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RANK BASED APPROACH ON GRAPHS WITH STRUCTURED
NEIGHBORHOOD

BENJAMIN BERGOUGNOUX AND MAMADOU MOUSTAPHA KANTÉ

Abstract.

1. Introduction

Connectivity problems such as Connected Dominating Set, Feedback Ver-
tex Set or Hamiltonian Cycle were for a long time a curiosity in FPT world as
they admit trivial kO(k) time algorithm parameterized by tree-width, but no lower-
bound were know. Indeed, for good reason, in [3], Bodlaender et al. proposed a
general toolkit called rank-based approach to design deterministic 2O(k) ·nO(1) time
algorithm parametrized by tree-width to solve these problems. The idea of this is
to encode the set of solutions by a binary matrix and then show that this matrix
admits a base of size 2O(k) computable by a greedy algorithm, which represents the
set of optimal solutions.

Nevertheless, despite the broad interest on tree-width, only sparse graphs can
have bounded tree-width. But many NP-hard problems are tractable on dense
graphs classes. Most of the time, this tractability can be explained by the ability
of these graphs to be recursively decomposed along vertex partitions (A,B) where
the adjacency between A and B is simple to describe, i.e., they have a structured
neighborhood. A lot of graph parameters have been defined to characterize this
ability, the most remarkable ones are certainly clique-width [6], rank-width [12],
and maximum induced matching width (called mim-width) [16].

Introduced by Courcelle and Olariu [6], the modeling power of clique-width is
strictly stronger than tree-width. In other words, if a graph class has bounded
tree-width, then it has bounded clique-width [6], but the converse is false as cliques
have clique-witdh at most 2 and unbounded tree-width. While rank-width has the
same modeling power as clique-width, mim-width has the strongest of all these
complexity measures and is even bounded on interval graphs [1]. Despite their gen-
erality, a lot of NP-hard problems admit polynomial time algorithms parametrized
by these parameters. But dealing with these parameters is known to be harder
than manipulating tree-width.

Unlike tree-width, algorithm parameterized by clique-width, rank-width and
mim-width for connectivity problems, were not investigated,except for some spe-
cial cases as Feedback Vertex Set which is proved to admit a 2O(k) · nO(1)

time algorithm parameterized by clique-width in [2], a 2O(k2) ·nO(1) time algorithm
parameterized by rank-width [8], and a nO(k) time algorithm parameterized by
mim-width [10].

One successful way to work with these different parameters is through the notion
of neighbor equivalence introduced in [5]. This equivalence relation is defined among
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the subsets of a cut A ⊆ V (G) and for an integer d, such that two subsets X,Y ⊆ A
are equivalent if every vertex not in A either has the same number of neighbors in
X and Y , or at least d in each. The neighbor equivalence was the key in the design
of efficient algorithm to solve some well-studied and well-known difficult problems
such as Dominating Set [5, 9, 13] or Feedback Vertex Set [8, 10].

Our Contributions and approach. One of our main contribution is the modi-
fication of the rank-based approach to fit with the neighbor equivalence (presented
in Section 3). The resulting framework simplifies and generalizes the original one
from [3]. In particular, we obtain algorithmic results for clique-width, rank-width,
mim-width and also Q-rank-width, an useful variant of rank-width used in [13].

In Section 4, we apply our framework on connectivity problems with locally
checkable properties, such as such as Connecting Domination Set, Connected
Vertex Cover or Node Weighted Steiner Tree. All these problems are some
special case of the connected version of the (σ, ρ)- Dominating Set problem. This
problem was introduced in [15] and studied in graphs of bounded clique-width and
rank-width in [5, 13]. We recall its definition at the beginning of Section 4. We
provide an algorithm for Connected (σ, ρ)- Dominating Set whose running time
depends only on the number of vertices of the graph and the number of equivalence
classes of the neighbor equivalence. Consequently, we obtain efficient parameterized
algorithms with parameters and running time given in the Table 1. Up to a constant
in the exponent, these running times match those known for basic problems such as
Dominating Set [5, 13]. These results highlight the importance of the neighbor
equivalence for these parameters.

Clique-width Rank-width Q-rank-width Mim-width

2O(k) · nO(1) 2O(k2) · nO(1) 2O(k·log(k)) · nO(1) nO(k)

Table 1. Running times of our algorithms for the different parameters.

In Section 5, we integrate the notion of acyclicity to our framework. As a result,
we obtain efficient algorithms for Feedback Vertex Set and Maximum Induced
Tree whose running times are described in the Table 1. Contrary to Section 4, we
were not able to obtain an algorithm that relies only on the neighbor equivalence.
Indeed, some specific part of our algorithms use the structural properties of the
different parameters. We leave open the question of an algorithm with a running
time polynomial on the number of vertices and equivalence classes of the neighbor
equivalence for these two problems.

2. Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write
A\B for the set difference of A from B, and we write A]B for the disjoint union of
A and B. We often write x to denote the singleton set {x}. We let min(∅) := +∞
and max(∅) := −∞. For two sets A and B, we let

A
⊗

B :=

{
∅ if A = ∅ or B = ∅,
{X ∪ Y | X ∈ A ∧ Y ∈ B} otherwise.
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Graphs. Our graph terminology is standard, and we refer to [7]. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G). For every vertex set
A ⊆ V (G), we denote by A, the set V (G) \ A. An edge between two vertices x
and y is denoted by xy (respectively yx). The subgraph of G induced by a subset
X of its vertex set is denoted by G[X], and we write G \X to denote the induced
subgraph G[V (G)\X]. The set of vertices that is adjacent to x is denoted by N(x),
and for U ⊆ V (G), N(U) :=

(⋃
v∈U N(v)

)
\ U . For every A ⊆ V (G), we denote

by MA the adjacency matrix of the cut (A,A), i.e., the (A,A)-matrix such that
MA[x, y] = 1 if y ∈ N(x), 0 otherwise.

Let X ⊆ V (G), we denote by cc(X) the partition {V (C) | C is a connected
component of G[X]} of X. Moreover, a consistent cuts of X is ordered bipartition
(X1, X2) of X such that N(X1) ∩ X2 = ∅. We denote by cuts(X) the set of all
consistent cuts of X.

Neighbor-equivalence. Let A ⊆ V (G) and d ∈ N. Two subsets X and Y of A
are d-neighbor equivalent w.r.t. A, denoted by X ≡d

A Y , if min(d, |X ∩ N(x)|) =
min(d, |Y ∩N(x)|) for all x ∈ A. It is not hard to check that ≡d

A is an equivalence
relation. We denote the number of equivalence classes of ≡d

A by necd(A).
It is known that necd(A) = necd(A), see [11, Theorem 1.2.3]. The following fact

follows directly from the definition of d-neighbor equivalent. We use it several times
in our proof.

Fact 1. Let A,B ⊆ V (G) such that A ⊆ B, and let d ∈ N. For all X,Y ⊆ A, if
X ≡d

A Y then X ≡d
B Y .

For each X ⊆ A, let us denote by repdA(X) the lexicographically1 smallest set
R ⊆ A such that |R| is minimized and R ≡d

A X. Moreover, we denote by Rd
A the

set {repdA(X) | X ⊆ A}. In order to compute Rd
A, we use the following lemma.

Lemma 2.1 ([5]). For every A ⊆ V (G), one can compute in time O(nec(A)d ·
log(nec(A)d) · |V (G)|2), the sets Rd

A and a data structure that given a set X ⊆ A
compute repdA(X) in time O(log(nec(A)d) · |A| · |V (G)|).
Rooted Layout. A rooted binary tree is a binary tree with a distinguished vertex r,
called the root. Since we manipulate at the same time graphs and trees representing
them the vertices of trees will be called nodes.

A rooted layout of G is a pair (T,L) of a rooted binary tree T and a bijective
function L between V (G) and the leaves of T . For each node x of T , let Lx be the
set of all the leaves l of T such that the path from the root of T to l contains x.
We denote by Vx, the set of vertices that are in bijection with Lx.

All the structural parameters used in this section are defined similarly, the only
difference is the set function used. Given, a set function f : 2V (G) → N and a
rooted layout (T,L), the width of a node x of T is f(Vx) and the width of (T,L),
denoted by f(T,L), is max{f(x) |∈ V (T )}. Finally, the width of G is the minimum
width over all rooted layouts of G.

Neighbor-width. For every d ∈ N, the d-neighbor-width is the parameter obtained
through the set function necd.

