
HAL Id: hal-01799740
https://hal.science/hal-01799740

Submitted on 25 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Logics with Rational Relations and the
Generalized Intersection Problem
Pablo Barceló, Diego Figueira, Leonid Libkin

To cite this version:
Pablo Barceló, Diego Figueira, Leonid Libkin. Graph Logics with Rational Relations and the Gen-
eralized Intersection Problem. Annual IEEE Symposium on Logic in Computer Science (LICS), Jun
2012, Dubrovnik, Croatia. pp.115-124, �10.1109/LICS.2012.23�. �hal-01799740�

https://hal.science/hal-01799740
https://hal.archives-ouvertes.fr

Graph Logics with Rational Relations and
the Generalized Intersection Problem

Pablo Barceló
Department of Computer Science

University of Chile
Santiago, Chile

pbarcelo@dcc.uchile.cl

Diego Figueira
School of Informatics

University of Edinburgh
Edinburgh, UK

dfigueir@inf.ed.ac.uk

Leonid Libkin
School of Informatics

University of Edinburgh
Edinburgh, UK

libkin@inf.ed.ac.uk

Abstract—We investigate some basic questions about the inter-
action of regular and rational relations on words. The primary
motivation comes from the study of logics for querying graph
topology, which have recently found numerous applications. Such
logics use conditions on paths expressed by regular languages
and relations, but they often need to be extended by rational
relations such as subword (factor) or subsequence. Evaluating
formulae in such extended graph logics boils down to checking
nonemptiness of the intersection of rational relations with regular
or recognizable relations (or, more generally, to the generalized
intersection problem, asking whether some projections of a
regular relation have a nonempty intersection with a given
rational relation).

We prove that for several basic and commonly used rational
relations, the intersection problem with regular relations is either
undecidable (e.g., for subword or suffix, and some generaliza-
tions), or decidable with non-multiply-recursive complexity (e.g.,
for subsequence and its generalizations). These results are used to
rule out many classes of graph logics that freely combine regular
and rational relations, as well as to provide the simplest problem
related to verifying lossy channel systems that has non-multiply-
recursive complexity. We then prove a dichotomy result for logics
combining regular conditions on individual paths and rational
relations on paths, by showing that the syntactic form of formulae
classifies them into either efficiently checkable or undecidable
cases. We also give examples of rational relations for which such
logics are decidable even without syntactic restrictions.

Index Terms—rational relations, regular relations, recognizable
relations, logics for graphs, expressive power, decidability and
complexity, regular path queries, subsequence, subword

I. INTRODUCTION

The motivation for the problems investigated in this pa-
per comes from the study of logics for querying graphs.
Such logics form the basis of query languages for graph
databases, that have recently found numerous applications in
areas including biological networks, social networks, Semantic
Web, crime detection, etc. (see [1] for a survey) and led to
multiple systems and prototypes. In such applications, data
is usually represented as a labeled graph. For instance, in
social networks, people are nodes, and labeled edges represent
different types of relationship between them; in RDF – the
underlying data model of the Semantic Web – data is modeled
as a graph, with RDF triples naturally representing labeled
edges.

The questions that we address are related to the interac-
tion of various classes of relations on words, for instance,

rational relations (examples of those include subword and
subsequence) or regular relations (such as prefix, or equality
of words). An example of a question we are interested in is
as follows: is it decidable whether a given a regular relation
contains a pair (w,w′) so that w is a subword/subsequence of
w′? Problems like this are very basic and deserve a study on
their own right, but they are also necessary to answer questions
on the power and complexity of querying graph databases. We
now explain how they arise in that setting.

Logical languages for querying graph data have been de-
veloped since the late 1980s (and some of them became
precursors of languages later used for XML). They query the
topology of the graph, often leaving querying data that might
be stored in the nodes to a standard database engine. Such
logics are quite different in their nature and applications from
another class of graph logics based on spatial calculi [10], [17].
Their formulae combine reachability patterns. The simplest
form is known as regular path queries (RPQs) [16], [15]; they
check the existence of a path whose label belongs to a regular
language. Those are typically used as atoms and then closed
under conjunction and existential quantification, resulting in
the class of conjunctive regular path queries (CRPQs), which
have been the subject of much investigation [8], [18], [21].
For instance, a CRPQ may ask for nodes v so that there exist
nodes v1 and v2 and paths from v to vi with the label in a
regular language Li.

The expressiveness of these queries, however, became insuf-
ficient in applications such as the Semantic Web or biological
networks due to their inability to compare paths. For instance,
it is a common requirement in RDF languages to compare
paths based on specific semantic associations [2]; biological
sequences often need to be compared for similarity, based, for
example, on the edit distance.

To address this, an extension of CRPQs with relations on
paths was proposed [3]. It used regular relations on paths, i.e.,
relations given by synchronized automata [20], [22]. Equiva-
lently, these are the relations definable in automatic structures
on words [4], [6], [7]. They include prefix, equality, equal
length of words, or fixed edit distance between words. The
extension of CRPQs with them, called ECRPQs, was shown
to have acceptable complexity (NLOGSPACE with respect to
data, PSPACE with respect to query).

However, it was still short of the expressiveness needed
in many applications. For instance, semantic associations
between paths used in RDF applications often deal with
subwords or subsequences, but these relations are not regular.
They are rational: they are still accepted by automata, but
those whose heads move asynchronously. Adding them to
a query language must be done with extreme care: simply
replacing regular relations with rational in the definition of
ECRPQs makes query evaluation undecidable!

So we set out to investigate the following problem: given
a class of graph queries, e.g., CRPQs or ECRPQs, what
happens if one adds the ability to test whether pairs of
paths belong to a rational relation S, such as subword or
subsequence? We start by observing that this problem is a
generalization of the intersection problem: given a regular
relation R, and a rational relation S, is R ∩ S 6= ∅? It is
well known that there exist rational relations S for which it
is undecidable [5]; however, we are not interested in artificial
relations obtained by encoding PCP instances, but rather in
very concrete relations used in querying graph data.

The intersection problem captures the essence of graph
logics ECRPQs and CRPQs (for the latter, when restricted
to the class of recognizable relations [5], [14]). In fact, query
evaluation can be cast as the generalized intersection problem.
Its input includes an m-ary regular relation R, a binary rational
relation S, and a set I of pairs from {1, . . . ,m}. It asks
whether there is a tuple (w1, . . . , wm) ∈ R so that (wi, wj) ∈
S whenever (i, j) ∈ I . For m = 2 and I = {(1, 2)}, this is
the usual intersection problem.

Another motivation for looking at these basic problems
comes from verification of lossy channel systems (finite-state
processes that communicate over unbounded, but lossy, FIFO
channels). Their reachability problem is known to be decid-
able, although the complexity is not bounded by any multiply-
recursive function [13]. In fact, a “canonical” problem used in
reductions showing this enormous complexity [12], [13] can
be restated as follows: given a binary rational relation R, does
it have a pair (w,w′) so that w is a subsequence of w′? This
naturally leads to the question whether the same bounds hold
for the simpler instance of the intersection problem when we
use regular relations instead of rational ones. We actually show
that this is true.

