Johann-Mattis List

Mary Walworth

Simon J Greenhill

Tiago Tresoldi

Robert Forkel

Sequence Comparison in Computational Historical Linguistics Phonetic Alignments and Cognate Detection with LingPy 2.6

With increasing amounts of digitally available data from all over the world, manual annotation of cognates in multi-lingual word lists becomes more and more time-consuming in historical linguistics. Using available software packages to pre-process the data prior to manual analysis can drastically speed up the process of cognate detection. Furthermore, it allows us to get a quick overview on data which has not yet been intensively studied by experts. LingPy is a Python library which provides a large arsenal of routines for sequence comparison in historical linguistics. With LingPy, linguists can not only automatically search for cognates in lexical data, they can also align the automatically identified words, and output them in various forms, which aim at facilitating manual inspection. In this tutorial, we will briefly introduce the basic concepts behind the algorithms employed by LingPy and then illustrate in concrete workflows how automatic sequence comparison can be applied to multi-lingual word lists. The goal is to provide the readers with all information they need to (a) carry out cognate detection and alignment analyses in LingPy, (b) select the appropriate algorithms for the appropriate task, (c) evaluate how well automatic cognate detection algorithms perform compared to experts, and (d) export their data into various formats useful for additional analyses or data sharing. While basic knowledge of the Python language is useful for all analyses, our tutorial is structured in such a way that scholars with basic knowledge of computing can follow through all steps as well.

Introduction

Sequence comparison is one of the key tasks in historical linguistics. By comparing words or morphemes across languages, linguists can identify which words have sprung from a common source in genetically related languages, or which words have been borrowed from one language to another. By comparing words within a language, linguists can identify grammatical and lexical morphemes, cluster words into families, and shed light on the internal history of languages. So far the majority of this work has been carried out manually. Linguists sift through dictionaries and fieldwork notes, trying to identify those words which reflect a shared history across languages. All etymological dictionaries available today have been based on manual word comparison and their results fill thousands of pages. Even the largest databases which offer cognate judgments, such as the Austronesian Basic Vocabulary Database (ABVD, [START_REF] Greenhill | The Austronesian Basic Vocabulary Database: From bioinformatics to lexomics[END_REF] or the Indo-European Lexical Cognacy Database [START_REF] Dunn | Indo-European lexical cognacy database (IELex)[END_REF] are based on manual assessments of cognacy.

With increasing amounts of digitally available data it becomes harder for linguists to keep up. For example, the Sino-Tibetan Etymological and Thesaurus database [START_REF] Matisoff | The Sino-Tibetan Etymological Dictionary and Thesaurus project[END_REF], contains more than 500 000 words, but only a small amount of words have been compared etymologically (see Hill and List 2017, 64f). We need to take advantage of increasing amounts of data, refining work on well-established languages, and fostering work on the world's understudied languages. To do this, however, we will have to rethink the way we compare languages.

Historical linguists are skeptical about automating the methods for cognate identification (see [START_REF] Holman | Automated dating of the world's language families based on lexical similarity[END_REF]commentaries, as well as List et al. 2017b). First, the accuracy of automated methods is often low, failing to reproduce the analyses of linguistic experts. Especially the use of the edit distance [START_REF] Levenshtein | Dvoičnye kody s ispravleniem vypadenij, vstavok i zameščenij simvolov[END_REF] has been criticized for being linguistically too naïve, conflating sound correspondences and lexical replacement, to be useful for subgrouping or cognate detection [START_REF] Campbell | Comment on: Automated dating of the world's language families based on lexical similarity[END_REF][START_REF] Greenhill | Levenshtein distances fail to identify language relationships accurately[END_REF]. Second, it is hard to verify many algorithms as they are seen as black-boxes which hide the crucial decisions leading to cognate judgments and subgroupings, making it difficult for scholars to determine whether similarities are due to inheritance or contact [START_REF] Jäger | Support for linguistic macrofamilies from weighted alignment[END_REF][START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. The non-transparency of automatic methods is highly problematic for computational historical linguistics: if we do not know what evidence decisions are based on, we cannot criticize and improve them.

However, methods for automatic sequence comparison in historical linguistics have dramatically improved during the last two decades. Starting with the pioneering work on pairwise and multiple phonetic alignment [START_REF] Kondrak | A new algorithm for the alignment of phonetic sequences[END_REF][START_REF] Prokić | Multiple sequence alignments in linguistics[END_REF], new methods for phonetic alignment and automatic cognate detection solve both the problems of verification and accuracy [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF][START_REF] Jäger | Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual wordlists[END_REF]. First, these algorithms are based on phonetically-informed metrics on sound similarities. Importantly, any algorithmically identified correspondences are logged and can be inspected by researchers. Second, in a wide-ranging test of these methods, they have been found to be highly accurate and able to correctly identify cognates in almost 90% of the cases [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF].