Clique-width / Module-width. We won’t define clique-width, but its equivalent
measure module-width [14] as done in [4] for Feedback Vertex Set. Module-
width is defined through the set function mw : 2V (G) → N such that mw(A) is the
number of vertices with distinct neighborhood over the cut (A,A), i.e. the cardinal
of {N(v)∩A | v ∈ A}. It is also the number of different rows in MA. The following
theorem shows the link between module-width and clique-width.

1Given a arbitrary ordering of V (G).
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Theorem 2.2 ([14, Theorem 6.6]). For every n-vertex graph G, mw(G) ≤ cw(G) ≤
2 ·mw(G), where cw(G) denotes the clique-width of G. One can moreover translate,
in time at most O(n2), a given decomposition into the other one with width at most
the given bounds.

Rank-width. Rank-width is defined through the set function rw : 2V (G) → N such
that rw(A) is the rank over GF (2) of the matrix MA.

Q-rank-width. Q-rank-width is associated to the set function Q-rw : 2V (G) → N
such that Q-rw(A) is the rank over Q of the matrix MA.

Mim-width. Mim-width is defined through the set function mim : 2V (G) → N
where mim(A) is the size of the maximum induced matching of the cut (A,A), i.e.,
the maximum induced matching of the graph with vertex set V (G) and edge set
{uv ∈ E(G) | u ∈ A, v ∈ A}. This is equivalent to the maximum |X| over all
X ⊆ A, such that for all v ∈ X, we have (N(v) ∩A) \N(X \ {v}) 6= ∅.

The following lemma shows how the neighbor-width is bounded by the others
parameters.

Lemma 2.3. For every A ⊆ V (G) and d ∈ N, the d-neighbor-width of A, i.e.
necd(A), is upper bounded by the following terms:

(1) (d+ 1)mw(A),
(2) 2d·rw(A)2 ,
(3) (d ·Q-rw(A) + 1)Q-rw(A),
(4) nd·mim(A).

Proof. The second and the third upper bounds have been proved respectively in
[13, Theorem 4.2].The fourth is proved in [1, Lemma 2]. It remains to prove that
necd(A) ≤ (d + 1)mw(A). Let Y,W ⊆ A. Observe that for every vertex u, v ∈ A
such that u ≡1

A v, we have N(u) ∩ A = N(v) ∩ A. Thus, Y ≡d
A
W if and only if

for all v ∈ A, we have max(|N(rep1A(v)) ∩ Y |, d) = max(|N(rep1A(v)) ∩W |, d). By
definition, there is mw(A) vertices with different neighborhood over the cut (A,A).
Thus, the set {rep1A(v) | v ∈ A} has size mw(A). Since max(|N(v) ∩ Y |, d) ∈ [0, d]

for all v ∈ A, we deduce that nec(A) ≤ (d+ 1)mw(A). The inequalities follows from
the fact that nec(A) = nec(A).

�

In the following, we fixG a n-vertex graph and (T,L) a rooted layout ofG. We fix
also w : V (G)→ Z be a weight function over the vertices ofG and opt ∈ {min,max}.

3. Representative sets

In the following, we define a notion of representativity similar to the one defined
in [3] and adapted to the notion of neighbor-equivalence. Our notion of represen-
tativity is defined w.r.t. some node x of T and a representative R′ ∈ R1

Vx
.

Definition 1 ((x,R′)-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we
define best(A, Y ) as follow

best(A, Y ) := opt{w(X) | X ∈ A ∧G[X ∪ Y ] is connected }.
Let A,B ⊆ 2Vx . We say that B (x,R′)-represents A if for every Y ⊆ Vx such

that Y ≡1
Vx
R′, we have best(A, Y ) = best(B, Y ).

Observe that the (x,R′)-representativity is an equivalence relation. The set A is
meant to represent the set of partial solutions of Vx, we have computed. We expect
to complete these partial solutions with the partial solution of Vx equivalent to R′
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for ≡1
Vx
. If B (x,R′)-represents A, then we can safely substitute B to A because

the quality of the output of the dynamic programing will remain the same. Indeed,
the best solutions obtained by the union of a partial solution in A and a set of Vx
will have the same weight as those obtained from B. The goal is to substitute A
by a set B as small as possible. To this end, we show that given a set A ⊆ 2Vx , we
can compute efficiently a small subset of A that (x,R′)-represents A. Similarly to
[3], the small set of representatives we want to compute is an optimal basis of some
matrix. To compute this optimal basis, we use the following lemma. The constant
ω denotes the matrix multiplication exponent, which is know to be strictly less than
2.3727 due to [17].

Lemma 3.1 ([3]). Let M be a binary n × m-matrix with m ≤ n and let w :
{1, . . . , n} → N be a weight function on the rows of M . Then, one can find a basis
of maximum (or minimum) weight of the row space of M in time O(nmω−1).

Theorem 3.2. Let R ∈ R1
Vx
. Given A ⊆ 2Vx such that for each X ∈ A, we

have X ≡1
Vx

R. There exists an algorithm reduce that outputs in time O(|A| ·
nec1(Vx)

2·(ω−1) · n2), a subset B ⊆ A such that B (x,R′)-represents A and |B| ≤
nec1(Vx)

2.

Proof. Assume, w.l.o.g., that opt = max, the proof for opt = min is symmetric.
Observe that for every Y ≡1

Vx
∅, we have N(Y )∩ Vx = N(∅)∩ Vx = ∅. It follows

that for every Y ⊆ Vx such that Y ≡1
Vx
∅ and Y 6= ∅, we have best(A, Y ) = −∞.

Moreover, by definition of best, we have best(A, ∅) = {w(X) ∈ A | G[X] is connected}.
Hence, if R′ = ∅, then it is sufficient to return B = {X}, where X is an element of
A of maximum weight that induces a connected graph.

Assume from now that R′ 6= ∅. Let X ∈ A. If there exists C ∈ cc(X) such
that N(C) ∩ R′ = ∅, then for all Y ≡1

Vx
R′, we have N(C) ∩ Y = ∅. Moreover, as

R′ 6= ∅, we have Y 6= ∅. Consequently, for every Y ≡1
Vx
R′, the graph G[X ∪ Y ] is

not connected. We can conclude that A \ {X} (x,R′) represents A. Thus, we can
safely remove from A all such sets, this can be done in time |A| ·n2. From now, we
assume that for all X ∈ A and for all C ∈ cc(X), we have N(C) ∩R′ 6= ∅.

Symmetrically, if for some Y ⊆ Vx there exists C ∈ cc(Y ) such thatN(C)∩R = ∅,
then for every X ∈ A, the graph G[X ∪Y ] is not connected. Let D be the set of all
subsets Y of Vx such that Y ≡1

Vx
R′ and, for all C ∈ cc(Y ), we have N(C)∩R 6= ∅.

Observe that the sets in 2Vx \ D do not matter in the (x,R′)-representativity.
For every Y ∈ D, we let vY be one fixed vertex of Y . In the following, we

denote by F the set {(R′1, R′2) ∈ R1
Vx
×R1

Vx
}. LetM, C, and C be, respectively, an

(A,D)-matrix, an (A,F), and an (F ,D)-matrix such that

M[X,Y ] :=

{
1 if G[X ∪ Y ] is connected,
0 otherwise.

C[X, (R′
1, R

′
2)] :=

{
1 if ∃(X1, X2) ∈ cuts(X) such that N(X1) ∩R′

2 = ∅ and N(X2) ∩R′
1 = ∅,

0 otherwise.

C[(R′
1, R

′
2), Y ] :=

{
1 if ∃(Y1, Y2) ∈ cuts(Y ) such that vY ∈ Y1, Y1 ≡1

Vx
R′

1, and Y2 ≡1
Vx
R′

2,

0 otherwise.

Intuitively, M contains all the information we need. Indeed, it is easy to see
that an optimal basis ofM in GF (2) is a (x,R′)-representative set of A. ButM
is too big to be computable efficiently. In fact, we will prove that it is enough to
compute an optimal basis of C. As C is small, i.e., |A| · nec1(Vx)2, the running time
of the computation and the size of the basis is also small.
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We start by proving thatM =2 C · C, where =2 denotes the equality in GF (2).
Let X ∈ A and Y ∈ D. We want to prove the following equality

(C · C)[X,Y ] =
∑

(R′
1,R

′
2)∈F

C[X, (R′1, R′2)] · C[(R′1, R′2), Y ] = 2|cc(X∪Y )|−1.

We prove this equality with the two following claims.

