
HAL Id: hal-01799573
https://hal.science/hal-01799573v4

Preprint submitted on 20 May 2019 (v4), last revised 5 Dec 2019 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

More applications of the d-neighbor equivalence:
connectivity and acyclicity constraints
Benjamin Bergougnoux, Mamadou Moustapha Kanté

To cite this version:
Benjamin Bergougnoux, Mamadou Moustapha Kanté. More applications of the d-neighbor equiva-
lence: connectivity and acyclicity constraints. 2019. �hal-01799573v4�

https://hal.science/hal-01799573v4
https://hal.archives-ouvertes.fr

MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE: ACYCLIC
AND CONNECTIVITY CONSTRAINTS

BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Abstract. In this paper, we design a framework to obtain efficient algorithms for several
problems with a global constraint (acyclicity or connectivity) such as Connected Dominating
Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path,
and Feedback Vertex Set. For all these problems, we obtain 2O(k) · nO(1), 2O(k log(k)) ·
nO(1), 2O(k2) · nO(1) and nO(k) time algorithms parameterized respectively by clique-width,
Q-rank-width, rank-width and maximum induced matching width. Our approach simplifies
and unifies the known algorithms for each of the parameters and match asymptotically also
the running time of the best algorithms for basic NP-hard problems such as Vertex Cover
and Dominating Set. Our framework is based on the d-neighbor equivalence defined in [Bui-
Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance and
the generalizing power of this equivalence relation on width measures. We also prove that
this equivalence relation could be useful for Max Cut: a W[1]-hard problem parameterized
by clique-width. For this latter problem, we obtain nO(k), nO(k) and n2O(k)

time algorithms
parameterized respectively by clique-width, Q-rank-width and rank-width.

1. Introduction

Tree-width is one of the most well-studied graph parameters in the graph algorithm commu-
nity, due partly to its numerous structural and algorithmic properties. Nevertheless, despite
the broad interest on tree-width, only sparse graphs can have bounded tree-width. But, many
NP-hard problems are tractable on dense graph classes. For many graph classes, this tractabil-
ity can be explained through other width measures. The most remarkable ones are certainly
clique-width [9], rank-width [22], and maximum induced matching width (a.k.a. mim-width)
[27].

We obtain most of these parameters through the notion of layout. A layout of a graph G
is a tree T whose leaves are in bijection with the vertices of G. Every edge e of the layout is
associated with a vertex bipartition of G through the two connected components obtained by the
removal of e. Given a symmetric function f : 2V (G) → N, one can associate with each layout T
a measure, called usually f-width, defined as the maximum f(A) over all the vertex bipartitions
(A,A) of V (G) associated with the edges of T . For instance, rank-width is defined from the
function f(A) which corresponds to the rank over GF (2) of the adjacency matrix between the
vertex sets A and A; if we take the rank over Q, we obtain a useful variant of rank-width
introduced in [23], called Q-rank-with. For mim-width, f(A) is the maximum size of an induced
matching in the bipartite graph between A and A.

These other width measures have a modeling power strictly stronger than the modeling power
of tree-width. For example, if a graph class has bounded tree-width, then it has bounded clique-
width [9], but the converse is false as cliques have clique-width at most 2 and unbounded
tree-width. While (Q-)rank-width has the same modeling power as clique-width, mim-width
has the strongest one among all these width measures and is even bounded on interval graphs
[1]. Despite their generality, a lot of NP-hard problems admit polynomial time algorithms when

1991 Mathematics Subject Classification. F.2.2, G.2.1, G.2.2.
Key words and phrases. connectivity problem, feedback vertex set, d-neighbor equivalence, σ, ρ-domination,

clique-width, rank-width, mim-width.
This work is supported by French Agency for Research under the GraphEN project (ANR-15-CE40-0009).

1

one of these width measures is fixed. But, dealing with these width measures is known to be
harder than manipulating tree-width.

Concerning their computations, it is not known whether the clique-width (respectively mim-
width) of a graph can be approximated within a constant factor in time f(k) ·nO(1) (resp. nf(k))
for some function f. However, for (Q-)rank-width, there is a 23k · n4 time algorithm that, given
a graph G as input and k ∈ N, either outputs a decomposition for G of (Q-)rank-width at most
3k + 1 or confirms that the rank-width of G is more than k [23, 24].

Finding efficient algorithms parameterized by one of these width measures is quite “naive” for
problems based on local constraints [8, 26]. In contrast, the task is quite complicated for problems
involving a global constraint, e.g., connectivity or acyclicity. For a long time, our knowledge
on the parameterized complexity of this latter kind of problems, with parameters the common
width measures, was quite limited even for tree-width. For a while, the FPT community used
to think that for problems involving global constraints the naive kO(k) · nO(1) time algorithm, k
being the tree-width of the input graph, could not be improved. But, quite surprisingly, in 2011,
Cygan et al. designed in [10] a technique called Cut & Count to design Monte Carlo 2O(k) ·nO(1)

time algorithms for a wide range of problems with global constraints, including Hamiltonian
Cycle, Feedback Vertex Set, and Connected Dominating Set. Later, Bodlaender et
al. proposed in [5] a general toolkit, called rank-based approach, to design deterministic 2O(k) ·n
time algorithms to solve a wider range of problems.

In a recent paper [3], the authors adapted the rank-based approach of [5] to obtain 2O(k) · n
time algorithms, k being the clique-width of a given decomposition, for many problems with a
global constraint, e.g. Connected Dominating Set and Feedback Vertex Set.

Unlike tree-width and clique-width, algorithms parameterized by rank-width and mim-width
for problems with a global constraint, were not investigated, except for some special cases such
as Feedback Vertex Set [14, 19] and Longest Induced Path [18].

One successful way to design efficient algorithms with these width measures is through the
notion of d-neighbor equivalence. This concept was introduced by Bui-Xuan, Telle and Vatshelle
in [8]. Formally, given A ⊆ V (G) and d ∈ N, two sets X,Y ⊆ A are d-neighbor equivalent w.r.t.
A if, for all v ∈ V (G) \A, we have min(d, |N(v) ∩X|) = min(d, |N(v) ∩ Y |), where N(v) is the
set of neighbors of v in G. Notice that X and Y are 1-neighbor equivalent w.r.t. A if and only
if both have the same neighborhood in V (G) \A.

The d-neighbor equivalence gives rise to a width measure, called in this paper d-neighbor-
width. This width measure, based also on layouts, is defined from the function s-necd(A) which
corresponds to the maximum number of equivalence classes of the d-neighbor equivalence over
A and V (G) \ A. It is worth noticing that the boolean-width of a layout introduced in [7]
corresponds to the binary logarithm of the 1-neighbor-width.

Both notions were used by Bui-Xuan et al. in [8] to design efficient algorithms for the family
of problems called (σ, ρ)-Dominating Set problems. This family of problems was introduced
by Telle and Proskurowski in [26]. Given a pair (σ, ρ) of finite or co-finite subsets of N and a
graph G, a (σ, ρ)-dominating set of G is a subset D of V (G) such that, for each vertex x ∈ V (G),
the number of neighbors of x in D is in σ if x ∈ D and in ρ otherwise. A problem is a (σ, ρ)-
Dominating Set problem if it consists in finding a minimum (or maximum) (σ, ρ)-dominating
set. For instance, the Dominating Set problem asks for the computation of a minimum
(N,N \ {0})-dominating set. Many NP-hard problems based on local constraints belong to this
family, see [8, Table 1].

Bui-Xuan et al.[8] designed an algorithm that, given a rooted layout L, solve any (σ, ρ)-
Dominating Set problem in time s-necd(L) · nO(1) where d is a constant depending on the
considered problem. The known upper bounds on s-necd(L) (see Lemma 2.6) and the algorithm
of [8] give efficient algorithms to solve any (σ, ρ)-Dominating Set problem, with parameters
tree-width, clique-width, (Q)-rank-width, and mim-width. The running times of these algo-
rithms are given in Table 1.

2

Table 1. Upper bounds on s-necd(L)O(1) · nO(1) with L a layout and d a constant.

Tree-width Clique-width Rank-width Q-rank-width Mim-width

2O(k) · nO(1) 2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

Our contributions and organization of this paper. In this paper, we design a framework
based on the 1-neighbor equivalence (presented in Section 3) and using some ideas of the rank-
based approach of [5] to design efficient algorithms for many problems involving a connectivity
constraint. This framework provides tools to reduce the size of the sets of partial solutions
we compute at each step of a dynamic programming algorithm. We prove that many ad-hoc
algorithms for these problems can be unified into a single algorithm that is almost the same as
the one from [8] computing a dominating set.

In Section 4, we use our framework to design an algorithm that, given a rooted layout L, solves
any connectivity variant (a solution must induce a connected graph) of a (σ, ρ)-Dominating
Set problem. This includes some well-known problems such as Connected Dominating
Set, Connected Vertex Cover or Node Weighted Steiner Tree. The running time
of our algorithm is polynomial in n and s-necd(L), with d a constant that depends on σ and ρ.
Consequently, each connectivity variant of a (σ, ρ)-Dominating Set problem admits algorithms
with the running times given in Table 1.

In Section 5, we introduce some new concepts to deal with acyclicity. We use these concepts to
deal with the AC variants1 (a solution must induce a tree) of (σ, ρ)-Dominating Set problems.
Both Maximum Induced Tree and Longest Induced Path are the AC variants of (σ, ρ)-
Dominating Set problems. We prove that there exist algorithms that solve these AC variants
in the running times given in Table 1. To obtain these results, we rely heavily on the d-
neighbor equivalence. However, we were not able to provide an algorithm whose running time
is polynomial in n and s-necd(L) for some constant d. Instead, we provide an algorithm whose
behavior depends slightly on each width measure considered in Table 1.

We moreover prove that we can modify slightly this algorithm to solve any acyclic variant (a
solution must induce a forest) of a (σ, ρ)-Dominating Set problem. In particular, this shows
that we can use the algorithm for Maximum Induced Tree to solve the Feedback Vertex
Set problem.

Up to a constant in the exponent, the running times of our algorithms and their algorithmic
consequences match those of the best known algorithms for basic problems such as Vertex
Cover and Dominating Set [8, 23]. Moreover, the 2O(k) · nO(1) time algorithms we obtained
for clique-width are optimal under the well-known Exponential Time Hypothesis (ETH) [16].
That is, unless ETH fails, there are no 2o(k) · nO(1) time algorithms, k being the clique-width of
a given decomposition, for the NP-hard problems considered in this paper. This follows from
the facts that the clique-width of a graph is at least its number of vertices and that (under
well-know Karp reduction [16, 17]) those problems do not admit a 2o(n) · nO(1) time algorithms
unless ETH fails.

Surprisingly, our result reveal that the d-neighbor equivalence relation can be used for prob-
lems which are not based on local constraints. This highlights the importance and the gener-
alizing power of this concept on many width measures: for many problems and many width
measures, one obtains the “best” algorithms by using the upper bounds on s-necd(L) given in
Table 1. In Section 6, we prove that d-neighbor equivalence could also be useful for problems
with W[1]-hard parameterized by clique-width . For doing so, we prove that, given an n-vertex
graph and a rooted layout L, we can solve Max Cut in time s-necO(1)

n · nO(1) This algorithm
gives the best known algorithms parameterized by clique-width, Q-rank-width and rank-width.

1AC stands for “acyclic and connected”.
3

It is worth mentioning that contrary to the algorithm for Max Cut given in [12], there is no
need to assume that the graph is given with a clique-width expression as our algorithm can be
parameterized by Q-rank-width, which is always smaller than clique-width and for which also a
fast FPT (3k + 1)-approximation algorithm exists [24].

Finally, in Section 7, we conclude with some open questions and by giving some examples of
problems which might be interesting to tackle with the help of the d-neighbor equivalence.

Our approach. Let us explain our approach with the connected and AC variants of the Dom-
inating Set problem. To solve these problems, our algorithms do a bottom-up traversal of a
given layout L of the input graph G and at each step we compute a set of partial solutions. In
our case, the steps of our algorithms are associated with the vertex bipartitions (A,A) induced
by the edges of a layout and the partial solutions are subsets of A. At each step, our algorithms
compute, for each pair (R,R′) where R (resp. R′) is a 1-neighbor equivalence class of A (resp.
A), a set of partial solutions AR,R′ ⊆ R. The way we compute these sets guarantees that the
partial solutions in AR,R′ will be completed with sets in R′. Consequently, we have information
about how we will complete our partial solutions since every Y ∈ R′ has the same neighborhood
in A.

To deal with the local constraint of these problems, namely the domination constraint, we
use the ideas of Bui-Xuan et al. [8]. For each pair (R,R′), let us say that X ⊆ A is coherent
with (R,R′) if: (1) X ∈ R and (2) X ∪ Y dominates A in the graph G for every Y ∈ R′. To
compute a minimum dominating set, Bui-Xuan et al. proved that it is enough to keep, for each
pair (R,R′), a partial solution X of minimum weight that is coherent with (R,R′). Intuitively,
if a partial solution X that is coherent with (R,R′) could be completed into a dominating set
of G, then it is the case for every partial solution coherent with (R,R′). This is due to the fact
that any pair of sets in R (resp. R′) dominate the same vertices in A (resp. A).

To solve the connectivity variant, we compute, for each (R,R′), a set AR,R′ of partial solu-
tions coherent with (R,R′). Informally, AR,R′ has to be as small as possible, but if a partial
solution coherent with (R,R′) leads to a minimum connected dominating set, then AR,R′ must
contain such a partial solution. To deal with this intuition, we introduce the relation of R′-
representativity between sets of partial solutions. We say that A? R′-represents a set A, if, for
all sets Y ∈ R′, we have best(A, Y) = best(A?, Y) where best(B, Y) is the minimum weight of a
set X ∈ B such that G[X∪Y] is connected. The main tool of our framework is a function reduce
that, given a set of partial solutions A and a 1-neighbor equivalence class R′ of A, outputs a
subset of A that R′-represents A and whose size is upper bounded by s-nec1(L)2. To design this
function, we use ideas from the rank-based approach of [5]. That is, we define a small matrix C
with |A| rows and s-nec1(L)2 columns. Then, we show that a basis of maximum weight of the
row space of C corresponds to an R′-representative set of A. Since A has s-nec1(L)2 columns,
the size of a basis of A is smaller than s-nec1(L)2. By calling reduce after each computational
step, we keep the sizes of the sets of partial solutions polynomial in s-nec1(L). Besides, the
definition of R′-representativity guarantees that the set of partial solutions computed for the
root of L contains a minimum connected dominating set.

For the AC variant of dominating set, we need more information in order to deal with the
acyclicity. We obtain this extra information by considering that R (resp. R′) is a 2-neighbor
equivalence class over A (resp. A). This way, for all sets X ⊆ A, the vertices in X that have
at least 2 neighbors in R′, have at least 2 neighbors in Y , for all Y ∈ R′. These vertices play
a major role in the acyclicity constraint because they may create cycles when X is joined with
a partial solution Y in A; and thus they are important in our algorithm. We need also a new
notion of representativity. We say that A? R′-ac-represents a set A, if, for all sets Y ∈ R′, we
have bestacy(A, Y) = bestacy(A?, Y) where bestacy(B, Y) is the minimum weight of a set X ∈ B
such that G[X ∪ Y] is a tree. As for the R′-representativity, we provide a function that, given a
set of partial solutions A and a 2-neighbor equivalence class R′ of A, outputs a small subset A?
of A that R′-ac-represents A. Unfortunately, we were not able to upper bound the size of A? by

4

a polynomial in n and s-necd(L) (for some constant d). Instead, we prove that, for clique-width,
rank-width, Q-rank-width, and mim-width, the size of A? can be upper bounded by, respectively,
2O(k) · n, 2O(k2) · n, 2O(k log(k)) · n, and nO(k). The key to compute A? is to decompose A into
a small number of sets A1 . . . ,A`, said R′-consistent, where the notion of R′-ac-representativity
matches the notion of R′-representativity. More precisely, any R′-representative set of an R′-
consistent set A is also an R′-ac-representative set of A. To compute an R′-ac-representative
set of A it is then enough to compute an R′-representative set for each R′-consistent set in the
decomposition of A. The union of these R′-representative sets is an R′-ac-representative set of
A. Besides the notion of representativity, the algorithm for the AC variant of Dominating Set
is very similar to the one for finding a minimum connected dominating set.

Observe that we can not use the same trick as in [5] to ensure the acyclicity, that is counting
the number of edges induced by the partial solutions. Indeed, we would need to differentiate at
least nk partial solutions (for any parameter k considered in Table 1) in order to update this
information. We give more explanation on this statement at the beginning of Section 5.

