi,)

H
exp

` {e1, . . . , en} : (collection(τ1, . . . , τn), 0)
(collection)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

35/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

32
LFD

6.2.2 Typing definitions

H(x) = τ, b

H
lhs

` x : (τ, b, {})
(lhs-var)

H
lhs

` a : (τˆ(d1, . . . , dn), , Ha)
∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj ∀i ∈ [1..n], vi /∈ Dom(Ha)

H
lhs

` a[v1, . . . , vn] : (τ, , {vi : int, 1 | i ∈ [1..n]} ⊕Ha)

(lhs-iterator)

H
lhs

` f : (τ1 × · · · × τn → τ, ,Hf)
∀i, j ∈ [1..n], i 6= j ⇒ vi 6= vj ∀i ∈ [1..n], vi /∈ Dom(Hf)

H
lhs

` f(v1, . . . , vn) : (τ, , {vi : τi, 1 | i ∈ [1..n]} ⊕Hf)

(lhs-parameters)

H
lhs

` v : (τ, b,Hv) Hv;H
exp

` e : (τ ′, b) τ � τ ′

U,H
def

` v := e : {}
(c-definition)

v ∈ U H
exp

` e : (τ, b) Scalar(τ)

U,H
def

` v := e : {v : τ, 1 u b}
(c-definition-decl)

The three rules below are about memory definitions and all require the declared type of
a memory to be sized and to not contain an empty sort type.

H
lhs

` v : (τ, ,Hv) Hv;H
exp

` e : (τ ′,) τ � τ ′ Sized(τ) noEmptySort(τ)

U,H
def

` I(v) := e : {}
(i-definition)

H
lhs

` v : (τ, ,Hv) Hv;H
exp

` e : (τ ′,) τ � τ ′ Sized(τ) noEmptySort(τ)

U,H
def

` X(v) := e : {}
(x-definition)

H
lhs

` v : (τ, ,Hv) H
exp

` e1 : (τ1,) H
exp

` e2 : (τ2,)
τ � τ1 τ � τ2 Sized(τ) noEmptySort(τ)

U,H
def

` v := e1, e2 : {}
(l-definition)

H
exp

` e : (τ, 2)

H
cst

` τ c := e : {c : τ, 2}
(constant)

U,H
def

` def 1 : H1 U,H
def

` def 2 : H2

U,H
def

` def 1 def 2 : H1 ⊕H2

(definitions)

Note that in this rule, def 1 and def 2 represent several definitions. The rule makes
states that a group of definitions typecheck correctly if it can be cut in two sub-groups
(def 1 and def 2) that typecheck correctly in the same environment.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

36/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

33
LFD

6.2.3 Typing declarations

H
typ

` τ b v 1

H
dcl

` τ v : {v : τ, b}
(simple declaration)

b v 1

H
dcl

` v : {v : bool, b}
(implicit simple declaration)

H
typ

` τ ∀i ∈ [1..n], H
dcl

` τ vi : Hi

H
dcl

` τ v1, . . . , vn : H1 ⊕ . . .⊕Hn

(declaration)

∀i ∈ [1..n], H
dcl

` vi : Hi

H
dcl

` v1, . . . , vn : H1 ⊕ . . .⊕Hn

(implicit declaration)

This rule specifies the declaration of a stream. The constraint on the static flag im-
plies that a stream cannot participate (directly or not) to an expression that would be
considered as a constant combination. This is why 2 is not a possible value.

In the following rules, <param dim> represents a list of formal parameter types or array
dimensions as allowed by the non-terminal symbol <name> in the grammar.

H
dcl

` τˆ(e1, . . . , en) a <param dim> : {a : τ ′, 0}

H
dcl

` τ a<param dim>[e1, . . . , en] : {a : τ ′, 0}
(array declaration)

H
dcl

` (τ1 × · · · × τn → τ) f <param dim> : {f : τ ′, 0}

H
dcl

` τ f<param dim>(e1, . . . , en) : {f : τ ′, 0}
(function declaration)

H
dcl

` decl1 : H1 H
dcl

` decl2 : H2

H
dcl

` decl1 decl2 : H1 ⊕H2

(declarations)

6.2.4 Typing types

∀i ∈ [0..n], H
typ

` τi

H
typ

` tuple{τ0, . . . , τn}
(tuple)

∀i ∈ [1..n], H
typ

` τi ∀i, j ∈ [1..n], i 6= j ⇒ li 6= lj

H
typ

` struct{l0 : τ0, . . . , ln : τn}
(structure)

H
typ

` τ H
typ

` [e1, . . . , en]

H
typ

` τˆ(e1, . . . , en)

(array)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

37/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

34
LFD

∀i ∈ [1..n], H
exp

` ei : (int, 2)

H
typ

` [e1, . . . , en]

(dimensions)

H
typ

` τ H
typ

` (τ1, . . . , τn)

H
typ

` τ1 × · · · × τn → τ

(function)

∀i ∈ [1..n], (H
typ

` τi ∧ Scalar(τi))

H
typ

` (τ1, . . . , τn)

(parameters)

H
typ

` bool

(bool)

H
typ

` int

(int)

H
exp

` e1 : (int, 2) H
exp

` e2 : (int, 2) e1 ≤ e2

H
typ

` int[e1, e2]

(int range)

H
exp

` e : (int, 2) e > 0

H
typ

` int signed e

(int signed)

H
exp

` e : (int, 2) e ≥ 0

H
typ

` int unsigned e

(int unsigned)

6.2.5 Typing type definitions

H
tdef

` enum{l1, . . . , ln} t : {l1 : t, 2, . . . , ln : t, 2}, {t 7→ enum(t; l1, . . . , ln)}
(enum definition)

∀i ∈ [1..n],
(
li ∈ L ∧ ∀j ∈ [1..n], i 6= j ⇒ li 6= lj

)
H

tdef

` sort{l1, . . . , ln} < t : {l1 : t, 2, . . . , ln : t, 2}, {t 7→ sort(t;L; . . .)}
(sort contribution 1)

∀i ∈ [1..n], Si ≡ sort . . . ∧ Si ∈ Sub

H
tdef

` sort S1, . . . , Sn < t : {}, {t 7→ sort(t; . . . ; Sub)}
(sort contribution 2)

H
typ

` τ

H
tdef

` τ t1, . . . , tp : {}, {t1 7→ τ, . . . , tp 7→ τ}
(non-enum definition)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

38/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

35
LFD

H
dcl

` τˆ(e1, . . . , en) t<param dim> : {}{t 7→ τ ′}

H
tdef

` τ t<param dim>[e1, . . . , en] : {}, {t 7→ τ ′}
(array-type definition)

H
dcl

` t1 × · · · × tn → τ t<param dim> : {}{t 7→ τ ′}

H
tdef

` τ t<param dim>(t1, . . . , tn) : {}, {t 7→ τ ′}
(function-type definition)