Claim 3.2.1. We have C[X, (R′1, R′2)] · C[(R′1, R′2), Y ] = 1 if and only if there exists
(W1,W2) ∈ cuts(X ∪ Y ) such that vY ∈W1, W1 ∩ Y ≡1

Vx
R′1, and W2 ∩ Y ≡1

Vx
R′2.

Proof. By definition, we have C[X, (R′1, R′2)] · C[(R′1, R′2), Y ] = 1, if and only if

(a) ∃(Y1, Y2) ∈ cuts(Y ) such that (vY ∈ Y1) ∧ (Y1 ≡1
Vx
R′1) ∧ (Y2 ≡1

Vx
R′2) and,

(b) ∃(X1, X2) ∈ cuts(X) such that (N(X1) ∩R′2 = ∅) ∧ (N(X2) ∩R′1 = ∅).

Let W1,W2 ⊆ X ∪Y and for each i ∈ {1, 2}, let Xi :=Wi∩X and Yi :=Wi∩Y .
Observe that (W1,W2) ∈ cuts(X ∪ Y ) if and only if (1) (X1, X2) ∈ cuts(X), (2)
(Y1, Y2) ∈ cuts(Y ), (3) N(X1) ∩ Y2 = ∅ and N(X2) ∩ Y1 = ∅.

By definition of ≡1
Vx
, the condition (3) is equivalent to N(X1)∩rep1Vx

(Y2) = ∅ and
N(X2) ∩ rep1

Vx
(Y1) = ∅. From these observations, one easily proves the claim. �

Claim 3.2.2. Let (W1,W2), (W
′
1,W

′
2) ∈ cuts(X ∪ Y ).

We have W1 ≡1
Vx
W ′1 and W2 ≡1

Vx
W ′2 if and only if (W1,W2) = (W ′1,W

′
2).

Proof. We start by an observation of the connected component of X∪Y . As Y ∈ D,
for all C ∈ cc(Y ), we have N(C) ∩ R 6= ∅. Moreover, by assumption, that for all
C ∈ cc(X), we have N(C)∩R′ 6= ∅. Since X ≡1

Vx
R and Y ≡1

Vx
R′, every connected

component of cc(X ∪ Y ) contains at least one vertex of X and one vertex of Y .
Assume toward a contradiction that W1 ≡1

Vx
W ′1, W2 ≡1

Vx
W ′2 and W1 6= W ′1.

Since W1 6= W ′1, there exists C ∈ cc(X ∪ Y ) such that C ⊆ W1 and C ⊆ W ′2. As
C∩X 6= ∅, we have N(C∩X)∩W1 6= ∅ and N(C∩X)∩W ′2 6= ∅. SinceW2 ≡1

Vx
W ′2,

we have N(C∩X)∩W2 6= ∅. This contradicts the fact that (W1,W2) ∈ cuts(X∪Y )
and proves the claim. �

Together, these two claims prove that

(C · C)[X,Y ] = |{(W1,W2) ∈ cuts(X ∪ Y ) | vY ∈W1}|.

It follows that (C · C)[X,Y ] = 2|cc(X∪Y )|−1 since every connected component of
G[X∪Y ] can be in both sides of a consistent cuts at the exception of the connected
component containing vY . Hence, (C ·C)[X,Y ] is odd if and only if |cc(X ∪Y )| = 1.
We can conclude thatM =2 C · C.

Let B ⊆ A be a basis of maximum weight of the row space of C over GF (2). We
claim that B (x,R′)-represents A.

Let Y ⊆ Vx such that Y ≡1
Vx

R′. Observe that, by definition of D, if Y /∈ D,
then best(A, Y ) = best(B, Y ) = −∞. Thus it is sufficient to prove that for every
Y ∈ D, we have best(A, Y ) = best(B, Y ). Let X ∈ A and Y ∈ D.



RANK BASED APPROACH ON GRAPHS WITH STRUCTURED NEIGHBORHOOD 7

Since B is a basis of C, there exists B′ ⊆ B such that for each (R′1, R
′
2) ∈ F ,

C[X, (R′1, R′2)] =2

∑
W∈B′ C[W, (R′1, R′2)]. Thus, we have the following equalities

M[X,Y ] =2

∑
(R′

1,R
′
2)∈F

C[X, (R′1, R′2)] · C[(R′1, R′2), Y ]

=2

∑
(R′

1,R
′
2)∈F

( ∑
W∈B′

C[W, (R′1, R′2)]
)
· C[(R′1, R′2), Y ]

=2

∑
W∈B′

∑
(R′

1,R
′
2)∈F

C[W, (R′1, R′2)] · C[(R′1, R′2), Y ]

=2

∑
W∈B′

(C · C)[W,Y ] =2

∑
W∈B′

M[W,Y ].

If M[X,Y ] = 1, i.e., G[X,Y ] is connected, then there is a odd number of set W
in B′ such that M[W,Y ] = 1. Let W ∈ B′ such that M[W,Y ] = 1 and w(W )
is maximum. Assume towards a contradiction that w(W ) < w(X). Observe that
(B \ {W}) ∪ {X} is also a basis of C since the set of independent row sets of a
matrix forms a matroid. Since w(W ) < w(X), (B \{W})∪{X} is a basis of weight
strictly greater than B, yielding a contradiction. Thus w(X) ≤ w(W ). Hence, for
all Y ∈ D and all X ∈ A, if G[X ∪ Y ] is connected then there exists W ∈ B such
that G[W ∪ Y ] is connected and w(X) ≤ w(W ). This is sufficient to prove that B
(x,R′)-represents A.

It remains to prove the running time. Observe that C is easy to compute. Indeed,
one easily checks that C[X, (R′1, R′2)] = 1 if and only if for each C ∈ cc(X), we have
N(C) ∩ R′1 = ∅ or N(C) ∩ R′2 = ∅. Thus, each entry of C is computable in time
O(n2). Since C has |A| · |R1

Vx
|2 = |A| · nec1(Vx)2 entries, we can compute C in time

O(|A| · nec1(Vx)2 · n2). Furthermore, by Lemma 3.1, an optimal basis of C can be
computed in time O(|A| · nec1(Vx)2·(ω−1)). We conclude that B can be computed
in time O(|A| · nec1(Vx)2·(ω−1) · n2). �

Now to boots up a dynamic programming algorithm P on some rooted layout
(T,L) of G, we can use the function reduce to keep the size of the sets of partial
solutions we manipulate to nec1(T,L)2. To prove the correctness of this new dy-
namic programming P ′, we need to prove that set of solutions computed by P ′

(V (G), ∅)-represents the set of solutions computed by P . For doing so, we need
to prove that at each steps of the dynamic programming, we have representatives,
i.e., the operations we use preserve the representativity. The following fact states
that we can use the union without restriction, it follows directly from Definition 1
of (x,R′)-representativity.

Fact 2. If B and D respectively (x,R′)-represents A and C then B ∪ D (x,R′)-
represents A ∪ C.

The second operation we use in our dynamic programing is
⊗

, to use it we need
the following notion of compatibility. Suppose now, that x is an internal node of T
with a and b as children. Let R ∈ Rd

Vx
and let d ∈ N such that d > 0.

Definition 2 (d-(R,R′)-compatibility). We say that (A,A′) ∈ Rd
Va
× Rd

Va
and

(B,B′) ∈ Rd
Vb
×Rd

Vb
are d-(R,R′)-compatible if A ∪B ≡d

Vx
R, A′ ≡d

Va
B ∪R′, and

B′ ≡d
Vb
A ∪R′.

Lemma 3.3. Let (A,A′) and (B,B′) d-(R,R′)-compatible.
Let A′ ⊆ A ⊆ 2Va such that for all X ∈ A, X ≡d

Va
A and let B′ ⊆ B ⊆ 2Vb such

that for all W ∈ B, W ≡d
Vb
B.
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If A′ (a,A′)-represents A and B′ (b, B′)-represents B then⊗
(A′,B′) (x,R′)-represents

⊗
(A,B).

Proof. Let Y ⊆ Vx such that Y ≡1
Vx
R′. We start by proving the following facts

(a) For every W ∈ B, we have W ∪ Y ≡1
Va
A′,

(b) For every X ∈ A, we have X ∪ Y ≡1
Vb
B′.

Let W ∈ B. Owing to the d-(R,R′)-compatibility, we have B ∪ R′ ≡d
Va
A′. Since

W ≡d
Vb
B and Vb ⊆ Va, by Fact 1, we deduce thatW ≡d

Va
B and thusW∪R′ ≡d

Va
A′.