Relation to previous works. Our framework can be used on tree-decomposition to obtain
2O(k) ·nO(1) time algorithms parameterized by tree-width for the variants of (σ, ρ)-Dominating
Set problems. Indeed, given a vertex separator S of size k, the number of d-neighbor equivalence
classes over S (resp. V (G) \S) is upper bounded by 2k (resp. (d+1)k). For this reason, we can
consider our framework as a generalization of the rank-based approach of [5]. Our framework
generalizes also the clique-width adaptation of the rank-based approach used in [3] to obtain
2O(k) · n time algorithms, k being the clique-width of a given decomposition, for Connected
(σ, ρ)-Dominating Set problem and Feedback Vertex Set. However, the constant in the
running time of the algorithms in [3, 5] are better than those of our algorithms. For instance,
the authors in [3] obtain a 15k · 2(ω+1)·k · kO(1) · n time algorithm for Feedback Vertex Set,
while in this paper, we design a 54k ·22(ω+1)·k ·n4 time algorithm for this latter problem. Indeed,
our approach is based on a more general parameter and is not optimized neither for tree-width
nor clique-width. Our framework simplifies the algorithms in [3, 5] because contrary to [3, 5]
we do not use weighted partitions to encode the partial solutions. Consequently, the definitions
of the dynamic programming tables and the computational steps of our algorithms are simpler
than those in [3, 5]. This is particularly true for Feedback Vertex Set where the use of
weighted partitions to encode the partial solutions in [3] implies to take care of many technical
details concerning the acyclicity.

The results we obtain simplify the 2O(k2) · nO(1) time algorithm parameterized by rank-width
for Feedback Vertex Set from [14], and the nO(k) time algorithms parameterized by mim-
width for Feedback Vertex Set and Longest Induced Path from [18, 19].

Concerning mim-width, we provide unified polynomial-time algorithms for the considered
problems for all well-known graph classes having bounded mim-width and for which a layout of
bounded mim-width can be computed in polynomial time [1] (e.g., interval graphs, circular arc
graphs, permutation graphs, Dilworth-k graphs and k-polygon graphs for all fixed k). Notice
that we also generalize one of the results from [21] proving that the Connected Vertex
Cover problem is solvable in polynomial time for circular arc graphs.

It is worth noticing that the approach used in [10] called Cut & Count can also be generalized
to the d-neighbor-width for any Connected (σ, ρ)-dominating set problem with more or
less the same arguments used in this paper (see the PhD thesis [2]). However, it is not clear
how to generalize the Cut & Count approach to solve the acyclic variants of the Connected
(σ, ρ)-dominating set problems, with the width measures considered in this paper.

2. Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write A \B for
the set difference of A from B. We denote by N the set of non-negative integers and by N+ the
set N \ {0}. We let min(∅) := +∞ and max(∅) := −∞. Let V be a finite set. A set function

5

f : 2V → N is symmetric if, for all S ⊆ V , we have f(S) = f(V \ S). For two sets A and B, we
define the merging of A and B, denoted by A

⊗
B, as

A
⊗

B :=

{
∅ if A = ∅ or B = ∅,
{X ∪ Y : X ∈ A and Y ∈ B} otherwise.

Graphs. Our graph terminology is standard, and we refer to [11]. The vertex set of a graph
G is denoted by V (G) and its edge set by E(G). For every vertex set X ⊆ V (G), when the
underlying graph is clear from context, we denote by X, the set V (G) \ X. An edge between
two vertices x and y is denoted by xy or yx. The set of vertices that is adjacent to x is denoted
by NG(x). For a set U ⊆ V (G), we define NG(U) :=

⋃
x∈U NG(x). If the underlying graph is

clear, then we may remove G from the subscript.
The subgraph of G induced by a subset X of its vertex set is denoted by G[X]. For X,Y ⊆

V (G), we denote by G[X,Y] the bipartite graph with vertex set X ∪ Y and edge set {xy ∈
E(G) : x ∈ X and y ∈ Y }. Moreover, we denote by MX,Y the adjacency matrix between X
and Y , i.e., the (X,Y)-matrix such that MX,Y [x, y] = 1 if y ∈ N(x) and 0 otherwise.

For a graph G, we denote by cc(G) the partition {V (C) : C is a connected component of
G}. Let X ⊆ V (G). A consistent cut of X is an ordered bipartition (X1, X2) of X such that
N(X1) ∩X2 = ∅. We denote by ccut(X) the set of all consistent cuts of X. In our proofs, we
use the following facts.

Fact 2.1. Let X ⊆ V (G). For every C ∈ cc(G[X]) and every (X1, X2) ∈ ccut(X), we have
either C ⊆ X1 or C ⊆ X2.

We deduce from the above fact that |ccut(X)| = 2|cc(G[X])|.

Fact 2.2. Let X and Y be two disjoint subsets of V (G). We have (W1,W2) ∈ ccut(X ∪ Y) if
and only if the following conditions are satisfied

(1) (W1 ∩X,W2 ∩X) ∈ ccut(X),
(2) (W1 ∩ Y,W2 ∩ Y) ∈ ccut(Y), and
(3) N(W1 ∩X) ∩ (W2 ∩ Y) = ∅ and N(W2 ∩X) ∩ (W1 ∩ Y) = ∅.

d-neighbor-equivalence. Let G be a graph. The following definition is from [8]. Let A ⊆ V (G)
and d ∈ N+. Two subsets X and Y of A are d-neighbor equivalent w.r.t. A, denoted by X ≡dA Y ,
if min(d, |X ∩N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A. It is not hard to check that ≡dA is an
equivalence relation. See Figure 1 for an example of 2-neighbor equivalent sets.

A A

X

Y

Figure 1. We have X ≡2
A Y , but it is not the case that X ≡3

A Y .

For all d ∈ N+, we let necd : 2V (G) → N where, for all A ⊆ V (G), necd(A) is the number of
equivalence classes of ≡dA. Notice that while nec1 is a symmetric function [20, Theorem 1.2.3],
necd is not necessarily symmetric for d ≥ 2. For example, if a vertex x of G has c neighbors,
then, for every d ∈ N+, we have necd({x}) = 2 and necd({x}) = 1 + min(d, c). It is worth
noticing that, for every d ∈ N+, necd(A) and necd(A) are at most nec1(A)

d log2(nec1(A)), for each
A ⊆ V (G) [8].

The following fact follows directly from the definition of the d-neighbor equivalence relation.
We use it several times in our proofs.

6

Fact 2.3. Let A,B ⊆ V (G) such that A ⊆ B, and let d ∈ N+. For all X,Y ⊆ A, if X ≡dA Y ,
then X ≡dB Y .

In order to manipulate the equivalence classes of ≡dA, one needs to compute a representative
for each equivalence class in polynomial time. This is achieved with the following notion of a
representative. Let G be a graph with an arbitrary ordering of V (G) and let A ⊆ V (G). For
each X ⊆ A, let us denote by repdA(X) the lexicographically smallest set R ⊆ A such that |R| is
minimized and R ≡dA X. Moreover, we denote by RdA the set {repdA(X) : X ⊆ A}. It is worth
noticing that the empty set always belongs to RdA, for all A ⊆ V (G) and d ∈ N+. Moreover, we
have RdV (G) = R

d
∅ = {∅} for all d ∈ N+. In order to compute RdA, we use the following lemma.

Lemma 2.4 ([8]). For every A ⊆ V (G) and d ∈ N+, one can compute in time O(necd(A) ·
log(necd(A)) · |V (G)|2), the sets RdA and a data structure, that given a set X ⊆ A, computes
repdA(X) in time O(log(necd(A)) · |A| · |V (G)|).

Rooted Layout. A rooted binary tree is a binary tree with a distinguished vertex called the
root. Since we manipulate at the same time graphs and trees representing them, the vertices of
trees will be called nodes.

A rooted layout of G is a pair L = (T, δ) of a rooted binary tree T and a bijective function δ
between V (G) and the leaves of T . For each node x of T , let Lx be the set of all the leaves l of
T such that the path from the root of T to l contains x. We denote by V Lx the set of vertices
that are in bijection with Lx, i.e., V Lx := {v ∈ V (G) : δ(v) ∈ Lx}. When L is clear from the
context, we may remove L from the superscript.

All the width measures dealt with in this paper are special cases of the following one, the
difference being in each case the used set function. Given a set function f : 2V (G) → N and
a rooted layout L = (T, δ), the f-width of a node x of T is f(V Lx) and the f-width of (T, δ),
denoted by f(T, δ) (or f(L)), is max{f(V Lx) : x ∈ V (T)}. Finally, the f-width of G is the
minimum f-width over all rooted layouts of G.
d-neighbor-width. For every graph G and d ∈ N+, the d-neighbor-width is the parameter
obtained through the symmetric function s-necd : 2V (G) → N such that

s-necd(A) = max(necd(A), necd(A)).

Clique-width / Module-width. We won’t define clique-width, but its equivalent measure
module-width [25]. The module-width of a graph G is the mw-width where mw(A) is the cardinal
of {N(v)∩A : v ∈ A} for all A ⊆ V (G). One also observes that mw(A) is the number of different
rows in MA,A. The following theorem shows the link between module-width and clique-width.

Theorem 2.5 ([25, Theorem 6.6]). For every n-vertex graph G, mw(G) ≤ cw(G) ≤ 2mw(G),
where cw(G) denotes the clique-width of G. One can moreover translate, in time at most O(n2),
a given decomposition into the other one with width at most the given bounds.

(Q)-Rank-width. The rank-width and Q-rank-width are, respectively, the rw-width and rwQ-
with where rw(A) (resp. rwQ(A)) is the rank over GF (2) (resp. Q) of the matrix MA,A for all
A ⊆ V (G).
Mim-width. The mim-width of a graph G is the mim-width of G where mim(A) is the size of
a maximum induced matching of the graph G[A,A] for all A ⊆ V (G).

It is worth noticing that Module-width is the only parameter associated with a set function
that is not symmetric.

The following lemma provides some upper bounds between mim-width and the other param-
eters that we use in Section 5. All of these upper bounds are proved in [27].

Lemma 2.6 ([27]). Let G be a graph. For every A ⊆ V (G), mim(A) is upper bounded by
rw(A), rwQ(A) and log2(nec1(A)).

Proof. Let S be the vertex set of a maximum induced matching of the graph G[A,A]. Observe
that the restriction of the matrix MA,A to rows and columns in S is the identity matrix. Hence,

7

mim(A) is upper bounded both by rw(A) and rwQ(A). It is clear that every pair of subsets of
S ∩ A have a different neighborhood in A. Thus, we have 2mim(A) ≤ nec1(A). We deduce that
mim(A) ≤ log2(nec1(A)). �

The following lemma shows how the d-neighbor-width is upper bounded by the other param-
eters, most of the upper bounds were already proved in [1, 23].

Lemma 2.7 ([1, 23, 27]). Let G be a graph. For every A ⊆ V (G) and d ∈ N+, we have the
following upper bounds on necd(A) and necd(A):

(a) (d+ 1)mw(A),
(b) 2d·rw(A)2 ,

(c) 2rwQ(A) log2(d·rwQ(A)+1),
(d) nd·mim(A).

Proof. The first upper bound was proved in [27, Lemma 5.2.2]. The second upper bound was
implicitly proved in [27] and is due to the fact that necd(A) ≤ mw(A)d·mim(A) [27, Lemma 5.2.3].
Since mim(A) ≤ rw(A) by Lemma 2.6 and mw(A) ≤ 2rw(A) [24], we deduce that necd(A) ≤
2d·rw(A)2 . The third upper bound was proved in [23, Theorem 4.2]. The fourth was proved in [1,
Lemma 2]. �

We use the upper bounds of Lemma 2.7 to obtain from an s-necc(T, δ)O(1) · nO(1) time al-
gorithm, with c a constant, the parameterized algorithms with parameters and running times
given in Table 1.

In the following, we fix G an n-vertex graph, (T, δ) a rooted layout of G, and w : V (G)→ Q
a weight function over the vertices of G. We also assume that V (G) is ordered.

3. Representative sets

In this section, we define a notion of representativity between sets of partial solutions w.r.t.
the connectivity. Our notion of representativity is defined w.r.t. some node x of T and the
1-neighbor equivalence class of some set R′ ⊆ Vx. In our algorithms, R′ will always belong to
Rd
Vx

for some d ∈ N+. Our algorithms compute a set of partial solutions for each R′ ∈ Rd
Vx
.

The partial solutions computed for R′ will be completed with sets equivalent to R′ w.r.t. ≡d
Vx
.

Intuitively, the R′’s represent some expectation about how we will complete our sets of partial
solutions. For the connectivity and the domination, d = 1 is enough but if we need more
information for some reasons (for example the (σ, ρ)-domination or the acyclicity), we may take
d > 1. This is not a problem as the d-neighbor equivalence class of R′ is included in the 1-
neighbor equivalence class of R′. Hence, in this section, we fix a node x of T and a set R′ ⊆ Vx
to avoid to overload the statements by the sentence “let x be a node of T and R′ ⊆ Vx”. We
let opt ∈ {min,max}; if we want to solve a maximization (or minimization) problem, we use
opt = max (or opt = min). We use it also, as here, in the next sections.

Definition 3.1 ((x,R′)-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define

best(A, Y) := opt{w(X) : X ∈ A and G[X ∪ Y] is connected }.
Let A,B ⊆ 2Vx . We say that B (x,R′)-represents A if, for every Y ⊆ Vx such that Y ≡1

Vx
R′,

we have best(A, Y) = best(B, Y).

Notice that the (x,R′)-representativity is an equivalence relation. The set A is meant to
represent a set of partial solutions of G[Vx] which have been computed. We expect to complete
these partial solutions with partial solutions of G[Vx] which are equivalent to R′ w.r.t. ≡1

Vx
. If

B (x,R′)-represents A, then we can safely substitute B to A because the quality of the output
of the dynamic programming algorithm will remain the same. Indeed, for every subset Y of Vx
such that Y ≡1

Vx
R′, the optimum solutions obtained by the union of a partial solution in A and

Y will have the same weight as the optimum solution obtained from the union of a set in B and
Y .

8

The following theorem presents the main tool of our framework: a function reduce that, given
a set of partial solutions A, outputs a subset of A that (x,R′)-represents A and whose size
is upper bounded by s-nec1(L)2. To design this function, we use ideas from the rank-based
approach of [5]. That is, we define a small matrix C with |A| rows and s-nec1(Vx)

2 columns.
Then, we show that a basis of maximum weight of the row space of C corresponds to an (x,R′)-
representative set of A. Since A has s-nec1(L)2 columns, the size of a basis of A is smaller than
s-nec1(L)2. To compute this basis, we use the following lemma. The constant ω denotes the
matrix multiplication exponent, which is known to be strictly less than 2.3727 due to [28].

Lemma 3.2 ([5]). Let M be a binary n × m-matrix with m ≤ n and let w : {1, . . . , n} → Q
be a weight function on the rows of M . Then, one can find a basis of maximum (or minimum)
weight of the row space of M in time O(nmω−1).

In order to compute a small (x,R′)-representative set of a set A ⊆ 2Vx , the following theorem
requires that the sets in A are pairwise equivalent w.r.t. ≡1

Vx
. This is useful since in our

algorithm we classify our sets of partial solutions with respect to this property. We need this to
guarantee that the partial solutions computed for R′ will be completed with sets equivalent to
R′ w.r.t. ≡d

Vx
. However, if one wants to compute a small (x,R′)-representative set of a set A

that does not respect this property, then it is enough to compute an (x,R′)-representative set
for each 1-neighbor equivalence class of A. The union of these (x,R′)-representative sets is an
(x,R′)-representative set of A.

Theorem 3.3. Let R ∈ R1
Vx
. Then, there exists an algorithm reduce that, given A ⊆ 2Vx such

that X ≡1
Vx
R for all X ∈ A, outputs in time O(|A| · nec1(Vx)

2(ω−1) · n2) a subset B ⊆ A such
that B (x,R′)-represents A and |B| ≤ nec1(Vx)

2.

Proof. We assume w.l.o.g. that opt = max, the proof is symmetric for opt = min. First, we
suppose that R′ ≡1

Vx
∅. Observe that, for every Y ≡1

Vx
∅, we have N(Y)∩Vx = N(∅)∩Vx = ∅. It

follows that, for every Y ⊆ Vx such that Y ≡1
Vx
∅ and Y 6= ∅, we have best(A, Y) = −∞. More-

over, by definition of best, we have best(A, ∅) = max{w(X) : X ∈ A and G[X] is connected}.
Hence, if R′ ≡1

Vx
∅, then it is sufficient to return B = {X}, where X is an element of A of

maximum weight that induces a connected graph.