H
tdef

` tdef 1 : H1, D1 H
tdef

` tdef 2 : H2, D2

H
tdef

` tdef 1 tdef 2 : H1 ⊕H2, D1 ⊕D2

(type definitions)

6.2.6 Typing the entire model

∀cst ∈ Constants(M), HConstants

cst

` cst : Hcst

∀tdef ∈ Types(M), HConstants

tdef

` tdef : Htdef , D

∀inpt ∈ Inputs(M),
(
HConstants

dcl

` inpt : Hinpt

with Sized(Hinpt(inpt)) ∧ noFunc(Hinpt(inpt)) ∧ noEmptySort(Hinpt(inpt))
)

∀dcl ∈ Declarations(M), HConstants

dcl

` dcl : Hdcl

∀def ∈ Definitions(M), U,H
def

` def : Hdef

∀cstr ∈ Constraints(M), H
exp

` cstr : (bool,)

∀po ∈ Proof obligations(M), H
exp

` po : (bool,)

∀out ∈ Outputs(M), H
exp

` out : (τ,) with noFunc(τ)
where HConstants = ⊕cst∈Constants(M)Hcst

and H = HConstants ⊕ (
⊕

tdef∈Types(M)Htdef)⊕ (
⊕

inpt∈Inputs(M)Hinpt)

⊕(
⊕

dcl∈Declarations Hdcl)⊕ (
⊕

def∈Definitions(M)Hdef)

and U = Dom((
⊕

cstHcst))⊕ (
⊕

inptHinpt)⊕ (
⊕

dclHdcl)

model M is well typed
(system)

7 Additional static checks

This section specifies checks that are neither covered by the grammar nor by the type
checking.

Definition 17 (Definition forms). An item of the definitions section can have one
of the following forms:

name syntactic form contribution to the
stream definition

combinatorial a := <rhs> initial and next
initial I (a) := <rhs> initial
next X (a) := <rhs> next
memory a := <rhs>, <rhs> initial and next

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

39/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

36
LFD

A stream that is used in an expression but never appears on the left-hand side of a
definition (neither initial nor next) is considered as an input.

7.1 Partial stream definition
HLL-8

Restriction 1 (partial definition). A stream that has an initial definition or that is
declared as initial in the inputs section must have a next definition.

Note that a stream that has a next definition may lack an initial one.

7.2 Unicity of stream definitions
HLL-10

Restriction 2 (unicity of the definition). A stream can have, at most, one initial defini-
tion and one next definition. i.e. a stream can neither have two definitions contributing
to its initial value specification nor two definitions contributing to its next value specifi-
cation.

Restriction 3 (declared inputs). A stream declared in the inputs section cannot appear
on the left-hand side of a definition, except when it is declared as initial in an input
section, in which case it must have a next definition but no initial definition.

7.3 Named type references and definitions
HLL-11

Restriction 4. All the referenced named types must be defined in the model. A named
type definition cannot reference itself, directly or indirectly, in the type expression (non-
terminal <type> in the EBNF) that defines it.

7.4 Scoping rules (or namespaces)
HLL-12

Restriction 5 (conflicts in the stream namespace). In the top level namespace of
streams (see Section 4) a given identifier represents a unique stream. As a consequence:

• an identifier v can be declared only once;

• an enumeration or sort value v can only appear in one enumerated type or one
sort contribution and

• an identifier v used as an enumeration or sort value cannot be declared in any
stream declaration section nor defined in any definition section,

• an identifier used as an iterator variable in an array definition or as a formal
parameter in a function definition must be unique within the definition, for instance
it is not allowed to write a[i, i] := ... or f(x, x) :=....

• an identifier used as a quantification variable must be unique among the variables
introduced by the quantifier, for instance ALL i:[1,2] i:[4,2] ... is not al-
lowed.

Restriction 6 (unicity of named types). A named type can be defined only once.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

40/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

37
LFD

8 Sorts: a hierarchy of enumerations

Sorts are a particular kind of user defined types that can be seen as hierarchized (in the
sense of set inclusion) finite sets of enumerated values. These sets can be understood
as sets of object instances and the subset relation as the inheritance relation (class A
inherits class B also means that the set of all the object instances of class B contains
all the object instances of class A).

8.1 Specifying a sort hierarchy
HLL-28

Sorts are defined in the types sections. a sort definition is composed of several partial
definitions called contributions. All the contributions of a sort appear in the same
namespace and these contributions can be spread all over the model6.

Contributions are of one of the two following forms:

1. those that give the inclusion relation with other defined sorts 7 :

sort hotColor, coldColor < color;

An equivalent formulation is:

sort coldColor < color;

sort hotColor < color;

2. those that specify values introduced by the sort:

sort {red, yellow} < hotColor;

Several disjoint sets of values can be specified for a unique sort, for instance a
different still equivalent form to specify the hotColor values is:

sort {yellow} < hotColor;

sort {red} < hotColor;

3. and those that only introduce a sort:

sort color;

As an example, here is a sort based description of a playing card deck where the values
are all the cards of the deck:

types:

sort Reds, Blacks < Deck;

sort Spades, Clubs < Blacks;

sort Hearts, Diamonds < Reds;

sort {S_A, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_10, S_J, S_Q, S_K} < Spades;

sort {C_A, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9, C_10, C_J, C_Q, C_K} < Clubs;

sort {H_A, H_2, H_3, H_4, H_5, H_6, H_7, H_8, H_9, H_10, H_J, H_Q, H_K} < Hearts;

sort {D_A, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_10, D_J, D_Q, D_K} < Diamonds;

6Note this is a consequence of the syntax that does not allow to specify a path in a type definition
and of the scoping rule 3 of section 4.2.

7To be understood as: the set of color contains both the hotColor and the coldColor.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

41/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

38
LFD

Using the type notation introduced in 5, the defined sorts are:

sort(Blacks; ; Clubs, Spades)
sort(Reds; ; Hearts, Diamonds)
sort(Spades; S A, . . . , S K;)
sort(Clubs; C A, . . . , C K;)
sort(Hearts; H A, . . . , H K;)
sort(Diamonds; D A, . . . , D K;)

8.2 Sorts and the switch-case expression
HLL-29

HLL provides a generalised switch case construct that allows to:

• specify a case based on a tuple of inspected expressions and

• capture several cases in a single line pattern using one of more wildcards in the
pattern tuple and the sort hierarchy.

The specified cases may overlap. They are inspected sequentially in the order they
appear. The selected branch is the first pattern that matches the inspected value.

To illustrate the usage of wildcards and tuples based selection the example below gives
the truth table of the implication:

a_implies_b := (a, b

| false, _ => true

| true, true => true

| true, false => false);

This formulation of the truth table is not sensitive to branch order because they are all
disjoint, thus it makes no use of the sequential evaluation of the switch-case.