Similarly, as Y ≡1
Vx
R′ and Vx ⊆ Va, we conclude that W ∪ Y ≡1

Va
A′. That prove

Fact (a). The proof for Fact (b) is symmetric.
Now observe that, by the definitions of best and

⊗
, we have

best
(⊗

(A,B), Y
)
= max{best(A,W ∪ Y ) + w(W ) |W ∈ B}.

Since A′ (a,A′)-represents A and by Fact (a), we have

best
(⊗

(A,B), Y
)
= max{best(A′,W ∪ Y ) + w(W ) |W ∈ B}

= best
(⊗

(A′,B), Y
)
.

Symmetrically, we deduce from Fact (b) that best
(⊗

(A′,B), Y
)
= best

(⊗
(A′,B′), Y

)
.

This stands for every Y ⊆ Vx such that Y ≡1
Vx

R′. Thus, we conclude that⊗
(A′,B′) (x,R′)-represents

⊗
(A,B). �

4. Connected (Co)-(σ, ρ)-Dominating Sets

Let σ and ρ be (non-empty) finite or co-finite subsets of N. We say that a subset
D of V (G) (σ, ρ)-dominates a subset U if for every vertex u ∈ U , |N(u)∩D| ∈ σ, if
u ∈ D and otherwise |N(u)∩D| ∈ ρ. A subset D of V (G) is a co-(σ, ρ)-dominating
set if V (G) \ D is a (σ, ρ)-dominating set of V (G). Here is a formal definition of
one of the problem we are interested in.

Connected (σ, ρ)-Dominating Set

Input: A graph G with a weight function w : V (G)→ N and opt ∈ {max,min}.
Output: A connected (σ, ρ)-dominating set of optimum weight, i.e., minimum
if opt = min and maximum if opt = max.

Similarly, one can define Connected Co-(σ, ρ)-Dominating Set.
Examples of some vertex subset properties expressible as connected (co)-(σ, ρ)-

dominating set are shown on Table 2.
Let d := max{d(σ), d(ρ)}, where d(N) := 0, and for a non-empty set µ ⊂ N ,

d(µ) := 1 + max(µ) if µ is finite, otherwise, d(µ) := 1 + max(N \ µ). As in [5], we
use the d-neighbor equivalence to characterize the (σ, ρ)-domination of the partial
solutions. We will need the following lemma in our proof.

σ ρ d Version Standard name
N N+ 1 Normal Connected Dominating Set

{q} N q+1 Normal Connected Induced q-Regular Subgraph

N {1} 2 Normal Connected Perfect Dominating Set

{0} N 2 Co Connected Vertex Cover

Table 2. Examples of connected (co)-(σ, ρ)-dominating sets with
N+ = {1, . . . ,+∞} and d = max{d(σ), d(ρ)}.
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Lemma 4.1 ([5]). Let A ⊆ V (G).
Let X ⊆ A and Y, Y ′ ⊆ (V (G) \ A) such that Y ≡d

A
Y ′. Then (X ∪ Y ) (σ, ρ)-

dominates A if and only if (X ∪ Y ′) (σ, ρ)-dominates A.

In this section, we present an algorithm solving Connected (σ, ρ)-Dominating
Set withG, opt and w as inputs, its running time isO(necd(T,L)4·nec1(T,L)2·(ω+1)·
n3). The same algorithm, with some little modifications, will be able to solve Con-
nected Co-(σ, ρ)-Dominating Set.

Definition 3. Let x ∈ V (T ), for all (R,R′) ∈ Rd
Vx
×Rd

Vx
.

We define Ax[R,R
′] ⊆ Vx as follow

Ax[R,R
′] := {X ⊆ Vx | X ≡d

Vx
R and X ∪R′(σ, ρ)-dominates Vx}.

For each node x of V (T ), our algorithm will compute a table Dx that satisfies
the following invariant.
Invariant. For every (R,R′) ∈ Rd

Vx
×Rd

Vx
, the set Dx[R,R

′] is a subset of Ax[R,R
′]

of size at most nec1(T,L)2 that (x,R′)-represents Ax[R,R
′].

Observe that, by the definition ofAr[∅, ∅] and Definition 1 of (x,R′)-representativity,
if G admits a connected (σ, ρ)-dominating set, then Dr[R,R

′] must contain an op-
timal connected (σ, ρ)-dominating set.

The first step of our algorithm is to compute for each x ∈ V (T ), the sets Rd
Vx

and Rd
Vx

and a data structure to compute each calls at the functions repdx and repd
Vx

in times O(log(necd(T,L)) ·n2). As T has 2n− 1 nodes, by Lemma 2.1, computing
these sets and data structures can be done in time O(necd(T,L)·log(necd(T,L))·n3).

In order to compute the table of the internal nodes of T , we need the following
lemma to compute the table of a node x ∈ V (T ) an internal node of T with a
and b as children and let (R,R′) ∈ Rd

Vx
× Rd

Vx
. This lemma uses the notion of

compatibility from Definition 2 to give the following equality between Ax[R,R
′]

and the tables Aa and Ab.

Lemma 4.2. For all (R,R′) ∈ Rd
Vx
×Rd

Vx
, we have

Ax[R,R
′] :=

⋃
(A,A′), (B,B′) d-(R,R′)-compatible

⊗
(Aa[A,A

′],Ab[B,B
′])

Proof. The lemma is an implication of the two following claims.

Claim 4.2.1. For every X ∈ Ax[R,R
′], there exists (A,A′) and (B,B′) d-(R,R′)-

compatible such that X ∩ Va ∈ Aa[A,A
′] and X ∩ Vb ∈ Ab[B,B

′].

Proof. Let X ∈ Ax[R,R
′], Xa := X ∩ Va and Xb := X ∩ Vb.

Let A := repda(Xa) and A′ := repd
Va
(Xb ∪ R′). Symmetrically, we define B :=

repdb(Xb) and B′ := repd
Vb
(Xa ∪R′).

We claim that Xa ∈ Aa[A,A
′]. As X ∈ Ax[R,R

′], we know, by Definition
2, that X ∪ R′ = Xa ∪ Xb ∪ R′ is a (σ, ρ)-dominating set of Vx. In particular,
Xa ∪ (Xb ∪ R′) (σ, ρ)-dominates Va. Since A′ ≡d

Va
Xb ∪ R′, by Lemma 4.1, we

conclude that Xa ∪A′ (σ, ρ)-dominates Va. As A ≡d
Va
Xa, we have Xa ∈ Aa[A,A

′].
By symmetry, we have B ∈ Ab[B,B

′]. It remains to prove that (A,A′) and (B,B′)
are d-(R,R′)-compatible.

• By construction, we have Xa ∪Xb ≡d
Vx
R. As A ≡d

Va
Xa and from Fact 1,

we have A ∪Xb ≡d
Vx
R and since B ≡d

Vb
Xb, we deduce that A ∪B ≡d

Vx
R.

• By definition, we have A′ ≡d
Va

Xb ∪ R′. As B ≡d
Vb
Xb and by Fact 1, we

have A′ ≡d
Va
B ∪R′. By symmetry, we have B′ ≡d

Vb
R′ ∪A.

Thus, (A,A′) and (B,B′) are d-(R,R′)-compatible. �
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Claim 4.2.2. For every Xa ∈ Aa[A,A
′] and Xb ∈ Ab[B,B

′] such that (A,A′) and
(B,B′) are d-(R,R′)-compatible, we have Xa ∪Xb ∈ Ax[R,R

′]

Proof. SinceXa ≡d
Va
A andXb ≡d

Vb
B, by Fact 1, we deduce thatXa∪Xb ≡d

Vx
A∪B.

Thus, by the definition of d-(R,R′)-compatibility, we have Xa ∪Xb ≡d
Vx
R.

It remains to prove that Xa ∪Xb ∪ R′ (σ, ρ)-dominates Vx. As before, one can
check that Fact 1 implies that Xb ∪ R′ ≡d

Va
B ∪ R′. From the Lemma 4.1, we

conclude that Xa ∪ Xb ∪ R′ (σ, ρ)-dominates Va. Symmetrically, we prove that
Xa ∪Xb ∪ R′ (σ, ρ)-dominates Vb. As Vx = Va ∪ Vb, we deduce that Xa ∪Xb ∪ R′
(σ, ρ)-dominates Vx. Hence, we have Xa ∪Xb ∈ Ax[R,R

′]. �

�

We are now ready to prove the main theorem of this section.