Summary of results: We start by showing that evaluating
CRPQs and ECRPQs extended with a rational relation S can
be cast as the generalized intersection problem for S with
recognizable and regular relations respectively. Moreover, the
complexity of the basic intersection problem is a lower bound
for the complexity of query evaluation.

We then study the complexity of the intersection problem
for fixed relations S. For recognizable relations, it is well
known to be efficiently decidable for every rational S. For
regular relations, we show that if S is the subword, or the
suffix relation, then the problem is undecidable. That is, it
is undecidable to check, given a binary regular relation R,
whether it contains a pair (w,w′) so that w is a subword of
w′, or even a suffix of w′. We also present a generalization of

this result.
The analogous problem for the subsequence relation is

known to be decidable, and, if the input is a rational relation
R, then the complexity is non-multiply-recursive [12]. We
extend this in two ways. First, we show that the lower bound
remains true even for regular relations R. Second, we extend
decidability to the class of all rational relations for which
one projection is closed under subsequence (the subsequence
relation itself is trivially such, obtained by closing the first
projection of the equality relation).

In addition to establishing some basic facts about classes
of relations on words, these results tell us about the in-
feasibility of adding rational relations to ECRPQs: in fact
adding subword makes query evaluation undecidable, and
while it remains decidable with subsequence, the complexity
is prohibitively high.

So we then turn to the generalized intersection problem
with recognizable relations, corresponding to the evaluation
of CRPQs with an extra relation S. We show that the shape
of the relation I holds the key to decidability. If its underlying
undirected graph is acyclic, then the problem is decidable
in PSPACE for every rational relation S (and for a fixed
formula the complexity drops to NLOGSPACE). In the cyclic
case, the problem is undecidable for some rational relation S.
For relations generalizing subsequence, we have decidability
when I is a DAG, and for subsequence itself, as well as for
suffix, query evaluation is decidable regardless of the shape of
CRPQs.

Thus, under the mild syntactic restriction of acyclicity of
comparisons with respect to rational relations, such relations
can be added to the common class CRPQ of graph queries,
without incurring a high complexity cost.

Organization: We give basic definitions in Section II and
define the main problems we study in Section III. Section
IV introduces graph logics and establishes their connection
with the (generalized) intersection problem. Section V studies
decidable and undecidable cases of the intersection problem.
Section VI looks at the case of recognizable relations and
CRPQs and establishes decidability results based on the in-
tersection pattern. Complete proofs of all results are available
in the full version of the paper.

II. PRELIMINARIES

Alphabets, languages, and morphisms: We shall use letters
Σ, Γ to denote finite alphabets. The set of all finite words over
an alphabet Σ is denoted by Σ∗. We write ε for the empty
word, w · w′ for the concatenation of two words, and |w| for
the length of a word w.

If w = w′ · u · w′′, then
• u is a subword of w (also called factor in the literature,

written as u � w),
• w′ is a prefix of w (written as w′ �pref w), and
• w′′ is a suffix of w (written as w′′ �suff w).
We say that w′ is a subsequence of w (also called subword

embedding in the literature, written as w′ v w) if w′ is

obtained by removing some letters (perhaps none) from w,
i.e., w = a1 . . . an, and w′ = ai1ai2 . . . aik , where 1 ≤ i1 <
i2 < . . . < ik ≤ n.

Recall that a monoid M = 〈U, ·, 1〉 has an associative binary
operation · and a neutral element 1 satisfying 1x = x1 = x
for all x (we often write xy for x · y). The set Σ∗ with the
operation of concatenation and the neutral element ε forms a
monoid 〈Σ∗, ·, ε〉, the free monoid generated by Σ. A function
f : M →M ′ between two monoids is a morphism if it sends
the neutral element of M to the neutral element of M ′, and
if f(xy) = f(x)f(y) for all x, y ∈ M . Every morphism f :
〈Σ∗, ·, ε〉 → M is uniquely determined by the values f(a),
for a ∈ Σ, as f(a1 . . . an) = f(a1) · · · f(an). A morphism f :
〈Σ∗, ·, ε〉 → 〈Γ∗, ·, ε〉 is called alphabetic if f(a) ∈ Γ ∪ {ε},
and strictly alphabetic if f(a) ∈ Γ for each a ∈ Σ, see [5].

A language L is a subset of Σ∗. It is recognizable if there
is a finite monoid M , a morphism f : 〈Σ∗, ·, ε〉 → M , and a
subset M0 of M such that L = f−1(M0).

A language L is regular if there exists an NFA (non-
deterministic finite automaton) A = 〈Q,Σ, q0, δ, F 〉 such that
L = L(A), the language of words accepted by A. We use the
standard notation for NFAs, where Q is the set of states, q0 is
the initial state, F is the set of final states, and δ ⊆ Q×Σ×Q
is the transition relation.

A language is rational if it is denoted by a regular expres-
sion; such expressions are built from ∅, ε, and alphabet letters
by using operations of concatenation (e ·e′), union (e∪e′), and
Kleene star (e∗). It is of course the classical result of formal
language theory that the classes of recognizable, regular, and
rational languages coincide.

Recognizable, regular, and rational relations: While the
notions of recognizability, regularity, and rationality coincide
over languages L ⊆ Σ∗, they differ over relations over Σ, i.e.,
subsets of Σ∗× . . .×Σ∗. We now define those (see [5], [11],
[14], [20], [22], [30]).

Since 〈Σ∗, ·, ε〉 is a monoid, the product (Σ∗)n has the
structure of a monoid too. We can thus define recognizable
n-ary relations over Σ as subsets R ⊆ (Σ∗)n so that there
exists a finite monoid M and a morphism f : (Σ∗)n → M
such that R = f−1(M0) for some M0 ⊆ M . The class of
n-ary recognizable relations will be denoted by RECn; when
n is clear or irrelevant, we write just REC.

It is well-known that a relation R ⊆ (Σ∗)n is in RECn iff it
is a finite union of the sets of the form L1 × . . .×Ln, where
each Li is a regular language over Σ, see [5], [20].

Next, we define the class of regular relations. Let ⊥ 6∈ Σ
be a new alphabet letter, and let Σ⊥ be Σ ∪ {⊥}. Each tuple
w̄ = (w1, . . . , wn) of words from Σ∗ can be viewed as a word
over Σn⊥ as follows: pad words wi with ⊥ so that they all are
of the same length, and use as the kth symbol of the new word
the n-tuple of the kth symbols of the padded words. Formally,
let ` = maxi |wi|. Then w1 ⊗ . . .⊗ wn is a word of length `
whose kth symbol is (a1, . . . , an) ∈ Σn⊥ such that

ai =

{
the kth letter of wi if |wi| ≥ k
⊥ otherwise.

We shall also write ⊗w̄ for w1 ⊗ . . . ⊗ wn. A relation R ⊆
(Σ∗)n is called a regular n-ary relation over Σ if there is a
finite automaton A over Σn⊥ that accepts {⊗w̄ | w̄ ∈ R}. The
class of n-ary regular relations is denoted by REGn; as before,
we write REG when n is clear or irrelevant.