Here is a second form where branches overlap and their relative position matters:

a_implies_b := (a, b

| false, _ => true

| _, true => true

| _, _ => false);

The last line matches any couple of values, but its position makes it a global default.
The second line must be understood as follows: in the case the first line does not match
the value the second component’s value is sufficient to define the result.

The hierarchy of the example below illustrates patterns specification with sorts. The
first pattern does not capture the matched value (wildcard _) while the second one
captures it in variable c:

types:

sort hotColor, coldColor < color;

sort {red, yellow, brown} < hotColor;

sort {blue, green, white, black} < coldColor;

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

42/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

39
LFD

inputs:

color aColor;

definitions:

is_dark :=

(aColor

| black => true

| coldColor _ => false /* for all the hotColor but black */

| hotColor c => /* c is a local identifier that captures the value of

aColor but with the more precise type: hotColor. */

(c

| red => true

| yellow => false

| brown => false) /* this case is known to be exhaustive

because c has type hotColor. */

);

outputs:

is_dark;
HLL-31

Restriction 7 (case exhaustivity). In a correct HLL model, all the cases are exhaustive.

Note: Tools implementing HLL have to provide a way to check the exhaustivity of the
list of patterns i.e. check that all the possible values taken by the inspected expressions
are covered.

9 Mapping semantics
HLL-13

Mapping is the general concept behind arrays and functions. Both arrays and functions
share the same semantics in HLL i.e. they are both mappings from a finite domain to
HLL streams. They mainly differ in the way they are declared:

• an array type is defined by the type of its elements and the sizes of its dimensions
(bool A[15,2]);

• a function type is defined by the types of its parameters and the type of the streams
it defines.

They also differ in the syntax of the mapping application:

• an access to a stream defined by an array is called a projection and made using
suare brackets as follows: A[21,42];

• an access to a stream defined by a function is called an application and made using
suare brackets as follows: f(25,a).

There is also a difference in the typing of the accessor that must be an integer for an
array while it is only required to be scalar for a function.

The reason for the presence of these two close concepts in HLL is that HLL aims at
providing constructs that are not only high level but also close to the end user intension.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

43/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

40
LFD

9.1 Arrays

HLL provides a way to define a multidimensional array items as a (possibly recursive)
function of integer indices. For instance the definition a[i] := i defines the content of

the array a by the assignment of i to the ith array cell:

a := { ’a[0]’, ’a[1]’, ’a[2]’, ... };

with

’a[0]’ := 0;

’a[1]’ := 1;

’a[2]’ := 2;

...

The dimension (let say n) of a is given in its declaration, so this definition in intention
can be finitely unfolded (since the dimension is finite) to obtain the equivalent definition
in extension; i.e. the previous definitions can be continued:

...

’a[n-2]’ := n-2;

’a[n-1]’ := n-1;

Any array access out of the bounds is considered as an error.

Another example, let odd be an array of size n such that odd[i] contains value TRUE if
i is odd and FALSE otherwise. This array can be defined by:

odd[i] := i%2=1;

It can also be defined by the recursive definition:

odd[i] := if i = 0 then FALSE

elif i = 1 then TRUE

else odd[i - 2];

These definitions are correct and both define the same array content. The second one

is recursive in the sense that the definition of the ith element is based on the (i− 2)th

one. It can be finitely unfolded considering a lazy interpretation of the if-then-else

expression, i.e. if one can prove that the condition is always true or always false, the
unfolding can ignore the unselected branch (see 9.3 for the list of lazy operators). This
allows to introduce base cases (0 and 1 in this example) in order to build a well founded
recursive definition.

The conjunction & and the disjunction # can also be used to introduce these base cases.
This means that in this unfolding operation, & (resp. #) is interpreted as a sequential
and then (resp. or else) operator. For instance, the previous example can be rewritten
as:

odd[i] := i = 1 # i >= 2 & odd[i - 2];

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

44/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

41
LFD

Last, the implication -> is also interpreted lazily in the unfolding process. For instance,
odd can be rewritten as:

odd[i] := ~(i <> 0 -> (i >= 1 -> odd[i - 1]));

An array can also have a memory definition, this is thus an array of memories. An
example mixing recursive definition and array of memories is the one of a sliding window
on a stream. A sliding window of size N on an input a is an array SW containing previous
values of a (the one at index 0 is the value of a at the previous step). It is defined by:

constants:

int N := 10;

inputs:

bool a;

declarations:

bool SW[N];

definitions:

SW[i] := false,

if i = 0 then a else SW[i-1];

outputs:

SW;

Note that SW memories contain false value as long as it refers to a previous cycle that
did not exists yet.

In order to have a powerful language for such recursive definitions, HLL semantics
on streams does not consider arrays; it is defined on scalars and array definitions are
considered lazily (on demand), when a particular array item is needed for some outputs,
constraints or proof obligations.

Array declarations can be of one of the two equivalent forms:

• bool A[10, 20]; or

• bool^(10,20) A;

9.2 Function

The notion of arrays indexed by integers is extended to the one of functions taking as
parameters any scalar values (values of type bool, int, enum and sort). A function f is
characterized by the property: for each cycle, a = b ⇒ f(a) = f(b) regardless of the
history (past or future values) of a and b.

In this sense, f can be understood as a stream of combinatorial functions. Another way
to understand functions in HLL is to see them as generalized truth table (not only for
the boolean case), as a table indexed by the values of its parameters (remember the
domains are finite); then the function corresponds to a stream of truth table.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

45/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

42
LFD

A function is defined, like an array, by a combinatorial definition or a memory definition.
A function returns a single stream i.e. all the function have a type: t f(t1, t2, ..., tn)

where t is any HLL type and all the ti are scalar types.

Example of a function definition:

declarations:

int Fibonacci(int);

definitions:

Fibonacci (i) := if i <= 2 then 1 else Fibonacci (i - 1) + Fibonacci (i - 2);

A function declaration can be of one of the two equivalent forms:

• bool f(T1, int); or

• (T1 * int -> bool) A;

Remark: functions are neither allowed in input nor output sections.

A consequence of the fact a function cannot access the past or future of the streams it
applies to is the impossibility to write, for instance, a flank detection using a function.
One could be tempted by this formulation:

declarations:

bool bad_flank (bool);

definitions:

bad_flank (x) := x & ~X(x);

The formal parameter x in the expression-body of the function is considered static (see
typing rule (lhs-parameters), the static flag of the ik is 1 which means static). Thus
X(x) is the same stream as x and bad_flank(e) is always false and cannot detect flanks.
This function looks like a stream operator one could one to implement, but it’s not a
good use of function.