Theorem 4.3. Given G a n-vertex graph and (T,L) a rooted layout of G. There
exists an algorithm that compute an optimal connected (σ, ρ)-dominating set in time
O(necd(T,L)4 · nec1(T,L)2·(ω+1) · n3).

Proof. The algorithm computes for every node t of T the table Dx by a bottom-up
dynamic programming, starting at the leaves of T .

Let x a leaf of T with Vx = {v}. Observe that Ax[R,R
′] ⊆ 2Vx = { ∅, {v}}. Thus,

our algorithm can directly compute Ax[R,R
′] and set Dx[R,R

′] := Ax[R,R
′]. In

this case, the invariant trivially holds.
Now let x an internal node with a and b as children such that the invariant holds

for a and b. For each (R,R′) ∈ Rd
Vx
× Rd

Vx
, the algorithm computes Dx[R,R

′] :=

reduce(Bx[R,R′]), where the set Bx[R,R′] is defined as follow

Bx[R,R′] :=
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

⊗
(Da[A,A

′],Db[B,B
′]).

We start by proving that the set Bx[R,R′] is a subset and a (x,R′)-representative
of Ax[R,R

′]. By Lemma 3.3, for each (A,A′) and (B,B′) d-(R,R′)-compatible, we
have ⊗

(Da[A,A
′],Db[B,B

′]) (x,R′)-represents
⊗

(Aa[A,A
′],Ab[B,B

′]).

From Fact 2, we conclude that Bx[R,R′] (x,R′)-represents Ax[R,R
′]. From the

invariant, we have Da[A,A
′] ⊆ Aa[A,A

′] and Db[B,B
′] ⊆ Ab[B,B

′], for every
indexes (A,A′) and (B,B′). Thus, from Lemma 4.2, it is clear that by construction,
we have Bx[R,R′] ⊆ Ax[R,R

′]. It follows that for each X ∈ Bx[R,R′], we have
X ≡d

Vx
R and thus, we can use the function reduce on Bx[R,R′].

Now, we are ready to prove the invariant for x. Let (R,R′) ∈ Rd
Vx
× Rd

Vx
. By

the Theorem 3.2, Dx[R,R
′] is a subset and a (x,R′)-representative of Bx[R,R′].

Thus Dx[R,R
′] is a subset of Ax[R,R

′]. Observe that the (x,R′)-representativity
is an equivalence relation, in particular, it is transitive. Consequently, Dx[R,R

′]
(x,R′)-represents Ax[R,R

′]. From Theorem 3.2, the size of Dx[R,R
′] is at most

nec1(Vx)
2. Since nec1(Vx) ≤ nec1(T,L), we conclude that the invariant holds for x.

By induction, the invariant holds for every nodes of T . The correctness of the
algorithm follows from the fact that Dr[∅, ∅] (r, ∅)-represents Ar[∅, ∅].
Running Time. Let x a node of T . If x is a leaf of T then |Rd

Vx
| ≤ 2 and |Rd

Vx
| ≤ d.

Thus, Dx can be computed in O(d · n). Otherwise, x is a internal node of T with
a and b as children. Observe that for each (R,R′) ∈ Rd

Vx
×Rd

Vx
, the running times

to compute Bx[R,R′] and reduce(Bx[R,R′]) are respectively O(|Bx[R,R′]| ·n2) and
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O(|Bx[R,R′]| · nec1(T,L)2·(ω−1) · n2). Thus, the total running time to compute the
table Dx is

O
( ∑
(R,R′)∈Rd

Vx
×Rd

Vx

|Bx[R,R′]| · nec1(T,L)2·(ω−1) · n2
)
.

Observe that, by Definition 2, when you fix A,A′, B and R′, there exists only one
R and one B′ such that (A,A′) and (B,B′) are d-(R,R′)-compatible. Thus, there
is at most necd(T,L)4 indexes (A,A′), (B,B′) and (R,R′) such that (A,A′) and
(B,B′) are d-(R,R′)-compatible. Moreover, for each (A,A′) and (B,B′), the size
of
⊗

(Da[A,A
′],Db[B,B

′]) is at most |Da[A,A
′]| · |Db[B,B

′]| ≤ nec1(T,L)4. Hence,
Dx is computable in O(necd(T,L)4 ·nec1(T,L)2·(ω+1) ·n2) time. Since T has 2 ·n−1
nodes, the running time of our algorithm is O(necd(T,L)4·nec1(T,L)2·(ω+1)·n3). �

With few modifications, we can easily deduce an algorithm to compute a optimal
out-connected (σ, ρ)-dominating set and one to compute a minimum node-weighted
steiner tree.

Corollary 4.4. Given G a n-vertex graph and (T,L) a rooted layout of G. There
exists an algorithm that compute an optimal connected co-(σ, ρ)-dominating set in
time necd(T,L)4 · nec(T,L)2·(ω+3) · n3.

Proof. We run the same algorithm with a different table. For every vertex x ∈
V (T ), we define the set of indexes of Ax as Ix := Rd

Vx
×Rd

Vx
×R1

Vx
×R1

Vx
.

For all (R,R′, R,R′) ∈ Ix, we define Ax[R,R
′, R,R′] ⊆ Vx as follow

Ax[R,R
′, R,R′] := {X ⊆ Vx | X ≡1

Vx
R, (Vx\X) ≡d

Vx
R and (Vx\X)∪R′ (σ, ρ)-dominate Vx}.

Intuitively, we use R and R′ for the connectivity of the co-(σ, ρ)-dominating set
and R and R′ for the (σ, ρ)-domination. As for Theorem 4.3, for each node x of
V (T ), our algorithm will compute a table Dx that satisfies the following invariant.
Invariant. For every (R,R′, R,R′) ∈ Ix, the set Dx[R,R

′, R,R′] is a subset of
Ax[R,R

′, R,R′] of size at most nec1(T,L)2 that (x,R′)-represents Ax[R,R
′, R,R′].

The following claim adapts Lemma 4.2 to the case co-(σ, ρ)-dominating set.

Claim 4.4.1. Let x an internal node of T with a and b as children.
For all (R,R′, R,R′) ∈ Ix, we have

Ax[R,R
′, R,R′] :=

⋃
(A,A′), (B,B′) d-(R,R′)-compatible
(A,A′), (B,B′) 1-(R,R′)-compatible

⊗
(Aa[A,A

′, A,A′],Ab[B,B
′, A,A′])

The proof of this claim follows from the proof of Lemma 4.2. With these modi-
fications, it is straightforward to check that the algorithm of Theorem 4.3 compute
an optimal connected co-(σ, ρ)-dominating set of V (G). As for all internal node x of
T with a and b as children, one easily check that the running time of this modified
algorithm is necd(T,L)4 · nec(T,L)2·(ω+3) · n3. �

The problem Steiner Tree ask; given a subset of vertices K ⊆ V (G) called
terminals; a subset T of minimal weight such that K ⊆ T ⊆ V (G) and G[T ] is
connected.

Corollary 4.5. Given G a n-vertex graph, a subset K ⊆ V (G), and (T,L) a rooted
layout of G. There exists an algorithm that compute an minimum node-weighted
steiner tree for (G,K) in time nec1(T,L)2·(ω+3) · n3.

Proof. Here, we just have to change the definition of the table. Let x ∈ V (T ), for
all (R,R′) ∈ R1

Vx
×R1

Vx
. We define Ax[R,R

′] ⊆ Vx as follow

Ax[R,R
′] := {X ⊆ Vx | X ≡d

Vx
R and K ∩ Vx ⊆ X}.
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With this definition and by Definition 1 of (x,R′)-representativity, it is straight-
forward to check that if Dr[∅, ∅] (r, ∅)-represents Ar[R,R

′], then Dr[∅, ∅] contain
an minimum steiner tree of G. The running time comes from the running time of
Theorem 4.3 with d = 1. �

5. Maximum Induced Tree

In this section, we present an algorithm for the problem Maximum Induced
Tree, which consists in finding a subset T of V (G) of maximum weight such that
G[T ] is a tree. The same algorithm can be used to compute a minimum feedback
vertex set, i.e., a subset S ⊆ V (G) of minimum weight such that G \ S is a forest.
Unfortunately, we were not able to obtain an algorithm whose running time is
polynomial in n and the neighbor-width. But for the other parameters, by using
their respective properties, we get the running time presented in Table 3 which are
roughly the same as those in the previous section.