Finally, we define rational relations. There are two equiv-
alent ways of doing it. One uses regular expressions, which
are now built from tuples ā ∈ (Σ ∪ {ε})n using the same
operations of union, concatenation, and Kleene star. Binary
relations �suff , �, and v are all rational: the expression(⋃

a∈Σ(ε, a)
)∗ · (⋃a∈Σ(a, a)

)∗
defines �suff , the expression(⋃

a∈Σ(ε, a)
)∗ · (⋃a∈Σ(a, a)

)∗ · (⋃a∈Σ(ε, a)
)∗

defines �,
and the expression

(⋃
a∈Σ(ε, a) ∪ (a, a)

)∗
defines v.

Alternatively, n-ary rational relations can be defined by
means of n-tape automata, that have n heads for the tapes
and one additional control; at every step, based on the state
and the letters it is reading, the automaton can enter a new
state and move some (but not necessarily all) tape heads. The
classes of n-ary relations so defined are called rational n-ary
relations; we use the notation RATn or just RAT, as before.

Relationships between classes of relations: While it very
well known that REC1 = REG1 = RAT1, we have strict
inclusions

RECk (REGk (RATk

for every k > 1. For instance, �pref ∈ REG2 − REC2 and
�suff ∈ RAT2 − REG2.

The classes of recognizable and regular relations are closed
under intersection; however the class of rational relations is
not. In fact one can find R ∈ REG2 and S ∈ RAT2 so that
R∩S 6∈ RAT2. However, if R ∈ RECm and S ∈ RATm, then
R ∩ S ∈ RATm.

Binary rational relations can be characterized as follows
[5], [28]. A relation R ⊆ Σ∗ × Σ∗ is rational iff there is
a finite alphabet Γ, a regular language L ⊆ Γ∗ and two
alphabetic morphisms f, g : Γ∗ → Σ∗ such that R =
{(f(w), g(w)) | w ∈ L}. If we require f and g to be strictly
alphabetic morphisms, we get the class of length-preserving
regular relations, i.e., R ∈ REG2 so that (w,w′) ∈ R implies
|w| = |w′|. Regular binary relations are then finite unions of
relations of the form {(w · u,w′) | (w,w′) ∈ R, u ∈ L}
and {(w,w′ · u) | (w,w′) ∈ R, u ∈ L}, where R ranges
over length-preserving regular relations, and L over regular
languages.

Properties of classes of relations: Since relations in REC
and REG are given by NFAs, they inherit all the clo-
sure/decidability properties of regular languages. If R ∈ RAT,
then each of its projections is a regular language, and can
be effectively constructed (e.g., from the description of R as
an n-tape automaton). Hence, the nonemptiness problem is
decidable for rational relations. However, testing nonemptiness
of the intersection of two rational relations is undecidable [5].
Also, for R,R′ ∈ RAT, the following are undecidable: check-
ing whether R ⊆ R′ or R = R′, universality (R = Σ∗ ×Σ∗),
and checking whether R ∈ REG or R ∈ REC [5], [11], [26].

Remark: We defined recognizable, regular, and rational
relations over the same alphabet, i.e., as subsets of (Σ∗)n. Of
course it is possible to define them as subsets of Σ1×. . .×Σn,
with the Σi’s not necessarily distinct. Technically, there are no
differences and all the results will continue to hold. Indeed,
one can simply consider a new alphabet Σ as the disjoint union
of Σi’s, and enforce the condition that the ith projection only
use the letters from Σi (this is possible for all the classes of
relations we consider). In fact, in the proofs we shall be using
both types of relations.

III. GENERALIZED INTERSECTION PROBLEM

We now formalize the main technical problem we study.
Let R be a class of relations over Σ, and S a class of binary
relations over Σ. We use the notation [m] for {1, . . . ,m}. The
generalized intersection problem (R ∩I S)

?
= ∅ is defined as:

PROBLEM: (R ∩I S)
?
= ∅

INPUT: an m-ary relation R ∈ R,
a relation S ∈ S, and I ⊆ [m]2

QUESTION: is there w̄ = (w1, . . . , wm) ∈ R
so that (wi, wj) ∈ S for all (i, j) ∈ I?

If S = {S}, we write S instead of {S}. We write
GENINTS(R) for the class of all problems (R ∩I S)

?
= ∅

where S is fixed, i.e., the input consists of R ∈ R and I .
As was explained in the introduction, this problem captures
the essence of evaluating queries in various graph logics, e.g.,
CRPQs or ECRPQs extended with rational relations S. The
classes R will typically be REC and REG.

If m = 2 and I = {(1, 2)}, the generalized intersection
problem becomes simply the intersection problem for the
classes R and S of binary relations:

PROBLEM: (R∩ S)
?
= ∅

INPUT: R ∈ R and S ∈ S
QUESTION: is R ∩ S 6= ∅?

The problem (REC∩S)
?
= ∅ is decidable for every rational

relation S, simply by constructing R ∩ S, which is a rational
relation, and testing its nonemptiness. However, (REG∩S)

?
= ∅

could already be undecidable (we shall give one particularly
simple example later).

IV. GRAPH LOGICS AND THE GENERALIZED
INTERSECTION PROBLEM

In this section we show how the (generalized) intersection
problems provide us with upper and lower bounds on the
complexity of evaluating a variety of logical queries over
graphs. We start by recalling the basic classes of logics
used in querying graph data, and show that extending them
with rational relations allows us to cast the query evaluation
problem as an instance of the generalized intersection problem.
The key observations are that:

• the complexity of GENINTS(REC) and (REC ∩ S)
?
= ∅

provide an upper and a lower bound for the complexity
of evaluating CRPQ(S) queries; and

• for ECRPQ(S), these bounds are provided by the com-
plexity of GENINTS(REG) and of (REG ∩ S)

?
= ∅.

The standard abstraction of graph databases [1] is finite Σ-
labeled graphs G = 〈V,E〉, where V is a finite set of nodes,
or vertices, and E ⊆ V × Σ× V is a set of labeled edges. A
path ρ from v0 to vm in G is a sequence of edges (v0, a0, v1),
(v1, a1, v2), · · · , (vm−1, am−1, vm) from E, for some m ≥ 0.
The label of ρ, denoted by λ(ρ), is the word a0 · · · am−1 ∈ Σ∗.

The main building blocks for graph queries are regular path
queries, or RPQs [16]; they are expressions of the form x

L→ y,
where L is a regular language. We normally assume that L is
represented by a regular expression or an NFA. Given a Σ-
labeled graph G = 〈V,E〉, the answer to an RPQ above is the
set of pairs of nodes (v, v′) such that there is a path ρ from
v to v′ with λ(ρ) ∈ L.