9.3 Making recursive definitions terminate

We have seen that arrays and functions can de defined by recursion i.e. the stream they
represent for a given effective value v (projection index or parameter value) may depend
on the stream they represent at another point. To effectively define a stream, such a
recursive definition must terminate i.e. admit a finite unfolding for any finite effective
parameter.

In a declarative language such as HLL, this unfolding can terminate only if there exist
some operators that can provide a value without the need to have all their parameters
values (so-called lazy operators).

We provide here a table containing the HLL operators allowing to cut definitions with
a tag • on the parameters which value is always needed (strict tag) and a tag ◦ for those
that may not be known (lazy tag):

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

46/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

43
LFD

operator name • strict / ◦ lazy tag profile

logical and • & ◦
logical or • # ◦
logical implication • -> ◦
if-then-else if • then ◦ else ◦

switch-case

(•
| • => ◦
| • => ◦
. . .)

9.4 Note about causality in the presence of mappings

This split between the arrays and the scalar streams avoid defining causality on the full
HLL language (see Section 13). Such a definition would have been impossible on the full
language without introducing raw restrictions on the accepted array definition schemes
making modelling with HLL harder. There is a drawback in the fact that the capacity to
implement lazy strategies is tool dependent, thus any model containing array definitions
must be interpreted as: there exists an expansion of the array definitions present in
the model such that we can build a logically equivalent unfolded one (thus on scalar
streams). This existential quantification is resolved in practice by a preprocessing of the
model (that we call array expansion) that may fail to produce the scalar model, but the
global approach to make proofs is still safe since a tool cannot deduce erroneous facts
on a model that it fails to expand.

10 Local binders
HLL-26

HLL allows to specify the quantification of a variable over finite domains, providing a
compact way to write a formula. Syntactically a quantification is a local binder that
introduces an index identifier, a domain specifying the values the index can take, a sub-
expression and an operation that combines the value the sub-expression takes on each
point of the domain. HLL also provides these kind of binders for integer expressions :
sum, product, . . . In this document, quantification will designate both the usual boolean
quantification and these integers expressions.

10.1 Quantifying over integer ranges

This section gives, using examples, the principles of quantification in HLL. As a first
example, let us define the boolean expression that is true if the array A of size 10

contains an even integer can be written in the following way :

contains_even := SOME i:[0,9] (A[i] % 2 = 0);

this corresponds to an existential quantification. This equation could be rewritten with-
out quantifier:

contains_even :=

(A[0] % 2 = 0) # (A[1] % 2 = 0) # (A[2] % 2 = 0) # (A[3] % 2 = 0) #

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

47/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

44
LFD

(A[4] % 2 = 0) # (A[5] % 2 = 0) # (A[6] % 2 = 0) # (A[7] % 2 = 0) #

(A[8] % 2 = 0) # (A[9] % 2 = 0);

Another example is the boolean that is true if all the even indices of A contains an even
integer value:

evens_contain_even := ALL i:[0,9] (i % 2 = 0 -> A[i] % 2 = 0);

That is equivalent to:

evens_contain_even :=

(A[0] % 2 = 0) & (A[2] % 2 = 0) & (A[4] % 2 = 0) &

(A[6] % 2 = 0) & (A[8] % 2 = 0);

The examples illustrate the two quantifiers SOME (∃) and ALL (∀), that are standard in
logic. They correspond, as we can see in the example, to an iteration of the boolean or
(#) for the first and and (&) for the second. HLL provides synonyms that help capturing
user intentions in formulas : CONJ for ALL and SOME for DISJ.

In the case when the quantification domain is empty, the result is the neutral element
of the iterated boolean operator, i.e. true for ALL and CONJ and false for SOME and
DISJ.

10.2 Quantifying over enumerations

In the previous examples, the quantified variable iterates over an integer range, it is also
possible to make it iterate over the values of an enumeration or a sort. For instance
checking that all the values of an enumeration are present in an array can be expressed
in the following way:

types:

enum {green, yellow, red} cool_color;

inputs:

cool_color A[10];

definitions:

has_all_color := ALL c:cool_color SOME i:[0,9] (A[i] = c);

outputs:

has_all_color;

It is also allowed to use a sort identifier as a quantifier domain specification, in this case,
the values to consider are all the values defined for this sort and all its subsorts.

Here is an example with a hierarchy of sorts. If picture is a square matrix of colors (or
pixels), we specify here a property of this matrix that expresses the fact below the first
diagonal all the pixels are black, white or grey and above all the bright colors appear at
least once:

types:

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

48/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

45
LFD

sort {green, blue, red} < cool_color;

sort {black, grey, white} < bw_color;

sort {yellow, cyan} < light_color;

sort bw_color, bright_color < color;

sort light_color, cool_color < bright_color;

inputs:

color picture[10, 10];

definitions:

picture_property :=

ALL i:[0,9] (ALL j:[0,i] SOME c:bw_color (picture[i, j] = c))

&

ALL c:bright_color (SOME i:[0,9] SOME j:[i+1,9] (picture[i, j] = c));

outputs:

picture_property;

10.3 Arithmetic extensions

There are standard binders that apply on arithmetic expressions in a way similar to
boolean quantification. HLL provides the following operators: SUM, PROD, $min and
$max. SUM (resp. PROD) admits the neutral element 0 (resp. 1) and thus can be used
even when the quantification domain is empty.

Operators $max and $min don’t have such neutral values; as a consequence they cannot
be applied when the quantification domain is empty. The quantification domain is either
a type name (sort or enum) or a static range, checking whether the domain is empty or
not is a static property.

For instance, given a two-dimensional array V of sizes N and M , computing the sum of
the max of each column (with the convention that the second dimension is the column)
is quite easy:

sum_of_max_col := SUM j:[0,M-1] ($max i:[0,N-1] (V[i, j]));

10.4 Anonymous function and array definition (lambda)

Another kind of local binder is the anonymous definition of an array or function in HLL.
Section 9 introduces arrays and function definition, with the need to explicitly declare
and name the mapping and then define it.

declarations:

int A[10];

definitions:

A[i] := 2 * i;

defines an array A of size 10 such that its ith component contains the value 2 * i. The
array value represented by expression A in this context can be specified by:

lambda [10]:[i] := 2 * i

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

49/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

46
LFD

without the need of any preliminary declaration nor definition. The definition of A can
also be rewritten:

definitions:

A := lambda [10]:[i] := 2 * i;

The same kind of expression is allowed for functions; lambda (int):(i) := 2 * i is
equivalent to the function twice defined by:

declarations:

(int -> int) twice;

definitions:

twice(i) := 2 * i;

A lambda expression can introduce several dimension arrays, multi-parameters functions
and mix array and function as one can do with an HLL definition. For instance:

lambda (bool)[8,8]:(b)[i,j] := if b

then (i + j) % 2 = 0

else (i + j) % 2 = 1;

This expression is an anonymous function that, maps a boolean value to a chessboard
(using a convention that associates boolean values with black and white); changing the
boolean parameter makes the square colors alternate.

