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With increasing amounts of digitally available data from all over the world, manual an-
notation of cognates in multi-lingual word lists becomes more and more time-consuming
in historical linguistics. Using available software packages to pre-process the data prior to
manual analysis can drastically speed up the process of cognate detection. Furthermore,
it allows us to get a quick overview on data which has not yet been intensively studied
by experts. LingPy is a Python library which provides a large arsenal of routines for se-
quence comparison in historical linguistics. With LingPy, linguists can not only automat-
ically search for cognates in lexical data, they can also align the automatically identified
words, and output them in various forms, which aim at facilitating manual inspection. In
this tutorial, we will briefly introduce the basic concepts behind the algorithms employed
by LingPy and then illustrate in concrete workflows how automatic sequence comparison
can be applied to multi-lingual word lists. The goal is to provide the readers with all infor-
mation they need to (a) carry out cognate detection and alignment analyses in LingPy, (b)
select the appropriate algorithms for the appropriate task, (c) evaluate how well automatic
cognate detection algorithms perform compared to experts, and (d) export their data into
various formats useful for additional analyses or data sharing. While basic knowledge of
the Python language is useful for all analyses, our tutorial is structured in such a way that
scholars with basic knowledge of computing can follow through all steps as well.

1 Introduction

Sequence comparison is one of the key tasks in historical linguistics. By comparing words or
morphemes across languages, linguists can identify which words have sprung from a common
source in genetically related languages, or which words have been borrowed from one language



to another. By comparing words within a language, linguists can identify grammatical and lexi-
cal morphemes, cluster words into families, and shed light on the internal history of languages.
So far the majority of this work has been carried out manually. Linguists sift through dictio-
naries and fieldwork notes, trying to identify those words which reflect a shared history across
languages. All etymological dictionaries available today have been based on manual word com-
parison and their results fill thousands of pages. Even the largest databases which offer cognate
judgments, such as the Austronesian Basic Vocabulary Database (ABVD, Greenhill et al. 2008)
or the Indo-European Lexical Cognacy Database (Dunn, 2012) are based on manual assessments
of cognacy.

With increasing amounts of digitally available data it becomes harder for linguists to keep up.
For example, the Sino-Tibetan Etymological and Thesaurus database (Matisoff, 2015), contains
more than 500 000 words, but only a small amount of words have been compared etymologically
(see Hill and List 2017, 64f). We need to take advantage of increasing amounts of data, refining
work on well-established languages, and fostering work on the world’s understudied languages.
To do this, however, we will have to rethink the way we compare languages.

Historical linguists are skeptical about automating the methods for cognate identification (see
(Holman et al. 2011 and commentaries, as well as List et al. 2017b). First, the accuracy of au-
tomated methods is often low, failing to reproduce the analyses of linguistic experts. Especially
the use of the edit distance (Levenshtein, 1965) has been criticized for being linguistically too
naive, conflating sound correspondences and lexical replacement, to be useful for subgrouping
or cognate detection (Campbell, 2011; Greenhill, 2011). Second, it is hard to verify many al-
gorithms as they are seen as black-boxes which hide the crucial decisions leading to cognate
judgments and subgroupings, making it difficult for scholars to determine whether similarities
are due to inheritance or contact (Jager, 2015; List et al., 2017b). The non-transparency of auto-
matic methods is highly problematic for computational historical linguistics: if we do not know
what evidence decisions are based on, we cannot criticize and improve them.

However, methods for automatic sequence comparison in historical linguistics have dramati-
cally improved during the last two decades. Starting with the pioneering work on pairwise and
multiple phonetic alignment (Kondrak, 2000; Proki¢ et al., 2009), new methods for phonetic
alignment and automatic cognate detection solve both the problems of verification and accuracy
(List et al., 2017b; Jéager et al., 2017). First, these algorithms are based on phonetically-informed
metrics on sound similarities. Importantly, any algorithmically identified correspondences are
logged and can be inspected by researchers. Second, in a wide-ranging test of these methods,
they have been found to be highly accurate and able to correctly identify cognates in almost 90%
of the cases (List et al., 2017b).

LingPy (List et al. 2017a) provides these algorithms as part of a stable open source software
package that works on all major platforms. Given the complexity of the problems involving
sequence comparison in historical linguistics, computers will not be able to replace human judg-
ments any time soon, but with the recent advancements, the methods are definitely good enough
to provide substantial help for classical historical linguists to pre-analyze the data to be later
corrected by experts, or to check the consistency of human cognate judgments. Over the long
run, computational methods can also contribute to the bigger questions of language evolution,
be it indirectly, by increasing the amount of digitally available high-quality annotated data, or
directly, by providing scholars access to data too large to be processed by humans alone.



In the following, we will give a concise overview on how automatic sequence comparison
can be carried out. After discussing general aspects of sequence comparison (Sec. 2), we will
introduce basic ideas on the data needed (Sec. 3). We will then turn to the core tasks of automatic
sequence comparison, namely automatic phonetic alignment (Sec. 4) and automatic cognate
detection (Sec. 5). We conclude by showing how automatic approaches for cognate detection
can be evaluated (Sec. 6), and how results can be exported to various formats (Sec. 7).

This paper is supplemented by a detailed interactive tutorial in form of an IPython Notebook
(Pérez and Granger, 2007) which illustrates how all methods discussed here can be practically
applied. Having installed the necessary software (Tutorial: 1), readers can follow the tutorial
step by step and investigate how the algorithms work in practice. Our data is based on a small
sample of Polynesian languages taken from the ABVD, which we substantially revised, both
with respect to the phonetic transcriptions and the expert cognate judgments. All data needed
to replicate the analyses discussed here are supplemented. We give more information in the
interactive tutorial (Tutorial: 2.1).

2 Basic Aspects of Sequence Comparison

The words and morphemes which constitute a language are best modeled as sequences of sounds.
Sequences have information content not only from their elements (segments, whether these are
phonemes, graphemes, or morphemes) but also via the order of the elements, a consistent com-
parison of sequences should account for both order and content. Alignments are a very general
way to model differences between sequences. The major idea is to arrange two or more se-
quences in a matrix in such a way that similar or identical segments which occur in similar
positions are placed in the same column of the matrix. If segments are missing in one sequence
where no counterpart for a segment can be found, this is represented by a gap character, usually
the dash-symbol (List, 2014b).

