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Abstract

Confidence sets, p values, and maximum likelihood estimates may be adjusted to favor sampling
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from a prior likelihood function previously used to adjust posterior distributions.
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1 Introduction

Occam’s razor is the principle that simpler theoretical formulations are preferred to more complex ones

when other things are equal (Baker, 2016). The principle has been invoked to support a wide variety of

statistical methods. First, Bayesian (e.g., Wasserman, 2000; Ando, 2010), frequentist (e.g., Burnham and

Anderson, 2002; Claeskens and Hjort, 2008), and information-theoretic methods of model selection such as

that of minimum message length (Wallace, 2005; Dowe, 2011) have been interpreted as ways of choosing the

parametric complexity of a model to optimize predictive accuracy, where parametric complexity increases

with the number of free parameters. Second, simpler models are often used to enhance understanding even

at the expense of predictive accuracy when a more accurate model would require so many parameters that

interpretation would be difficult or impossible (Lindley, 2000, discussion by D. R. Cox). Third, the intuitive

appeal of invariance and other probabilistic symmetries in statistics (e.g., Eaton, 1989; Helland, 2009) may

be attributed to a different type of simplicity, that of mathematical elegance.

Another type of simplicity is that of a hypothesized distribution. Should simpler distributions of data

have higher prior probabilities or prior probability densities, other things equal? If so, what is the effect

on frequentist inference, especially in the form of p values, confidence intervals, and maximum likelihood

estimates? This paper addresses the second question.

Assuming entropy as a measure of the complexity of sampling distributions should influence prior distri-

butions as Bickel (2016) suggests, the impact on credible sets such as 95% credible intervals can be calculated

from the posterior distribution. When the confidence sets such as 95% confidence intervals are approximately

credible sets according to some prior distribution, the confidence sets may be adjusted for entropy by replac-

ing them with the credible sets generated from that prior distribution after it has been adjusted to account

for entropy.

Prior distributions generating to credible sets that match confidence sets in that way are called matching

prior distributions. Why restrict frequentist inference to methods that have a Bayesian interpretation using

a matching prior? With a “synchronic coherence” condition, automated decisions on the basis of confidence

levels and p values leads to minimizing expected loss with respect to coherent fiducial distributions such as

a class of confidence distributions (Bickel and Padilla, 2014). If those decisions also satisfy a “diachronic

coherence” condition regarding self-consistency as data arrive in time, then the decisions minimize expected
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loss with respect to a posterior distribution corresponding to a matching prior. A related reason to con-

sider matching priors is that frequentist methods compatible with them have desirable conditional inference

properties (Datta and Sweeting, 2005, §2).

The statistical background for the proposed procedure is explained in Section 2. The method for adjust-

ing a prior distribution for simplicity and then applying that to the adjustment of frequentist procedures

using a matching prior is offered in Section 3. Section 4 proposes alternative procedures, covering ways to

adjust statistical inference such as maximum likelihood estimation for the simplicity of distributions without

requiring a matching prior distribution.

2 Background concepts

2.1 Approximate confidence distributions and probability matching priors

Consider sets Θ and Γ of real numbers or vectors, a parameter of interest θ ∈ Θ, and a nuisance parameter

γ ∈ Γ. The observed sample x is modeled as a realization of X, a random vector of distribution Pθ,γ , i.e.,

X ∼ Pθ,γ . If the components are independent and distributed as P (1)
θ,γ , then the distribution of X is P (1)

θ,γ ’s n-

product P (n)
θ,γ , written here as Pθ,γ for short. An approximate confidence curve is a function (θ, x) 7→ p (θ;x)

such that, to some order of approximation (
.
=) ,

Pθ,γ (p (θ;X) < α)
.
= α (1)

for all α ∈ ]0, 1[, following the concept of confidence curves used in Birnbaum (1961) and Blaker (2000).

Thus, p (θ0;x) is an observed p value for testing the null hypothesis that θ = θ0. It follows from equation

(1) that the random set C (1− α;X) defined by the function

α, x 7→ C (1− α;x) = {θ ∈ Θ : p (θ;x) ≥ α} (2)

is an approximate confidence set for θ in the sense that

Pθ,γ (θ ∈ C (1− α;X))
.
= 1− α (3)
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for all α ∈ ]0, 1[. For an observed sample x, a probability distribution P (•;x) on a measurable space (Θ,H)

is an approximate confidence distribution if

P (ϑ ∈ C (1− α;x) ;x) = P (C (1− α;x) ;x)
.
= 1− α (4)

for all α ∈ ]0, 1[, where ϑ ∼ P (•;x). Together, equations (3) and (4) say the probability that the random

parameter ϑ is in an observed confidence set C (1− α;x) is approximately equal to the probability that an

approximate confidence set C (1− α;X) covers the true value θ. An approximate confidence distribution is a

special case of what Bickel and Padilla (2014) call a “confidence distribution” that is a Kolmogorov probability

distribution as opposed to merely an incomplete probability distribution. Such confidence distributions are

in turn special cases of “basic fiducial distributions” (Bickel and Padilla, 2014).