Parameter Running time N

Neighbor-width O(nec2(T,L)2 · nec1(T,L)2(ω+2) · N 2 · n3) nec1(T,L)2·log2(nec(Vx))+2 · 2n

Mim-width O(n2·(ω+6)·mim(Vx)+4) 2 · n2·mim(Vx)+1

Clique-width O(22·(ω+5)·cw(Vx) · n4) 2cw(Vx) · 2n

Rank-width O(22·(ω+6)·rw(Vx)
2 · n4) 22·rw(Vx)

2 · 2n

Q-rank-width O(22·(ω+6)·Q-rw(Vx)·log2(2·Q-rw(Vx)+1) · n) 2Q-rw(Vx)·log2(2·Q-rw(Vx)+1) · 2n
Table 3. Upper bounds on the running time of our algorithm
for Maximum Induced Tree and N the number of equivalence
classes of the relation ∼ defined in Lemma 5.3

As we deal with a maximization problem, we use the notions of Section 3 with
opt set to max. Let x a node of T and (R,R′) ∈ R1

Vx
×R2

Vx
. The following definition

extend the Definition 1 of Section 3 to the acyclicity.

Definition 4 ((x,R′)acy-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G),
we define best(A, Y )acy as follow

bestacy(A, Y ) := opt{w(X) | X ∈ A ∧G[X ∪ Y ] is a tree }.

Let A,B ⊆ 2Vx . We say that B (x,R′)acy-represents A if for every Y ⊆ Vx such
that Y ≡2

Vx
R′, we have bestacy(A, Y ) = bestacy(B, Y ).

The main ingredient of our algorithm is an adaptation of Theorem 3.2 to the
notion of (x,R′)acy-representativity. The following concept is the key of this adap-
tation.

Definition 5. We say that A ⊆ 2Vx is R′-consistent, if for all Y ⊆ Vx such that
Y ≡2

Vx
R′ and there exists F ∈ A such that G[F ∪ Y ] is a tree, we have, for all

X ∈ A, either G[X ∪ Y ] is a tree or G[X ∪ Y ] is not connected.

The motivation behind this notion comes from the following lemma.

Lemma 5.1. Let D ⊆ A ⊆ 2Vx . If A is R′-consistent and D (x,R′)-represents A,
then D (x,R′)acy-represents A.
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Proof. Let Y ≡2
Vx
R′. Observe that if for all X ∈ A, the graph G[X ∪ Y ] either is

not connected or contains a cycle, then both best(A, Y ) and bestacy(A, Y ) equals
+∞. Assume that there exists F ∈ A such that G[F ∪ Y ] is a tree. Since A
is R′-consistent, for every X ∈ A, we have G[X ∪ A] is either a tree or is not
connected. Thus, by Definition 1 of best, we have bestacy(A, Y ) = best(A, Y ). As
D ⊆ A, we have also bestacy(D, Y ) = best(D, Y ). We conclude by observing that
best(D, Y ) = best(D, Y ) because D (x,R′)-represents A. �

The key to compute a small (x,R′)acy-representative of a set A is to decompose
A into a small number of R′-consistent sets without losing crucial informations,
i.e., the forest of A that could potentially be completed into a tree. The following
gives a formal definition of these crucial informations.

Definition 6 (R′-important). We say that X ⊆ Vx is R′-important if there exists
Y ≡2

Vx
R′ such that G[X∪Y ] is a tree, otherwise, we say that X is R′-unimportant.

Trivially, any set obtained from a set A by removing unimportant sets is a
(x,R′)acy-representative of A. The following lemma gives some properties on im-
portant sets, any set that does not respect these properties can safely be removed.
Moreover, these properties are the key to obtain the running times of Table 3. At
this point, we need to introduce the following notations. For every X ⊆ Vx, we
define X0 := {v ∈ X | N(v) ∩ R′ = ∅}, X1 := {v ∈ X | |N(v) ∩ R′| = 1}, and
X2+ := {v ∈ X | |N(v) ∩ R′| ≥ 2}. Observe that for every Y ≡2

Vx
R′, the vertices

in X0 have no neighbor in Y , those in X1 have exactly one neighbor in Y and those
in X2+ have at least 2 neighbors in Y .

Lemma 5.2. If R′ 6= ∅ and X ⊆ Vx is R′-important, then G[X] is a forest and the
following properties are satisfied :

(1) For all C ∈ cc(X), we have C \X0 6= ∅,
(2) For all a, b ∈ X such that a 6= b and a ≡1

Vx
b, either a, b ∈ X0 or we have

a, b ∈ X1 and a and b are not connected in G[X].
(3) We have |X2+| ≤ 2 ·mim(Vx).

Proof. Obviously, an important set must induced a forest. We prove the property
(1) and (2) by making the following observations. For every X ⊆ Vx and Y ⊆ Vx
such that Y ≡2

Vx
R′, we have:

• If X has a connected component C such that N(C)∩R′ = ∅, then G[X∪Y ]
is not connected. As Y ≡2

Vx
R′, we have also N(C) ∩ Y = ∅. Since R′ 6= ∅

and thus Y 6= ∅, the graph G[X ∪ Y ] is not connected.
• If there exists two different vertices a, b in X2+ such that a ≡1

Vx
b, then

G[X∪Y ] contains a cycle. Indeed, both a and b have at least two neighbors
in Y because Y ≡2

Vx
R′ and a, b ∈ X2+. Since N(a) ∩ Vx = N(b) ∩ Vx, we

deduce that G[X ∪ Y ] admits a cycle of length four.
• If there exists two different vertices a, b in X1 such that a and b are con-

nected in G[X] and a ≡1
x b, then G[X ∪ Y ] contains a cycle. Indeed,

Y ≡2
Vx
R′ and a, b ∈ X1, both a and b have neighbor in Y . Since a ≡1

x b,
this neighbor is the same for a and b. Because they are connected in G[X],
we conclude that G[X ∪ Y ] contains a cycle.

To prove that X satisfied the property (3) , we consider a important set X. Since
X is important, there exists Y ≡2

Vx
R′ such that G[X∪Y ] is a tree. Since the edges

between X and Y induce a forest, the edges between X2+ and Y also. We call F
the forest induced by the edges between X2+ and Y . We want to prove that the
size of X2+ is at most 2 ·mim(F ), where mim(F ) is the size of a maximum induced
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matching of F . Since F is an induced subgraph of the bipartite graph between Vx
and Vx, this is enough to prove the property (3).

Observe that F has no leaf contained in X2+, thus we can conclude with the
following claim.

Claim 5.2.1. Let F a forest that are the disjoint union of two independent sets
A and B. If A has no isolated vertex and every connected component of F has at
most one leaves in A, then the size of A is at most 2 · mim(F ), i.e., the size of a
maximum induced matching of F .

Proof. In order to prove the claim, we prove by induction that F admits a good
bipartition (A1, A2) of A, i.e., a bipartition such that for every i ∈ {1, 2}, every
vertex v ∈ Ai has at least one neighbor y such that N(y) ∩Ai = v. If |A| = 1 then
it is trivial. Assume that |A| ≥ 2. Take v a vertex of A such that v is a leaf if F
has a leaf in A. Let y be neighbor of v.

Observe that every connected component of F \ {v, y} has at most one leaf in
A. Obviously, it is true for the connected components of F \ {v, y} that are not
connected to y in F . Let C the connected components of F \ {v, y} connected to
y in F . As C is connected to v in F , they are no leaf of F in A ∩ C, otherwise,
v would be a leaf and F would contain a connected component with two leaves.
Since F is a forest, y has exactly one neighbor in C. Thus, C ∩A contains at most
one leaf in F \ {v, y}.

Obviously, A \ v has no isolated vertex in F \ {v, y}. By induction hypothesis,
F \ {v, y} admits a good bipartition (A1, A2) of A \ v. We can suppose w.l.o.g.,
that every neighbor of y in F (at the exception of v) is in A2. Indeed, for every
connected component C of F \{v, y}, if (C1, C2) is a good bipartition of A∩C then
(C2, C1) is also a good bipartition. We conclude by observing that (A1 ∪ v,A2) is
a good bipartition of A w.r.t. F . �

�

The next lemma shows how to decompose a set A into a small number of R′-
consistent sets whose union (x,R′)acy-represents A. Even if some parts of the
proof is specific to each parameters, the ideas are roughly the same. Intuitively,
to obtain this decomposition, we start by removing from A the sets that does not
respect the properties of Lemma 5.2. After that, we partition A with the help of
an equivalence relation and we prove that the number of equivalence classes respect
the upper bound described in Table 3 by using the properties of Lemma 5.2.