LingPy (List et al. 2017a) provides these algorithms as part of a stable open source software package that works on all major platforms. Given the complexity of the problems involving sequence comparison in historical linguistics, computers will not be able to replace human judgments any time soon, but with the recent advancements, the methods are definitely good enough to provide substantial help for classical historical linguists to pre-analyze the data to be later corrected by experts, or to check the consistency of human cognate judgments. Over the long run, computational methods can also contribute to the bigger questions of language evolution, be it indirectly, by increasing the amount of digitally available high-quality annotated data, or directly, by providing scholars access to data too large to be processed by humans alone.

In the following, we will give a concise overview on how automatic sequence comparison can be carried out. After discussing general aspects of sequence comparison (Sec. 2), we will introduce basic ideas on the data needed (Sec. 3). We will then turn to the core tasks of automatic sequence comparison, namely automatic phonetic alignment (Sec. 4) and automatic cognate detection (Sec. 5). We conclude by showing how automatic approaches for cognate detection can be evaluated (Sec. 6), and how results can be exported to various formats (Sec. 7).

This paper is supplemented by a detailed interactive tutorial in form of an IPython Notebook [START_REF] Pérez | IPython: a system for interactive scientific computing[END_REF] which illustrates how all methods discussed here can be practically applied. Having installed the necessary software (Tutorial: 1), readers can follow the tutorial step by step and investigate how the algorithms work in practice. Our data is based on a small sample of Polynesian languages taken from the ABVD, which we substantially revised, both with respect to the phonetic transcriptions and the expert cognate judgments. All data needed to replicate the analyses discussed here are supplemented. We give more information in the interactive tutorial (Tutorial: 2.1).

Basic Aspects of Sequence Comparison

The words and morphemes which constitute a language are best modeled as sequences of sounds. Sequences have information content not only from their elements (segments, whether these are phonemes, graphemes, or morphemes) but also via the order of the elements, a consistent comparison of sequences should account for both order and content. Alignments are a very general way to model differences between sequences. The major idea is to arrange two or more sequences in a matrix in such a way that similar or identical segments which occur in similar positions are placed in the same column of the matrix. If segments are missing in one sequence where no counterpart for a segment can be found, this is represented by a gap character, usually the dash-symbol (List, 2014b) Sequence alignments are crucial in biology, where they are used to compare protein and DNA sequences [START_REF] Durbin | Biological sequence analysis. Probabilistic models of proteins and nucleic acids[END_REF]. In historical linguistics, however, they are usually only implicitly employed, and initial attempts to arrange cognate words in a matrix go back to the early 20th century, as one can see from an early example based on Dixon and Kroeber (1919, 61) given in Figure 1. The authors themselves describe this way of representing sequence similarities as a 'columnar form' with the goal to 'bring out parallelisms that otherwise might fail to impress without detailed analysis and discussion' (Dixon and Kroeber, 1919, 55). The figure further shows how the data would look if they were rendered in contemporary alignment editors for historical linguistics [START_REF] List | A web-based interactive tool for creating, inspecting, editing, and publishing etymological datasets[END_REF]. Dixon and Kroeber's wording nicely expresses one of the major advantages of alignments: the transparency of homology assessments. Scholars often list long lists of cognate sets in the literature, claiming that all words are somehow related to each other, but if they do not list the alignments, it is often impossible, even for experts in the same language family, to understand where exactly the authors think that certain segments are similar.

Given that the inference of historically related words is not based on superficial word similarities but on recurrent systematic similarities, known as regular sound correspondences (Lass, 1997, 130), all judgments regarding the relatedness of words across languages directly rely on previously established sequence alignments (Fox, 1995, 67f). Alignment analyses not only increase the transparency of cognate judgments, they play a crucial role in substantiating these judgments in a first place. As can be seen from Table 1, similarities in cognate words in Sikaiana and Tahitian (data taken from [START_REF] Greenhill | The Austronesian Basic Vocabulary Database: From bioinformatics to lexomics[END_REF] are not based on the identity of sounds, but rather in the regularity of occurrence: whenever Sikaiana has a [k] and a [l], Tahitian has a [P] and a [r], respectively. Without alignments, we could not identify this similarity. Alignments are also at the core of all automatic sequence comparison approaches in historical linguistics, as we will see throughout this tutorial.