The order of approximation may be formalized in various ways. For example, if θ is a scalar and if

equation (3) is understood to mean p (θ;X) weakly converges to U (0, 1), then the approximate confidence

distribution is isomorphic to the “asymptotic confidence distribution” of Singh et al. (2005). The definition

of the order of approximation is left open herein in order to make the following connection to a wide variety

of probability matching prior distributions.

Let Pπ0 (•|X = x) denote the posterior distribution of θ according to applying Bayes’s theorem to a prior

density π0, a function of θ and γ. Then π0 is called a probability matching prior distribution if Pπ0 (•|X = x)

is an approximate confidence distribution. Classes of probability matching priors thus correspond to different

definitions of the order of approximation (
.
=) such as the definitions found in Datta and Sweeting (2005) and

Ghosh (2011).

2.2 Extended evidence values

The measure of evidence proposed in De Bragança Pereira and Stern (1999) is extended by generalizing its

highest density regions to regions of the form

(π0, α, x) 7→ Cπ0 (1− α;x) = {θ ∈ Θ : qπ0 (θ;x) ≥ β (α)} (5)
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for some real-valued functions (π0, θ, x) 7→ qπ0 (θ;x) and α 7→ β (α) such that Cπ0 (1− α;x) is a (100%) (1− α)

credible set in the sense that Pπ0 (θ ∈ Cπ0 (1− α;x) |X = x) = 1 − α for all α ∈ ]0, 1[. Define the extended

evidence value at a fixed θ0 ∈ Θ, with respect to a prior π0, by

pπ0 (θ0;x) = 1− inf
α∈]0,1[:θ0∈C(1−α;x)

Pπ0 (θ ∈ Cπ0 (1− α;x) |X = x) = sup {α ∈ ]0, 1[ : θ0 ∈ Cπ0 (1− α;x)} .

(6)

If π0 is a probability matching prior density function and Cπ0 (1− α;x) = C (1− α;x), then equation (2)

implies that in this case the extended evidence value is a p value:

pπ0 (θ0;x) = sup {α ∈ ]0, 1[ : θ0 ∈ C (1− α;x)} = sup {α ∈ ]0, 1[ : p (θ0;x) ≥ α} = p (θ0;x) . (7)

3 Sharpened priors, sharpened p values, and sharpened confidence

sets

A prior density function π0 is considered blunt if its specification does not reflect the simplicity of a single-

observation distribution P
(1)
θ,γ as a function of θ and γ. A prior density function π that is sharpened with

respect to π0 is defined by

θ, γ 7→ π (θ, γ) ∝ π0 (θ, γ) e−H (θ,γ), (8)

where H (θ, γ) may be the Shannon entropy of P (1)
θ,γ if θ and γ are discrete. Otherwise, letting ξ denote a

measure that dominates Pθ,γ and letting fθ,γ = dP
(1)
θ,γ /dξ denote the relevant probability density function,

H (θ, γ) = −
∫
fθ,γ (x) ln fθ,γ (x) dξ (x) ,

commonly known as differential entropy when ξ is the Lebesgue measure. Bickel (2016) argued on the basis

of Kolmogorov complexity for using sharpened priors in place of blunt priors.

The method may be generalized by replacing θ, γ 7→ e−H (θ,γ) with θ, γ 7→ e−κH (θ,γ) for some κ > 0 or with

some other function that monotonically increases with the simplicity of P (1)
θ,γ . The function θ, γ 7→ e−κH (θ,γ)

with κ = 1 is used as a default in the rest of this paper, without loss of generality.

In analogy with the extended evidence value of equation (6), the sharpened evidence value at θ with
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respect to π is

pπ (θ;x) = sup {α ∈ ]0, 1[ : θ0 ∈ Cπ (1− α;x)} ,

where (π, α, x) 7→ Cπ (1− α;x) is the function defined by equation (5). Thus, Cπ (1− α;x) is the highest-

qπ (•;x) (100%) (1− α) credible set in the sense that Pπ (θ ∈ Cπ (1− α;x) |X = x) = 1−α for all α ∈ ]0, 1[.

For example, if qπ0 (θ;x) is the posterior probability density when π0 is the prior, then qπ (θ;x) is the

posterior probability density when π is the prior.