Lemma 5.3. Let A ⊆ 2Vx . There exists N disjoint sets A1, . . . ,AN ⊆ A such
that A1 ∪ · · · ∪ AN (x,R′)acy-represents A and for each 1 ≤ i ≤ N , we have Ai is
R′-consistent. Moreover, we can compute A1, . . . ,AN in time O(|A| · N · n2) and
N respects the upper bounds of described in Table 3.

Proof. If R′ = ∅ then for the same reasons as in the proof of Theorem 3.2, it is
sufficient to return B = {F} where F is a tree of A of maximum weight.

Assume now that R′ 6= ∅. We begin by defining the equivalence relation and by
proving that two equivalent sets form a R′-consistent set. We recall that MVx

is
the Vx × Vx adjacency matrix of the cut (Vx, Vx) over Q. For a subset X ⊆ Vx,
let σ(X) be the sum of the row vectors of MVx

corresponding to X. We define
the equivalence relation ∼ such that F1 ∼ F2 if we have σ(F 2+

1 ) = σ(F 2+
2 ) and

|E(G[F1])| − |F1 \ F 1
1 | = |E(G[F2])| − |F2 \ F 1

2 |.

Claim 5.3.1. If F1 ∼ F2, then {F1, F2} is R′-consistent.

Proof. In this proof, for X ⊆ Vx and Y ⊆ Vx, we denote by E(X,Y ) := {uv | u ∈
X ∧ v ∈ Y }, i.e., the edges between X and Y .
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Let Y ≡2
Vx
R′ and F1, F2 ∈ A such that F1 ∼ F2.

By Definition 5 of consistency, it is enough to prove that if G[F1 ∪ Y ] is a tree
and G[F2 ∪ Y ] is connected, then G[F2 ∪ Y ] is a tree.

Observe that G[F1∪Y ] is tree if and only if G[F1∪Y ] is connected and |E(G[F1∪
Y ])| = |F1 ∪Y |− 1. By decomposing the different terms, we have |E(G[F1 ∪Y ])| =
|F1 ∪ Y | − 1 if and only if

|E(G[Y ])|+ |E(F 2+
1 , Y )|+ |E(F 1

1 , Y )|+ |E(G[F1])| = |F1 \ F 1
1 |+ |F 1

1 |+ |Y | − 1

(1)

Since every vertex in F 1
1 has exactly one neighbor in R′ and Y ≡1

Vx
R′ , we have

|E(F 1
1 , Y )| = |F 1

1 |. Thus, the equation (1) is equivalent to

|E(F 2+
1 , Y )|+ |E(G[F1])| − |F1 \ F 1

1 | = |Y | − |E(G[Y ])| − 1(2)

Since F1 ∼ F2, we have |E(G[F1])| − |F1 \ F 1
1 | = |E(G[F2])| − |F2 \ F 1

2 |. Moreover,
owing to σ(F 2+

1 ) = σ(F 2+
2 ), we deduce that |E(F 2+

1 , Y )| = |E(F 2+
2 , Y )|. We

conclude that the equation (2) is equivalent to

|E(F 2+
2 , Y )|+ |E(G[F2])| − |F2 \ F 1

2 | = |Y | − |E(G[Y ])| − 1(3)

With the same arguments to prove that (1) is equivalent to (2), we can show that
(3) is equivalent to |E(F2 ∪ Y )| = |F2 ∪ Y | − 1. By assumption, G[F2 ∪ Y ] is
connected and thus we conclude that G[F2 ∪ Y ] is a tree. �

We are now ready to decompose A. Before going into the details for each pa-
rameters. We start by removing from A all the sets that does not induced a forest
or that does not respect the properties (1) and (2) of Lemma 5.2. Trivially, this can
be done in time O(|A| ·n2). Since, these sets are unimportant, we keep a (x,R′)acy-
representatives of A. Observe that we can do the same with the sets that does not
respect the property (3) or a weaker property. In the following, we explain how to
end up with the upper bounds of Table 3 for each width separately.

For all the width, we use implicitly the following observation which follows from
the removal of all the sets in A that does not induce a forest.

Observation 5.3.2. For all F ∈ A, we have −n ≤ |E(G[F ])| − |F \ F 1| ≤ n.

Concerning the clique-width. The property (2) implies that for all F ∈ A, the
neighborhood in Vx of the vertices in F 2+ are pairwise distinct. By definition of
clique-width, there is at most cw(Vx) different rows in MVx

. As two vertices with
the same neighborhood in Vx have the same row in MVx , we conclude that there is
at most 2cw(Vx) possible values for σ(X2+). Thus, we have N ≤ 2cw(Vx) · 2n.
Concerning the mim-width. We remove fromA all the sets that does not respect
the property (3). Let F ∈ A. As |F 2+| ≤ 2 · mim(Vx), there is at most n2·mim(Vx)

possible values for F 2+. Hence, N is upper bounded by 2 · n2·mim(Vx)+1.
Concerning the neighbor-width. Observe that mim(Vx) ≤ log(nec1(Vx)). In-
deed, an induced matching of size k generates 2k different neighborhood, i.e.,
2mim(Vx) ≤ nec1(Vx). Thus, we can remove all the set F ∈ A such that |F 2+| >
2 · log2(nec1(Vx)). Since there is at most nec1(Vx) different rows in M , we deduce
that σ(F 2+) can take at most nec1(Vx)

2·log2(nec1(Vx))+1 values. Hence, we have
N ≤ nec1(Vx)

2·log2(nec1(Vx)) · 2n.
Concerning the rank-width. Observe that mim(Vx) ≤ rw(Vx) because the ma-
trix associated to an induced matching is the identity matrix. Thus, M has rank
at least mim(Vx). Consequently, we can remove from A all the set F such that
|F 2+| > 2 · rw(Vx). We know that there is at most 2rw(Vx) different rows in M . We
conclude that N ≤ 22·rw(Vx)

2 · 2n.
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Concerning the Q-rank-width. Similarly to the rank-width, we have mim(Vx) ≤
Q-rw(Vx). Thus, we can remove all the set F ∈ A such that |F 2+| > 2 ·Q-rw(Vx).
Let F ∈ A. As proved in [13], there is at most 2Q-rw(Vx)·log(2·Q-rw(Vx)+1) possible
value for σ(F 2+). Indeed, observe that the values associated to Q-rw(Vx) columns
in σ(F 2+) entirely determined σ(F 2+). Since |F 2+| ≤ 2 · Q-rw(Vx), the values
in σ(F 2+) are between zero and 2 · Q-rw(Vx). It follows that there is at most
(2 · Q-rw(Vx) + 1)Q-rw(Vx) = 2Q-rw(Vx)·log(2·Q-rw(Vx)+1) possibilities for σ(F 2+). We
conclude that N ≤ 2Q-rw(Vx)·log(2·Q-rw(Vx)+1) · 2n.

It remains to prove the running time. Observe that we can decide F1 ∼ F2 in
time O(n2). Hence, we can compute the equivalence classes of A in times O(|A| ·
N · n2). �

We are now ready to give an adaptation of Theorem 3.2 to the notion of (x,R′)acy-
representativity.

Theorem 5.4. Given A ⊆ 2Vx such that for each F ∈ A, we have F ≡1
x R. There

exists an algorithm reduceacy that outputs in time O((nec(Vx)
2·(ω−1)+N ) · |A| ·n2),

a subset B ⊆ A such that B (x,R′)acy-represents A and |B| ≤ N · nec(Vx)2.

Proof. By Lemma 5.3, we can compute in time O(|A|·N ·n2) a collection of disjoint
sets A1, . . . ,AN ⊆ A such that A1 ∪ · · · ∪ AN (x,R′)acy-represents A and for each
1 ∈ [N ], the set Ai is R′-consistent.

Since A1, . . . ,AN ⊆ A, for each i ∈ [N ] and each set F ∈ Ai, we have F ≡1
x R.

Thus, we can apply Theorem 3.2 to compute for each i ∈ [N ] the set reduce(Ai) :=
Bi. For each i ∈ [N ], we have Bi ⊆ Ai such that Bi (x,R′)-represents Ai and
|Bi| ≤ nec1(Vx)

2. As Ai is R′-consistent, by Lemma 5.1, we have Bi (x,R′)acy-
represents Ai.

Let B := B1 ∪ · · · ∪BN . Since A1 ∪ · · · ∪AN (x,R′)acy-represents A, we conclude
that B (x,R′)acy-represents A. Obviously, we have |B| ≤ N · nec1(Vx)2.