A semantically equivalent formulation is given here:

lambda (bool):(b) := if b

then lambda [8,8]:[i,j] := (i + j) % 2 = 0

else lambda [8,8]:[i,j] := (i + j) % 2 = 1

This form highlights the fact that the value b selects one or the other chessboard defi-
nition.

There are below some examples with array expressions corresponding to simple opera-
tions on arrays that can be expressed with an anonymous definition, thus without the
need to name the constructed arrays:

constants:

int N := 3;

int M := 7;

int k1 := 1;

int k2 := 2;

inputs:

bool A[N];

bool B[M];

bool e;

outputs:

// creates an array with all the components equals

lambda [N]:[i] := e;

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

50/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

47
LFD

// array slice A[k1..k2]

lambda [k2 - k1 + 1]:[i] := A[i + k1];

// concatenation of arrays A and B

lambda [M + N]:[i] := if i < N then A[i] else B[i-N];

// A in a reverse order

lambda [N]:[i] := A[N - i - 1];

10.5 The pigeon-hole example

This example corresponds to the HLL formalisation of the pigeon hole problem that we
can formulate by: it is not possible to put N pigeons in (N-1) holes with, at most one
pigeon per hole.

constants:

int NOF_PIGEONS := 10;

int NOF_HOLES := NOF_PIGEONS - 1;

inputs:

bool P[NOF_PIGEONS, NOF_HOLES];

definitions:

/* For each hole there is just one pigeon */

a := ALL i:[0, NOF_HOLES-1], j:[0, NOF_PIGEONS-1] ALL k:[j+1, NOF_PIGEONS-1]

(P[j, i] -> ~P[k, i]);

/* For each pigeon there is at least one hole */

b := ALL i:[0, NOF_PIGEONS-1] SOME j:[0, NOF_HOLES-1] (P[i,j]);

proof obligations:

~(a & b);

10.6 The sudoku example

We provide here an example that, while addressing a quite popular problem, illustrates
the powerfulness of HLL quantification. The goal is to define in HLL the criterium that
a sudoku grid must be satisfied when entirely filled. Based on this expression, it’s easy
to use a proof engine for HLL in order to complete a given partially filled grid, provided
it can be done at all:

inputs:

int [1,9] grid [9,9];

definitions:

satisfy :=

ALL value:[1,9] (

ALL line:[0,8] SOME col:[0,8] (grid[line, col]=value)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

51/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

48
LFD

& ALL col:[0,8] SOME line:[0,8] (grid[line, col]=value)

& ALL subregion_line:[0,2], subregion_col:[0,2]

SOME s_line:[0,2], s_col:[0,2]

(grid[subregion_line * 3 + s_line, subregion_col * 3 + s_col]=value));

10.7 Summary of quantifier semantics

The semantics of all the quantifiers is summed up in this table:

Quantifier Corresponding Value
associative/commutative for
HLL binary operator empty domain

ALL & true

CONJ & true

SOME # false

DISJ # false

SUM + 0

PROD * 1

$max $max undefined
$min $min undefined

11 Arithmetics in HLL
HLL-14

Arithmetics in HLL is both bounded and exact. This is possible thanks to the fact that
all the inputs and memories must be explicitly bounded in the model. The definitions
contain only a finite number of operations. So any integer value in the model is a finite
combination of bounded values, thus it is itself a bounded value.

In this context, all the arithmetic operators must be understood with their mathematical
definition. Values are explicitly cast with the cast operator or (less explicitly) cast when
used to define a memory.

12 Stream semantics

A stream is a sequence of values of a given type. Boolean streams semantics is presented
in [1], this section provides an alternative (and equivalent) presentation of this notion
and makes explicit the case of data memory (or non-boolean memory).

HLL is a language for the definition of streams. A stream s denotes an infinite sequence
of values that we will represent by the following table:

HLL stream expression sequence of values

s s0 s1 s2 s3 s4 . . .

Using this notation we specify the semantics of the HLL temporal primitives.

In this section we provide the semantics of the streams defined by a causal (see Sec-
tion 13) HLL model.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

52/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

49
LFD

Note: This causality notion is important because it gives a sufficient condition to
ensure that at any step of a stream, the value it takes does not depend on itself (sn is
not defined as a solution to a fixpoint equation on the form sn = f(sn)).

12.1 Input streams
HLL-15

Input streams can be declared either in an inputs section or in a declarations section.
In this second case, a stream is considered as an input if it has no definition at all (neither
combinatorial nor initial nor next nor memory). If a declared stream is only defined for
the next values, it’s initial value is considered as an initial input.

An input stream represents any sequence of values in its declared type.

12.2 Combinatorial definition
HLL-16

The definition v := e means that v represents the same sequence as e:

e e0 e1 e2 e3 e4 . . .
v e0 e1 e2 e3 e4 . . .

HLL is declarative and thus has a substitution principle that holds at the level of the
combinatorial definition. This principle can be expressed as : if a stream variable v

has a combinatorial definition (v := e), any occurence of v can be substituted with the
expression that defines it (e) without affecting the semantics of the HLL model.

The integer case. HLL requires all the inputs and memories to have a sized type.
This is a key point for the arithmetics (see Section 11). However nothing is required for
the variables defined by a combinatorial definition. If such a variable is declared with
a sized type (in particular with a sized integer), this information does not affect the
semantics, the only information extracted from such a declaration is the type int.

12.3 Memory definition
HLL-18

The definition v := e, f means that v takes its first value from stream e then from
stream f shifted one step to the right:

e e0 e1 e2 e3 e4 . . .
f f0 f1 f2 f3 f4 . . .
v e0 f0 f1 f2 f3 . . .

12.4 Initial and next definitions
HLL-19

A memory definition can be split into its two components that are:

1. its initial value defined by I(v) := e meaning that v takes its first value from
stream e;

2. its next value is defined by X(v) := f .

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

53/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

50
LFD

The resulting stream is :

e e0 e1 e2 e3 e4 . . .
f f0 f1 f2 f3 f4 . . .
v e0 f0 f1 f2 f3 . . .

12.5 Next definition only
HLL-17

The definition X(v) := e means that v represents the same sequence as e shifted one
step to the right. The value of v at the first instant is considered as an implicit input
(stream I(v)) as specified in 12.1.

e e0 e1 e2 e3 e4 . . .
I(v) iv0 iv1 iv2 iv3 iv4 . . .
v iv0 e0 e1 e2 e3 . . .

12.6 Next expression : X(e)
HLL-20

The expression X(e) (pronounce next of e) represents the same stream as e, shifted one
step to the left:

e e0 e1 e2 e3 e4 . . .
X(e) e1 e2 e3 e4 e5 . . .