Northern Wintun - = W h a + [ -
Central Wintun - - Fl + 1 - -
South-East Wintun - - El + (1 - -
South-West Wintun - - El + (1 - -
North-Western Maidu - - [l + b [ -
Md % : North-Eastern Maidu « b+ N - - - -
(metathesis) Southern Maidu «|b N + i 5 -
b o A 4 ¥ 3 Yokuts Buena Vista «'g o + (M + |y I + ¢ -
Y v i Plains Miwok - - 1]l = o =5 o =
i Mw FEA W Lake Miwok - . . . . . .
pi tei (Borrowed?): Coast Miwok - pli+ .- - - - - .
i C Htu r o ' San Jose Costanoan - - '} - By - - - -
: : N & : Santa Clara Costanoan - . - - - - -
itu r -em Santa Cruz Costanoan - 'l - r - + e m
A IR RER tu r -is __________________ Santa Juan Bautista Costanoan « - - 'R+ e - + 1 s
Group Variety Pref. Suff. Postf. Comment IGNORE [ Je[ele] EICAEAEAEAED

Figure 1: Early alignment example for translational equivalents of “nail" in aboriginal languages
of California (based on Dixon and Kroeber 1919), contrasted with a “modern” repre-
sentation using the EDICTOR tool (List 2017).

Sequence alignments are crucial in biology, where they are used to compare protein and DNA
sequences (Durbin et al., 2002). In historical linguistics, however, they are usually only implic-
itly employed, and initial attempts to arrange cognate words in a matrix go back to the early



20th century, as one can see from an early example based on Dixon and Kroeber (1919, 61)
given in Figure 1. The authors themselves describe this way of representing sequence similar-
ities as a ‘columnar form’ with the goal to ‘bring out parallelisms that otherwise might fail to
impress without detailed analysis and discussion’ (Dixon and Kroeber, 1919, 55). The figure
further shows how the data would look if they were rendered in contemporary alignment editors
for historical linguistics (List, 2017). Dixon and Kroeber’s wording nicely expresses one of the
major advantages of alignments: the transparency of homology assessments. Scholars often list
long lists of cognate sets in the literature, claiming that all words are somehow related to each
other, but if they do not list the alignments, it is often impossible, even for experts in the same
language family, to understand where exactly the authors think that certain segments are similar.

Given that the inference of historically related words is not based on superficial word simi-
larities but on recurrent systematic similarities, known as regular sound correspondences (Lass,
1997, 130), all judgments regarding the relatedness of words across languages directly rely on
previously established sequence alignments (Fox, 1995, 67f). Alignment analyses not only in-
crease the transparency of cognate judgments, they play a crucial role in substantiating these
judgments in a first place. As can be seen from Table 1, similarities in cognate words in Sika-
iana and Tahitian (data taken from Greenhill et al. 2008) are not based on the identity of sounds,
but rather in the regularity of occurrence: whenever Sikaiana has a [k] and a [I], Tahitian has a
[?] and a [1], respectively. Without alignments, we could not identify this similarity. Alignments
are also at the core of all automatic sequence comparison approaches in historical linguistics, as
we will see throughout this tutorial.

Cognate List || Alignment Correspondences
Sikaiana louse || k u t u Sik. | Tah. | Freq.
Tahitian louse | 2 u t u k ? 3x
Sikaiana dog k u 1 i u u 3x
Tahitian dog 2 u r it t t I x
Sikaiana skin k i | i r 2 x
Tahitian ~ skin ? i ro i i) | i) | 3x

Table 1: Recurring similarities in Sikaiana and Tahitian

3 Data Preparation

When searching for cognates across languages, we usually assume that our data are given in
some kind of wordlist, a list in which a number of concepts is translated into various languages.
How many concepts we select depends on the research question, and various concept lists and
questionnaires, ranging from 40 (Brown et al., 2008) up to more than 1000 concepts (Haspelmath
and Tadmor, 2009) have been proposed so far (see the overview in List et al. 2016a). Our
data example for this tutorial is based on the questionnaire of the ABVD project (Greenhill
et al., 2008), consisting of 210 concepts, which were translated into 31 different Polynesian
languages. For closely related languages, such as those in the Polynesian family, this gives us
enough information to infer regular correspondences automatically, although it is clear that for



analyses of more distant language relationship the number of words per language may not be
enough.
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ID |DOCULECT CONCEPT VALUE IPA TOKENS |VARIANTS COGID

188 |Emae Eight Baru Baru Baru 750
447 |Rennell_Bellona |Eight bangu bangu |b a "g u 750
703 |Tuvalu Eight valu valu valu 750
927 |Sikaiana Eight valu valu valu 750
1135 |Penrhyn Eight varu varu varu 750
6114 |Kapingamarangi|Eight waru,walu jwaru waru walu 750
6115 |Kapingamarangi|Eight waru,walu jwalu walu waru 750

Figure 2: Input format required by the LingPy package. The last two entries show how synonyms
can be handled by placing different variants of one concept in one language variety into
different rows with a separate ID each.

The basic format used by LingPy is a tab-separated input file in which the first row serves
as a header and defines the content of the rest of the rows. The very first column is reserved
for numerical identifiers (which all need to be unique), while the order of the other columns is
arbitrary, with specific columns being required, and others being optional. Essential columns
which always must be provided are the language name (DOCULECT), the comparison concept
(CONCEPT), the original transcription (IPA, FORM, or VALUE), and a space-segmented form of
the transcription (TOKENS). Multiple synonyms for the same comparison concept in the same
language should be written in separate rows and given a separate ID each. The data in the
TOKENS-column should supply the transcriptions in space-segmented form, that is, instead of
transcribing the Fila word for “all” as [eut[i], the software expects [e u tf i], which is internally
interpreted as a sequence of five segments, namely [e], [u], [t/] and [i], with [t]] representing
a voiceless post-alveolar affricate. If the TOKENS are not supplied to the algorithm, it will try
to segment the data automatically, provided it can find the column IPA, which is otherwise not
necessarily required to appear in the data. This however, may lead to various problems and
unexpected behavior. We therefore urge all users of LingPy to make sure that they supply seg-
mented data to the algorithm, making furthermore sure that they adhere to the general standards
of transcription as they are represented in the International Phonetic Alphabet (IPA, IPA 1999).!
The format can be created manually by using either a text-editor, or a spreadsheet program that
allows to export to tab-separated format. To a large degree, this input format is compatible with
the one advocated by the Cross-Linguistic Data Formats (CLDF) initiative (Forkel et al., 2017),
the main difference being that LingPy requires a flat single file with tabstop as separators, while