Conjunctive RPQs, or CRPQs [8], [9], [15] are the closure
of RPQs under conjunction and existential quantification.
Formally, they are expressions of the form

ϕ(x̄) = ∃ȳ
m∧
i=1

(ui
Li−→ u′i) (1)

where variables ui, u′is come from x̄, ȳ. The semantics nat-
urally extends the semantics of RPQs: ϕ(ā) is true in G iff
there is a tuple b̄ of nodes such that for every i ≤ m and every
vi, v

′
i interpreting ui and u′i, respectively, we have a path ρi

between vi and v′i whose label λ(ρi) is in Li.
CRPQs can further be extended to compare paths. For that,

we need to name path variables, and choose a class of allowed
relations on paths. The simplest such extension is the class of
CRPQ(S) queries, where S is a binary relation over Σ∗. Its
formulae are of the form

ϕ(x̄) = ∃ȳ
(m∧
i=1

(ui
χi:Li−→ u′i) ∧

∧
(i,j)∈I

S(χi, χj)
)

(2)

where I ⊆ [m]2. We use variables χ1, . . . , χm to denote paths;
these are quantified existentially. That is, the semantics of G |=
ϕ(ā) is that there is a tuple b̄ of nodes and paths ρk, for k ≤ m,
between vk and v′k (where, as before, vk, v′k are elements of
ā, b̄ interpreting uk, u′k) such that (λ(ρi), λ(ρj)) ∈ S whenever
(i, j) ∈ I . For instance, the query

∃y, y′
(
(x

χ:Σ∗a−→ y) ∧ (x
χ′:Σ∗b−→ y′) ∧ χ v χ′

)
finds nodes v so that there are two paths starting from v, one
ending with an a-edge, whose label is a subsequence of the
other one, that ends with a b-edge.

The input to the query evaluation problem consists of a
graph G, a tuple v̄ of nodes, and a query ϕ(x̄); the question
is whether G |= ϕ(v̄). This corresponds to the combined com-
plexity of query evaluation. In the context of query evaluation,
one is often interested in data complexity, when the typically
small formula ϕ is fixed, and the input consists of the typically
large graph (G, v̄). We now relate it to the complexity of
GENINTS(REC).

Lemma IV.1. Fix a CRPQ(S) query ϕ as in (2). Then there
is a DLOGSPACE algorithm that, given a graph G and a tuple
v̄ of nodes, constructs an m-ary relation R ∈ REC so that the
answer to the generalized intersection problem (R ∩I S)

?
= ∅

is ‘yes’ iff G |= ϕ(v̄).

Proof idea. Given a Σ-labeled graph G = 〈V,E〉 and two
nodes v, v′, we write A(G, v, v′) for G viewed as an NFA
with the initial state v and the final state v′. Now consider a
CRPQ(S) query ϕ(x̄) given by (2). Let v̄ be a tuple of nodes
of G, of the same length as x̄.

The algorithm first enumerates all tuples b̄ of nodes of G
of the same length as ȳ. Let ni and n′i be the interpretations
of ui and u′i, when x̄ is interpreted as v̄ and ȳ as b̄. Define
Rb̄ =

∏m
i=1(L(A(G,ni, n

′
i)) ∩ Li); this is a relation in

RECm. Hence, R =
⋃
b̄Rb̄ in RECm too. It is now easy to

see that R ∩I S 6= ∅ iff G |= ϕ(v̄). 2

Conversely, the intersection problem for recognizable rela-
tions and S can be encoded as answering CRPQ(S) queries.

Lemma IV.2. For each binary relation S, there is a CRPQ(S)
query ϕ(x, x′) and a DLOGSPACE algorithm that, given a
relation R ∈ REC2, constructs a graph G and two nodes v, v′

so that G |= ϕ(v, v′) iff R ∩ S 6= ∅.

Proof idea. Let R ∈ REC2 be given as
⋃n
i=1(Li×Ki), where

the Li,Ki ⊆ Σ∗ are regular languages for every i. Let 〈Vi, Ei〉
be the underlying graph of the NFA defining Li, such that vi0
is the initial state, and Fi is the set of final states. Likewise
we define 〈Wi, Hi〉, nodes wi0 and sets Ci ⊆ Wi for NFA
defining Ki.

We now construct the graph G. Its labeling alphabet is the
union of Σ and {#, $, !}. Its set of vertices is the disjoint
union of all the Vis, Wis, as well as two distinguished nodes
start and end. Its edges include all the edges from Eis and
His, and the following:
• #-labeled edges from start to each initial state, i.e., to

each v0
i and w0

i for all i ≤ n.
• $-labeled edges between the initial states of automata

with the same index, i.e., edges (vi0, $, w
i
0) for all i ≤ n.

• !-labeled edges from final states to end, i.e., edges
(v, !, end), where v ∈

⋃
i≤n Fi ∪

⋃
i≤n Ci.

The CRPQ(S) query ϕ(x, y) is given below; it omits path
variables for paths that are not used in comparisons:

∃x1, x2, z1, z2

x

#→ x1 ∧ x
#→ x2

∧ x1
χ:Σ∗→ z1 ∧ x2

χ′:Σ∗→ z2

∧ z1
!→ y ∧ z2

!→ y

∧ x1
$→ x2 ∧ S(χ, χ′)

It is routine to verify that G |= ϕ(start, end) iff R∩S 6= ∅. 2

Combining the lemmas, we obtain:

Theorem IV.3. Let K be a complexity class closed under
DLOGSPACE reductions. Then:

1) If the problem GENINTS(REC) is in K, then data com-
plexity of CRPQ(S) queries is in K; and

2) If the problem (REC ∩ S)
?
= ∅ is hard for K, then so is

data complexity of CRPQ(S) queries.

We now consider extended CRPQs, or ECRPQs, which
enhance CRPQs with regular relations [3], and prove a similar
result for them, with the role of REC now played by REG.
Formally, ECRPQs are expressions of the form

ϕ(x̄) = ∃ȳ
(m∧
i=1

(ui
χi:Li−→ u′i) ∧

k∧
j=1

Rj(χ̄j)
)

(3)

where each Rj is a relation from REG, and χ̄j a tuple
from χ1, . . . , χm of the same arity as Rj . The semantics of
course extends the semantics of CRPQs: the witnessing paths
ρ1, . . . , ρm should also satisfy the condition that for every
atom R(ρi1 , . . . , ρil) in (3), the tuple (λ(ρi1), . . . , λ(ρil)) is
in R.

Finally, we obtain ECRPQ(S) queries by adding compar-
isons with respect to a relation S ∈ RAT, getting a class of
queries ϕ(x̄) of the form

∃ȳ
(m∧
i=1

(ui
χi:Li−→ u′i) ∧

k∧
j=1

Rj(χ̄j) ∧
∧

(i,j)∈I

S(χi, χj)
)

(4)

Exact analogs of Lemmas IV.1 and IV.2 hold, with ECRPQs
replacing CRPQs and REG replacing REC. Hence, we get:

Theorem IV.4. Let K be a complexity class closed under
DLOGSPACE reductions. Then:

1) If the problem GENINTS(REG) is in K, then data com-
plexity of ECRPQ(S) queries is in K; and

2) If the problem (REG ∩ S)
?
= ∅ is hard for K, then so is

data complexity of ECRPQ(S) queries.