12.7 Unit delay expression : pre(e)
HLL-25

The expression pre(e) represents the same stream as e, shifted one step to the right:

e e0 e1 e2 e3 e4 . . .
pre(e) nil e0 e1 e2 e3 . . .
i i0 i1 i2 i3 i4 . . .
pre(e, i) i0 e0 e1 e2 e3 . . .

Where nil represents any value with the same type as e.

When the delayed stream takes values in a type that contain integers, a type can be
specified in the operator in order to give these integers a size. The syntactic forms of
this case are: pre <T>(e) or pre <T>(e, i) where T is a type.

Note that the semantics of pre can also be given by its translation in terms of a memory.
The stream represented by pre <T>(e, i) is the same as the one represented by the
memory m of type T defined by: m := i, e;

12.8 Definition of a data memory
HLL-21

Sections 12.3, 12.4, 12.5 and 12.7 describe the principle of the definition of a memory
state. Because memories allow definitions of a stream as a function of its previous values,
the definition of an integer memory may be diverging in the sense that the values it can
take cannot be statically bounded. For this reason the type system requires that any
memory (a stream variable defined by a memory or a next definition) must have a sized
type (see Definition 3) and the expression that defines a memory must fit in the declared

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

54/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

51
LFD

type of the memory. Below we define the semantics of an integer memory definition of
type T (where T is a constrained integer type).

declarations:

T v;

...

definitions:

v := e, f;

If e0 fits in type T (in the range if it specifies a range or in the specified finite represen-
tation otherwise) and ∀i ∈ N, fi fits in T , the stream v is defined by:

e e0 e1 e2 e3 e4 . . .
f f0 f1 f2 f3 f4 . . .
v e0 f0 f1 f2 f3 . . .

Remark: the conditions under which the semantics is defined is not verified by any
static check specified in the present document and will have to be checked by the tools
implementing HLL. The way it is checked may depend on the kind of tool (proof engine,
simulator, . . .).

12.9 Array definitions
HLL-22

Definitions of the form v[i] := e follow the same semantics pointwisely by replacing
each index i by its value taken in the range of legal indices for array v given by its
declaration.

12.10 Determinism and nil values in HLL
HLL-27

In the present section we have seen that uninitialized unit delays (pre) may introduce
unspecified values in a stream: the so called nil . It is not, in general, a problem to have
a stream carrying nil values as long as it is not a stream we are observing (i.e. those
that appear in outputs, constraints or proof obligations sections). A nil value in
an observed stream leads to different issues, depending on the section it appears in:

• in a proof obligations section, the concerned proof obligation cannot be proved
because nil is not true;

• in an outputs section, the HLL model becomes globally non deterministic, it is
not even equivalent to itself (the comparison of two instances of nil is also a nil);

• in a constraints section, having a possible nil corresponds to an unsatisfiable
constraint.

Accepting the non-determinism introduced by the nil in the presence of the uninitialized
pre in the language would invalidate the substitution principle given in 12.2. This
principle holds again if the model is proved to be deterministic in the sense discussed
above.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

55/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

52
LFD

For all these reasons, a semantic tool implementing HLL has to reject non-deterministic
models. Different strategies and proof capabilities can be used to reach this goal (re-
jecting more or less correct models); they are not part of the language specification and
must be defined in the tool specifications.

13 Causality
HLL-23

This section defines the causality in an HLL model and what a causal (correct regarding
causality) model is. The semantics of streams presented in Section 12 is defined only for
causal models. This section considers scalar streams only for the reasons discussed in
Section 9. A model containing array definitions should first be expanded and then the
question of causality is considered on the scalar definitions as described below.

Restriction 8 (model causality). A correct HLL model shall be causal i.e. all the
streams it defines and that contribute to the production of an output, a proof obligation
or a constraint shall be causal in the sense defined below.

13.1 Temporal dependencies between scalar streams

To be well founded, a stream definition must be causal (in other words non-cyclic). Here
is a first intuitive and informal definition of this notion: a stream definition is causal if:

• each value of the stream is defined by an expression that does not depend (directly
or through other streams) on itself and

• for inductive definitions if the inductive case (next definition or second member of
a memory definition) does not depend directly or indirectly on values that are after
in the stream.

To formalise this relation, we will distinguish the dependencies on the first instant from
the other ones; a represents any value of stream a, I(a) its initial value and X(a) any
value but the initial one. The dependency relation is defined between terms of the
following grammar:

depterm ::= streamexpr
| I(streamexpr)

streamexpr ::= identifier
| op(streamexpr , . . . , streamexpr)
| X(streamexpr)

where streamexpr represents a stream expression, as defined in the concrete syntax by ”

Definition 18 (dependency relation). The dependency relation denoted a :− b (a de-
pends on b) is defined by:

1. v :− a for a definition v := a;

2. I(v) :− I(a) for an initial definition I(v) := a;

3. X(v) :− a for a next definition X(v) := a;

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

56/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

53
LFD

4. I(v) :− I(b) and X(v) :− c for a memory definition v := b,c;

5. pre < t > (a, b) :− b;

6. ∀i ∈ [1..n], op(a1, . . . , an) :− ai;

7. transitivity: a :− b ∧ b :− c ⇒ a :− c;

8. monotony of X(): a :− b⇒ X(a) :−X(b);

9. monotony of I(): a :− b⇒ I(a) :− I(b);

10. X(X(a)) :−X(a).

where op designates any n-ary (n > 0) combinatorial function and ai are dependency
terms (depterm).

The rules 1 to 8 define the dependency relation. After application of these eight rules, a
system is said to be causal if the relation does not contain any pairs of the form:

X(X(. . . (X(a)) . . .))︸ ︷︷ ︸
n next, with n≥1

:− X(X(. . . (X(a)) . . .))︸ ︷︷ ︸
p next, with p≥n

nor
I(a) :− I(a)

Which means that a system is causal if none of the streams it defines depends, for its
next definition, on itself or on its next values.

Rule 9 is added to transform any of these pairs into a cycle in the dependency relation
and make the causality criterium easier to implement by reducing it to a cycle search in
a graph.

13.2 Composite types, mappings and causality

The causality relation for HLL is defined in 13.1 for a scalar model and thus does not
cover the overall language. When a stream is composite, causality is defined component
by component which allow to have one array element depending on another element of
the same array. Taking this point of view, all the streams are scalar and arrays are
arrays of streams, tuples are tuples of streams etc. . .

14 Predefined combinatorial operator semantics
HLL-24

A combinatorial operator on streams is built from an operator on the values carried
by the streams by pointwise application. For instance if (xn) and (yn) represent two
streams given by their sequence of values, the sum of these streams (xn) + (yn) is the
stream of the sum (zn) defined by ∀n, zn = xn + yn.