"Linguists are often skeptical when they hear that LingPy requires explicit phonetic transcriptions, and often, they
are even reluctant to interpret their data along the lines of the IPA. But in order to give the algorithms a fair
chance to interpret the data in the same way in which they would be interpreted by linguists, a general practice
for phonetic transcriptions is indispensable, and the IPA is the most widely employed transcription system.



CLDF supports multiple files. CLDF furthermore encourages the use of reference catalogs, such
as Glottolog (Hammarstrém et al., 2017) or Concepticon (List et al., 2018), in order to increase
the comparability of linguistic data across datasets, while LingPy is indifferent regarding the
overall comparability as long as the data is internally consistent. As of version 2.6, LingPy
offers routines to convert to and from CLDF (see Tutorial: 6.3). Figure 2 provides a basic sum-
mary on LingPy’s input formats. More information on the format, and how it can be loaded into
LingPy can be found in the supplemented interactive tutorial (Tutorial: 2.2-3).

Data quality and consistency plays a crucial role in the outcome of an automatic sequence
comparison. As a general rule of thumb, we recommend all linguists who apply LingPy or other
software to carry out automatic sequence comparison, to pay careful attention to what we call
the SANE rules for data sanity: users should pay close attention to providing a sensible seg-
mentation of their data, they should aim for high coverage, there should be no mixing of data
from different sources (as this usually leads to inconsistent transcriptions and may also increase
the number of synonyms), and synonyms should be evaded.> These rules are summarized in
Table 2. If the original data does not provide reliable phonetic transcriptions, as it was the case
with the Polynesian data we use in this tutorial, orthography profiles (Moran and Cysouw, 2017)
provide an easy way to refine transcriptions while at the same time segmenting the data, and the
EDICTOR tool (List, 2017) offers convenient ways to check phonological inventories of all va-
rieties (Tutorial: 2.4). Various coverage statistics can be computed in LingPy (see Tutorial: 2.5).
Synonym statistics can also be easily computed (see Tutorial: 2.6). Users should always keep in
mind that the quality of automatic sequence comparison crucially depends on the quality of the
data submitted to the algorithms.

4 Automatic Phonetic Alignment

Alignments are crucial for historical language comparison to search for regular sound corre-
spondence patterns, layers of borrowed words, or even use them as the starting point for lin-
guistic reconstruction (Fox, 1995). A further important advantage is that they can be easily
quantified, as we will see in Sec. 5. Since phonetic alignment is heavily influenced by bioinfor-
matics, linguists using phonetic alignments should have some basic understanding of original
algorithms and terminology. In this context, it is not necessarily important to understand how
the algorithms work in detail. Instead, we think it is more important to learn (also by testing
the algorithms with different data and parameters) how the different options from which users
can choose influence the results. In the following, we will quickly introduce basic algorithms
and concepts involving alignments in historical linguistics, and how they relate to alignments
in bioinformatics. We will follow the traditional division into pairwise and multiple alignments
(which result from the differences in complexity of the algorithms), and introduce the most
important concepts and parameters that users should know when applying the methods.

2We know well how difficult it is to conform to the latter point. What is clear is that tossing coins to select one
out of many synonyms, as originally suggested by Gudschinsky (1956), will have a deleterious impact on any
analysis (List, 2018). In order to avoid synonyms in qualitative work, we recommend to thoroughly review the
guidelines in Kassian et al. (2010).



Segmentation matters Example

Consistent phonetic transcription and segmentation are of crucial im-

portance for automatic sequence comparison. Computers cannot guess NOT : Fila [eUtf i] “all”
whether multiple graphemes represent separate or single sound seg- BUT: Fila [e u tf i] “all”
ments.

Aim for high coverage Example

Each language should have about the same number of words recorded NOT: L, 150, L, 50
across the wordlist. A high mutual coverage is important to allow algo- : ’
rithms to find enough information to determine the major signal. BUT: L; 200, L2 200

No mixing of data from different sources Example

Mixing data for the same language from various sources can lead to

inconsistencies in the phonetic representation of words, even if they are NOT : L1=Source;+Sources

all given in plain phonetic transcriptions. This will weaken the evidence BUT: L;=Source;, Lo=Sources
for regular sound correspondences.

Evade synonyms Example
Languages often have multiple words for a given meaning. However, o e
these can cause problems for sequence comparison and further down- NOT': Tahitian [tai] ‘sea’, [moana]
stream analyses like phylogenetic reconstruction. Having abundant syn- ‘ocean’
onyms in the data (e.g., 40 words for snow) will necessarily blur this  BUT: Tahitian ‘sea’
signal.

Table 2: SANE Rules for Data Sanity

4.1 Pairwise Alignment Analyses

Pairwise alignment analyses in biology and computer science date back to the 1970s when schol-
ars like Needleman and Wunsch (1970), and Wagner and Fischer (1974) proposed algorithms
based on the dynamic programming paradigm (Eddy, 2004b) which drastically reduced the com-
putation time for the task of aligning two sequences with each other. The basic idea of the algo-
rithms by Needleman & Wunsch and Wager & Fischer was to split the problem of finding one
optimal alignment between two sequences into subparts and building the general solution from
optimal alignments of smaller subsequences (Durbin et al., 2002, 19).3