Assume from now that R′ is not equivalent to ∅ w.r.t. ≡1
Vx
. Let X ∈ A. If there exists

C ∈ cc(G[X]) such that N(C)∩R′ = ∅, then, for all Y ≡1
Vx
R′, we have N(C)∩Y = ∅. Moreover,

as R′ is not equivalent to ∅ w.r.t. ≡1
Vx
, we have Y 6= ∅. Consequently, for every Y ≡1

Vx
R′, the

graph G[X ∪Y] is not connected. We can conclude that A\{X} (x,R′) represents A. Thus, we
can safely remove from A all such sets, and this can be done in time |A| · n2. From now on, we
may assume that, for all X ∈ A and for all C ∈ cc(G[X]), we have N(C) ∩ R′ 6= ∅. It is worth
noticing that if R = ∅ or more generally N(R) ∩R′ = ∅, then by assumption, A = ∅.

Indeed, if N(R) ∩ R′ = ∅, then, for every X ∈ A, we have N(X) ∩ R′ = N(R) ∩ R′ = ∅ and
in particular, for every C ∈ cc(G[X]), we have N(C) ∩ R′ = ∅ (and we have assumed that no
such set exists in A).

Symmetrically, if, for some Y ⊆ Vx there exists C ∈ cc(G[Y]) such that N(C) ∩R = ∅, then,
for every X ∈ A, the graph G[X ∪ Y] is not connected. Let D be the set of all subsets Y of Vx
such that Y ≡1

Vx
R′ and, for all C ∈ cc(G[Y]), we have N(C) ∩ R 6= ∅. Notice that the sets in

2Vx \ D do not matter for the (x,R′)-representativity.
For every Y ∈ D, we let vY be one fixed vertex of Y . In the following, we denote by R the set

{(R′1, R′2) ∈ R1
Vx
×R1

Vx
}. LetM, C, and C be, respectively, an (A,D)-matrix, an (A,R)-matrix,

9

and an (R,D)-matrix such that

M[X,Y] :=

{
1 if G[X ∪ Y] is connected,
0 otherwise.

C[X, (R′1, R′2)] :=

{
1 if ∃(X1, X2) ∈ ccut(X) such that N(X1) ∩R′2 = ∅ and N(X2) ∩R′1 = ∅,
0 otherwise.

C[(R′1, R′2), Y] :=

{
1 if ∃(Y1, Y2) ∈ ccut(Y) such that vY ∈ Y1, Y1 ≡1

Vx
R′1, and Y2 ≡1

Vx
R′2,

0 otherwise.

Intuitively,M contains all the information we need. Indeed, it is easy to see that a basis of
maximum weight of the row space ofM in GF (2) is an (x,R′)-representative set of A. But,M
is too big to be computable efficiently. Instead, we prove that a basis of maximum weight of the
row space of C is an (x,R′)-representative set of A. This follows from the fact that (C · C)[X,Y]
equals the number of consistent cuts (W1,W2) in ccut(X ∪ Y) such that vY ∈ W1. That is
(C · C)[X,Y] = 2|cc(G[X∪Y])|−1. Consequently, M =2 C · C, where =2 denotes the equality in
GF (2), i.e., (C · C)[X,Y] is odd if and only if G[X ∪ Y] is connected. We deduce the running
time of reduce and the size of reduce(A) from the size of C (i.e. |A| ·nec1(Vx)

2) and the fact that
C is easy to compute.

We start by proving thatM =2 C · C. Let X ∈ A and Y ∈ D. We want to prove the following
equality

(C · C)[X,Y] =
∑

(R′
1,R

′
2)∈R

C[X, (R′1, R′2)] · C[(R′1, R′2), Y] = 2|cc(G[X∪Y])|−1.

We prove this equality with the following two claims.

Claim 3.3.1. We have C[X, (R′1, R′2)] · C[(R′1, R′2), Y] = 1 if and only if there exists (W1,W2) ∈
ccut(X ∪ Y) such that vY ∈W1, W1 ∩ Y ≡1

Vx
R′1 and W2 ∩ Y ≡1

Vx
R′2.

Proof. By definition, we have C[X, (R′1, R′2)] · C[(R′1, R′2), Y] = 1, if and only if
(a) ∃(Y1, Y2) ∈ ccut(Y) such that vY ∈ Y1, Y1 ≡1

Vx
R′1, Y2 ≡1

Vx
R′2, and

(b) ∃(X1, X2) ∈ ccut(X) such that N(X1) ∩R′2 = ∅ and N(X2) ∩R′1 = ∅.
Let (Y1, Y2) ∈ ccut(Y) and (X1, X2) ∈ ccut(X) that satisfy, respectively, Properties (a) and

(b). By definition of ≡1
Vx
, we have N(X1) ∩ Y2 = ∅ because N(X1) ∩ R′2 = ∅ and Y2 ≡1

Vx
R′2.

Symmetrically, we have N(X2) ∩ Y1 = ∅. By Fact 2.2, we deduce that (X1 ∪ Y1, X2 ∪ Y2) ∈
ccut(X ∪ Y). This proves the claim. �

Claim 3.3.2. Let (W1,W2) and (W ′1,W
′
2) ∈ ccut(X ∪ Y). We have W1 ∩ Y ≡1

Vx
W ′1 ∩ Y and

W2 ∩ Y ≡1
Vx
W ′2 ∩ Y if and only if W1 =W ′1 and W2 =W ′2.

Proof. We start by an observation about the connected components of X ∪ Y . As Y ∈ D, for
all C ∈ cc(G[Y]), we have N(C) ∩ R 6= ∅. Moreover, by assumption, for all C ∈ cc(G[X]), we
have N(C) ∩ R′ 6= ∅. Since X ≡1

Vx
R and Y ≡1

Vx
R′, every connected component of G[X ∪ Y]

contains at least one vertex of X and one vertex of Y .
Suppose that W1 ∩ Y ≡1

Vx
W ′1 ∩ Y and W2 ∩ Y ≡1

Vx
W ′2 ∩ Y . Assume towards a contradiction

that W1 6= W ′1 and W2 6= W ′2. Since W1 6= W ′1, by Fact 2.1, we deduce that there exists
C ∈ cc(G[X ∪ Y]) such that either (1) C ⊆ W1 and C ⊆ W ′2 or (2) C ⊆ W ′1 and C ⊆ W2.
We can assume w.l.o.g. that there exits C ∈ cc(G[X ∪ Y]) such that C ⊆ W1 and C ⊆ W ′2.
From the above observation, C contains at least one vertex of X and one of Y , and we have
N(C ∩ X) ∩ (W1 ∩ Y) 6= ∅ and N(C ∩ X) ∩ (W ′2 ∩ Y) 6= ∅. But, since W2 ∩ Y ≡1

Vx
W ′2 ∩ Y ,

we have N(C ∩ X) ∩ (W2 ∩ Y) 6= ∅. This implies in particular that N(W1) ∩W2 6= ∅. It is a
contradiction with the fact that (W1,W2) ∈ ccut(X ∪ Y). �

10

Notice that Claim 3.3.2 implies that, for every (R′1, R
′
2) ∈ R, there exists at most one consis-

tent cut (W1,W2) ∈ ccut(X ∪ Y) such that vY ∈W1, W1 ∩ Y ≡1
Vx
R′1, and W2 ∩ Y ≡1

Vx
R′2. We

can thus conclude from these two claims that

(C · C)[X,Y] = |{(W1,W2) ∈ ccut(X ∪ Y) : vY ∈W1}|.

By Fact 2.1, we deduce that (C · C)[X,Y] = 2|cc(G[X∪Y])|−1 since every connected component of
G[X ∪ Y] can be in both sides of a consistent cut at the exception of the connected component
containing vY . Hence, (C · C)[X,Y] is odd if and only if |cc(G[X ∪ Y])| = 1. We conclude that
M =2 C · C.

Let B ⊆ A be a basis of maximum weight of the row space of C over GF (2). We claim that
B (x,R′)-represents A.

Let Y ⊆ Vx such that Y ≡1
Vx
R′. Observe that, by definition of D, if Y /∈ D, then best(A, Y) =

best(B, Y) = −∞. Thus it is sufficient to prove that, for every Y ∈ D, we have best(A, Y) =
best(B, Y).

Let X ∈ A and Y ∈ D. Recall that we have proved that M [X,Y] =2 (C · C)[X,Y]. Since B
is a basis of C, there exists B′ ⊆ B such that, for each (R′1, R

′
2) ∈ R, we have C[X, (R′1, R′2)] =2∑

W∈B′ C[W, (R′1, R′2)]. Thus, we have the following equality

M[X,Y] =2

∑
(R′

1,R
′
2)∈R

C[X, (R′1, R′2)] · C[(R′1, R′2), Y]

=2

∑
(R′

1,R
′
2)∈R

(∑
W∈B′

C[W, (R′1, R′2)]

)
· C[(R′1, R′2), Y]

=2

∑
W∈B′

 ∑
(R′

1,R
′
2)∈R

C[W, (R′1, R′2)] · C[(R′1, R′2), Y]


=2

∑
W∈B′

(C · C)[W,Y] =2

∑
W∈B′

M[W,Y].

If M[X,Y] = 1 (i.e. G[X ∪ Y] is connected), then there is an odd number of sets W in B′
such thatM[W,Y] = 1 (i.e. G[W ∪ Y] is connected). Hence, there exists at least one W ∈ B′
such that G[W ∪ Y] is connected. Let W ∈ B′ such thatM[W,Y] = 1 and w(W) is maximum.
Assume towards a contradiction that w(W) < w(X). Notice that (B\{W})∪{X} is also a basis
of C since the set of independent row sets of a matrix forms a matroid. Since w(W) < w(X), the
weight of the basis (B \ {W}) ∪ {X} is strictly greater than the weight of the basis B, yielding
a contradiction. Thus w(X) ≤ w(W). Hence, for all Y ∈ D and all X ∈ A, if G[X ∪ Y] is
connected, then there exists W ∈ B such that G[W ∪ Y] is connected and w(X) ≤ w(W). This
is sufficient to prove that B (x,R′)-represents A. Since B is a basis, the size of B is at most the
number of columns of C, thus, |B| ≤ nec1(Vx)

2.
It remains to prove the running time. We claim that C is easy to compute.
By Fact 2.1, C[X, (R′1, R′2)] = 1 if and only if, for each C ∈ cc(G[X]), we have either N(C) ∩

R′1 = ∅ or N(C) ∩ R′2 = ∅. Thus, each entry of C is computable in time O(n2). Since C has
|A|·|R1

Vx
|2 = |A|·nec1(Vx)

2 entries, we can compute C in time O(|A|·nec1(Vx)
2·n2). Furthermore,

by Lemma 3.2, a basis of maximum weight of C can be computed in time O(|A| ·nec1(Vx)
2(ω−1)).

We conclude that B can be computed in time O(|A| · nec1(Vx)
2(ω−1) · n2). �

Now to boost up a dynamic programming algorithm P on some rooted layout (T, δ) of G,
we can use the function reduce to keep the size of the sets of partial solutions bounded by
s-nec1(T, δ)

2. We call P ′ the algorithm obtained from P by calling the function reduce at every
step of computation. We can assume that the set of partial solutions Ar computed by P and
associated with the root r of (T, δ) contains an optimal solution (this will be the cases in our
algorithms). To prove the correctness of P ′, we need to prove that A′r (r, ∅)-represents Ar
where A′r is the set of partial solutions computed by P ′ and associated with r. For doing so,

11

we need to prove that at each step of the algorithm the operations we use preserve the (x,R′)-
representativity. The following fact states that we can use the union without restriction, it
follows directly from Definition 3.1 of (x,R′)-representativity.

Fact 3.4. If B and D (x,R′)-represents, respectively, A and C, then B ∪ D (x,R′)-represents
A ∪ C.

The second operation we use in our dynamic programming algorithms is the merging operator⊗
. In order to safely use it, we need the following notion of compatibility that just tells which

partial solutions from Va and Vb can be joined to possibly form a partial solution in Vx. (It was
already used in [8] without naming it.)

Definition 3.5 (d-(R,R′)-compatibility). Suppose that x is an internal node of T with a and b
as children. Let d ∈ N+ and R ∈ RdVx . We say that (A,A′) ∈ RdVa×R

d
Va

and (B,B′) ∈ RdVb×R
d
Vb

are d-(R,R′)-compatible if we have:
• A ∪B ≡dVx R,
• A′ ≡d

Va
B ∪R′, and

• B′ ≡d
Vb
A ∪R′.

The d-(R,R′)-compatibility just tells which partial solutions from Va and Vb can be joined to
possibly form a partial solution in Vx.

Lemma 3.6. Suppose that x is an internal node of T with a and b as children. Let d ∈ N+

and R ∈ RdVx . Let (A,A
′) ∈ RdVa ×R

d
Va

and (B,B′) ∈ RdVb ×R
d
Vb

that are d-(R,R′)-compatible.
Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡dVa A, and let B ⊆ 2Vb such that, for all
W ∈ B, we have W ≡dVb B. If A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B,
then A′

⊗
B′ (x,R′)-represents A

⊗
B.

Proof. We assume w.l.o.g. that opt = max, the proof is symmetric for opt = min. Suppose that
A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B. To prove the lemma, it is sufficient
to prove that best(A′

⊗
B′, Y) = best(A

⊗
B, Y) for every Y ≡1

Vx
R′.

Let Y ⊆ Vx such that Y ≡1
Vx
R′. We start by proving the following facts

(a) for every W ∈ B, we have W ∪ Y ≡1
Va
A′,

(b) for every X ∈ A, we have X ∪ Y ≡1
Vb
B′.

Let W ∈ B. Owing to the d-(R,R′)-compatibility, we have B ∪R′ ≡d
Va
A′. Since W ≡dVb B and

Vb ⊆ Va, by Fact 2.3, we deduce that W ≡d
Va
B and thus W ∪R′ ≡d

Va
A′. In particular, we have

W ∪ R′ ≡1
Va
A′. Similarly, we have from Fact 2.3 that W ∪ Y ≡1

Va
A′ because Y ≡1

Vx
R′ and

Vx ⊆ Va. This proves Fact (a). The proof for Fact (b) is symmetric.
Now observe that, by the definitions of best and of the merging operator

⊗
, we have (even if

A = ∅ or B = ∅)
best

(
A
⊗
B, Y

)
= max{w(X) + w(W) : X ∈ A ∧W ∈ B ∧G[X ∪W ∪ Y] is connected}.

Since best(A,W ∪ Y) = max{w(X) : X ∈ A ∧G[X ∪W ∪ Y] is connected}, we deduce that

best
(
A
⊗
B, Y

)
= max{best(A,W ∪ Y) + w(W) : W ∈ B}.

Since A′ (a,A′)-represents A, by Fact (a), we have

best
(
A
⊗
B, Y

)
= max{best(A′,W ∪ Y) + w(W) : W ∈ B}

= best
(
A′
⊗
B, Y

)
.

Symmetrically, we deduce from Fact (b) that best
(
A′
⊗
B, Y

)
= best

(
A′
⊗
B′, Y

)
. This stands

for every Y ⊆ Vx such that Y ≡1
Vx

R′. Thus, we conclude that A′
⊗
B′ (x,R′)-represents

A
⊗
B. �

12

4. Connected (Co)-(σ, ρ)-Dominating Sets

Let σ and ρ be two (non-empty) finite or co-finite subsets of N. We say that a subsetD of V (G)
(σ, ρ)-dominates a subset U ⊆ V (G) if, for every vertex u ∈ U ∩D, we have |N(u)∩D| ∈ σ, and,
for every vertex u ∈ U \D, we have |N(u)∩D| ∈ ρ. A subset D of V (G) is a (σ, ρ)-dominating set
(resp. co-(σ, ρ)-dominating set) if D (resp. V (G)\D) (σ, ρ)-dominates V (G). The Connected
(σ, ρ)-Dominating Set problem asks, given a weighted graph G, a maximum or minimum
(σ, ρ)-dominating set which induces a connected graph. Similarly, one can define Connected
Co-(σ, ρ)-Dominating Set. Examples of some Connected (co)-(σ, ρ)-Dominating Set
problems are shown in Table 2.

Let d(N) := 0, and for a finite or co-finite subset µ of N, let
d(µ) := 1 +min(max(µ),max(N \ µ)).