This pointwise extension can be defined for any operator op of arity k ≥ 1 by :

∀p, (op((x1n), . . . , (xkn)))p = op(x1p, . . . , x
k
p)

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

57/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

54
LFD

We can write it using the tabular notation we introduced before:

HLL sequence

x1 x10 x11 x12 . . .
x2 x20 x21 x22 . . .
...

...
...

...
...

xk xk0 xk1 xk2 . . .
op(x1, . . . , xk) op(x10, . . . , x

k
0) op(x11, . . . , x

k
1) op(x12, . . . , x

k
2)

Thus to define combinatorial functions on streams from their original operation on values
(boolean, integers, structures, arrays), it suffices to define them on values (instead of
streams) to capture the whole semantics of the extension to streams.

14.1 Logical operators

These operators apply on boolean values, they are defined below by their truth tables:

conjunction :

a b a&b
FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

disjunction :

a b a#b
FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

equivalence :

a b a<->b
FALSE FALSE TRUE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

exclusive or :

a b a#!b
FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

implication :

a b a->b
FALSE FALSE TRUE

FALSE TRUE TRUE

TRUE FALSE FALSE

TRUE TRUE TRUE

negation :
a ∼ a

FALSE TRUE

TRUE FALSE

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

58/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

55
LFD

14.2 Population count

HLL provides various n-ary operators taking a variable number of boolean streams
and a static integer value to easily express complex conditions about the number of
streams taking the value true at a given step. Let’s define the combinatorial function
population that applies on a finite list of boolean values and returns the number of true
values among these booleans:

population(b0, b1, . . . , bn) =

n∑
k=0

(if bk then 1 else 0)

In particular when the list of boolean streams is empty, this function is the constant 0
(population() = 0).

With this function, given a static (see the type system in Section 6 for a definition of
static) integer value N we define the population count operators by:

population count eq(b0, b1, . . . , bn, N)≡ population(b0, b1, . . . , bn) = N
population count lt(b0, b1, . . . , bn, N)≡ population(b0, b1, . . . , bn) < N
population count gt(b0, b1, . . . , bn, N)≡ population(b0, b1, . . . , bn) > N

14.3 Polymorphic comparison operators =, ==, !=, <>

The polymorphic comparison operators apply on any type (provided that the type does
not contain a function type) when they share the same structure (same dimensions with
same sizes, as specified by the type system).

• both = and == represent the equality operator;

• both != and <> represent the inequality operator.

The following equivalences hold: a <> b ≡ ~(a = b) ≡ a != b ≡ ~(a == b)

The definition of equality on scalars is standard and extends to structured types in the
following way: two structured values are equal if all their corresponding elements are
pairwise equal.

14.4 Shift operators <<, >>

The shift operators are defined on both signed and unsigned representation of integer
values.

If a represents an integer and n a static positive value (n ≥ 0), then:

• a << n is an n bit shift to the left. From an arithmetical point of view, it corre-
sponds to a multiplication by 2n. If a is encoded in binary with an N -bit word, a
<< n requires an (N + n) bits representation.

• a >> n is an n bit shift to the right. This operation corresponds to the floor
division a /> 2n If a is encoded in binary with an N bits word, a >> n requires
min(N − n, 1) bits representation.

The shifts are not defined if the second parameter is a negative value.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

59/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

56
LFD

14.5 Arithmetic operators +, -, * and unary minus -

Exact implementation of arithmetics, see Section 11 for a discussion about exact bounded
arithmetics.

14.6 Integer comparison operators >, >=, <, <=

These operators represent predicates corresponding to the standard order relation on
integers. They produce a boolean value true when the relation holds and false other-
wise.

14.7 Maximum $max

Returns the maximum of its two arguments:

$max(a, b) =

{
a if a ≥ b
b otherwise.

14.8 Minimum $min

Returns the minimum of its two arguments:

$min(a, b) =

{
b if a ≥ b
a otherwise.

14.9 Absolute value $abs

This operator takes one integer parameter and produces its absolute value, it is defined
by:

$abs(v) =

{
v if v ≥ 0
−v otherwise.

14.10 Euclidian division /

If a and b are two positive integers, a/b is the result of the Euclidian division and is such
that:

a = b ∗ (a/b) + r where r is an integer such that 0 ≤ r < b.

This operation is not defined when b = 0.

if a or b is negative, the absolute value of the result is given by the application of the
positive (see before) case to the absolute values of a and b and the sign is given by the
standard rules:

a b a/b
> 0 > 0 > 0
< 0 > 0 < 0
> 0 < 0 < 0
< 0 < 0 > 0

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

60/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

57
LFD

14.11 Remainder %

If a and b are positive integers, then a%b represents the remainder r of the Euclidian
division (see Section 14.10). This operation is not defined when b = 0.

if a or b is negative, the absolute value of the result is given by the application of the
positive (see before) case to the absolute values of a and b and the sign is the sign of a.

14.12 Floor division />

This operator implements the floor of the exact division; i.e. a/>b represents the biggest
integer smaller than or equal to the rational a/b.

More formally, if a and b are two integers then a/>b is such that:

a = b ∗ (a/>b) + r where r is an integer such that 0 ≤ r < |b|.

|b| represents the absolute value of b. This operation is not defined when b = 0.

It can be expressed using the division operator by:

a/>b =

{
a/b if sign(a) = sign(b) or a%b = 0
(a/b)− 1 otherwise.

where sign(.) is the sign function on integers defined by:

sign(x) =

{
1 if x ≥ 0
−1 otherwise.

14.13 Ceiling division /<

This operator implements the ceiling of the exact division; i.e. a/<b represents the
smallest integer bigger than or equal to the rational a/b. More formally, if a and b are
two integers, a/>b is such that:

a = b ∗ (a/<b) + r where r is an integer such that −|b| < r ≤ 0.

|b| represents the absolute value of b. This operation is not defined when b = 0.

It can be expressed using the division operator by:

a/<b =

{
(a/b) + 1 if sign(a) = sign(b) and a%b 6= 0
a/b otherwise.

14.14 Bitwise logical operators: $not, $and, $or, $xor

All the bitwise operators are defined on signed integers, meaning that applying them on
an unsigned value introduces an implicit conversion from unsigned to signed.

At a bit representation level, a signed value can be seen as an infinite boolean word:

. . . s s . . . s︸ ︷︷ ︸
∞

bnbn−1...b0 where s is the sign bit

The bitwise operations are the pointwise extension of the logical operators on these
infinite words.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

61/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

58
LFD

14.15 Power (ˆ)

If a and b are two integers then aˆb is equal to:

• a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
b times

if b > 0;

• 1
a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

|b| times

if b < 0 and a 6= 0;

• 1 if b is equal to zero (in particular we take the convention that 00 = 1);

• undefined when b < 0 and a = 0.