The major parameters of pairwise alignment algorithms are the scoring function, the gap func-
tion and the alignment mode. The scoring function (Figure 3A, Tutorial: 3.1.1) determines how
the matching of segments is penalized (or favored). In biology, it is well-known that amino-acid
mutations follow certain transition preferences. The scoring function defines transition proba-
bilities for each segment pair, and biologists make use of a large number of empirically derived
scoring functions (Eddy, 2004a). In linguistics, on the other hand, we know well that cer-
tain sounds are more likely to occur in correspondence relations with each other (Dolgopolsky,
1964; Brown et al., 2013), and this knowledge can be used as a proxy when designing a scoring
function in linguistics. While biology deals with small alphabets, in linguistics, the numbers of
possible sounds in the languages of the world amounts to the thousands (Moran et al., 2014). It is
not practical to design a matrix containing and confronting all sounds with each other, and most
algorithms reduce the size of the alphabet by lumping similar sounds into a set of pre-defined
sound classes (Figure 3B, Tutorial: 3.1.2), for which transition probabilities can be efficiently

31t would go beyond the scope of this tutorial to explain these famous algorithms in all detail. Instead we refer the
readers to Kondrak (2002, 20-65) as well as an interactive demo of the Wagner-Fischer algorithm in List (2016).



A Scoring Function P f h a
Determines how segments are compared with each other.

Most generally represented as a symmetric matrix of P 10 6 2 -10
transition probability scores. Scores between segments are

usually given in logarithmic scale, with unexpected matches || f 6 10 6 -10
being smaller 0 and expected ones being greater 0. On the

right, a short scoring matrix is shown, in which matches h 2 6 10 -10
between vowels (a) and consonants (p, f, h) are not allowed

and therefore assigned high negative values. a -10 -10 -10 10

B Sound Classes IPA 2 o G u a
To reduce the huge number of sounds in phonetic alignment

analyses, sounds are clustered into classes, assuming that Dolgo H \Y4 K Vv AV2
correspondences inside a class are more likely than outside

a class. Scoring functions are defined for sound classes, and || SCA H 8] K Y A
sound sequences are converted to sound-class sequences

before aligning them. On the right, it is shown, how Austral ASJP 7 ° q u a
“you” can be rendered in different sound-class alphabets.

C Gap Function IPA 2 o G u a
Gaps are introduced in alignments if a given element cannot

be matched with any other element. Gap penalties can be Sonority 1 7 1 7 7
defined globally, by assigning the same penalty to any

segment of a given sequence, or individually, based on the || Prostring # v C v >
context in which the segment occurs. In phonetic alignment .

analyses, individual gap penalties can be derived from Weights 2.0 L5 175 |13 0.8
prosodic profiles which reflect the relative sonority of each Gap-Scores |-4 3 35 |26 |-1.6

segment in a sequence. On the right, it is shown, how
individual gap penalties are derived for the Austral “you”.

D Alignment Mode Global Alignment
Alignment modes determine how sequences are compared. "
Global alignment compares the sequences entirely, Ra’ivavae |7 o |G u a

assuming that they are indeed comparable in all their parts.
Local alignment seeks to find the most similar subsequence Mangareva k o: r u a
of an alignment and deliberately strips off prefixes or
suffixes. Semi-global alignment can only ignore prefixes or || Local Alignment
suffixes in one of the sequences. If the other sequence also

.
has a suffix, it needs to strip it off. On the right, it is shown, Ra’ivavae | (201)|c - - u a
how the different alignment modes account for the phonetic M

alignment of “you (dual)” in Ra’ivavae and Mangareva. angareva |- k or |1 u a

While the local and the semi-global alignment fail to N N
identify the regular sound correspondence of glottal stop Semi-Global Alignment

and [k], the global alignment correctly matches words. This Ra’ivavae .
does not mean, however, that global alignment always E o s 3 ) v a
yields the best solutions. Unaligned parts are shaded gray. Mangareva Kk o |r u a

Figure 3: Basic parameters and concepts in pairwise alignment analyses

defined, and which are then given as input for the alignment algorithm (List, 2012a; Holman
et al., 2008).

The introduction of gaps in an alignment (Figure 3C, Tutorial: 3.1.3) can be seen as a special
case of a scoring function. Instead of comparing two segments, the algorithm checks whether the
introduction of a gap might be preferable. While gaps were originally given the same penalty,
independent of the element with which they were compared, later studies showed that they
could even be individually adjusted for each position in a sequence (Thompson et al., 1994). In
linguistics, we know that sounds in certain positions (like initial consonants) are less likely to be
lost and that new sounds tend to appear in specific contexts as well. In LingPy, position-specific
gap penalties are derived from the prosodic profiles of sequences (List, 2012a). Prosodic profiles
essentially reflect for each segment of a word whether it occurs in weak or strong prosodic
positions, and the user-defined gap penalty is modified accordingly.



The alignment mode (Figure 3D, Tutorial: 3.1.4) basically determines which parts of individ-
ual sequences are compared. It is often impossible to compare two words entirely. Instead, we
compare only certain parts of which we know that they are cognate, ignoring parts of which we
know they are not. Since the same problem occurs when comparing the genes of diverse species
in bioinformatics, biologists have long since been working on solutions, reflected in local align-
ment analyses (Smith and Waterman, 1981) in which only the most similar parts of sequences
are compared (see Figure 3), while the rest is ignored, or semi-global alignments (Durbin et al.,
2002, 26f).

What should users keep in mind when carrying out pairwise alignment analyses? As a rule of
thumb, we recommend caution with local alignment analyses, since these can show unexpected
behaviour. We also recommend care with custom-changes applied to the scoring or the gap
function. Users often naively think that just “telling" the computers which sound changes they
should assume would automatically lead to excellent alignments and at times complain that
LingPy’s standard algorithms fail to “detect certain obvious changes". However, alignments are
no way to determine sound changes, they are at best a first step for linguistic reconstruction,
and none of the algorithms which have been proposed so far models any kind of change. What
is modeled instead are correspondences of sounds. It is difficult, if not impossible, to design
an algorithm that aligns sequences of all kinds of diversity without proposing certain analyses
which look awkward to a trained linguist. But remember: automatic sequence comparison is not
there to replace the experts, but to help them.