Let d := max{1, d(σ), d(ρ)}. The definition of d is motivated by the following observation
which is due to the fact that, for all µ ⊆ N, if d(µ) ∈ µ, then µ is co-finite and contains
N \ {1, . . . , d(µ)− 1}.

Fact 4.1. Let A ⊆ V (G) and let (σ, ρ) be a pair of finite or co-finite subsets of N. Let
d := max(d(σ), d(ρ)). For all X ⊆ A and Y ⊆ A, X ∪ Y (σ, ρ)-dominates A if and only if
min(d, |N(v) ∩X|+ |N(v) ∩ Y |) belongs to σ (resp. ρ) if v ∈ X (resp. v /∈ X).

As in [8], we use the d-neighbor equivalence relation to characterize the (σ, ρ)-domination of
the partial solutions.

Table 2. Examples of (Co)-(σ, ρ)-Dominating Set problems. To solve
these problems, we use the d-neighbor equivalence relation with d :=
max{1, d(σ), d(ρ)}. Column d shows the value of d for each problem.

σ ρ d Version Standard name

N N+ 1 Connected Connected Dominating Set

{q} N q+1 Connected Connected Induced q-Regular Subgraph

N {1} 2 Connected Connected Perfect Dominating Set

{0} N 1 Connected Co Connected Vertex Cover

We will need the following lemma in our proof.

Lemma 4.2 ([8]). Let A ⊆ V (G). Let X ⊆ A and Y, Y ′ ⊆ A such that Y ≡d
A
Y ′. Then (X ∪Y)

(σ, ρ)-dominates A if and only if (X ∪ Y ′) (σ, ρ)-dominates A.

In this section, we present an algorithm that computes a maximum (or minimum) con-
nected (σ, ρ)-dominating set with a graph G and a layout (T, δ) as inputs. Its running time
is O(s-necd(T, δ)O(1) · n3). The same algorithm, with some little modifications, will be able to
find a minimum Steiner tree or a maximum (or minimum) connected co-(σ, ρ)-dominating set
as well.

For each node x of T and for each pair (R,R′) ∈ RdVx ×R
d
Vx
, we will compute a set of partial

solutions Dx[R,R′] coherent with (R,R′) that (x,R′)-represents the set of all partials solutions
coherent with (R,R′). We say that a set X ⊆ Vx is coherent with (R,R′) if X ≡dVx R and X∪R′
(σ, ρ) dominates Vx. Observe that by Lemma 4.2, we have X ∪ Y (σ, ρ)-dominates Vx, for all
Y ≡dVx R

′ and for all X ⊆ Vx coherent with (R,R′). We compute these sets by a bottom-up
dynamic programming algorithm, starting at the leaves of T . The computational steps are trivial
for the leaves. For the internal nodes of T , we simply use the notion of d-(R,R′)-compatibility
and the merging operator.

By calling the function reduce defined in Section 3, each set Dx[R,R′] contains at most
s-nec1(T, δ)

2 partial solutions. If we want to compute a maximum (resp. minimum) connected
13

(σ, ρ)-dominating set, we use the framework of Section 3 with opt = max (resp. opt = min). If
G admits a connected (σ, ρ)-dominating set, then a maximum (or minimum) connected (σ, ρ)-
dominating set can be found by looking at the entry Dr[∅, ∅] with r the root of T .

We begin by defining the sets of partial solutions for which we will compute representative
sets.

Definition 4.3. Let x ∈ V (T). For all pairs (R,R′) ∈ RdVx × R
d
Vx
, we let Ax[R,R′] := {X ⊆

Vx : X ≡dVx R and X ∪R′ (σ, ρ)-dominates Vx}.

For each node x of V (T), our algorithm will compute a table Dx that satisfies the following
invariant.
Invariant. For every (R,R′) ∈ RdVx ×R

d
Vx
, the set Dx[R,R′] is a subset of Ax[R,R′] of size at

most s-nec1(T, δ)
2 that (x,R′)-represents Ax[R,R′].

Notice that, by the definition of Ar[∅, ∅] (r being the root of T) and the definition of (x,R′)-
representativity, if G admits a connected (σ, ρ)-dominating set, then Dr[∅, ∅] must contain a
maximum (or minimum) connected (σ, ρ)-dominating set.

The following lemma provides an equality between the entries of the table Ax and the entries
of the tables Aa and Ab for each internal node x ∈ V (T) with a and b as children. We use this
lemma to prove, by induction, that the entry Dx[R,R′] (x,R′)-represents Ax[R,R′] for every
(R,R′) ∈ RdVx ×R

d
Vx
. Note that this lemma can be deduced from [8].

Lemma 4.4. For all (R,R′) ∈ RdVx ×R
d
Vx
, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A′]
⊗
Ab[B,B′].

Proof. The lemma is implied by the two following claims.

Claim 4.4.1. For all X ∈ Ax[R,R′], there exist d-(R,R′)-compatible pairs (A,A′) and (B,B′)
such that X ∩ Va ∈ Aa[A,A′] and X ∩ Vb ∈ Ab[B,B′].

Proof. Let X ∈ Ax[R,R′], Xa := X ∩ Va and Xb := X ∩ Vb. Let A := repdVa(Xa) and A′ :=

repd
Va
(Xb ∪R′). Symmetrically, we define B := repdVb(Xb) and B′ := repd

Vb
(Xa ∪R′).

We claim that Xa ∈ Aa[A,A′]. As X ∈ Ax[R,R′], we know, by Definition 4.3, that X ∪R′ =
Xa ∪ Xb ∪ R′ is a (σ, ρ)-dominating set of Vx. In particular, Xa ∪ (Xb ∪ R′) (σ, ρ)-dominates
Va. Since A′ ≡d

Va
Xb ∪ R′, by Lemma 4.2, we conclude that Xa ∪ A′ (σ, ρ)-dominates Va. As

A ≡dVa Xa, we have Xa ∈ Aa[A,A′]. By symmetry, we deduce B ∈ Ab[B,B′].
It remains to prove that (A,A′) and (B,B′) are d-(R,R′)-compatible.
• By construction, we have Xa ∪ Xb = X ≡dVx R. As A ≡dVa Xa and from Fact 2.3, we
have A ∪Xb ≡dVx R. Since B ≡

d
Vb
Xb, we deduce that A ∪B ≡dVx R.

• By definition, we have A′ ≡d
Va
Xb ∪ R′. As B ≡dVb Xb and by Fact 2.3, we have A′ ≡d

Va

B ∪R′. Symmetrically, we deduce that B′ ≡d
Vb
R′ ∪A.

Thus, (A,A′) and (B,B′) are d-(R,R′)-compatible. �

Claim 4.4.2. For every Xa ∈ Aa[A,A′] and Xb ∈ Ab[B,B′] such that (A,A′) and (B,B′) are
d-(R,R′)-compatible, we have Xa ∪Xb ∈ Ax[R,R′].

Proof. Since Xa ≡dVa A and Xb ≡dVb B, by Fact 2.3, we deduce that Xa ∪Xb ≡dVx A ∪ B. Thus,
by the definition of d-(R,R′)-compatibility, we have Xa ∪Xb ≡dVx R.

It remains to prove that Xa∪Xb∪R′ (σ, ρ)-dominates Vx. As before, one can check that Fact
2.3 implies that Xb ∪ R′ ≡dVa B ∪ R

′. From Lemma 4.2, we conclude that Xa ∪Xb ∪ R′ (σ, ρ)-
dominates Va. Symmetrically, we prove that Xa ∪Xb ∪R′ (σ, ρ)-dominates Vb. As Vx = Va ∪Vb,
we deduce that Xa ∪Xb ∪R′ (σ, ρ)-dominates Vx. Hence, we have Xa ∪Xb ∈ Ax[R,R′]. �

�
14

We are now ready to prove the main theorem of this section.

Theorem 4.5. There exists an algorithm that, given an n-vertex graph G and a rooted lay-
out (T, δ) of G, computes a maximum (or minimum) connected (σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)

2(ω+1) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

Proof. The algorithm is a usual bottom-up dynamic programming algorithm and computes for
each node x of T the table Dx.

The first step of our algorithm is to compute, for each x ∈ V (T), the sets RdVx , R
d
Vx

and a
data structure to compute repdVx(X) and repd

Vx
(Y), for any X ⊆ Vx and any Y ⊆ Vx, in time

O(log(s-necd(T, δ)) · n2). As T has 2n− 1 nodes, by Lemma 2.4, we can compute these sets and
data structures in time O(s-necd(T, δ) · log(s-necd(T, δ)) · n3).

Let x be a leaf of T with Vx = {v}. Observe that, for all (R,R′) ∈ RVxd × R
Vx
d , we have

Ax[R,R′] ⊆ 2Vx = {∅, {v}}. Thus, our algorithm can directly compute Ax[R,R′] and set
Dx[R,R′] := Ax[R,R′]. In this case, the invariant trivially holds.

Now let x be an internal node with a and b as children such that the invariant holds for a
and b. For each (R,R′) ∈ RdVx × R

d
Vx
, the algorithm computes Dx[R,R′] := reduce(Bx[R,R′]),

where the set Bx[R,R′] is defined as follows

Bx[R,R′] :=
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Da[A,A′]
⊗
Db[B,B′].

We claim that the invariant holds for x. Let (R,R′) ∈ RdVx ×R
d
Vx
.

We start by proving that the set Bx[R,R′] is an (x,R′)-representative set of Ax[R,R′]. By
Lemma 3.6, for all d-(R,R′)-compatible pairs (A,A′) and (B,B′), we have

Da[A,A′]
⊗
Db[B,B′] (x,R′)-represents Aa[A,A′]

⊗
Ab[B,B′].

By Lemma 4.4 and by construction of Dx[R,R′] and from Fact 3.4, we conclude that Bx[R,R′]
(x,R′)-represents Ax[R,R′].

From the invariant, we have Da[A,A′] ⊆ Aa[A,A′] andDb[B,B′] ⊆ Ab[B,B′], for all d-(R,R′)-
compatible pairs (A,A′) and (B,B′). Thus, from Lemma 4.4, it is clear that by construction,
we have Bx[R,R′] ⊆ Ax[R,R′]. Hence, Bx[R,R′] is a subset and an (x,R′)-representative set of
Ax[R,R′].

Notice that, for each X ∈ Bx[R,R′], we have X ≡dVx R. Thus, we can apply Theorem 3.3
and the function reduce on Bx[R,R′]. By Theorem 3.3, Dx[R,R′] is a subset and an (x,R′)-
representative set of Bx[R,R′]. Thus Dx[R,R′] is a subset of Ax[R,R′]. Notice that the (x,R′)-
representativity is an equivalence relation and in particular it is transitive. Consequently,
Dx[R,R′] (x,R′)-represents Ax[R,R′]. From Theorem 3.3, the size of Dx[R,R′] is at most
nec1(Vx)

2 and that Dx[R,R′] ⊆ Bx[R,R′]. As nec1(Vx) ≤ s-nec1(T, δ) and Bx[R,R′] ⊆ Ax[R,R′],
we conclude that the invariant holds for x.

By induction, the invariant holds for all nodes of T . The correctness of the algorithm follows
from the fact that Dr[∅, ∅] (r, ∅)-represents Ar[∅, ∅].
Running Time. Let x be a node of T . Suppose first that x is a leaf of T . Then |RdVx | ≤ 2 and
|Rd

Vx
| ≤ d. Thus, Dx can be computed in time O(d · n).

Assume now that x is an internal node of T with a and b as children.
Notice that, by Definition 3.5, for every (A,B,R′) ∈ RdVa ×R

d
Vb
×Rd

Vx
, there exists only one

tuple (A′, B′, R) ∈ Rd
Va
× Rd

Vb
× RdVx such that (A,A′) and (B,B′) are d-(R,R′)-compatible.

More precisely, you have to take R = repdVx(A∪B), A′ = repd
Va
(R′ ∪B), and B′ = repd

Vb
(R′ ∪A).

Thus, there are at most s-necd(T, δ)3 tuples (A,A′, B,B′, R,R′) such that (A,A′) and (B,B′)
are d-(R,R′)-compatible. It follows that we can compute the intermediary table Bx by doing
the following.

• Initialize each entry of Bx to ∅.
15

• For each (A,B,R′) ∈ RdVa×R
d
Vb
×Rd

Vx
, compute R′ := repdVx(A∪B), A′ = repd

Va
(R′∪B),

and B′ = repd
Vb
(R′ ∪A). Then, update Bx[R,R′] := Bx[R,R′] ∪ (Da[A,A′]

⊗
Db[B,B′]).

Each call to the functions repdVx , rep
d
Va
, and repd

Vb
takes O(log(s-necd(T, δ)) ·n2) time. We deduce

that the running time to compute the entries of Bx is

O

s-necd(T, δ)3 log(s-necd(T, δ)) · n2 +
∑

(R,R′)∈Rd
Vx
×Rd

Vx

|Bx[R,R′]| · n2

 .

Observe that, for each (R,R′) ∈ RdVx × R
d
Vx
, by Theorem 3.3, the running time to compute

reduce(Bx[R,R′]) from Bx[R,R′] is O(|Bx[R,R′]| ·s-nec1(T, δ)
2(ω−1) ·n2). Thus, the total running

time to compute the table Dx from the table Bx is

O

 ∑
(R,R′)∈Rd

Vx
×Rd

Vx

|Bx[R,R′]| · log(s-necd(T, δ)) · s-nec1(T, δ)
2(ω−1) · n2

 .(1)

For each (A,A′) and (B,B′), the size ofDa[A,A′]
⊗
Db[B,B′] is at most |Da[A,A′]|·|Db[B,B′]| ≤

s-nec1(T, δ)
4. Since there are at most s-necd(T, δ)3 pairs d-(R,R′)-compatible, we can conclude

that ∑
(R,R′)∈Rd

Vx
×Rd

Vx

|Bx[R,R′]| ≤ s-necd(T, δ)3 · s-nec1(T, δ)
4.

From Equation (1), we deduce that the entries of Dx are computable in time

O(s-necd(T, δ)3 · s-nec1(T, δ)
2(ω+1) · log(s-necd(T, δ)) · n2).

Since T has 2n−1 nodes, the running time of our algorithm is O(s-necd(T, δ)3 ·s-nec1(T, δ)
2(ω+1) ·

log(s-necd(T, δ)) · n3). �

As a corollary, we can solve in time s-nec1(T, δ)
(2ω+5) · log(s-nec1(T, δ)) · n3 the Node-

Weighted Steiner Tree problem that asks, given a subset of vertices K ⊆ V (G) called
terminals, a subset T of minimal weight such that K ⊆ T ⊆ V (G) and G[T] is connected.

Corollary 4.6. There exists an algorithm that, given an n-vertex graph G, a subset K ⊆ V (G),
and a rooted layout (T, δ) of G, computes a minimum node-weighted Steiner tree for (G,K) in
time O(s-nec1(T, δ)

(2ω+5) · log(s-nec1(T, δ)) · n3).

Proof. Observe that a Steiner tree is a minimum connected (N,N)-dominating set of G that
contains K. Thus, it is sufficient to change the definition of the table Ax as follows. Let
x ∈ V (T). For all (R,R′) ∈ R1

Vx
×R1

Vx
, we define Ax[R,R′] ⊆ Vx as follows

Ax[R,R′] := {X ⊆ Vx : X ≡dVx R, K ∩ Vx ⊆ X, and X ∪R′ (N,N)-dominates Vx}.
Notice that this modification will just modify the way we compute the table Dx when x is a leaf
of T associated with a vertex in K. With this definition of Ax and by Definition 3.1 of (x,R′)-
representativity, if G contains an optimal solution, then Dr[∅, ∅] contains an optimal solution of
G. The running time comes from the running time of Theorem 4.5 with d = 1. �

Because the incidence graph of a graph of tree-width k has tree-width at most k + 1, and
one can reduce the computation of a weighted Steiner tree on a graph to the computation of
a node-weighted Steiner tree on its incidence graph, we simplify and generalise the algorithm
from [5]. With few modifications, we can easily deduce an algorithm to compute a maximum
(or minimum) connected co-(σ, ρ)-dominating set.

Corollary 4.7. There exists an algorithm that, given an n-vertex graph G and a rooted layout
(T, δ) of G, computes a maximum (or minimum) connected co-(σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)

(2ω+5) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.
16

Proof. To find a maximum (or minimum) co-(σ, ρ)-dominating set, we need to modify the
definition of the table Ax, the invariant and the computational steps of the algorithm from
Theorem 4.5. For each vertex x ∈ V (T), we define the set of indices of our table Dx as
Ix := RdVx ×R

d
Vx
×R1

Vx
×R1

Vx
.