14.16 Cast

The cast (cast<t>(e)) allows to interpret an integer expression (here e) as a value of
a specified implementation type (t) by considering its binary representation and the
binary implementation of t. The binary representation is based on two’s complement
for signed values and standard binary for unsigned ones.

The following table specifies the result of this cast depending on the representation of e
and t.

Let bn1
. . . b2b1 be a binary representation of the value taken by e.

representation of e representation of t size condition cast expression value
in binary

int unsigned n1 int unsigned n2 when fill with zeros
or int signed n2 n1 ≤ n2 0 . . . 0bn1

. . . b2b1︸ ︷︷ ︸
n2 bits

int signed n1 int unsigned n2 when fill with the MSB
or signed int n2 n1 ≤ n2 bn1

. . . bn1
bn1−1 . . . b2b1︸ ︷︷ ︸

n2 bits
int unsigned n1 int unsigned n2 when ignore extra bits
or int signed n1 or int signed n2 n1 > n2 bn2

. . . b2b1︸ ︷︷ ︸
n2 bits

Then this binary value is interpreted following a representation of t (unsigned: positive
integer value represented in base 2; signed: two’s complement).

14.17 bin2u

If w is an array of boolean values and n a constant expression, bin2u(w, n) is the integer
whose unsigned binary representation is given by the first n bits (w[n− 1] . . . w[0]) of w
(where w[0] is the Least Significant Bit). n must be statically less than or equal to the
size of w.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

62/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

59
LFD

14.18 bin2s

If w is an array of boolean values and n a constant expression, bin2s(w, n) is the integer
which signed binary representation is given by the first n bits (w[n − 1] . . . w[0]) of w
(where w[0] is the Least Significant Bit). n must be statically less than or equal to the
size of w.

14.19 u2bin

If v is a positive integer value and n a constant expression, u2bin(v, n) is the boolean
array containing the bit values of the n bits unsigned binary representation of the integer
value v. If the representation does not fit within n bits, the array will contain the n first
bits of this representation. The resulting array is such that the item at index 0 contains
the Least Significant Bit of this representation.

For the case where v is negative. It is defined by:

u2bin(v, n) = u2bin(cast < int unsigned n > (v), n)

14.20 s2bin

If v is an integer value and n a constant expression, s2bin(v, n) is the boolean array
containing the bit values of the n bits signed binary representation of the integer value
v. If the representation does not fit within n bits, the array will contain the n first bits
of this representation. The resulting array is such that the item at index 0 contains the
Least Significant Bit of this representation and the item at index n− 1 contains the sign
bit.

Note: the primitives s2bin and u2bin give the same boolean array for any given
integer stream. HLL provides two primitives for convenience only.

14.21 If-then-else

a := if c then e1 else e2;

Selects the value of the expression present in the then branch (e1) or in the else branch
(e2, depending on the boolean value taken by c.

HLL offers a shortcut for a cascade of if-then-else:

a := if c1

then e1

elif c2

then e2

elif c3

...

then en

else e

This syntactic form is equivalent to :

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

63/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

60
LFD

a := if c1

then e1

else if c2

then e2

else if c3

...

then en

else e

14.22 Array projection

The array projection A[x] returns the value contained in the array at position x if x is
within the declared bounds of A. A model such that the definition of one of its outputs,
proof obligations or constraints requires the access out of an array bounds is incorrect.

A projection involves a structured stream and an index, as said in 9 and in 13.1,
the stream semantics is given on scalar. The definition of an array projection can be
explained on scalars using the following expression equivalent to stream A[x]:

(x

| 0 => A[0]

| 1 => A[1]

| 2 => A[2]

...

| N - 1 => A[N - 1])

where N is the size of array A and A[0], A[1], . . . are streams that can be projected
statically. Based on this equivalent form, it is possible to transform an HLL model with
arrays and projection into a model involving scalars only.

14.23 Function application

The function application f(x) returns the value of function f at point x. if x is in
the declared domain of f. A model such that the definition of one of its outputs, proof
obligations or constraints requires the value of a function out of its declared domain is
incorrect.

As for array projection, the function application f(x), if f has type bool -> int is
equivalent to:

if x then f(true) else f(false)

In the case the domain of f is not finite, int -> int for instance, it is possible to build
a finite expression of this kind, based on the fact inputs and memories can take a finite
set of values, the domain of a function application at its application point can always be
restricted to the possible values its argument can take. If a model has bounded inputs
and memories and contains function, it is always possible to translate it into a finite
model without functions.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

64/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

61
LFD

14.24 (... with ... := ...)

Example:

b := (a with .m[1].5 := e);

b is componentwisely equal to a except for the component specified by the path .m[1].5

in the structure that is equal to e; the following invariant holds: b.m[1].5 = e.

14.25 Elementhood : a:D

The operator a : D is a predefined predicate that, given a stream expression a and
a domain produces true when the expression takes a value that is an element of the
specified domain.

A domain can be either:

• a sort, in this case the predicate expresses the elementhood of the value to the set
of the possible values for the specified sorts (those defined for this sort and all it’s
subsorts) or

• a range, for instance a : [1, 42]; here the predicate is equivalent to the expres-
sion a >= 1 & a <= 42.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

65/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

62
LFD

A List of requirements

Here is the list of requirements attached to the present document. A tool that intends
to implement the HLL language shall cover these requirements.

B List of reserved keywords

Below is a list of reserved HLL words that cannot be used as identifiers.

ALL

bin2s

bin2u

bool

cast

CONJ

constants

Constants

constraints

Constraints

declarations

Declarations

definitions

Definitions

DISJ

elif

else

enum

false

False

FALSE

I

if

inputs

Inputs

int

lambda

namespaces

Namespaces

obligations

Obligations

outputs

Outputs

population_count_eq

population_count_gt

population_count_lt

pre

PRE

PROD

proof

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

66/68

T-810712-LFD-HLL
Issue 2 Rev 7

High Level Language
Syntax and Semantics

63
LFD

Proof

s2bin

signed

SOME

sort

struct

SUM

then

true

True

TRUE

tuple

types

Types

u2bin

unsigned

with

X

References

[1] Gunnar Smith and Ilya Beylin. Tecla Logical Foundations Document, April 2008.

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

HLL v.2.7 Version 1.0
May 24, 2018

67/68

E ND O F D O CUMEN T

Ref. STF-16-01805
Technical note
This document is the property of RATP. It cannot be copied or duplicated without the authorization of its owner.

Publication of the HLL v.2.7 Modelling Language Specification Version 1.0
May 24, 2018

68/68

	RATP-STF-16-01805_Publication_HLL_v.2.0.pdf
	Context
	Intellectual ownership, terms and conditions
	RATP contact
	HLL v.2.7 Modelling Language Specification
	Prover Technology original Logical Foundation Document