4.2 Multiple Alignment Analyses in Linguistics

Pairwise alignments are crucial for most automatic cognate detection methods (List, 2014b;
Jager et al., 2017). In order to visualize cognate judgments, or to reconstruct proto-forms, how-
ever, pairwise alignments are not of great help, as most linguistic research applies to at least
three if not more language varieties. It may sound counter-intuitive for readers not familiar with
the major workflows for automatic cognate detection that pairwise alignments are mainly used
to detect cognates across multiple languages, while multiple alignments are only later computed
from existing cognate sets. Why not compute multiple alignments right from the beginning, as
for example, proposed by Wheeler and Whiteley (2015)? The reason for this workflow is that
alignments only make sense when representing cognate words — aligning unrelated words just
leads to chance similarities.

For reasons of algorithmic complexity, pairwise alignment algorithms cannot simply be re-
written to account for an arbitrary number of sequences. In order to address this problem, early
approaches used heuristics that approximate optimal multiple alignments (Feng and Doolittle,
1987; Thompson et al., 1994). Most of these algorithms compute pairwise alignments in a
first step and then combine the data in a pairwise fashion until all alignments are merged into
one multiple alignment. The easiest way to do so is with help of a guide tree, a clustering of
all sequences, which determines in which order sequences are merged with each other. This
procedure is illustrated in Figure 4 for the alignment of four words for ‘dog’ in four Polynesian
languages (Tutorial: 3.2).

Many extensions of the classical guide-tree heuristics have been proposed in the biological
literature (Notredame et al., 2000; Morgenstern et al., 1998) and also adapted in linguistic appli-



cations (List, 2012a; Jager and List, 2015; Hruschka et al., 2015). While the fine-tuning of the
algorithms may have a solid impact on multiple alignment analyses involving large sets of lan-
guage varieties, as we often encounter in dialectology (compare the results of Proki¢ et al. 2009
compared to List 2012a), the problem of erroneous alignments is much less pronounced when
using smaller datasets and working in workflows which start from cognate detection and com-
pute multiple alignments in a later stage. For these reasons, we refrain from giving more detailed
descriptions of multiple sequence alignment here, but instead refer the readers to the literature
that we quoted in this section and the examples in the interactive tutorial (Tutorial: 3.2).

Samoan 2uli
- u l i o
o - ir 1 i 2 u 1l i o
Hawaiian ?2i:lio B
? i1 i ®
k o r i —

North Marquesan ku?i /

R R R
s/ O =g
R = —
e e e e

Anuta kori

Figure 4: Combining words for ‘dog’ in Samoan, Hawaiian, North Marquesan, and Anuta into a
multiple alignment with help of a guide tree

5 Automatic Cognate Detection

As mentioned in the previous section, we can only meaningfully align words if we know they
are historically related. In order to identify which words are related, however, we still need to
compare them, and most automatic approaches, including the core methods available in LingPy,
make use of pairwise sequence comparison techniques in order to find historically related words
in linguistic datasets.

The basic workflow of most automatic cognate detection methods can be divided into two
major steps. In the first step, pairwise alignment is used to align all words to retrieve distance
scores for each pair of words in the data which occur in the same concept slot. If normalized,
distance scores typically rank between 0 and 1, with O indicating the identity of the objects under
comparison, and 1 indicating the maximal difference that can be encountered for the objects.
In a second step, these distances are used to partition the words into presumable cognate sets
using tree- or network-based partitioning algorithms. If we take five words for “neck” from our
Polynesian data, Ra‘ivavae [?agapo?a], Hawaiian [?a:?i:], Mangareva [kaki], Maori [ua], and
Rapanui [gao], for example, we can use the normalized edit distance to compare all four words
with each other and write the results into a matrix, as shown in Table 5A.*

In Table 5B, we have carried out the same pairwise comparison, but this time with a different
sequence comparison measure, following the sound-class based alignment method (SCA, List
2012a), in which the idea of sound classes is combined with sequence alignment methods. Table
5C shows the results retrieved from the LexStat method (List 2012b) which derives distances

*In the normalized edit distance (NED), the edit distance between two strings is further normalized by dividing it
by the length of the longer string. In this way, we can control for the length of the compared sequences.
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Ra’. Haw. Man. Mao. Rap. Ra’. Haw. Man. Mao. Rap. Ra’. Haw. Man. Mao. Rap.

Ra’ivavae  ?acapo?a 1(0.00 [0.75 | 0.88 [0.88 [0.75 | 1/0.00 [0.49 [0.59 [0.83 [0.62 | 1|0.00 [0.78 [0.77 |0.98 |0.79
Hawaiian ~ ?a:?i: 105757 0.00 [1.00 [1.00 [1.00 | 2]0.49 [0.00 [0.67 |0.73 [0.79 | 2]0.78 [0.00 [0:517]1.00 [0.94
Mangareva kaki 210.88 [1.00 [0.00 [0:75 0.75 | 3{0.59 [0.67 [0.00 |0.73 [0:39 | 2|0.77 |0.51 |0.00 [1.00 [0.74
Maori ua 310.88 |1.00 [0.75 ‘0.00 0.67 | 4/0.83 |0.73 [0.73 |0.00 |0.47 | 3{0.98 |1.00 |1.00 |0.00 |1.00
Rapanui  pao 310.75 | 1.00 [0.75 0.67 ‘0.00 310.62 |10.79 [0.39 |0.47 |0.00 | 4/0.79 |0.94 |0.74 |1.00 {0.00
A NED B SCA C LexStat
1 ___—Ra’ivavae e 1—Ra’ivavae /,3*Maor1 .
T Hawaiian -7 "2—Hawaiian <. . -ARapanui
<i\\ /_3<Maori- <:\\ /”S/Mangareva *<:\\ /,-lRa’ivavae )
e Rapanui \<:~ Rapanui <\\2 __—Hawaiian

T>2-Mangareva ~4—Maori ~Mangareva

Figure 5: Contrasting distances retrieved from three different alignment approaches for Polyne-
sian words for “neck”. Cells shaded in brown indicate that distances are smaller than
the default threshold for the algorithms. The first column of each table indicates the
cognate decisions resulting from the matrix and the threshold. How these cognate de-
cisions are determined is further illustrated in the trees below each matrix. They show
how a flat cluster algorithm which stops once a certain threshold is reached can be
used to partition the words into cognate sets.

from a previous search for regular sound correspondences. As can be seen, when comparing only
the matrices, the methods generally differ in the way they handle sequence similarities. While
NED has rather high scores which do not vary much from each other, SCA has consistently
smaller scores with more variation, and LexStat has higher scores but more variation than NED.