Thus, our next goal is to understand the behaviors of the
generalized intersection problem for various rational relations
S which are of interest in graph logics; those include subword,
suffix, subsequence. In fact to rule out many undecidable or
infeasible cases it is often sufficient to analyze the intersection
problem. We do this in the next section, and then analyze
the decidable cases to come up with graph logics that can be
extended with rational relations.

V. THE INTERSECTION PROBLEM: DECIDABLE AND
UNDECIDABLE CASES

We now study the problem (REG ∩ S)
?
= ∅ for binary

rational relations S such as subword and subsequence, and for
classes of relations generalizing them. The input is a binary
regular relation R over Σ, given by an NFA over Σ⊥×Σ⊥. The
question is whether R ∩ S 6= ∅. We also derive results about
the complexity of ECRPQ(S) queries. For all lower-bound
results in this section, we assume that the alphabet contains at
least two symbols.

As already mentioned, there exist rational relations S such
that (REG∩S)

?
= ∅ is undecidable. However, we are interested

in relations that are useful in graph querying, and that are
among the most commonly used rational relations, and for
them the status of the problem was unknown.

Note that the problem (REC ∩ S)
?
= ∅ is tractable: given

R ∈ REC, the relation R ∩ S is rational, can be efficiently
constructed, and checked for nonemptiness.

A. Undecidable cases: subword and relatives

We now show that even for such simple relations as subword
and suffix, the intersection problem is undecidable. That is,
given an NFA over Σ⊥×Σ⊥ defining a regular relation R, the
problem of checking for the existence of a pair (w,w′) ∈ R
with w �suff w

′ or w � w′ is undecidable.

Theorem V.1. The problems (REG ∩ �suff)
?
= ∅ and

(REG ∩ �)
?
= ∅ are undecidable.

As an immediate consequence of this, we obtain:

Corollary V.2. The query evaluation problem for
ECRPQ(�suff) and ECRPQ(�) is undecidable.

Thus, some of the most commonly used rational relations
cannot be added to ECRPQs without imposing further restric-
tions.

Proof idea. We sketch the idea of the proof for �suff .
We encode nonemptiness for linearly bounded automata
(LBA). The alphabet Σ is the disjoint union of the
tape alphabet of the LBA, its states, and the designated
symbol $. Each configuration C with the tape content
a0 . . . an, where a0 and an are the left and right markers,
the state is q, and the head points at ai is encoded
as a word wC = $a0 . . . ai−1qai . . . an$. Note that the
relation {(wC , wC′) | C ′ is an immediate successor of C}
is regular and hence so is the relation R =
{(wC0

wC1
. . . wCm

, wC′1 . . . wC′m) | C ′i+1 is an immediate
successor of Ci for i < m}, since all configuration encodings
are of the same length. In fact, taking product with a
regular language, we can also assume that R enforces
C0 to be an initial configuration, and Cm to be a final
configuration. If R ∩ �suff is nonempty, it contains a
pair (wC0

wC1
. . . wCm

, wC1
. . . wCm

) such that Ci+1 is an
immediate successor of Ci for all i < m, i.e., iff there is an
accepting computation of the LBA. This proves undecidability.
The proof for � is very similar. 2

Note that the relation R constructed in the proof is definable
in first-order logic, so the intersection problem for suffix and
subword is undecidable even if the input relation comes from
the class of star-free regular relations.

The essence of the undecidability result is that relations such
as �suff and � can be decomposed in a way that one of the
components of the decomposition is a graph of a nontrivial
strictly alphabetic morphism. More precisely, let R ·R′ be the
binary relation {(w·w′, u·u′) | (w, u) ∈ R and (w′, u′) ∈ R′}.
Let Graph(f) be the graph of a function f : Σ∗ → Σ∗, i.e.,
{(w, f(w)) | w ∈ Σ∗}.

Proposition V.3. Let R0, R1 be binary relations on Σ such
that R0 is recognizable and its second projection is Σ∗. Let f
be a strictly alphabetic morphism that is not constant. Then,

for S = R0 · Graph(f) · R1, the problem (REG ∩ S)
?
= ∅ is

undecidable.

Note that both �suff and � are of the required shape: suffix
is ({ε}×Σ∗) ·Graph(id) · ({ε}×{ε}), and subword is ({ε}×
Σ∗) ·Graph(id) ·({ε}×Σ∗), where id is the identity alphabetic
morphism.

B. Decidable cases: subsequence and relatives

We now show that the intersection problem is decidable
for the subsequence relation v and, much more generally, for
a class of relations that do not, like the relations considered
in the previous section, have a “rigid” part. More precisely,
for relations one of whose projections is closed under taking
subsequences, we also retain decidability. However, the com-
plexity bounds are extremely high. In fact we show that the
complexity of checking whether (R∩v) 6= ∅, when R ranges
over REG2, is not bounded by any multiply-recursive function.
This was previously known for R ranging over RAT2, and was
viewed as the simplest problem with non-multiply-recursive
complexity [12]. We now push it further and show that this
high complexity is already achieved with regular relations.

Some of the ideas for showing this come from a decidable
relaxation of the Post Correspondence Problem (PCP), namely
the regular Post Embedding Problem, or PEPreg, introduced in
[12], and shown to be in the level Fωω of the fast-growing
hierarchy of recursive functions [27], [29]. The input to the
problem consists of two morphisms f, g : Σ∗ → Γ∗ and
a regular language L ⊆ Σ∗; it asks whether there is some
w ∈ L such that f(w) v g(w) (recall that in the case of the
PCP the question is whether f(w) = g(w) with L = Σ+).
This problem is known to be decidable, and as hard as the
reachability problem for lossy channel systems [12] which
cannot be bounded by any primitive-recursive function —in
fact, by any multiple-recursive function [29].

The problem PEPreg is just a reformulation of the prob-
lem (RAT ∩ v)

?
= ∅. Indeed, relations of the form

{(f(w), g(w)) | w ∈ L}, where L ⊆ Σ∗ ranges over regular
languages and f, g over morphisms Σ∗ → Γ∗ are precisely
the relations in RAT2 [5], [28]). Hence, (RAT ∩ v)

?
= ∅ is

decidable, with non-multiply-recursive complexity. We show
that the lower bound already applies to regular relations.

Theorem V.4. The problem (REG ∩ v)
?
= ∅ is decidable,

and its complexity is not bounded by any multiply-recursive
function.

Proof idea. As already mentioned, decidability follows from
[12]. To prove the lower bound, we first show that the existence
of a solution to PEPreg is equivalent to the existence of a
special solution, which we call a strict codirect solution.1

A word w = a1 · · · am ∈ Σ∗ is a strict codirect solution
if f(a1 · · · am) v g(a1 · · · am) and for every i < m,
f(a1 · · · ai) 6v g(a1 · · · ai). We then show how to code

1This is a slightly more restrictive definition than the codirect solutions used
for the decidability of PEPreg in [12], which is essential to make possible our
reduction from the (REG ∩ v) ?

= ∅ problem.

the existence of a strict codirect solution as an instance of
(REG ∩ v)

?
= ∅.