Now assuming that π0 is a probability matching prior density function and that Cπ0 (1− α;x) = C (1− α;x),

the prior density function π that is sharpened with respect to π0 is a sharpened matching prior distribu-

tion, and Pπ (•|X = x) , the corresponding posterior distribution, is a sharpened confidence distribution, the

simplicity-informed counterpart to Pπ0 (•|X = x). Since equation (7) indicates that in this case the ex-

tended evidence value is a p value, the corresponding pπ (θ;x) may be considered a sharpened p value and

Cπ (1− α;x) a sharpened confidence set of level (100%) (1− α).

Example 1. Let X denote a sample of n independent draws from P
(1)
θ,γ = N (θ, γ), the normal distribution of

unknown mean θ, the parameter of interest, and unknown variance γ. The maximum likelihood estimates of

θ and γ are denoted by θ̂ and γ̂. According to the t test, the two-sided p value for testing the null hypothesis

that θ = θ0 is

p (θ0;x) = 2 min
(

Φθ0,γ̂n−1/n,n−1

(
θ̂/
√
γ̂n−1/n

)
, 1− Φθ0,γ̂n−1/n,n−1

(
θ̂/
√
γ̂n−1/n

))
, (9)

where γ̂ν = γ̂n/ν, and Φµ,σ2,ν is the cumulative distribution function (CDF) of the Student t distribution

with location parameter µ, scale parameter σ, and ν degrees of freedom. The corresponding (100%) (1− α)

confidence interval is

C (1− α;x) = {θ0 ∈ Θ : p (θ0;x) ≥ α} =
[
Φθ̂,γ̂n−1/n,n−1

(α
2

)
,Φθ̂,γ̂n−1/n,n−1

(
1− α

2

)]
. (10)

In order to sharpen p (θ0;x) to take into account the simplicity of N (θ, γ) as θ and γ vary, a matching

prior distribution resulting in a (100%) (1− α) credible set equal to C (1− α;x) is required. Box and Tiao

(1992, §2.4.6) considered improper priors of probability density π(δ)
0 (θ, γ) ∝ γ−(δ+1)/2 for δ ≥ 0 and their

posterior CDFs Φθ̂,γ̂n+δ−1/n,n+δ−1. The δ = 0 case, π(0)
0 , is a probability matching prior since the resulting
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posterior distribution of θ, also a confidence distribution of θ, has CDF Φθ̂,γ̂n−1/n,n−1, leading to C (1− α;x)

as the highest-density (100%) (1− α) credible set, that is, C (1− α;x) = Cπ
(0)
0 (1− α;x). Using N (θ, γ)’s

differential entropy, H (θ, γ) = ln γ1/2 up to a constant (Michalowicz et al., 2013, p. 127), the corresponding

sharpened matching prior density is

π(0) (θ, γ) ∝ e−H (θ,γ)π
(0)
0 (θ, γ) ∝ γ−1/2γ−(0+1)/2 = γ−(1 + 1)/2 ∝ π(1)

0 (θ, γ) ,

which is π(δ)
0 (θ, γ) with δ = 1. It follows that the sharpened confidence distribution is of CDF Φθ̂,γ̂n/n,n,

that the sharpened p value is

pπ
(0)

(θ0;x) = 2 min
(

Φθ0,γ̂n/n,n

(
θ̂/
√
γ̂/n

)
, 1− Φθ0,γ̂n/n,n

(
θ̂/
√
γ̂/n

))
, (11)

and that the sharpened (100%) (1− α) confidence set is

Cπ
(0)

(1− α;x) =
{
θ0 ∈ Θ : pπ

(0)

(θ0;x) ≥ α
}

=
[
Φθ̂,γ̂n/n,n

(α
2

)
,Φθ̂,γ̂n/n,n

(
1− α

2

)]
. (12)

Figures 1 and 2 indicate that while the sharpened confidence distributions and sharpened confidence inter-

vals differ markedly from their blunt counterparts for n = 2 observations, they become closer by n = 4

observations but still with substantial differences.

The requirement of n ≥ 2 imposed by equations (9) and (10) prevents equations (11) and (12) from

degenerating due to the fact that γ̂n = γ̂ = 0 when n = 1. That is a safeguard that the frequentist aspect

of the proposed method puts in place, a safeguard missing in this case from a purely Bayesian approach to

improper priors. N
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Figure 1: Probability density function of the normal mean for the blunt confidence distribution (gray) and
the sharpened confidence distribution (black). The samples are x = (0, 1) on the left and x = (−1, 0, 1, 2)
on the right.