In the second step, the matrix of word-pair distances is used to partition the words into cognate
sets. For this, partitioning algorithms are used which split the words into cognate sets by trying
to account as closely as possible for the pairwise distances of all words in a given meaning slot.
Early approaches were based on a flat version of the well-known UPGMA algorithm (Sokal and
Michener, 1958), which is an agglomerative cluster algorithm that returns the data in form of a
tree. The flat variant of UPGMA stops merging words into bigger subgroups once a user-defined
threshold of average pairwise distances among the words in each cluster has been reached (List,
2012b). In order to show how algorithms arrive from pairwise distance scores in a matrix at
cognate set partitions, we provide a concrete example in Figure 5. First, we have marked all cells
in which the distance is smaller than the recommended threshold for each method (following
List et al. 2017b).> Second, we added guide trees (reflecting the clustering proposed when
applying the UPGMA algorithm without stopping it earlier) below each matrix, which show
how the flat clustering algorithm proceeds. If the algorithm stops grouping words into a given
cluster, because the average threshold has been reached, this is indicated by a dashed line, which
indicates how the clustering would have proceeded if the algorithm had not stopped. Given that
we know that of these five words in the figure, only Hawaiian [?a:?i:] and Mangareva [kaki] are
cognate, we can immediately see that the LexStat algorithm is proposing the correct cognates in
this example.

The performance of LexStat is not surprising, if we take its more sophisticated working pro-
cedure into account. LexStat uses global and local pairwise alignments to preanalyze the data,

>The threshold for the algorithms are: NED: 0.75, SCA: 0.45, LexStat: 0.6.
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A Pairwise Distance Calculation Hawaiian
In order to calculate distances between words, different

methods can be used. A simple way is to count, how often
two two aligned strings show different characters (edit 1+ |1+ |1+ |1 =4/4=1.0
distance). By dividing this number by the length of the

alignment, we can normalize this distance so that it ranges
between 0 and 1. More sophisticated ways consist in Rapanui | a - o
computing the alignment scores (which are rendered as

o
]
o
=

=~
o
=

Mangareva

Mangareva |k a k i

N R 5 X 1+ |0+ |1+ 1 =3/4=0.75
similarities) and converting these to distance scores using a
formula for normalization (Downey et al. 2008).
B Flat Clustering (Partitioning) Objects Part. 1 Part. 2 Part. 3
Algorithms for flat clustering (also called partitioning
algorithms) take a matrix of pairwise distances between A 1 1 1
objects as input and return a partition of the objects in B 1 P 1
which each object is assigned to exactly one group. As a
common notation, we can assign each object a numeric ID. ||C 2 2 1
In this way we can easily compare to which degree different
partition proposals for the same data differ.
C Permutation Test Sikaiana | Tuamotuan Distributions
It is not possible to use simple combinatorics to predict how
many sound correspondences we would expect if all IPA |[Class |[IPA |Class Att. |Exp. |Score

languages in our data were unrelated, since we do not know
the underlying phonotactics of our languages. But we can fv B £ v B 10.0 |11 7.32
compute the sound correspondences by shuffling our data f,v |B k K 0 1.8 -3.33
multiple times, comparing words expressing different
concepts, and counting how many correspondences we find ||h H h,? |H 28.0 |84 |5.69
for presumably unrelated word pairs. The table on the right

shows correspondence distributions and the resulting h H k K 1.0 4.2 -3.33
LexStat score for some sounds in Sikaiana and Tuamotuan.

Figure 6: Some basic concepts important for automatic cognate detection

computing language-specific scoring functions (List, 2012b), in which the similarity of the seg-
ments in a given language pair depends on the overall number of matches that could be found in
the preprocessing stage.® In these scoring functions, sound segments for all languages in the data
are represented as sound-class strings in a certain prosodic environment. This representation is
useful to handle sound correspondences in different contexts (word-initial, word-final, etc.). For
each language pair in the data, LexSrat creates an attested and an expected distribution of sound
correspondences. The attested distribution is computed for words with the same meaning and
whose SCA-score is beyond a user-defined threshold. The expected distribution is computed
by shuffling the word lists in such a way that words with different meanings are aligned and
compared, with the users defining, how often word lists should be shuffled. This permutation
test following suggestions by Kessler (2001) makes sure that the sound correspondences iden-
tified are unlikely to have arisen by chance. The distributions resulting from this permutation
test are then combined in log-odds scores (see Figure 3 above) which can then in turn be used
to re-align all words and determine their LexStat-distance.” These scores are then again used to
create a matrix of pairwise distances as shown in Figure 5. Our interactive tutorial shows how
input data can be quickly checked before carrying out the (at times time-consuming) computa-

SFor an example, consider the matches between Sikaiana and Tahitian shown in Table 1. Although Sikaiana [k] is
different from [?], they are similar from a language-specific perspective, since they recur across many aligned
cognate sets between both languages. When comparing [k] in English with [?] in German, however, they are not
similar, as we won’t find a cognate set in which those two sounds correspond.

7 As alignment algorithms yield similarity scores as a default, the similarity scores are converted to distance scores
with help of the formula proposed by Downey et al. (2008).
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tion (Tutorial: 4.1) and provides additional information regarding the differences between the
cognate detection methods available in LingPy (Tutorial: 4.2) and illustrates in detail how each
of them can be applied (Tutorial: 4.3).

More recent approaches for cognate set partitioning use Infomap (Rosvall and Bergstrom,
2008), a community detection algorithm which uses random walks in a graph representation of
the data to identify those clusters in which significantly more edges can be found inside a group
than outside (Newman, 2006). In order to model the data as a graph, words are represented
as nodes and distances between words are represented as edges which are drawn between all
nodes whose pairwise distance is beyond a user-defined threshold (List et al., 2017b). Recent
studies have shown that the graph-based partitioning approaches slightly outperform the flat
agglomerative clustering procedures (List et al., 2017b, 2016b; Jiger et al., 2017).