Given a rational relation R ⊆ Σ∗ × Γ∗ we convert it into
a length-preserving regular relation R′ ⊆ Σ∗⊥ × Γ∗⊥ so that
R is the set of elements of R′ projected onto Σ∗ × Γ∗, and
if (q, (a, b), q′) is a transition of the NFA accepting R′ so is
(q, (⊥,⊥), q′). If we now let R′′ to be the regular relation
R′ · {(ε, v) | v ∈ {⊥}∗}, we obtain that:

(i) if w ∈ R′′ ∩ v then w′ ∈ R ∩ v, where w′ is the
projection of w onto Σ∗ × Γ∗; and

(ii) for any w′ ∈ R∩v there is some strict codirect solution
w ∈ R′′ ∩ v such that w′ is the projection of w onto
Σ∗ × Γ∗.

Thus the theorem follows.
Whereas (i) is trivial, (ii) follows from the fact that w is a

strict codirect solution. If w′ = (u, v) ∈ R′′, where f(w) =
(u)Γ, g(w) = (v)Γ, the complication is now that, since u ∈
Σ⊥, it could be that u 6v v just because there is some ⊥ in
u that does not appear in v. But we build (u, v) such that
whenever u[i] = ⊥ forces v[j] = ⊥ with j > i then we
also have that u[j] = ⊥. This repeats, forcing v[k] = ⊥ for
some k > j and so on, until we reach the tail of v that has
sufficiently many ⊥’s to satisfy all the accumulated demands
for occurrences of ⊥. 2

Note that one cannot solve the problem (REG ∩ v)
?
= ∅

by reducing to nonemptiness of rational relations due to the
following.

Proposition V.5. There is a binary regular relation R such
that (R ∩ v) is not rational.

The next question is how far we can extend the decidability
of (RAT∩v)

?
= ∅. It turns out that if we allow one projection

of a rational relation to be closed under taking subsequences,
then we retain decidability.

Let R ⊆ Σ∗×Σ∗ be a binary relation. Define another binary
relation

Rv = {(u,w) | u v u′ and (u′, w) ∈ R for some u′}

Then the class of subsequence-closed relations, or SCR, is
the class {Rv | R ∈ RAT}. Note that the subsequence
relation itself is in SCR, since it is obtained by closing
the (regular) equality relation under subsequence. That is,
v = {(w,w) | w ∈ Σ∗}v. Not all rational relations are
subsequence-closed (for instance, subword is not).

The following summarizes properties of subsequence-closed
relations.

Proposition V.6.
1) SCR (RAT.
2) SCR 6⊆ REG and REG 6⊆ SCR.
3) A relation R is in SCR iff {w ⊗ w′ | (w,w′) ∈ R} is

accepted by an NFA A = 〈Q,Σ⊥ × Σ⊥, q0, δ, F 〉 such
that (q, (a, b), q′) ∈ δ implies (q, (⊥, b), q′) ∈ δ for all
q, q′ ∈ Q and a, b ∈ Σ⊥.

When an SCR relation is given as an input to a problem,
we assume that it is represented as an NFA in item 3 in the
above proposition.

Note also that (SCR∩SCR)
?
= ∅ is decidable in polynomial

time: if R,R′ ∈ SCR and R ∩ R′ 6= ∅, then (ε, w) ∈ R ∩ R′
for some w, and hence the problem reduces to simple NFA
nonemptiness checking.

The main result about SCR relations generalizes decidability
of (RAT ∩ v)

?
= ∅.

Theorem V.7. The problem (RAT ∩ SCR)
?
= ∅ is decidable.

Of course the complexity is non-multiply-recursive, since
this subsumes (REG ∩ v)

?
= ∅ of Theorem V.4.

Proof idea. Decidability is shown by reduction to a problem
where solutions have a specific shape. Given a rational binary
relation R0 and a subsequence-closed relation R1 defined by
two automata A0 and A1 over Σ⊥×Σ⊥, we say that (w0, w1)
is a solution if w0 = u0 ⊗ v0 ∈ L(A0), w1 = u1 ⊗ v1 ∈
L(A1) and (u0)Σ = (u1)Σ, (v0)Σ = (v1)Σ, where wΣ denotes
projection of w onto Σ. We say that (w0, w1) is a synchronized
solution if it further satisfies v0 = v1.

The problem of finding a solution reduces to that of finding
a synchronized solution. Indeed, consider the automata A′0,A′1
as the result of adding all transitions (q, (⊥,⊥), q) for every
possible state q to both automata. It is clear that the relations
recognized by these automata remain unchanged, and that A′0
is still a SCR automaton. It is easy to verify that there is a
synchronized solution for (A′0,A′1) if, and only if, there is a
solution for (A0,A1).

The problem of finding a synchronized solution for A0,A1

can be then formulated as the problem of finding words
v, u0, u1 ∈ Σ∗⊥ with |v| = |u0| = |u1|, so that (u0⊗v, u1⊗v)
is a solution. We can compute an automaton A over Σ3

⊥
from A0,A1, such that (u0, u1, v) ∈ L(A) if, and only
if, u0 ⊗ v ∈ L(A0) and u1 ⊗ v ∈ L(A1). Consider now
an automaton A′ over Σ2

⊥ such that L(A′) = {(u0, u1) |
∃v (u0, u1, v) ∈ L(A)}. It corresponds to the rational automa-
ton of the projection onto the first and second components
of the ternary relation of A, and it can be computed from
A in polynomial time. We then deduce that there exists
u0 ⊗ u1 ∈ L(A′) so that (u0)Σ v (u1)Σ if, and only if, there
is v ∈ Σ∗⊥ with |v| = |u0| = |u1| so that u0⊗ v ∈ L(A0) and
u1⊗ v ∈ L(A1), where (u0)Σ v (u1)Σ. But this is equivalent
to R0 ∩R1 6= ∅, since
• if ((u1)Σ, (v)Σ) ∈ R1 and (u0)Σ v (u1)Σ, then

((u0)Σ, (v)Σ) ∈ R1 (since R1 ∈ SCR) and hence
((u0)Σ, (v)Σ) ∈ R0 ∩R1; and

• if R0∩R1 6= ∅, then there exists a synchronized solution
(u0 ⊗ v, u1 ⊗ v) of A0,A1 (where u0 ⊗ v ∈ L(A0), and
u1 ⊗ v ∈ L(A1), and (u0)Σ = (u1)Σ).

We have thus reduced the problem to (RAT ∩ v)
?
= ∅, which

is decidable [12], as already mentioned. 2

Coming back to graph logics, we obtain:

Corollary V.8. The complexity of evaluation of ECRPQ(v)
queries is not bounded by a multiply-recursive function.

Another corollary can be stated in purely language-theoretic
terms.

Corollary V.9. Let C be a class of binary relations on Σ∗

that is closed under intersection and contains REG. Then the
nonemptiness problem for C is:
• undecidable if � or �suff is in C;
• non-multiply-recursive if v is in C.