For all (R,R′, R,R′) ∈ Ix, we define Ax[R,R′, R,R
′
] ⊆ 2Vx as the following set

{X ⊆ Vx : X ≡1
Vx R, (Vx \X) ≡dVx R, and (Vx \X) ∪R′ (σ, ρ)-dominates Vx}.

It is worth noticing that the definition of Ax does not depend on R′, it is just more convenient
to write the proof this way in order to obtain an algorithm similar to the one from Theorem 4.5.

Similarly to Theorem 4.5, for each node x of V (T), our algorithm will compute a table Dx
that satisfies the following invariant.
Invariant. For every (R,R′, R,R

′
) ∈ Ix, the set Dx[R,R′, R,R

′
] is a subset of Ax[R,R′, R,R

′
]

of size at most s-nec1(T, δ)
2 that (x,R′)-represents Ax[R,R′, R,R

′
].

Intuitively, we useR andR′ to deal with the connectivity constraint of the co-(σ, ρ)-dominating
set and R and R′ for the (σ, ρ)-domination.

The following claim adapts Lemma 4.4 to the co-(σ, ρ)-dominating set case.

Claim 4.7.1. Let x be an internal node of T with a and b as children. For all (R,R′, R,R′) ∈ Ix,
we have

Ax[R,R′, R,R
′
] :=

⋃
(A,A′), (B,B′) d-(R,R′)-compatible
(A,A′), (B,B′) 1-(R,R′

)-compatible

Aa[A,A′, A,A′]
⊗
Ab[B,B′, A,A′].

The proof of this claim follows from the proof of Lemma 4.4. With these modifications, it
is straightforward to check that the algorithm of Theorem 4.5 can be adapted to compute a
minimum or maximum connected co-(σ, ρ)-dominating set of V (G). With the same analysis
as in Theorem 4.5, one easily deduces that the running time of this modified algorithm is
O(s-necd(T, δ)3 · s-nec1(T, δ)

(2ω+5) · log(s-necd(T, δ)) · n3). �

5. Acyclic variants of (Connected) (σ, ρ)-Dominating Set

We call AC-(σ, ρ)-Dominating Set (resp. Acyclic (σ, ρ)-Dominating Set) the family of
problems which consists in finding a subset X ⊆ V (G) of maximum (or minimum) weight such
that X is a (σ, ρ)-dominating set of G and G[X] is a tree (resp. a forest). Some examples of
famous problems which belong to these family of problems are presented in Table 3.

Table 3. Examples of AC-(σ, ρ)-Dominating Set problems and Acyclic
(σ, ρ)-Dominating Set problems. To solve these problems, we use the d-
neighbor equivalence with d := max{2, d(σ), d(ρ)}. Column d shows the value of
d for each problem.

σ ρ d Version Standard name

N N 2 AC Maximum Induced Tree

N N 2 Acyclic Maximum Induced Forest

{1, 2} N 3 AC Longest Induced Path

{1, 2} N 3 Acyclic Maximum Induced Linear Forest

In this section, we present an algorithm that solves any AC-(σ, ρ)-Dominating Set problem.
Unfortunately, we were not able to obtain an algorithm whose running time is polynomial in
n and the d-neighbor-width of the given layout (for some constant d). But, for the other
parameters, by using their respective properties, we get the running time presented in Table 4

17

which are roughly the same as those in the previous section. Moreover, we show, via a polynomial
reduction, that we can use our algorithm for AC-(σ, ρ)-Dominating Set problems (with some
modifications) to solve any Acyclic (σ, ρ)-Dominating Set problem.

Table 4. Upper bounds on the running time of our algorithms for an AC-(σ, ρ)-
Dominating Set problem with L = (T, δ) and d := max{2, d(σ), d(ρ)}.

Parameter Running time

d-Neighbor-width O(s-necd(L)3 · s-nec1(L)2(log2(s-nec1(L))+ω+1) · log(s-nec2(L)) · n4)

Mim-width O(n(2ω+3d+4)mim(L)+4 ·mim(L))

Module-width O((d+ 1)3mw(L) · 2(2ω+3)mw(L) ·mw(L) · n4)

Rank-width O(2(2ω+3d+4)rw(L)2 · rw(L) · n4)

Q-rank-width O(2(2ω+5)rwQ(L) log2(d·rwQ(L)) · rwQ(L) · n4)

Let us first explain why we cannot use the same trick as in [5] on the algorithms of Section
4 to ensure the acyclicity, that is classifying the partial solutions X – associated with a node
x ∈ V (T) – with respect to |X| and |E(G[X])|. Indeed, for two sets X,W ⊆ Vx with |X| = |W |
and |E(G[X])| = |E(G[W])|, we have |E(G[X ∪ Y])| = |E(G[W ∪ Y])|, for all Y ⊆ Vx, if and
only if X ≡nVx W . Hence, the trick used in [5] would imply to classify the partial solutions with
respect to their n-neighbor equivalence class. But, the upper bounds we have on necn(Vx) with
respect to module-width, (Q-)rank-width would lead to an XP algorithm. In fact, for every k ∈ N
and every n ≥ 2k, one can construct an n-vertex bipartite graph Hk[A,A] where mw(A) = k and
necn(A) = (n/mw(A))mw(A) (see Figure 2). Since both rw(A) and rwQ(A) are upper-bounded
by mw(A), we deduce that using the trick of [5] would give, for each f ∈ {mw, rw, rwQ}, an
nΩ(f(T,δ)) time algorithm.

A

A

A1 A2 Ak

v1 v2 vk

Figure 2. Bipartite graph Hk[A,A] where mw(A) = k and necn(A) =

(n/mw(A))mw(A). Each Ai’s contains n− k/k vertices whose neighborhoods are
{vi}.

In the following, we introduce some new concepts that extends the framework designed in
Section 3 in order to manage acyclicity. All along, we give intuitions on this concepts through a
concrete example: Maximum Induced Tree. Finally, we present the algorithms for the AC-
(σ, ρ)-Dominating Set problems and the algorithms for Acyclic (σ, ρ)-Dominating Set
problems.

We start by defining a new notion of representativity to deal with the acyclicity constraint.
This new notion of representativity is defined w.r.t. to the 2-neighbor equivalence class of a set
R′ ⊆ Vx. We consider 2-neighbor equivalence classes instead of 1-neighbor equivalence classes
in order to manage the acyclicity (see the following explanations). Similarly to Section 3, every
concept introduced in this section is defined with respect to a node x of T and a set R′ ⊆ Vx.
To simplify this section, we fix a node x of T and R′ ⊆ Vx. In our algorithm, R′ will always

18

belong to Rd
Vx

for some d ∈ N+ with d ≥ 2. For Maximum Induced Tree d = 2 is enough
and in general, we use d := max{2, d(σ), d(ρ)}.

The following definition extends Definition 3.1 of Section 3 to deal with the acyclicity. We
let opt ∈ {min,max}; if we want to solve a maximization (or minimization) problem, we use
opt = max (or opt = min).

Definition 5.1 ((x,R′)acy-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define

best(A, Y)acy := opt{w(X) : X ∈ A and G[X ∪ Y] is a tree}.

Let A,B ⊆ 2Vx . We say that B (x,R′)acy-represents A if, for every Y ⊆ Vx such that Y ≡2
Vx
R′,

we have bestacy(A, Y) = bestacy(B, Y).

As for the (x,R′)-representativity, we need to prove that the operations we use in our algo-
rithm preserve the (x,R′)acy-representativity. The following fact follows from Definition 5.1 of
(x,R′)acy-representativity.

Fact 5.2. If B and D (x,R′)acy-represents, respectively, A and C, then B∪D (x,R′)acy-represents
A ∪ C.

The following lemma is an adaptation of Lemma 3.6 to the notion of (x,R′)acy-representativity.
The proof is almost the same as the one of Lemma 3.6. We refer to Definition 3.5 for the notion
of d-(R,R′)-compatibility.

Lemma 5.3. Let d ∈ N+ such that d ≥ 2. Suppose that x is an internal node of T with a
and b as children. Let R ∈ RdVx . Let (A,A′) ∈ RdVa × R

d
Va

and (B,B′) ∈ RdVb × R
d
Vb

that are
d-(R,R′)-compatible. Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡dVa A, and let B ⊆ 2Vb

such that, for all W ∈ B, we have W ≡dVb B.
If A′ ⊆ A (a,A′)acy-represents A and B′ ⊆ B (b, B′)acy-represents B, then

A′
⊗
B′ (x,R′)acy-represents A

⊗
B.

Proof. Suppose that A′ ⊆ A (a,A′)acy-represents A and B′ ⊆ B (b, B′)acy-represents B. In order
to prove this lemma, it is sufficient to prove that, for each Y ≡2

Vx
R′, we have bestacy(A′

⊗
B′, Y) =

bestacy(A
⊗
B, Y).

Let Y ⊆ Vx such that Y ≡2
Vx
R′. We claim the following facts

(a) for every W ∈ B, we have W ∪ Y ≡2
Va
A′,

(b) for every X ∈ A, we have X ∪ Y ≡2
Vb
B′.

Let W ∈ B. By Fact 2.3, we have that W ≡d
Va
B because Vb ⊆ Va and W ≡dVb B. Since d ≥ 2,

we have W ≡2
Va
B. By Fact 2.3, we deduce also that Y ≡2

Va
R′. Since (A,A′) and (B,B′) are

d-(R,R′)-compatible, we have A′ ≡d
Va

R′ ∪ B. In particular, we have A′ ≡2
Va

R′ ∪ B because
d ≥ 2. We can conclude that W ∪ Y ≡2

Va
A′ for every W ∈ B. The proof for Fact (b) is

symmetric.
Now observe that, by the definitions of bestacy and of the merging operator

⊗
, we have

bestacy
(
A
⊗
B, Y

)
= opt{w(X) + w(W) : X ∈ A ∧W ∈ B ∧G[X ∪W ∪ Y] is a tree}.

Since bestacy(A,W ∪ Y) = opt{w(X) : X ∈ A ∧G[X ∪W ∪ Y] is a tree}, we deduce that

bestacy
(
A
⊗
B, Y

)
= opt{bestacy(A,W ∪ Y) + w(W) : W ∈ B}.

Since A′ (a,A′)-represents A and by Fact (a), we have

bestacy
(
A
⊗
B, Y

)
= opt{bestacy(A′,W ∪ Y) + w(W) : W ∈ B}

= bestacy
(
A′
⊗
B, Y

)
.

19

Symmetrically, we deduce from Fact (b) that bestacy
(
A′
⊗
B, Y

)
= bestacy

(
A′
⊗
B′, Y

)
. This

stands for every Y ⊆ Vx such that Y ≡2
Vx

R′. Thus, we conclude that A′
⊗
B′ (x,R′)acy-

represents A
⊗
B. �

In order to compute a maximum induced tree, we design an algorithm similar to those of
Section 4. That is, for each (R,R′) ∈ R2

Vx
×R2

Vx
, our algorithm will compute a set Dx[R,R′] ⊆

2Vx that is an (x,R′)acy-representative set of small size of the set Ax[R] := {X ⊆ Vx such
that X ≡2

Vx
R}. This is sufficient to compute a maximum induced tree of G since we have

Ar[∅] = 2V (G) with r the root of T . Thus, by Definition 5.1, any (r, ∅)acy-representative set of
Ar[∅] contains a maximum induced tree.

The key to compute the tables of our algorithm is a function that, given A ⊆ 2Vx , computes
a small subset of A that (x,R′)acy-represents A. This function starts by removing from A some
sets that will never give a tree with a set Y ≡2

Vx
R′. For doing so, we characterize the sets

X ∈ A such that G[X ∪ Y] is a tree for some Y ≡2
Vx
R′. We call these sets R′-important. The

following gives a formal definition of these important and unimportant partial solutions.

Definition 5.4 (R′-important). We say that X ⊆ Vx is R′-important if there exists Y ⊆ Vx
such that Y ≡2

Vx
R′ and G[X ∪ Y] is a tree, otherwise, we say that X is R′-unimportant.

By definition, any set obtained from a set A by removing R′-unimportant sets is an (x,R′)acy-
representative set of A. The following lemma gives some necessary conditions on R′-important
sets. It follows that any set which does not respect one of these conditions can safely be removed
from A. These conditions are the key to obtain the running times of Table 1. At this point,
we need to introduce the following notations. For every X ⊆ Vx, we define X0 := {v ∈ X :
N(v) ∩ R′ = ∅}, X1 := {v ∈ X : |N(v) ∩ R′| = 1}, and X2+ := {v ∈ X : |N(v) ∩ R′| ≥ 2}.
Notice that, for every Y ≡2

Vx
R′ and X ⊆ Vx, the vertices in X0 have no neighbor in Y , those

in X1 have exactly one neighbor in Y and those in X2+ have at least 2 neighbors in Y .
In order to prove the lemma, we need the properties of the 2-neighbor equivalence relation.

More precisely, we use the fact that, for all X ⊆ Vx and Y ≡2
Vx
R′, the vertices in X having at

least two neighbors in Y corresponds exactly to those having at least two neighbors in R′. These
vertices play a major role in the acyclicity and the computation of representatives in the following
sense. By removing from A the sets that do not respect the two above properties, we are able
to decompose A into a small number of sets A1, . . . ,At such that an (x,R′)-representative set
of Ai is an (x,R′)acy-representative set of Ai for each i ∈ {1, . . . , t}. We find an (x,R′)acy-
representative set of A, by computing an (x,R′)-representative set Bi for each Ai with the
function reduce. This is sufficient because B1 ∪ · · · ∪ Bt is an (x,R′)acy-representative set of A.

Lemma 5.5. If X ⊆ Vx is R′-important, then G[X] is a forest and the following properties are
satisfied:

(1) for every pair of distinct vertices a and b in X2+, we have N(a) ∩ Vx 6= N(b) ∩ Vx,
(2) |X2+| is upper bounded by 2mim(Vx), 2rw(Vx), 2rwQ(Vx), and 2 log2(nec1(Vx)).

Proof. Obviously, any R′-important set must induce a forest.
Let X ⊆ Vx be an R′-important set. Since X is R′-important, there exists Y ⊆ Vx such that

Y ≡2
Vx
R′ and G[X ∪ Y] is a tree.

Assume towards a contradiction that there exist two distinct vertices a and b in X2+ such
that N(a) ∩ Vx = N(b) ∩ Vx. Since a and b belong to X2+ and Y ≡2

Vx
R′, both a and b have

at least two neighbors in Y . Thus, a and b have at least two common neighbors in Y . We
conclude that G[X ∪ Y] admits a cycle of length four, yielding a contradiction. We conclude
that Property (1) holds for every R′-important set.

Now, we prove that Property (2) holds for X. Observe that, by Lemma 2.6, mim(Vx) is upper
bounded by rw(Vx), rwQ(Vx), and log2(nec1(Vx)). Thus, in order to prove Property (2), it is
sufficient to prove that |X2+| ≤ 2mim(Vx).

20

We claim that |X2+| ≤ 2k where k is the size of a maximum induced matching of F :=
G[X2+, Y]. Since F is an induced subgraph of G[Vx, Vx], we have k ≤ mim(Vx) and this is
enough to prove Property (2). Notice that F is a forest because F is a subgraph of G[X ∪ Y],
which is a tree.

In the following, we prove that F admits a good bipartition, that is a bipartition {X1, X2} of
X2+ ∩ V (F) such that, for each i ∈ {1, 2} and, for each v ∈ Xi, there exists yv ∈ Y ∩ V (F)
such that NF (yv) ∩ Xi = {v}. Observe that this is enough to prove Property (2) since if F
admits a good bipartition {X1, X2}, then |X1| ≤ k and |X2| ≤ k. Indeed, if F admits a good
bipartition {X1, X2}, then, for each i ∈ {1, 2}, the set of edges Mi = {vyv : v ∈ Xi} is an
induced matching of F . In order to prove that F admits a good bipartition it is sufficient to
prove that each connected component of F admits a good bipartition.

Let C ∈ cc(F) and u ∈ C∩X2+. As F is a forest, F [C] is a tree. Observe that the distance in
F between each vertex v ∈ C ∩X2+ and u is even because F := G[X2+, Y]. Let C1 (resp. C2)
be the set of all vertices v ∈ C ∩X2+ such that there exists an odd (resp. even) integer ` ∈ N
so that the distance between v and u in F is 2i. We claim that {C1, C2} is a good bipartition
of F [C].