It remains to prove the running time. By Theorem 3.2, we can compute B1, . . . ,BN
in time O(|A1 ∪ · · · ∪AN | · nec(Vx)2·(ω−1) ·n2). Since the sets A1, . . . ,AN are pair-
wise disjoint and subsets of A, we deduce that |A1 ∪ · · · ∪ AN | ≤ |A|. That proves
the running time and conclude this proof. �

We are now ready to present our algorithm to solve Maximum Induced Tree.
The algorithm follows the same ideas as the algorithms of the previous section, we
just use reduceacy instead of reduce.

Theorem 5.5. Given G a n-vertex graph and (T,L) a rooted layout of G.
There exists an algorithm that compute a maximum induced tree of G in time

O(nec2(T,L)2 · nec1(T,L)2(ω+2) · N 2 · n3).

Proof. For each node x ∈ T and for all (R,R′) ∈ R1
Vx
×R2

Vx
, we define Ax[R,R

′] ⊆
Vx as follow

Ax[R,R
′] := {X ⊆ Vx | X ≡1

x R}.
For each node x of V (T ), our algorithm will compute a table Dx that satisfies

the following invariant.
Invariant. For every (R,R′) ∈ R1

Vx
×R2

Vx
, the set Dx[R,R

′] is a subset of Ax[R,R
′]

of size at most N · nec1(Vx)2 that (x,R′)acy-represents Ax[R,R
′].

Observe that by Definition of (x,R′)acy-representativity, Dr[∅, ∅] contains a max-
imum induced tree of G.

The algorithm computes for every node t of T the table Dx by a bottom-up
dynamic programming, starting at the leaves of T .



RANK BASED APPROACH ON GRAPHS WITH STRUCTURED NEIGHBORHOOD 17

Let x a leaf of T with Vx = {v}. Observe that Ax[R,R
′] ⊆ 2Vx = { ∅, {v}}. Thus,

our algorithm can directly compute Ax[R,R
′] and set Dx[R,R

′] := Ax[R,R
′]. In

this case, the invariant trivially holds.
Now, take x an internal node of T with a and b as children such that the in-

variant holds for a and b. For each (R,R′) ∈ Rd
Vx
×Rd

Vx
, the algorithm computes

Dx[R,R
′] := reduce(Bx[R,R′]), where the set Bx[R,R′] is defined as follow

Bx[R,R′] :=
⋃

(A,A′), (B,B′) 2-(R,R′)-compatible

⊗
(Da[A,A

′],Db[B,B
′]).

One easily checks that Lemma 3.3 and Fact 2 holds also for the notion of
(x,R′)acy-representativity. Thus, with the same argumentation as in the proof of
Theorem 4.3, it follows that Dx[R,R

′] is a subset and a (x,R′)acy-representative of
Ax[R,R

′]. By Theorem 5.4, we have |Dx[R,R
′]| ≤ N · nec1(T,L)2.

Consequently, the invariant holds for x and by induction, it holds for all vertex
of T . The correctness of the algorithm follows.
Running Time. As for the proof of Theorem 4.3, the bottleneck is the call at the
function reduceacy. For each node x ∈ V (T ), the total running time to compute the
table Dx is

O

(
(N +

∑
(R,R′)∈Rd

Vx
×Rd

Vx

|Bx[R,R′]|) · nec1(T,L)2·(ω−1) · n2
)
.

By Definition 2, when you fix A,A′, B and R′, there exists only one R and one
B′ such that (A,A′) and (B,B′) are 2-(R,R′)-compatible. Thus, there is at most
nec2(T,L)2 · nec1(T,L)2 indexes (A,A′), (B,B′) and (R,R′) such that (A,A′) and
(B,B′) are 2-(R,R′)-compatible. Moreover, by the invariant, for each (A,A′) and
(B,B′), the size of

⊗
(Da[A,A

′],Db[B,B
′]) is at most |Da[A,A

′]| · |Db[B,B
′]| ≤

N 2 · nec1(T,L)4. Hence, the running time to compute Dx is

O(nec2(T,L)2 · nec1(T,L)2(ω+2) · N 2 · n2).

The total running time of our algorithm follows from the fact that T has 2n − 1
nodes. �

As corollary, we can solve the problem Feedback Vertex Set, which consist
in finding the minimum set of vertices whose removal makes G acyclic.

Corollary 5.6. Given G a n-vertex graph and (T,L) a rooted layout of G.
There exists an algorithm that compute a minimum feedback vertex set of G in

time O((2 · nec2(T,L))2 · (2 · nec1(T,L))2(ω+2) · N 2 · n3).

Proof. It is well-know that the complementary of a minimum feedback vertex set
is a maximum induced forest. Thus, it is enough to compute a maximum induced
forest of G.

The first step of this proof is to construct a graph G′ from G in time O(n2) such
that G has a maximum induced forest of weight W iff G′ has a maximum induced
tree of weight W . The second step is to construct from (T,L) a layout (T ′,L′) of
G′ in time O(n2) such that nec(T ′,L′) ≤ 2 · nec(T,L), cw(T ′,L′) ≤ 2 · cw(T,L) and
for every k ∈ {mim, rw,Q-rw}, we have k(T ′,L′) ≤ k(T,L).

This is sufficient since we can run our algorithm to find a Maximum Induced
Tree of G′ and thus a maximum induced forest of G. The running time follows
from Theorem 5.5 and by Lemma 5.3, by using the inequalities concerning (T,L)
and (T ′L′).

We construct G′ as follow. Let V (G) = {v1, . . . , vn}. The vertex set of G′ is
V (G)∪ {v0} ∪ {v′1, . . . , v′n}. In G′, the vertices of V (G) have the same weight as in
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G and the weight of the vertices v0, v′1, . . . , v′n is null. Finally, the edge set of G′ is
defined as follow

E(G′) := E(G) ∪ {viv′i, v0v′i | 1 ≤ i ≤ n}.
We claim that G has an induced forest of weight W if and only if G′ has an

induced tree of weight W . Let F an induced forest of G of weight W . Let cc(F ) =
{C1, . . . , Ck}. For each j ∈ [k], let vij ∈ Cj . Let T = F ∪ {v′i1 , . . . , v

′
ik
} ∪ v0. By

construction, one easily checks that T is an induced tree of G′ of weight W .
Now, let T an induced tree of G′ of weight W . Obviously T ∩ V (G) induced a

forest and since the weight of the vertices in V (G′) \ V (G) is null, the weight of
T ∩ V (G) is W .

We construct (T ′,L′) directly from (T,L) by doing the following. We transform
each leaf x of T with Vx = {vi} into an internal node by connecting two nodes to x
associated though L′ to the vertices vi and v′i. Finally, we add a node r′ connected
to the root of T and a leaf associated by L′ to v0.

We now prove that nec(T ′,L′) ≤ 2 · nec(T,L). Let x a node of T ′. If x is not
also a node of T then, by construction, x is either a leaf, a node adjacent to the
leaves of T or the root of T ′. In this case, the neighbor-width of x are either 1 or 2.

Now, assume that x is also a node of T . Let Vx ⊆ V (G) the vertex set associated
to x in (T,L). By construction, x is associated in (T ′,L′) to the set V ′x := Vx∪{v′ ∈
V (G′) | v ∈ Vx}. Let S := {N(X) ∩ Vx | X ⊆ Vx} and S ′ := {NG′(X) ∩ V ′x | X ⊆
V ′x}. By definition of the neighbor-width, we have nec(V ′x) = |S ′| and nec(Vx) = |S|.
One easily checks that S ′ = S ∪ {Y ∪ v0 | Y ∈ S}. Thus, we have |S ′| ≤ 2 · |S| and
then nec(T ′,L′) ≤ 2 · nec(T,L).

We deduce the other inequalities from the Figure 1 describing the adjacency
matrix between V ′x and V (G′) \ V ′x.

M 0

1 00

V (G) \ Vx v0 V ′ \ V ′
x

V ′ ∩ V ′
x

Vx

Figure 1. The adjacency matrix between V ′x and V (G′) \ V ′x.
Where V ′ = {v′1, . . . , v′n} and M is the adjacency matrix between
Vx and V (G) \ Vx.

�

6. Concluding Remarks

In this paper, we provide a framework based on the rank-based approach and
the neighbor equivalence to obtain efficient algorithms for graph with structured
neighborhood and connectivity problems with locally checkable properties such as
Connected Dominating Set or Node Weighted Steiner Tree. The algo-
rithmic consequences we get for clique-width, rank-width and mim-width confirm
the importance of the neighbor equivalence for these parameters.
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