Discussion: In addition to answering some basic
language-theoretic questions about the interaction of regular
and rational relations, and to providing the simplest yet
problem with non-multiply-recursive complexity, our results
also ruled out logical languages for graph databases that freely
combine regular relations and some of the most commonly
used rational relations, such as subword and subsequence.
With them, query evaluation becomes either undecidable or
non-multiply-recursive (which means that no realistic algo-
rithm will be able to solve the hard instances of this problem).

This does not yet fully answer our questions about the
evaluation of queries in graph logics. First, in the case of
subsequence (or, more generally, SCR relations) we still do
not know if query evaluation of ECRPQs with such relations
is decidable (i.e., what happens with GENINTS(REG) for such
relations S).

Even more importantly, we do not yet know what happens
with the complexity of CRPQs (i.e., GENINTS(REC) for
various relations S. These questions are answered in the next
section.

VI. RESTRICTED LOGICS AND GENERALIZED
INTERSECTION PROBLEM

The previous section already ruled out some graph logics
with rational relations as either undecidable or decidable
with extremely high complexity. This was done merely by
analyzing the intersection problem for binary rational and
regular relations. We now move to the study of the generalized
intersection problem, and use it to analyze the complexity
of graph logics in full generality. We first deal with the
generalization of the decidable case (SCR relations), and
then consider the problem GENINTS(REC), corresponding to
CRPQs extended with relations S on paths.

A. Generalized intersection problem and subsequence

We know that (REG ∩ v)
?
= ∅ is decidable, although not

multiply-recursive. What about its generalized version? It turns
out it remains decidable.

Theorem VI.1. The problem GENINTv(REG) is decidable.
That is, there is an algorithm that decides, for a given m-ary
regular relation R and I ⊆ [m]2, whether R ∩I v 6= ∅.

For checking decidability we explore the solution space
tree as in the proof of Theorem V.7. However, this time the
notion of saturation is different, since we need to consider a

different condition for each component of the m-ary relation.
The finiteness of the computed tree follows from Higman’s
Lemma this time in combination with Dickson’s Lemma [19].

Corollary VI.2. The query evaluation problem for
ECRPQ(v) queries is decidable.

Of course the complexity is extremely high as we already
know from Corollary V.8.

Note that while the intersection problem of v with rational
relations is decidable, as is GENINTv(REG), we lose the
decidability of GENINTv(RAT) even in the simplest cases
that go beyond the intersection problem (that is, for ternary
relations in RAT and any I that does not force two words to
be the same).

Proposition VI.3. The problem (RAT ∩I v)
?
= ∅ is undecid-

able even over ternary relations when I is one of the following:
{(1, 2), (2, 3)}, or {(1, 2), (1, 3)}, or {(1, 2), (3, 2)}.

B. Generalized intersection problem for recognizable relations

We now consider the problem of answering CRPQs
with rational relations S, or, equivalently, the problem
GENINTS(REC). Recall that an instance of such a problem
consists of an m-ary recognizable relation R and a set
I ⊆ [m]2. The question is whether R ∩I S 6= ∅, i.e., whether
there exists a tuple (w1, . . . , wm) ∈ R so that (wi, wj) ∈ S
whenever (i, j) ∈ I . It turns out that the decidability of
this problem hinges on the graph-theoretic properties of I .
In fact we shall present a dichotomy result, classifying prob-
lems GENINTS(REC) into PSPACE-complete and undecidable
depending on the structure of I .

Before stating the result, we need to decide how to represent
a recognizable relation R. Recall that an m-ary R ∈ REC is a
union of relations of the form L1 × . . .×Lm, where each Li
is a regular language. Hence, as the representation of R we
take the set of all such Lis involved, and as the measure of
its complexity, the total size of NFAs defining the Lis.

With a set I ⊆ [m]2 we associate an undirected graph GI
whose nodes are 1, . . . ,m and whose edges are {i, j} such
that either (i, j) ∈ I or (j, i) ∈ I . We call an instance of
(REC ∩I S)

?
= ∅ acyclic if GI is an acyclic graph.

Now we can state the dichotomy result.

Theorem VI.4.
• Let S be a binary rational relation. Then acyclic in-

stances of GENINTS(REC) are decidable in PSPACE.
Moreover, there is a fixed binary relation S0 such that
the problem (REC ∩I S0)

?
= ∅ is PSPACE-complete.

• For every I such that GI is not acyclic, there exists a
binary rational relation S such that the problem (REC ∩I
S)

?
= ∅ is undecidable.

Proof idea. For PSPACE-hardness we can do an easy reduction
from nonemptiness of NFA intersection. Given m NFAs
A1, . . . ,Am, define the (acyclic) relation I = {(i, i+1) | 1 ≤
i < m}. Then

⋂
i L(Ai) is nonempty iff

∏
i L(Ai)∩I S0 6= ∅,

where S0 = {(w,w) | w ∈ Σ∗}.

For the upper bound, we show how to construct, in ex-
ponential time, for each m-ary recognizable relation R, a
binary rational relation S and an acyclic I ⊆ [m]2, an m-
ary transducer A(R,S, I) that accepts precisely those w̄ =
(w1, . . . , wm) ∈ (Σ∗)m such that w̄ ∈ R and (wi, wj) ∈ S,
for each (i, j) ∈ I . Intuitively, A(R,S, I) represents the
“synchronization” of the transducer that accepts R with a
copy of the transducer that recognizes S over each projection
defined by the pairs in I . Such synchronization is possible
since I is acyclic. Hence, in order to solve GENINTS(REC) we
only need to checkA(R,S, I) for nonemptiness. The latter can
be done in PSPACE by the standard “on-the-fly” reachability
analysis. 2

C. CRPQs with rational relations

The acyclicity condition gives us a robust class of queries,
with an easy syntactic definition, that can be extended with
arbitrary rational relations. Recall that CRPQ(S) queries are
those of the form

ϕ(x̄) = ∃ȳ
(m∧
i=1

(ui
χi:Li−→ u′i) ∧

∧
(i,j)∈I

S(χi, χj)
)
,

see (2) in Sec.IV. We call such a query acyclic if GI , the
underlying undirected graph of I , is acyclic.

Theorem VI.5. The query evaluation problem for acyclic
CRPQ(S) queries is decidable for every binary rational
relation S. Its combined complexity is PSPACE-complete, and
data complexity is NLOGSPACE-complete.

Thus, we get not only the possibility of extending CRPQs
with rational relations but also a good complexity of query
evaluation. The NLOGSPACE-data complexity matches that
of RPQs, CRPQs, and ECRPQs [15], [16], [3], and the
combined complexity matches that of first-order logic, or
ECRPQs without extra relations.

The next natural question is whether we can recover decid-
ability for weaker syntactic conditions by putting restrictions
on a class of relations S. The answer to this is positive if we
consider directed acyclicity of I , rather than acyclicity of the
underlying undirected graph of I . Then we get decidability
for the class of SCR relations. In fact, we have a dichotomy
similar to that of Theorem VI.4.

Theorem VI.6.
• Let S be a relation from SCR. Then (REC ∩I S)

?
= ∅ is

decidable in NEXPTIME if I is a directed acyclic graph.
• There is a relation I with a directed cycle and S ∈ SCR

such that (REC ∩I S)
?
= ∅ is undecidable.