Let i ∈ {1, 2}, v ∈ Ci and ` ∈ N such that the distance between v and u in F is 2`. Let P be
the set of vertices in V (F) \ {v} that share a common neighbor with v in F . We want to prove
that there exists y ∈ Y such that NF (y) ∩ Ci = {v}. For doing so, it is sufficient to prove that
NF (v) \NF (Ci \ {v}) = NF (v) \NF (P ∩ Ci) 6= ∅. Observe that, for every v′ ∈ P , the distance
between v′ and u in F is either 2` − 2, 2` or 2` + 2 because F [C] is a tree and the distance
between v and u is 2`. By construction of {C1, C2}, every vertex at distance 2`− 2 and 2`+ 2
from u must belong to C3−i. Thus, every vertex in P ∩ Ci is at distance 2` from u. If ` = 0,
then we are done because v = u and P ∩ Ci = ∅. Assume that ` 6= 0. As F [C] is a tree, v has
only one neighbor w at distance 2` − 1 from u in F . Because F [C] is a tree, we deduce that
NF (v) ∩ NF (P ∩ Ci) = {w}. Since v ∈ X2+, v has at least two neighbors in F = G[X2+, Y]
(because Y ≡2

Vx
R′), we conclude that NF (v)\NF (P ∩Ci) 6= ∅. Hence, we deduce that {C1, C2}

is a good bipartition of F [C].
We deduce that every connected component of F admits a good bipartition and thus F admits

a good bipartition. Thus, |X2+| ≤ 2mim(Vx). �

The following definition characterizes the sets A ⊆ 2Vx for which an (x,R′)-representative set
is also an (x,R′)acy-representative set.

Definition 5.6. We say that A ⊆ 2Vx is R′-consistent if, for each Y ⊆ Vx such that Y ≡2
Vx
R′,

if there exists W ∈ A such that G[W ∪ Y] is a tree, then, for each X ∈ A, either G[X ∪ Y] is a
tree or G[X ∪ Y] is not connected.

The following lemma proves that an (x,R′)-representative set of an R′-consistent set is also
an (x,R′)acy-representative set of this later.

Lemma 5.7. Let A ⊆ 2Vx . For all D ⊆ A, if A is R′-consistent and D (x,R′)-represents A,
then D (x,R′)acy-represents A.

Proof. We assume that opt = max, the proof for opt = min is similar. Let Y ≡2
Vx

R′. If
bestacy(A, Y) = −∞, then we also have bestacy(D, Y) = −∞ because D ⊆ A.

Assume now that bestacy(A, Y) 6= −∞. Thus, there exists W ∈ A such that G[W ∪ Y] is a
tree. Since A is R′-consistent, for all X ∈ A, the graph G[X ∪ Y] is either a tree or it is not
connected. Thus, by Definition 3.1 of best, we have bestacy(A, Y) = best(A, Y). As D ⊆ A, we
have also bestacy(D, Y) = best(D, Y). We conclude by observing that if D (x,R′)-represents A,
then bestacy(D, Y) = bestacy(A, Y). �

The next lemma proves that, for each f ∈ {s-nec1,mw, rw, rwQ,mim}, we can decompose a set
A ⊆ 2Vx into a small collection {A1, . . . ,At} of pairwise disjoint subsets of A such that each
Ai is R′-consistent. Even though some parts of the proof are specific to each parameter, the

21

ideas are roughly the same. First, we remove the sets X in A that do not induce a forest. If
f = mw, we remove the sets in A that do not respect Condition (1) of Lemma 5.5, otherwise,
we remove the sets that do not respect the upper bound associated with f from Condition (2)
of Lemma 5.5. These sets can be safely removed as, by Lemma 5.5, they are R′-unimportant.
After removing these sets, we obtain the decomposition of A by taking the equivalence classes
of some equivalence relation that is roughly the n-neighbor equivalence relation. Owing to the
set of R′-unimportant sets we have removed from A, we prove that the number of equivalence
classes of this latter equivalence relation respects the upper bound associated with f that is
described in Table 5.

Lemma 5.8. Let A ⊆ 2Vx . For each f ∈ {s-nec1,mw, rw, rwQ,mim}, there exists a collection
{A1, . . . ,At} of pairwise disjoint subsets of A computable in time O(|A| ·Nf(T, δ) ·n2) such that

• A1 ∪ · · · ∪ At (x,R′)acy-represents A,
• Ai is R′-consistent for each i ∈ {1, . . . , t} and
• t ≤ Nf(T, δ),

where Nf(T, δ) is the term defined in Table 5.

Table 5. Upper boundsNf(T, δ) on the cardinal of the decomposition of Lemma
5.8 for each f ∈ {mw, rw, rwQ,mim}.

f s-nec1 mw rwQ rw mim

Nf(L) s-nec1(L)2 log2(s-nec1(L)) · 2n 2mw(L) · 2n (2rwQ(L) + 1)rwQ(L) · 2n 22rw(L)
2 · 2n 2n2mim(L)+1

Proof. We begin by defining an equivalence relation ∼ on 2Vx such that each equivalence class
of ∼ over 2Vx is an R′-consistent set.

For X ⊆ Vx, let σ(X) be the vector corresponding to the sum (over Q) of the row vectors
of MVx,Vx

corresponding to X. Notice that if σ(X) = σ(X ′), then X ≡dVx X
′, for all d ∈ N+,

because the entries of σ(X) represent the number of neighbors in X for each vertex in Vx.
Moreover, if σ(X) = σ(X ′), then |E(G[X,Y])| = |E(G[X ′, Y])| for every Y ⊆ Vx.

We define the equivalence relation ∼ on 2Vx such that X ∼W if we have σ(X2+) = σ(W 2+)
and |E(G[X])| − |X \X1| = |E(G[W])| − |W \W 1|.

Intuitively, if X ∼W , then, for all Y ≡2
Vx
R′, we have |E(G[X∪Y])| = |X∪Y |−1 if and only

if |E(G[W ∪Y])| = |W ∪Y |−1. Thus, if X ∼W and both sets induce with Y a connected graph,
then both sets induce with Y a tree (because a graph F is a tree if and only if F is connected
and |V (F)| = |E(F)| − 1). Consequently, an equivalence class of ∼ is an R′-consistent set.

Claim 5.8.1. Let A′ ⊆ A. If, for all X,W ∈ A′, we have X ∼W , then A′ is R′-consistent.

Proof. Suppose that X ∼ W for all X,W ∈ A′. In order to prove that A′ is R′-consistent, it is
enough to prove that, for each X,W ∈ A′ and Y ≡2

Vx
R′, if G[X ∪ Y] is a tree and G[W ∪ Y] is

connected, then G[W ∪ Y] is a tree.
Let Y ≡2

Vx
R′ and X,W ∈ A′. Assume that G[X∪Y] is a tree and that G[W∪Y] is connected.

We want to prove that G[W ∪ Y] is a tree.
Since G[X ∪ Y] is a tree, we have |E(G[X ∪ Y])| = |X ∪ Y | − 1. Since the vertices in X0

have no neighbors in Y , we can decompose |E(G[X ∪Y])| = |X ∪Y | − 1 to obtain the following
equality

|E(G[Y])|+ |E(G[X2+, Y])|+ |E(G[X1, Y])|+ |E(G[X])| = |X ∪ Y | − 1.(2)

Since every vertex in X1 has exactly one neighbor in Y (because Y ≡2
Vx

R′) , we have
|E(G[X1, Y])| = |X1|. Thus, Equation (1) is equivalent to

|E(G[Y])|+ |E(G[X2+, Y])|+ |E(G[X])| = |X \X1|+ |Y | − 1.(3)
22

Since X ∼ W , we have |E(G[X])| − |X \ X1| = |E(G[W])| − |W \W 1|. Moreover, owing to
σ(X2+) = σ(W 2+), we have |E(G(X2+, Y))| = |E(G(W 2+, Y))|. We conclude that Equation
(2) is equivalent to

|E(G[Y])|+ |E(G[W 2+, Y])|+ |E(G[W])| = |W \W 1|+ |Y | − 1.(4)

With the same arguments to prove that (3) is equivalent to |E(G[X ∪ Y])| = |X ∪ Y | − 1, we
can show that (3) is equivalent to |E(G(W ∪ Y))| = |W ∪ Y | − 1. By assumption, G[W ∪ Y] is
connected and thus we conclude that G[W ∪ Y] is a tree. �

We are now ready to decompose A. We start by removing from A all the sets that do not
induce a forest. Trivially, this can be done in time O(|A| · n). Moreover, these sets are R′-
unimportant and thus we keep an (x,R′)acy-representative set of A. Before explaining how we
proceed separately for each parameter, we need the following observation which follows from the
removal of all the sets in A that do not induce a forest.

Observation 5.8.2. For all X ∈ A, we have −n ≤ |E(G[X])| − |X \X1| < n.

Concerning module-width. We remove all the sets X in A that do not respect Condition (1)
of Lemma 5.5. By Lemma 5.5, these sets are R′-unimportant and thus we keep an (x,R′)acy-
representative set of A. After removing these sets, for each X ∈ A, every pair (a, b) of distinct
vertices in X2+ have a different neighborhood in Vx. Observe that, by definition of module-
width, we have

• mw(Vx) = |{N(v) ∩ Vx : v ∈ Vx}| and
• for every a, b ∈ Vx, if N(a) ∩ Vx = N(b) ∩ Vx, then σ({a}) = σ({b}).

We deduce from these observations that |{σ(X2+) : X ∈ A}| ≤ 2mw(Vx). Thus, the number of
equivalence classes of ∼ over A is at most 2mw(Vx) · 2n ≤ Nmw(T, δ). The factor 2n comes from
Observation 5.8.2 and appears also in all subsequent upper-bounds.

Concerning mim-width. We remove from A all the sets X such that |X2+| > 2mim(Vx).
By Lemma 5.5, these sets are R′-unimportant and thus we keep an (x,R′)acy-representative set
of A. Observe that this can be done in time O(nmim(Vx)+1 + |A| · n2) because mim(Vx) can
be computed in time O(nmim(Vx) + 1). Since |X2+| ≤ 2mim(Vx), for every X ∈ A, we have
|{σ(X2+) : X ∈ A}| ≤ n2mim(Vx).

Hence, the number of equivalence classes of ∼ over A is at most 2n2mim(Vx)+1 ≤ Nmim(T, δ).

Concerning 1-neighbor-width. We remove all the sets X ∈ A such that |X2+| is bigger
than 2 log2(nec1(Vx)). By Lemma 5.5, we keep an (x,R′)acy-representative set of A. Since
there are at most nec1(Vx) different rows in MVx,Vx

, we deduce that |{σ(X2+) : X ∈ A}| ≤
nec1(Vx)

2 log2(nec1(Vx)) values.
Hence, the number of equivalence classes of ∼ over A is at most nec1(Vx)

2 log2(nec1(Vx)) · 2n ≤
Ns-nec1(T, δ).

Concerning rank-width. We remove from A all the sets X such that |X2+| > 2rw(Vx) because
they are R′-unimportant by Lemma 5.5. We know that there are at most 2rw(Vx) different rows
in M . Thus, we have |{σ(X2+) : X ∈ A}| ≤ (2rw(Vx))2rw(Vx).

We can therefore conclude that the number of equivalence classes of ∼ over A is at most
22rw(Vx)2 · 2n ≤ Nrw(T, δ).

Concerning Q-rank-width. We remove all the sets X ∈ A such that |X2+| > 2rwQ(Vx). By
Lemma 5.5, we keep an (x,R′)acy-representative set of A. We claim that |{σ(X2+) : X ∈ A}| ≤
2rwQ(Vx)·log2(2rwQ(Vx)+1). Notice that the proof can be deduced from [23, Theorem 4.2].

Let C be a set of rwQ(A) linearly independent columns of MA,A. Since the rank over Q of
MVx,Vx

is rwQ(Vx), every linear combination of row vectors of MVx,Vx
is completely determined

by its entries in C. Since |X2+| ≤ 2rwQ(Vx) for every X ∈ A, the values in σ(X2+) are between
0 and 2rwQ(Vx). Hence, the number of possible values for σ(X2+) is at most (2rwQ(Vx) +

1)rwQ(Vx) = 2rwQ(Vx) log2(2rwQ(Vx)+1).
23

We conclude that the number of equivalence classes of∼ overA is at most 2rwQ(Vx) log2(2rwQ(Vx)+1)·
2n ≤ NrwQ(T, δ).

It remains to prove the running time. Observe that, for module-width, (Q-)rank-width and
1-neighbor-width, the removal of R′-unimportant sets can be done in time O(|A| · n2). Indeed,
mw(Vx), rw(Vx) and rwQ(Vx) can be computed in time O(n2). For 1-neighbor-width, we can
assume that the size of nec1(Vx) is given because the first step of our algorithm for AC-(σ, ρ)-
Dominating Set problems is to compute RdVx for some d ∈ N+ and one can easily compute
nec1(Vx) while computing RdVx . Notice that we can decide whether X ∼ W in time O(n2).
Therefore, for each f ∈ {s-nec1,mw, rw, rwQ,mim}, we can therefore compute the equivalence
classes of A in time O(|A| · Nf(T, δ) · n2). �

We are now ready to give an adaptation of Theorem 3.3 to the notion of (x,R′)acy-representativity.

Theorem 5.9 (?). Let R ∈ R2
Vx
. For each f ∈ {s-nec1,mw, rw, rwQ,mim}, there exists an

algorithm reduceacyf that, given a set A such that X ≡2
Vx

R for every X ∈ A, outputs in time
O((nec1(Vx)

2(ω−1) +Nf(T, δ)) · |A| ·n2), a subset B ⊆ A such that B (x,R′)acy-represents A and
|B| ≤ Nf(T, δ) · nec1(Vx)

2.

Proof. Let f ∈ {s-nec1,mw, rw, rwQ,mim}. By Lemma 5.8, we can compute in time O(|A| ·
Nf(T, δ) · n2) a collection {A1, . . . ,At} of pairwise disjoint subsets of A such that

• A1 ∪ · · · ∪ At (x,R′)acy-represents A,
• Ai is R′-consistent for each i ∈ {1, . . . , t},
• t ≤ Nf(T, δ).

For each X ∈ A, we have X ≡1
Vx
R because X ≡2

Vx
R. Since A1, . . . ,At ⊆ A, we can apply

Theorem 3.3 to compute, for each i ∈ {1, . . . , t}, the set Bi := reduce(Ai). By Theorem 3.3, for
each i ∈ {1, . . . , t}, the set Bi is a subset and an (x,R′)-representative set of Ai whose size is
bounded by nec1(Vx)

2. Moreover, as Ai is R′-consistent, we have Bi (x,R′)acy-represents Ai by
Lemma 5.7.

Let B := B1 ∪ · · · ∪ Bt. Since A1 ∪ · · · ∪ At (x,R′)acy-represents A, we deduce from Fact
5.2 that B (x,R′)acy-represents A. Furthermore, we have |B| ≤ Nf(T, δ) · nec1(Vx)

2 owing to
t ≤ Nf(T, δ) and |Bi| ≤ nec1(Vx)

2 for all i ∈ {1, . . . , t}.
It remains to prove the running time. By Theorem 3.3, we can compute B1, . . . ,Bt in time

O(|A1 ∪ · · · ∪ At| · nec1(Vx)
2(ω−1) · n2). Since the sets A1, . . . ,At are subsets of A and pairwise

disjoint, we have |A1 ∪ · · · ∪ At| ≤ |A|. That proves the running time and concludes the
theorem. �

We are now ready to present an algorithm that solves any AC-(σ, ρ)-Dominating Set prob-
lem. This algorithm follows the same ideas as the algorithm from Theorem 4.5, except that we
use reduceacyf instead of reduce.

Theorem 5.10. For each f ∈ {s-nec1,mw, rw, rwQ,mim}, there exists an algorithm that, given
an n-vertex graph G and a rooted layout (T, δ) of G, solves any AC-(σ, ρ)-Dominating Set
problem, in time

O(s-necd(T, δ)3 · s-nec1(T, δ)
2(ω+1) · Nf(T, δ)

2 · log(s-necd(T, δ)) · n3),

with d := max{2, d(σ), d(ρ)}.

Proof. Let f ∈ {s-nec1,mw, rw, rwQ,mim}. If we want to compute a solution of maximum (resp.
minimum) weight, then we use the framework of Section 3 with opt = max (resp. opt = min).

The first step of our algorithm is to compute, for each x ∈ V (T), the sets RdVx , R
d
Vx

and a
data structure to compute repdVx(X) and repd

Vx
(Y), for any X ⊆ Vx and any Y ⊆ Vx, in time

O(log(s-necd(T, δ)) · n2). As T has 2n− 1 nodes, by Lemma 2.4, we can compute these sets and
data structures in time O(s-necd(T, δ) · log(s-necd(T, δ)) · n3).