The advantage of LexStat and similar algorithms is that the algorithm infers a lot of informa-
tion from the data itself. Instead of assuming language-independent distance scores which would
be the same for all languages in the world, it essentially infers potential sound correspondences
for each language pair in separation and uses this information to determine language-specific
distance scores. The disadvantages of LexStat are the computation time and the dependency of
data with high mutual coverage. It was designed in such a way that it refuses to cluster words
into cognate sets if sufficient information is lacking. As a rule of thumb, derived from ear-
lier studies (List, 2014a), we recommend applying LexStat only if the basic concept lists of a
given dataset consists of at least 200 words, and if the mutual coverage of the data exceeds 150
word pairs. If the data is too sparse, such as, for example, in the ASJP database (Wichmann
et al., 2016) which gives maximally 40 concepts per language, we recommend to use either
the SCA approach, or to turn to more sophisticated machine learning approaches (Jager et al.,
2017), which have been designed and trained in such a way that they yield their best scores on
smaller datasets. In all cases, users should be aware that the algorithms may fail to detect certain
cognates. The reasons range from rare sound correspondences which can trigger problematic
alignments, via sparseness of data (especially when dealing with divergent languages), up to
problems of morphological change which may easily confuse the algorithms as they may yield
partial cognates and produce words that cannot be fully aligned anymore (List et al., 2017b). In
Table 3, we summarize some basic differences between the four methods mentioned so far.

Method Scoring Function Sound Classes Gap Function Alignment Mode Partitioning
NED identity - - global flat UPGMA
SCA language-independent SCA-model prosodic profiles  global flat UPGMA
LexStat language-specific SCA-model prosodic profiles  semi-global flat UPGMA
LexStat-Infomap language-specific SCA-model prosodic profiles semi-global Infomap

Table 3: Comparing different algorithms for cognate detection implemented in LingPy with re-
spect to some fundamental parameters of sequence comparison.

Once the words have been clustered into cognate sets, it is advisable to align all cognate words
with each other, using a multiple alignment algorithm (Tutorial: 4.4). Alignments are useful in
multiple ways. First, users can easily inspect them with web-based tools (Tutorial: 4.5). Second,
they can be used to statistically investigate the identified sound correspondence patterns in the
data (see Tutorial: 4.6). Both the manual and the automatic check of the results provided by
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automatic cognate detection methods are essential for a successful application of the methods.
Only in this way users can either convince themselves that the results come close to their ex-
pectations or that something weird is going on. In the latter situation, we recommend that users
thoroughly check to which degree they have conformed to our SANE rules for dataset sanity
outlined above in Sec. 3. We also recommend that users do not change the different parameters
too much, especially when applying LingPy the first time. Instead of trying to fix minor errors
(such as obvious cognates missed or lookalikes marked as cognates) by changing parameters, it
is often more efficient to correct errors manually. Although Rama et al. (2018) report promising
results on fully automated workflows, we do not recommend relying entirely on automatic cog-
nate detection when it comes to phylogenetic reconstruction, since the algorithms tend to be too
conservative, often missing valid cognates (List et al., 2017b), but we are confident enough to
recommend it for initial data exploration, and for the preparsing of data in order to increase the
efficiency of cognate annotation.

6 Evaluation

We have claimed above that automatic cognate detection had made great progress of late. We
make this claim based on tests in which the performance of automatic cognate detection algo-
rithms was compared with expert cognate judgments (List et al., 2017b). There are different
ways to compare expert cognate judgments with algorithmic ones. A very simple but never-
theless important first one is to compare different cognate judgments manually, by eyeballing
the data. Even if one lacks expert cognate judgments for a given dataset, this may be useful,
as it helps to get a quick impression on potential weaknesses of the algorithm used for a given
analysis. Comparing cognate judgments in concrete, however, can be quite tedious, especially
if the data are not presented in any ordered fashion. For this reason, LingPy offers a specific
format that helps to compare different cognate judgments in a rather convenient way. How this
comparison can be carried out is illustrated in Table 4, where we use the numeric annotation for
cognate clusters as described in Figure 6 to compare expert cognate judgments for ‘to turn’ in
eight East Polynesian language with those produced by edit distance, the SCA, and the LexStat
method, respectively. As can be seen from the table, NED lumps all words into one cluster,
obviously being confused by the similarity of the vowels across all words. SCA comes close to
the expert annotation, but wrongly separates Hawaiian [wili] from the first cluster, obviously be-
ing confused by the dissimilarity of the sound classes. LexStat correctly identifies all cognates,
obviously thanks to its initial search for language-specific similarities between sound classes.
In the interactive tutorial, we show how users can compute similar overviews on differences in
cognate detection analyses and conveniently compare them (Tutorial: 5.1).

While manual inspection is important it is also crucial to have an independent and objective
score that tells us how well algorithms perform on a given dataset. Knowing the approximate
performance may for example be useful when working with large datasets which would take too
long to be analysed manually. If we annotate part of the data and see that the automatic methods
perform well enough, we could then use the automatic approaches to carry out our analyses and
report the expected accuracy in the study. Our recommended evaluation measure are B-Cubed
scores (Bagga and Baldwin, 1998; Amig6 et al., 2009) which Hauer and Kondrak (2011) first
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Doculect Form Expert NED SCA LexStat

Ra‘ivavae tarviai 1 1 1 1
Hawaiian wili 1 1 4 1
North-Marquesan  kavi?i 1 1 1 1
Rapanui taviri 1 1 1 1
Hawaiian huli 2 1 2 2
Maori huri 2 1 2 2
Sikaiana tahuli 2 1 2 2
Mangareva tirrori 3 1 3 3

Table 4: Comparing automatic cognate detection methods with expert cognate judgments for
words for ‘to turn’ in East Polynesian languages.

introduced as a measure to assess the quality of cognate detection algorithms compared to expert
judgments.