Figure 2: Observed p values for testing whether the normal mean is θ0 for the blunt p value function (gray)
and the sharpened p value function (black). Intersections with the horizontal line indicate the 95% confidence
intervals. The samples are x = (0, 1) on the left and x = (−1, 0, 1, 2) on the right.
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4 Sharpened statistical inference with prior likelihood instead of

prior probability

4.1 Sharpened likelihood function

Equation (8) may be interpreted in terms of Bayes’s theorem as updating the prior density function π0 to a

posterior density π according to an observation about simplicity that induces the likelihood function

(θ, γ) 7→ L (θ, γ) = e−H (θ,γ),

defined up to multiplication by a positive constant. Since that observation is conditionally independent of

the sample X, L qualifies as a prior likelihood function (Bickel, 2016).

That interpretation suggests dispensing with π0, replacing π with methods of inference based on like-

lihood functions without prior distributions. Those procedures are sharpened to account for simplicity by

replacing each blunt likelihood function, (θ, γ) 7→ fθ,γ (x), with the sharpened likelihood function, (θ, γ) 7→

L (θ, γ) fθ,γ (x). Some special cases follow.

4.2 Sharpened likelihood asymptotics

Schweder and Hjort (2002) suggested accounting for pre-sample information by multiplying a likelihood func-

tion on which a confidence distribution is based by a prior likelihood function that encodes more subjective

considerations. Likewise, first-order and higher-order asymptotic methods of deriving confidence sets and

p values from the likelihood function (e.g., Severini, 2000; Brazzale et al., 2007; Butler, 2007) may take

simplicity into account by using the sharpened likelihood function instead of the blunt likelihood function

in quantities such as the score function, the Wald statistic, and Fisher information.

Example 2. For inference about θ as the normal mean in Example 1, a pseudo-likelihood function may be

used to eliminate the nuisance parameter γ, the variance. For example, the profile likelihood function is

θ 7→ L0 (θ;x) = sup
γ>0

fθ,γ (x) ,

and the likelihood ratio test (LRT) of the hypothesis that θ = θ0 yields a p value equal to the probability that
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Figure 3: Profile-likelihood p values for testing whether the normal mean is θ0 based on the blunt likelihood
function (gray) and on the sharpened likelihood function (black). Intersections with the horizontal line
indicate the 95% confidence intervals. The samples are x = (0, 1) on the left and x = (−1, 0, 1, 2) on the
right.

a χ2 variate with 1 degree of freedom is greater than the observed LRT statistic, −2 ln
(
L0 (θ0;x) /L0

(
θ̂;x
))

.

The p value based on the sharpened likelihood replaces the profile likelihood function with

θ 7→ L (θ;x) = sup
γ>0

e−H (θ,γ)fθ,γ (x) ∝ sup
γ>0

γ−1/2fθ,γ (x)

and replaces the LRT statistic with −2 ln
(
L (θ0;x) /L

(
θ̂;x
))

. While sharpening the likelihood function has

a notable effect on inference (Figure 3), it is less pronounced than that under the matching prior approach

(Figure 2). N

4.3 Sharpened estimation, model selection, and model averaging

Certain methods of model selection and model averaging, such as the Bayesian information criterion (BIC)

(Carlin and Louis, 2009, p. 53), the Akaike information criterion (AIC) (Burnham and Anderson, 2002), and

the minimum description length (MDL) principle (Rissanen, 2007; Grünwald, 2007), are based on maximizing

a product of the likelihood function and other factors, especially those reflecting the parametric complexity

of each model, over the free parameters. (Methods assessing the evidence for a composite hypothesis may

(Bickel, 2013) or may not (Zhang and Zhang, 2013) include other factors in the product.) Such methods

of model selection, model averaging, and evidence measurement may incorporate information about the
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simplicity of distributions by multiplying the product by e−H (θ,γ) before the maximization step.

Example 3. Many methods of model selection, including BIC, AIC, and MDL, reduce to maximum likeli-

hood estimation (MLE) when each model consists of a single distribution. MLE, however, fails to incorporate

the simplicity of each distribution. By contrast, maximum sharpened likelihood estimation results in the es-

timates

arg sup
θ∈Θ,γ∈Γ

L (θ, γ) fθ,γ (x) = arg sup
θ∈Θ,γ∈Γ

e−H (θ,γ)fθ,γ (x) .

Alternatively, if θ 7→ L0 (θ;x) is a pseudo-likelihood function such as a marginal, conditional, estimated, or

integrated likelihood function that is free of γ, then maximum sharpened pseudo-likelihood estimation results

in the estimate

arg sup
θ∈Θ

L (θ;x) ,

where θ 7→ L (θ;x) is the sharpened pseudo-likelihood function, the same transform of (θ, γ) 7→ e−H (θ,γ)fθ,γ (x)

that L0 (θ;x) is of (θ, γ) 7→ fθ,γ (x). Example 2 illustrates a special case of θ 7→ L (θ;x). N
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