24

For each node x ∈ T and, for each (R,R′) ∈ RdVx ×R
d
Vx
, we define Ax[R,R′] ⊆ 2Vx as follows

Ax[R,R′] := {X ⊆ Vx : X ≡dVx R and X ∪R′ (σ, ρ)-dominates Vx}.
We deduce the following claim from the proof of Claim 4.4.

Claim 5.10.1. For every internal node x ∈ V (T) with a and b as children and (R,R′) ∈
RdVx ×R

d
Vx
, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A′]
⊗
Ab[B,B′].

For each node x of V (T), our algorithm will compute a table Dx that satisfies the following
invariant.
Invariant. For every (R,R′) ∈ RdVx ×R

d
Vx
, the set Dx[R,R′] is a subset of Ax[R,R′] of size at

most Nf(T, δ) · nec1(Vx)
2 that (x,R′)acy-represents Ax[R,R′].

Notice that by Definition of (x,R′)acy-representativity, if the invariant holds for r, then Dr[∅, ∅]
contains a set X of maximum (or minimum) weight such that X is a (σ, ρ)-dominating set of G
and G[X] is a tree.

The algorithm is a usual bottom-up dynamic programming algorithm and computes for each
node x of T the table Dx.

Let x be a leaf of T with Vx = {v}. Observe that Ax[R,R′] ⊆ 2Vx = {∅, {v}}. Thus, our
algorithm can directly compute Ax[R,R′] and set Dx[R,R′] := Ax[R,R′]. In this case, the
invariant trivially holds.

Now, take x an internal node of T with a and b as children such that the invariant holds for a
and b. For each (R,R′) ∈ RdVx×R

d
Vx
, the algorithm computes Dx[R,R′] := reduceacyf (Bx[R,R′]),

where the set Bx[R,R′] is defined as follows

Bx[R,R′] :=
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Da[A,A′]
⊗
Db[B,B′].

Similarly to the proof of Theorem 4.5, we deduce from Fact 5.2, Lemma 5.3, Claim 5.10.1
and Theorem 5.9, that Dx[R,R′] is a subset and an (x,R′)acy-representative set of Ax[R,R′].
By Theorem 5.9, we have |Dx[R,R′]| ≤ Nf(T, δ) · s-nec1(T, δ)

2.
Consequently, the invariant holds for x and by induction, it holds for all the nodes of T . The

correctness of the algorithm follows.
Running Time. The running time of our algorithm is almost the same as the running time
given in Theorem 5.10. The only difference is the factor Nf(T, δ)

2 which is due to the following
fact: by the invariant condition, for each (A,A′) and (B,B′), the size of Da[A,A′]

⊗
Db[B,B′]

is at most Nf(T, δ)
2 · s-nec1(T, δ)

4. �

By constructing for any graph G a graph G′ such that the width measure of G′ is linear in
the width measure of G, and any optimum acyclic (σ, ρ)-dominating set of G corresponds to an
optimum AC-(σ, ρ)-dominating set of G′ and vice-versa, we obtain the following which allows
for instance to compute a feedback vertex set in time nO(c), c the mim-width.

Theorem 5.11. For each f ∈ {s-nec1,mw, rw, rwQ,mim}, there exists an algorithm that, given
an n-vertex graph G and a rooted layout (T, δ) of G, solves any Acyclic (σ, ρ)-Dominating
Set problem in time

O(s-necd(T, δ)3 · s-nec1(T, δ)
2(ω+1) · Nf(T, δ)

O(1) · n3),

with d := max{2, d(σ), d(ρ)}.
Proof. Let f ∈ {nec1,mw, rw, rwQ,mim}. Suppose that we want to compute a maximum acyclic
(σ, ρ)-dominating set. The proof for computing a minimum acyclic (σ, ρ)-dominating set is
symmetric.

The first step of this proof is to construct a 2n + 1-vertex graph G′ from G and a layout
(T ?, δ?) of G′ from (T, δ) in time O(n2) such that (T ?, δ?) respect the following inequalities:

25

(1) for every d ∈ N+, s-necd(T ?, δ?) ≤ (d+ 1) · s-necd(T, δ),
(2) for every f ∈ {mim,mw, rw, rwQ}, f(T ?, δ?) ≤ f(T, δ) + 1.
The second step of this proof consists in showing how the algorithm of Theorem 5.10 can

be modified to find a maximum acyclic (σ, ρ)-dominating set of G by running this modified
algorithm on G′ and (T ?, δ?).

We construct G′ as follows. Let β be a bijection from V (G) to a set V + disjoint from V (G).
The vertex set of G′ is V (G)∪V +∪{v0} with v0 a vertex distinct from those in V (G)∪V +. We
extend the weight function w of G to G′ such that the vertices of V (G) have the same weight
as in G and the weight of the vertices in V + ∪ {v0} is 0. Finally, the edge set of G′ is defined as
follows

E(G′) := E(G) ∪ {{v, β(v)}, {v0, β(v)} : v ∈ V (G)}.
We now construct L = (T ?, δ?) from L := (T, δ). We obtain T ? and δ? by doing the following

transformations on T and δ:
• For each leaf ` of T with δ(`) = {v}, we transform ` into an internal node by adding two
new nodes a` and b` as its children such that δ?(a`) = v and δ?(b`) = β(v).
• The root of T ? is a new node r whose children are the root of T and a new node ar with
δ?(ar) = v0.

In order to simplify the proof, we use the following notations.
For each node x ∈ V (T ?), we let V L

x := V (G′) \ V L
x and, for each node x ∈ V (T), we let

V Lx := V (G) \ V Lx .
Now, we prove that (T ?, δ?) respects Inequalities (1) and (2). Let x be a node of T ?. Observe

that if x ∈ V (T ?) \ V (T), then the set V L
x either contains one vertex or equals V (G′). Hence,

in this case, the inequalities hold because necd(V
L
x) ≤ d for each d ∈ N+ and f(V L

x) ≤ 1 for
each f ∈ {mim,mw, rw, rwQ}.

Now, assume that x is also a node of T . Hence, by construction, we have

V L
x = V Lx ∪ {β(v) : v ∈ V Lx }.

V L
x = V Lx ∪ {β(v) : v ∈ V Lx } ∪ {v0}

Now, we prove Inequality (1). Let d ∈ N+. By construction of G′ and L , for each vertex
v ∈ V Lx , we have β(v) ∈ V L

x and

NG′(v) ∩ V L
x = NG(v) ∩ V Lx ,(5)

NG′(β(v)) ∩ V L
x = {v0}.(6)

We deduce that, for every X,Y ⊆ V L
x , we have X ≡d

VL
x
Y if and only

• X ∩ V (G) ≡d
V L
x
Y ∩ V (G) and

• min(d, |N(v0) ∩X|) = min(d, |N(v0) ∩ Y |).
Similarly, we deduce that, for every X,Y ⊆ V L

x , we have X ≡d
VL
x

Y if and only if

• X ∩ V (G) ≡d
V L
x

Y ∩ V (G) and
• X ∩ {v0} = Y ∩ {v0}.

Thus, we can conclude that s-necd(V L
x) ≤ (d + 1) · s-necd(V Lx). Consequently, Inequality (1)

holds.
We deduce Inequality (2) from Figure 3 describing the adjacency matrix between V L

x and
V L
x .

Now, we explain how we modify the algorithm of Theorem 5.10 in order to find a maximum
acyclic (σ, ρ)-dominating set of G by calling this algorithm on G′. For doing so, we modify
the definition of the table Ax, the invariant, and the computational steps of the algorithm of
Theorem 5.10. The purpose of these modifications is to restrict the (σ, ρ)-domination to the
vertices of V (G). For doing so, we consider the set of nodes S := V (T) ∪ {r, ar}. Observe that,

26

M
V L
x ,V L

x 0

1 00

V L
x

v0 V + ∩ V L
x

V + ∩ V L
x

V L
x

V L
x

V L
x

Figure 3. The adjacency matrix between V L
x and V L

x .

for every node x in S, there are no edges in G[V L
x , V L

x] between a vertex in V (G) and a vertex
in V (G′) \ V (G). This is not true for the nodes of V (T ?) \ S. For this reason, our algorithm
ignores the nodes in V (T ?) \ S and computes a table only for the nodes in S.

For every x ∈ S and every (R,R′) ∈ Rd
VL
x
×Rd

VL
x

we define Ax[R,R′] ⊆ 2V
L
x as follows

Ax[R,R
′] := {X ⊆ V L

x : X ≡d
V L
x
R and (X ∪R′) ∩ V (G) (σ, ρ)-dominates V L

x ∩ V (G)}.

We claim that if G admits an acyclic (σ, ρ)-dominating set D, then there exists D′ ∈ Ar[∅, ∅]
such that D′ ∩ V (G) = D and G′[D′] is a tree. Let D be an acyclic (σ, ρ)-dominating set of
G with cc(G[D]) = {C1, . . . , Ct}. For each i ∈ {1, . . . , t}, let vi be a vertex in Ci. One easily
checks that G′[D ∪ {β(vi) : 1 ≤ i ≤ t} ∪ v0] is a tree. Moreover, by definition of Ar[∅, ∅], for
every X ∈ Ar[∅, ∅], if G[X] is a tree, then X ∩ V (G) is an acyclic (σ, ρ)-dominating set of G.
Hence, if G admits an acyclic (σ, ρ)-dominating set, any (r, ∅)acy-representative set of Ar[∅, ∅]
contains a set X such that X ∩ V (G) is a maximum acyclic (σ, ρ)-dominating set of G.

For every node x ∈ S, we compute a table Dx satisfying the following invariant.
Invariant. For each node x ∈ S and each (R,R′) ∈ Rd

V L
x
×Rd

VL
x

, the set Dx[R,R′] is a subset

of Ax[R,R′] of size at most Nf(T
?, δ?) · nec1(V

L
x)2 that (x,R′)acy-represents Ax[R,R′].

Before we explain how to compute the table Dx, for each x ∈ S, we need the following fact
and claim. We deduce the following fact from Lemma 4.2 and the fact that, for every node x in
S, there are no edges in G[V L

x , V L
x] between a vertex in V (G) and a vertex in V (G′) \ V (G).

Fact 5.12. Let x ∈ S.
Let X ⊆ V L

x and Y,R′ ⊆ V L
x such that Y ≡d

V L
x

R′. Then (X ∪R′) ∩ V (G) (σ, ρ)-dominates

V L
x ∩ V (G) if and only if (X ∪ Y) ∩ V (G) (σ, ρ)-dominates V L

x ∩ V (G).

We deduce the following claim from Fact 5.12 and Lemma 4.4.

Claim 5.12.1. Let x ∈ S \ {ar} such that x is not a leaf in T . Let a and b be the children of x
in T ?. For every (R,R′) ∈ Rd

VL
x
×Rd

V L
x

, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A′]
⊗
Ab[B,B′].

The algorithm starts by computing the table Dx for each node x ∈ S such that x = ar or x
is a leaf of T . Since |V L

x | ≤ 2, our algorithm directly computes Ax[R,R′] and set Dx[R,R′] :=
Ax[R,R′] for every (R,R′) ∈ Rd

VL
x
×Rd

VL
x

.
For the other nodes our algorithm computes the table Dx exactly as the algorithm of Theorem

5.10.
27

The correctness of this algorithm follows from Theorem 5.10 and Claim 5.12.1. By Theorem
5.10, the running time of this algorithm is

O(s-nec2(L)3 · s-nec1(L)2(ω+1) · Nf(L)2 · n3).

We deduce the running time in function of L from Inequalities (1) and (2).
�

6. Max Cut

Prior to this work, the d-neighbor-equivalence relation was used only for problems with a
locally checkable property like Dominating Set [8, 15, 23]. We prove that the d-neighbor-
equivalence relation can also be useful for problems with a connectivity constraint and an
acyclicity constraint. Is this notion also useful for other kinds of problems? Can we use it
for the problems which are unlikely to admit FPT algorithms parameterized by clique-width,
Q-rank-width and rank-width? This is the case for well-known problems such as Hamiltonian
Cycle, Edge Dominating Set, and Max Cut. The complexity of these problems parameter-
ized by clique-width is well-known. Indeed, for each of these problems, we have an ad-hoc nO(k)

time algorithm with k the clique-width of a given k-expression [4, 12]. On the other hand, little is
known concerning rank-width and Q-rank-width. For mim-width, we know that Hamiltonian
Cycle is para-NP-hard parameterized by the mim-width of a given rooted layout [19].

As these problems are W[1]-hard parameterized by clique-width, we cannot expect to rely
only on the d-neighbor equivalence relation for d a constant. Maybe, we can avoid this dead-end
by using the n-neighbor equivalence relation. In this section, given an n-vertex graph G and
A,B ⊆ V (G), we denote by E(A,B) the set E(G[A,B]).

The Max Cut problem asks, given a graph G, for the maximum w ∈ N such that there exists
a subset X ⊆ V (G) with w = |E(X,X)|. To deal with the Max Cut problem, we use the
n-neighbor equivalence relation. The following lemma shows how the n-neighbor-width is upper
bounded by module-width, Q-rank-width and rank-width.

Lemma 6.1. Let G be an n-vertex graph. For every A ⊆ V (G), we have the following upper
bounds on necn(A):

(a) nmw(A), (b) nrwQ(A), (c) n2rw(A) .

Proof. We start by proving that |necn(A)| ≤ nrwQ(A). For X ⊆ A, let σ(X) be the vector
corresponding to the sum over Q of the row vectors of MA,A corresponding to X. Observe that,
for every X,W ⊆ A, we have X ≡nA W if and only if σ(X) = σ(W). Hence, it is enough to
prove that |{σ(X) : X ⊆ A}| ≤ nrwQ(A).

Let C be a set of rwQ(A) linearly independent columns of MA,A. Since the rank over Q of
MA,A is rwQ(A), every linear combination of row vectors of MA,A is completely determined by
its entries in C. For every X ∈ A, the values in σ(X) are between 0 and n − 1. Hence, we
conclude that |{σ(X) : X ⊆ A}| = necn(A) ≤ nrwQ(A).

Since rwQ(A) ≤ mw(A) [23, Theorem 3.6], we deduce that necn(A) ≤ nmw(A). Moreover, as
any binary matrix M of rank k over GF (2) has at most 2k different rows, we have mw(A) ≤
2rw(A). Thus, we conclude that necn(A) ≤ n2rw(A) . �

Consequently, our s-necn(L)O(1) · nO(1) time algorithm for Max Cut implies that Max Cut
is solvable in time nO(mw(L)), nO(rwQ(G)) and n2O(rw(G)) . Observe that Inequalities (a) and (b) of
Lemma 6.1 are almost tight see Figure 2. However, we do not know whether Inequality (c) is
tight.

Our algorithm is based on the following lemma which follows directly from the definition of
n-neighbor equivalence.

Lemma 6.2. Let G be a graph and A ⊆ V (G). For all X,W ⊆ A such that X ≡nA W and for
every Y ⊆ A, we have |E(X,Y)| = |E(W,Y)|.

28

Proof. Let X,W ⊆ A such that X ≡nA W . By definition, for every v ∈ A, we have |N(v)∩X| =
|N(v) ∩W |. Thus, for every Y ⊆ A, we have

|E(X,Y)| =
∑
v∈Y
|N(v) ∩X| =

∑
v∈Y
|N(v) ∩W | = |E(W,Y)|.

�

Suppose that we want to solve Max Cut on an n-vertex graph G given with a rooted layout
(T, δ). Let x be a node of T and X,W ⊆ Vx such that X ≡nVx W . From Lemma 6.2, we can
show that if |E(X,Vx \X)| > |E(W,Vx \W)|, then X is a better partial solution than W . That
is, for every Y ⊆ Vx, we have |E(X ∪ Y,X ∪ Y)| > |E(W ∪ Y,W ∪ Y)|. We deduce this from
the following equality

|E(X ∪ Y,X ∪ Y)| = |E(X,Vx \X)|+ |E(Y, Vx \ Y)|+ |E(Vx, Vx)| − |E(X,Y)|.

It follows that it is enough to compute, for each node x and each R ∈ RnVx , Tx[R]: the maximum
k ∈ N such that k = |E(X,Vx \X)| for some X ≡nVx R. By definition, the solution of Max Cut
is Tr[∅] where r is the root of T .