In particular, if we have a CRPQ(S) query (2) where I
is acyclic (as a directed graph) and S ∈ SCR, then query
evaluation has NEXPTIME combined complexity.

The proof of this result is quite different from the upper
bound proof of Theorem VI.4, since the set of witnesses for
the generalized intersection problem is no longer guaranteed to
be rational without the undirected acyclicity condition. Instead,

here we establish the finite-model property, which implies the
result.

Also, as a corollary to the proof of Theorem VI.6, we get
the following result:

Proposition VI.7. Let S ∈ SCR be a partial order. Then
GENINTS(REC) is decidable in NEXPTIME.

Corollary VI.8. If S ∈ SCR is a partial order, then CRPQ(S)
queries can be evaluated with NEXPTIME combined com-
plexity. In particular, CRPQ(v) queries have NEXPTIME
combined complexity.

The last question is whether these results can be extended
to other relations considered here, such as subword and suffix.
We do not know the result for subword (which appears to be
hard), but we do have a matching complexity bound for the
suffix relation.

Proposition VI.9. The problem GENINT�suff
(REC) is decid-

able in NEXPTIME. In particular, CRPQ(�suff) queries can
be evaluated with NEXPTIME combined complexity.

VII. CONCLUSIONS

Motivated by problems arising in studying logics on graphs
(as well as some verification problems), we studied the in-
tersection problem for rational relations with recognizable
and regular relations over words. We have looked at rational
relations such as subword �, suffix �suff , and subsequence
v, which are often needed in graph querying tasks. The main
results on the complexity of the intersection and generalized
intersection problems, as well as the combined complexity
of evaluating different classes of logical queries over graphs
are summarized in Fig. 1. Several results generalizing those
(e.g., to the class of SCR relations) were also shown. Two
problems related to the interaction of the subword relation with
recognizable relations remain open and appear to be hard.

From the practical point of view, as rational-relation com-
parisons are demanded by many applications of graph data,
our results essentially say that such comparisons should not be
used together with regular-relation comparisons, and that they
need to form acyclic patterns (easily enforced syntactically)
for efficient evaluation.

So far we dealt with the classical setting of graph data [1],
[8], [9], [15], [16] in which the model of data is that of a
graph with labels from a finite alphabet. In both graph data
and verification problems it is often necessary to deal with the
extended case of infinite alphabets (say, with graphs holding
data values describing its nodes), and languages that query
both topology and data have been proposed recently [23], [25].
A natural question is to extend the positive results shown here
to such a setting.

Acknowledgments: We thank Sylvain Schmitz for help-
ful comments and suggestions. Partial support provided by
Fondecyt grant 1110171, EPSRC grant G049165, and FET-
Open Project FoX, grant agreement 233599. Part of this work
was done when the first author visited Edinburgh, and the third
author visited Santiago.

R ∈ REC R ∈ REG R ∈ RAT

(R ∩ �)
?
= ∅ undecidable undecidable

(R ∩ �suff)
?
= ∅ PTIME (cf. [5]) undecidable undecidable

(R ∩ v)
?
= ∅ decidable, non-multiply-recursive decidable, non-multiply-recursive [12]

(R ∩I �)
?
= ∅ ? undecidable

(R ∩I �suff)
?
= ∅ NEXPTIME undecidable undecidable

(R ∩I v)
?
= ∅ NEXPTIME decidable, non-multiply-recursive

S = v S = �suff S = � S arbitrary in RAT
ECRPQ(S) decidable, non-multiply-recursive undecidable undecidable undecidable
CRPQ(S) NEXPTIME NEXPTIME ? undecidable

acyclic CRPQ(S) PSPACE PSPACE PSPACE PSPACE

Fig. 1. Complexity of the intersection and generalized intersection problems, and combined complexity of graph queries for subword (�), suffix (�suff),
and subsequence (v) relations

REFERENCES

[1] R. Angles, C. Gutiérrez. Survey of graph database models. ACM
Comput. Surv. 40(1): (2008).

[2] K. Anyanwu, A. P. Sheth. ρ-Queries: enabling querying for semantic
associations on the semantic web. In WWW’03.

[3] P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for
path queries over graph-structured data. In PODS, pages 3-14, 2010.

[4] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations
and first-order query languages over strings. J. ACM 50(5):694-751
(2003).

[5] J. Berstel. Transductions and Context-Free Languages. B. G. Teubner,
1979.

[6] A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages
51–62.

[7] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc. 1 (1994), 191–238.

[8] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR’00, pages 176–
185.

[9] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. View-based
query processing and constraint satisfaction. In LICS, pages 361-371,
2000.

[10] L. Cardelli, P. Gardner, G. Ghelli. A spatial logic for querying graphs.
In ICALP’02, pages 597-610.

[11] O. Carton, C. Choffrut, S. Grigorieff. Decision problems among the
main subfamilies of rational relations. RAIRO/ITA, 40 (2006), 255–275.

[12] P. Chambart, Ph. Schnoebelen. Post embedding problem is not primitive
recursive, with applications to channel systems. In FSTTCS’07, pages
265–276.

[13] P. Chambart, Ph. Schnoebelen. The ordinal recursive complexity of lossy
channel systems. LICS’08, pages 205–216.

[14] C. Choffrut. Relations over words and logic: a chronology. Bulletin of
the EATCS 89 (2006), 159–163.

[15] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. In PODS’90, pages 404–416.

[16] I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting
recursion. In SIGMOD’87, pages 323-330.

[17] A. Dawar, P. Gardner, G. Ghelli. Expressiveness and complexity of
graph logic. Inf.& Comput. 205 (2007), 263-310.

[18] A. Deutsch, V. Tannen. Optimization properties for classes of conjunc-
tive regular path queries. DBPL’01, pages 21–39.

[19] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. The American Journal of
Mathematics, 35(4):413–422, 1913.

[20] C. Elgot and J. Mezei. On relations defined by generalized finite
automata. IBM J. Res. Develop. 9 (1965), 47–68.

[21] D. Florescu, A. Levy, D. Suciu. Query containment for conjunctive
queries with regular expressions. In PODS’98.

[22] C. Frougny and J. Sakarovitch. Synchronized rational relations of finite
and infinite words. TCS 108 (1993), 45–82.

[23] O. Grumberg, O. Kupferman, S. Sheinvald. Variable automata over
infinite alphabets. In LATA’10, pages 561–572.

[24] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2(7):326–336, 1952.

[25] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In
ICDT’12.

[26] L. Lisovik. The identity problem for regular events over the direct
product of free and cyclic semigroups. Doklady Akad. Nauk Ukr., ser.
A, 6 (1979), 410–413.

[27] M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions,
I. Arch. Math. Logik Grund., 13:39–51, 1970.

[28] M. Nivat. Transduction des langages de Chomsky. Ann. Inst. Fourier
18 (1968), 339–455.

[29] H. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press,
1984.

[30] W. Thomas. Infinite trees and automaton-definable relations over ω-
words. TCS 103 (1992), 143–159.