The details of how B-Cubed scores are computed are explained elsewhere in detail (List et al.,
2017b), and it would go beyond the scope of this tutorial to introduce them here again. For users
interested in automatic cognate detection, but reluctant to learning in depth about evaluation
measures in computational linguistics, it is sufficient to know how the B-Cubed scores should
be interpreted. Usually the scores are given in three forms, which all rank between O and 1:
precision, recall, and F-Score. Precision comes closest to the notion of true positives in historical
linguistics. Recall is close to the notion of true negatives, accordingly, and the F-Score, the
harmonic mean of precision and recall, can be seen as a general summary of the two, derived
by the formula 251@, where P is the precision and R is the recall. If the scores are high, this
means the algorithms come close to the judgment of the experts, a score of 1.0 in precision and
recall (and therefore also the F-Score) means that the results are 100% identical.

RANDOM NED SCA LexStat LS-Infomap

Precision 0.47 0.81 0.88 0.95 0.94
Recall 0.73 096 084 092 0.93
F-Score  0.57 0.88 0.86 0.93 0.94

Table 5: B-Cubed scores for different cognate detection algorithms compared against a test set
of East Polynesian languages

In Table 5 we report the results achieved by four automatic cognate detection methods on a
small subset of ten East Polynesian languages which we retrieved from our Polynesian dataset
for illustrative purposes.? In addition to the three methods reported already in Table 4, we added
a random cognate detector which was sampled from 100 trials, and the Infomap version of the

8We have not fully explored the practical limitations in terms of number of languages or number of concepts when
comparing languages with LingPy. Jager et al. (2017) and Rama et al. (2017) report successful applications of
LingPy’s cognate detection algorithms for as many as 100 languages. Although we think that the number might
in fact be even higher, based on tests we carried out ourselves on 150 and more languages, we recommend to be
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LexStat algorithm (LS-Infomap), in which the cognate set partitioning is carried out with the
Infomap algorithm instead of the flat version of UPGMA (see Sec. 5 above).” NED shows a
rather low precision compared to the other non-random approaches, indicating that it proposes
many false positives (as we could see above in Table 4). On the other hand, its recall is very
high, indicating that it does not miss many cognate sets. SCA obviously has a lot of problems
with the data, performing worse than NED in general, with a rather low precision and recall.
Both LexStat approaches largely outperform the other approaches in general, and especially the
very high precision is very comforting, since it indicates that the algorithms do not propose
too many false positives. That the Infomap version of LexStat performs better than LexStat
with UPGMA is also shown in this comparison, although the differences are much lower than
reported in List et al. (2017b). It would be very interesting to compare the scores we achieved
with general scores of levels of agreement among human experts. Unfortunately, no systematic
study has been carried out so far.!® The interactive tutorial gives a detailed introduction into the
computation of B-Cubed scores with LingPy (Tutorial: 5.2).

Given the differences in the results regarding precision, recall, and generalized F-scores, it
is obvious that the choice of the algorithm to use depends on the task at hand. If users plan to
invest much time into manual data correction, having an algorithm with high recall that identifies
most of the cognates in the data while proposing a couple of erroneous ones is probably the best
choice. Users can achieve this by choosing a high threshold or an algorithm such as NED, which
yields a rather high recall in form of the B-Cubed scores, at least for the Polynesian data in our
sample. In other cases, however, when user-correction is not feasible because of the size of
the dataset, it is useful to choose low thresholds or generally conservative algorithms with high
B-Cubed precision in order to minimize the amount of false positives.

7 Data Export

LingPy provides direct export of the cognate judgments to the Nexus format (Maddison et al.,
1997), allowing users to analyse automated cognate judgments with popular packages for phy-
logenetic reconstruction, such as SplitsTree (Huson, 1998), MrBayes (Ronquist et al., 2009), or
BEAST 2 (Bouckaert et al. 2014, see Tutorial: 6.1). If phylogenetic trees are computed from
distance matrices, both matrices and trees can be written to file and further imported in soft-
ware packages for tree manipulation and visualization (Tutorial: 6.2). In addition, data can be
exported (and also be imported) to the wordlist format proposed by the CLDF initiative (Forkel
et al., 2017), which is intended to serve as a generic format for data sharing in cross-linguistic
studies (Tutorial: 6.3).

careful when analysing too many languages, as algorithmic performance may drastically drop when investigation
samples that are too large.

The threshold for LexStat-Infomap was set to 0.55, following List et al. (2017b). The random cognate annotation
algorithm was designed in such a way that it has the tendency to lump cognates to larger clusters.

""The only study known to us addressing these problems is Geisler and List (2010), but it has, unfortunately, not
been sufficiently quantified.
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8 Concluding Remarks

In this tutorial we have tried to show how automatic sequence comparison in LingPy can be car-
ried out. Given the scope of this paper, it is clear that we could not cover all aspects of alignments
and cognate detection in all due detail. We hope, however, that we could help readers under-
stand what they should keep in mind if they want to carry out sequence comparison analyses on
their own. Additional questions will be answered in an interactive tutorial supplemented with
this paper, and for deeper questions going beyond the pure application of sequence comparison
algorithms — such as additional analyses (e.g., the minimal lateral network method for borrow-
ing detection, List et al. 2014, or an algorithm for the detection of partial cognates, List et al.
2016b), routines for plotting and data visualization, or customization routines for user-defined
sound-class models. — we recommend the readers to turn to the extensive online documenta-
tion of the LingPy package (http://lingpy.org). We have emphasized multiple times
throughout this paper that the algorithms cannot and should not be used to replace trained lin-
guists. Instead, they should be seen as a useful complement to the large arsenal of methods for
historical language comparison which can help experts to derive initial hypotheses on cognacy,
speed up tedious the annotation of cognate sets, and increase their efficiency and consistency.

Supplementary Material

The supplementary material contains the code, the data, and the extended interactive tuto-
rial in form of an Ipython (Jupyter) notebook and as HTML document and can be accessed
via GitHub (https://github.com/lingpy/lingpy-tutorial), Zenodo (https:
//zenodo.org/record/1252231), and the Open Science Framework (https://osf.
io/xc7t]j/). Updates to this tutorial will appear on GitHub and released to Zenodo. The
tutorial can also be accessed online (http://htmlpreview.github.io/?https://
github.com/lingpy/lingpy-tutorial/blob/master/notebook.html).
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