Theorem 6.3. There exists an algorithm that, given an n-vertex graph G and a rooted layout
(T, δ), solves Max Cut in time O(s-necn(T, δ) · log(s-necn(T, δ)) · n3).

Proof. The first step of our algorithm is to compute, for each x ∈ V (T), the sets RnVx and a
data structure to compute repnVx(X), for each X ⊆ Vx, in time O(log(s-necn(T, δ)) · n2). As
T has 2n − 1 nodes, by Lemma 2.4, we can compute these sets and data structures in time
O(s-necn(T, δ) · log(s-necn(T, δ)) · n3).

For every node x ∈ V (T) and every R ∈ RnVx , we define Tx[R] as follows

Tx[R] := max{|E(X,Vx \X)| : X ⊆ Vx and X ≡nVx R}.

Observe that, for r the root of T , the entry of Tr[∅] is the size of a maximum cut of G.
The algorithm is a usual bottom-up dynamic programming algorithm and computes for each

node x of T the table Tx. For the leaves x of T , we simply set Tx[R] := 0 for every R ∈ RnVx .
This is correct because the graph G[Vx] is a single vertex.

Let x be an internal node of T with a and b as children. For every R ∈ RnVx , we use the
following claim in order to compute Tx[R].

Claim 6.3.1. For every R ∈ RnVx , we have

Tx[R] := max{Ta[A] + Tb[B] + |E(Va, Vb)| − |E(A,B)| : (A,B) ∈ RnVa ×R
n
Vb

and A∪B ≡nVx R}.

Proof. We start by proving the following fact.

Fact 6.4. For every X ⊆ Va and every W ⊆ Vb, |E(X ∪W,Vx \ (X ∪W))| equals

|E(X,Va \X)|+ |E(W,Vb \W)|+ |E(Va, Vb)| − |E(repnVa(X), repnVb(W))|.

Proof. First observe that the number of edges across the cut (X ∪W,Vx \ (X ∪W)) equals

|E(X,Va \X)|+ |E(W,Vb \W)|+ |E(Va, Vb)| − |E(X,W)|.

We deduce from Lemma 6.2 that |E(X,W)| = |E(repnVa(X),W)|. Indeed, we have X ≡nVa
repnVa(X) and W ⊆ Va. Symmetrically, W ≡nVb repnVb(W) and X ⊆ Vb, thus we conclude that
|E(repnVa(X),W)| = |E(repnVa(X), repnVb(W))|. This proves the fact. �

The claim follows directly from the following fact.

Fact 6.5. Let R ∈ RnVx . For every (A,B) ∈ RnVa × R
n
Vb

such that A ∪ B ≡nVx R, we have
Tx[R] ≥ Ta[A] + Tb[B] + |E(Va, Vb)| − |E(A,B)|.

29

Proof. By definition of Ta[A], there exists Xa ⊆ Va such that X ≡nVa A and Ta[A] = |E(Xa, Va \
Xa)|. Symmetrically, there exits Xb ⊆ Vb such that Xb ≡nVb B and Tb[B] = |E(Xb, Vb \ Xb)|.
From Claim 6.4, we deduce that |E(Xa∪Xb, Vx \ (Xa∪Xb))| equals Ta[A]+Tb[B]+ |E(Va, Vb)|−
|E(A,B)|.

By Fact 2.3, we deduce that Xa ∪Xb ≡nVx A ∪B. Thus, Xa ∪Xb ≡nVx R and by definition of
Tx[R], we have Tx[R] ≥ |E(Xa ∪Xb, Vx \ (Xa ∪Xb)). This proves the fact. �

Fact 6.6. For every R ∈ RnVx , there exists (A,B) ∈ RnVa × R
n
Vb

such that A ∪ B ≡nVx R and
Tx[R] = Ta[A] + Tb[B] + |E(Va, Vb)| − |E(A,B)|.

Proof. By definition of Tx[R], there exists X ⊆ Vx such that X ≡nVx R and Tx[R] = |E(X,Vx \
Vx)|. For every i ∈ {a, b}, let Xi = X ∩ Vi.

Let A := repnVa(Xa) and let B := repnVb(Xb). By definition, we have X ≡nVx A ∪B. By Claim
6.5, we have

Tx[R] ≥Ta[A] + Tb[B] + |E(Va, Vb)| − |E(A,B)|(7)

Moreover, as Tx[R] = |E(X,Vx \ Vx)| and by Claim 6.4, we have

Tx[R] =|E(Xa, Va \Xa)|+ |E(Xb, Vb \Xb)|+ |E(Va, Vb)| − |E(A,B)|(8)

By definition of Ta[A], we know that Ta[A] ≥ |E(Xa, Va \Xa)|. Symmetrically, we have Tb[B] ≥
|E(Xb, Vb \Xb)|. Hence, we conclude from Inequality (7) and Equation (8) that Tx[R] = Ta[A]+
Tb[B] + |E(Va, Vb)| − |E(A,B)|. �

�

Consequently, we can compute the entries of Tx by doing the following:
• For every R ∈ RnVx , initialize some temporary variable wR to 0.
• For every (A,B) ∈ RnVx , compute R = repnVx(A ∪B) and update wR as follows

wR := max{wR, Ta[A] + Tb[B] + |E(Va, Vb)| − |E(A,B)|}.

From Claim 6.3.1, at the end of this subroutine, we have Tx[R] = wR. Recall that each call to
the functions repnVx takes log(s-necn(T, δ)) · n2) time. Thus, the running time to compute the
entries of Tx is O(s-necn(T, δ)2 · log(s-necn(T, δ)) · n2). The total running time of our algorithm
follows from the fact that T has 2n− 1 nodes. �

7. Conclusion

This paper highlights the importance of the d-neighbor-equivalence relation in the design of
algorithms parameterized by clique-width, (Q-)rank-width, and mim-width. We prove that,
surprisingly, this notion is helpful for problems with global constraints and also Max Cut: a
W[1]-hard problem parameterized by clique-width. Can we use it for other problems W[1]-hard
problem parameterized by clique-width such as Hamiltonian Cycle and Edge Dominating
Set? Can we use it to deal with the strange acyclicity constraint of the Subset Feedback
Vertex Set problem?

Concerning mim-width, it is known that Hamiltonian Cycle is NP-complete on graphs of
mim-width 1, even when a rooted layout is provided [19]. To the best of our knowledge, we do
not know whether Max Cut is solvable in time nf(mim(L)) on an n-vertex graph given with a
rooted layout L for some function f . In fact, we do not even know if Max-Cut is solvable in
polynomial time on interval graphs (which are known to have mim-width 1 [1]). On the other
hand, it is known that Max Cut is solvable in polynomial time on proper interval graphs [6].

As explained in the introduction, the 2O(mw(L)) · nO(1) time algorithms we obtain for clique-
width are asymptotically optimal under the Exponential Time Hypothesis (ETH). This is also the
case of our algorithms for Max Cut parameterized by clique-width and Q-rank-width. Indeed,
Fomin et al. [12] prove that there is no no(k) · f(k) time algorithm, k being the clique-width of a

30

given decomposition, for Max Cut unless ETH fails. Since the clique-width of graph is always
bigger than its Q-rank-width [23], this lower-bound hold also for Q-rank-width.

However, for the other algorithmic results obtained in this paper, it is not know whether they
are optimal under ETH. It would be particularly interesting to have tight upper bounds for rank-
width since we know how to compute efficiently this parameter. To the best of our knowledge,
there is no algorithm parameterized by rank-width that is known to be optimal under ETH. Even
for “basic” problems such as Vertex Cover or Dominating Set, the best algorithms [8] run
in time 2O(k2) · nO(1), k being the rank-width of the graph. On the other hand, the best lower
bounds state that, unless ETH fails, there are no 2o(k) · nO(1) time algorithms parameterized by
rank-width for Vertex Cover (or Dominating Set) and no no(k) · f(k) time algorithm for
Max Cut [12].

Finally, Fomin et al. [13] have shown that we can use fast computation of representative sets
in matroids to obtain deterministic 2O(tw(G)) ·nO(1) time algorithms parameterized by tree-width
for many connectivity problems. Is this approach also generalizable with d-neighbor-width? Can
it be of any help for obtaining 2o(rw(G)2) ·nO(1) time algorithm for problems like Vertex Cover
or Dominating Set?

References

[1] Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and algorithmic appli-
cations. Theoret. Comput. Sci., 511:54–65, 2013. URL: http://dx.doi.org/10.1016/j.tcs.2013.01.011,
doi:10.1016/j.tcs.2013.01.011.

[2] Benjamin Bergougnoux. Matrix Decomposition and Algorithmic Application to (Hyper)Graphs. PhD thesis,
Université Clermont Auvergne, 2019. lien vers chapitre.

[3] Benjamin Bergougnoux and Mamadou Moustapha Kanté. Fast exact algorithms for some connectivity
problems parametrized by clique-width. To appear at Theoretical Computer Science, 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01560555.

[4] Benjamin Bergougnoux, Mamadou Moustapha Kanté, and O-joung Kwon. An optimal XP algorithm for
hamiltonian cycle on graphs of bounded clique-width. In Algorithms and Data Structures - 15th International
Symposium, WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, pages 121–132,
2017. URL: https://doi.org/10.1007/978-3-319-62127-2_11, doi:10.1007/978-3-319-62127-2_11.

[5] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential
time algorithms for connectivity problems parameterized by treewidth. Inform. and Comput., 243:86–111,
2015. URL: http://dx.doi.org/10.1016/j.ic.2014.12.008, doi:10.1016/j.ic.2014.12.008.

[6] Arman Boyaci, Tinaz Ekim, and Mordechai Shalom. A polynomial-time algorithm for the maximum
cardinality cut problem in proper interval graphs. Inf. Process. Lett., 121:29–33, 2017. URL: https:
//doi.org/10.1016/j.ipl.2017.01.007, doi:10.1016/j.ipl.2017.01.007.

[7] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs. In Jianer Chen and
Fedor V. Fomin, editors, IWPEC, volume 5917 of Lecture Notes in Computer Science, pages 61–74. Springer,
2009.

[8] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems. Theoret. Comput. Sci., 511:66–76, 2013. URL: http://dx.
doi.org/10.1016/j.tcs.2013.01.009, doi:10.1016/j.tcs.2013.01.009.

[9] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathe-
matics, 101(1-3):77–114, 2000.

[10] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time (extended abstract). In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—
FOCS 2011, pages 150–159. IEEE Computer Soc., Los Alamitos, CA, 2011. URL: http://dx.doi.org/10.
1109/FOCS.2011.23, doi:10.1109/FOCS.2011.23.

[11] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer, third edition,
2005.

[12] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal lower bounds
for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563, 2014. URL: http://dx.
doi.org/10.1137/130910932, doi:10.1137/130910932.

[13] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of repre-
sentative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1–29:60, 2016.
URL: http://doi.acm.org/10.1145/2886094, doi:10.1145/2886094.

31

http://dx.doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1016/j.tcs.2013.01.011
https://hal.archives-ouvertes.fr/hal-01560555
https://hal.archives-ouvertes.fr/hal-01560555
https://doi.org/10.1007/978-3-319-62127-2_11
http://dx.doi.org/10.1007/978-3-319-62127-2_11
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1016/j.ipl.2017.01.007
https://doi.org/10.1016/j.ipl.2017.01.007
http://dx.doi.org/10.1016/j.ipl.2017.01.007
http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1137/130910932
http://dx.doi.org/10.1137/130910932
http://dx.doi.org/10.1137/130910932
http://doi.acm.org/10.1145/2886094
http://dx.doi.org/10.1145/2886094

[14] Robert Ganian and Petr Hliněný. On parse trees and Myhill-Nerode-type tools for handling graphs of
bounded rank-width. Discrete Appl. Math., 158(7):851–867, 2010. URL: http://dx.doi.org/10.1016/j.
dam.2009.10.018, doi:10.1016/j.dam.2009.10.018.

[15] Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Sigve Hortemo Sæther,
and Yngve Villanger. Output-polynomial enumeration on graphs of bounded (local) linear mim-width.
Algorithmica, 80(2):714–741, 2018. URL: https://doi.org/10.1007/s00453-017-0289-1, doi:10.1007/
s00453-017-0289-1.

[16] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–
375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727, doi:10.1006/jcss.2000.1727.

[17] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-
11, 1998, Palo Alto, California, USA, pages 653–663, 1998. URL: https://doi.org/10.1109/SFCS.1998.
743516, doi:10.1109/SFCS.1998.743516.

[18] Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Polynomial-time algorithms for the longest induced path
and induced disjoint paths problems on graphs of bounded mim-width. In 12th International Symposium on
Parameterized and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, pages 21:1–21:13,
2017. URL: https://doi.org/10.4230/LIPIcs.IPEC.2017.21, doi:10.4230/LIPIcs.IPEC.2017.21.

[19] Lars Jaffke, O-joung Kwon, and Jan Arne Telle. A unified polynomial-time algorithm for feedback vertex set
on graphs of bounded mim-width. In 35th Symposium on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France, pages 42:1–42:14, 2018. URL: https://doi.org/10.
4230/LIPIcs.STACS.2018.42, doi:10.4230/LIPIcs.STACS.2018.42.

[20] Ki Hang Kim. Boolean matrix theory and applications, volume 70. Dekker, 1982.
[21] Pedro Montealegre and Ioan Todinca. On distance-d independent set and other problems in graphs with

"few" minimal separators. In Graph-Theoretic Concepts in Computer Science - 42nd International Workshop,
WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, pages 183–194, 2016. URL: https:
//doi.org/10.1007/978-3-662-53536-3_16, doi:10.1007/978-3-662-53536-3_16.

[22] Sang-Il Oum. Graphs of Bounded Rank Width. PhD thesis, Princeton University, 2005.
[23] Sang-il Oum, Sigve Hortemo Sæther, and Martin Vatshelle. Faster algorithms for vertex partitioning prob-

lems parameterized by clique-width. Theoret. Comput. Sci., 535:16–24, 2014. URL: http://dx.doi.org/10.
1016/j.tcs.2014.03.024, doi:10.1016/j.tcs.2014.03.024.

[24] Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser.
B, 96(4):514–528, 2006. URL: http://dx.doi.org/10.1016/j.jctb.2005.10.006, doi:10.1016/j.jctb.
2005.10.006.

[25] Michaël Rao. Décompositions de Graphes et Algorithmes Efficaces. PhD thesis, Université Paul Verlaine,
Metz, 2006.

[26] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on partial k-trees.
SIAM J. Discrete Math., 10(4):529–550, 1997. URL: http://dx.doi.org/10.1137/S0895480194275825,
doi:10.1137/S0895480194275825.

[27] Martin Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen, Bergen, Norway, 2012.
[28] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the

44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 887–898, 2012. URL: http://doi.acm.org/10.1145/2213977.2214056, doi:10.1145/2213977.
2214056.

Université Paris Diderot, IRIF, CNRS, Paris, France, Université Clermont Auvergne, LIMOS,
CNRS, Aubière, France.

E-mail address: bergougnoux@irif.fr, mamadou.kante@uca.fr

32

http://dx.doi.org/10.1016/j.dam.2009.10.018
http://dx.doi.org/10.1016/j.dam.2009.10.018
http://dx.doi.org/10.1016/j.dam.2009.10.018
https://doi.org/10.1007/s00453-017-0289-1
http://dx.doi.org/10.1007/s00453-017-0289-1
http://dx.doi.org/10.1007/s00453-017-0289-1
https://doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1109/SFCS.1998.743516
https://doi.org/10.1109/SFCS.1998.743516
http://dx.doi.org/10.1109/SFCS.1998.743516
https://doi.org/10.4230/LIPIcs.IPEC.2017.21
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.21
https://doi.org/10.4230/LIPIcs.STACS.2018.42
https://doi.org/10.4230/LIPIcs.STACS.2018.42
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.42
https://doi.org/10.1007/978-3-662-53536-3_16
https://doi.org/10.1007/978-3-662-53536-3_16
http://dx.doi.org/10.1007/978-3-662-53536-3_16
http://dx.doi.org/10.1016/j.tcs.2014.03.024
http://dx.doi.org/10.1016/j.tcs.2014.03.024
http://dx.doi.org/10.1016/j.tcs.2014.03.024
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1137/S0895480194275825
http://doi.acm.org/10.1145/2213977.2214056
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.1145/2213977.2214056

	1. Introduction
	Our contributions and organization of this paper.
	Our approach

	2. Preliminaries
	3. Representative sets
	4. Connected (Co)-(,)-Dominating Sets
	5. Acyclic variants of (Connected) (,)-Dominating Set
	6. Max Cut
	7. Conclusion
	References