Cognate

Data Preparation

When searching for cognates across languages, we usually assume that our data are given in some kind of wordlist, a list in which a number of concepts is translated into various languages. How many concepts we select depends on the research question, and various concept lists and questionnaires, ranging from 40 (Brown et al., 2008) up to more than 1000 concepts [START_REF] Haspelmath | The Loanword Typology project and the World Loanword Database[END_REF] have been proposed so far (see the overview in List et al. 2016a). Our data example for this tutorial is based on the questionnaire of the ABVD project [START_REF] Greenhill | The Austronesian Basic Vocabulary Database: From bioinformatics to lexomics[END_REF], consisting of 210 concepts, which were translated into 31 different Polynesian languages. For closely related languages, such as those in the Polynesian family, this gives us enough information to infer regular correspondences automatically, although it is clear that for analyses of more distant language relationship the number of words per language may not be enough. The basic format used by LingPy is a tab-separated input file in which the first row serves as a header and defines the content of the rest of the rows. The very first column is reserved for numerical identifiers (which all need to be unique), while the order of the other columns is arbitrary, with specific columns being required, and others being optional. Essential columns which always must be provided are the language name (DOCULECT), the comparison concept (CONCEPT), the original transcription (IPA, FORM, or VALUE), and a space-segmented form of the transcription (TOKENS). Multiple synonyms for the same comparison concept in the same language should be written in separate rows and given a separate ID each. The data in the TOKENS-column should supply the transcriptions in space-segmented form, that is, instead of transcribing the Fila word for "all" as [eutSi], the software expects [e u tS i], which is internally interpreted as a sequence of five segments, namely [e], [u], [tS] and [i], with [tS] representing a voiceless post-alveolar affricate. If the TOKENS are not supplied to the algorithm, it will try to segment the data automatically, provided it can find the column IPA, which is otherwise not necessarily required to appear in the data. This however, may lead to various problems and unexpected behavior. We therefore urge all users of LingPy to make sure that they supply segmented data to the algorithm, making furthermore sure that they adhere to the general standards of transcription as they are represented in the International Phonetic Alphabet (IPA, IPA 1999). 1The format can be created manually by using either a text-editor, or a spreadsheet program that allows to export to tab-separated format. To a large degree, this input format is compatible with the one advocated by the Cross-Linguistic Data Formats (CLDF) initiative [START_REF] Forkel | CLDF. Cross-Linguistic Data Formats[END_REF], the main difference being that LingPy requires a flat single file with tabstop as separators, while CLDF supports multiple files. CLDF furthermore encourages the use of reference catalogs, such as Glottolog [START_REF] Hammarström | Glottolog[END_REF] or Concepticon [START_REF] List | Tossing coins: linguistic phylogenies and extensive synonymy. The Genealogical World of Phylogenetic Networks[END_REF], in order to increase the comparability of linguistic data across datasets, while LingPy is indifferent regarding the overall comparability as long as the data is internally consistent. As of version 2.6, LingPy offers routines to convert to and from CLDF (see Tutorial: 6.3). Figure 2 provides a basic summary on LingPy's input formats. More information on the format, and how it can be loaded into LingPy can be found in the supplemented interactive tutorial (Tutorial: 2.2-3).

Data quality and consistency plays a crucial role in the outcome of an automatic sequence comparison. As a general rule of thumb, we recommend all linguists who apply LingPy or other software to carry out automatic sequence comparison, to pay careful attention to what we call the SANE rules for data sanity: users should pay close attention to providing a sensible segmentation of their data, they should aim for high coverage, there should be no mixing of data from different sources (as this usually leads to inconsistent transcriptions and may also increase the number of synonyms), and synonyms should be evaded.2 These rules are summarized in Table 2. If the original data does not provide reliable phonetic transcriptions, as it was the case with the Polynesian data we use in this tutorial, orthography profiles [START_REF] Moran | The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles[END_REF] provide an easy way to refine transcriptions while at the same time segmenting the data, and the EDICTOR tool [START_REF] List | A web-based interactive tool for creating, inspecting, editing, and publishing etymological datasets[END_REF] offers convenient ways to check phonological inventories of all varieties (Tutorial: 2.4). Various coverage statistics can be computed in LingPy (see Tutorial: 2.5). Synonym statistics can also be easily computed (see Tutorial: 2.6). Users should always keep in mind that the quality of automatic sequence comparison crucially depends on the quality of the data submitted to the algorithms.

Automatic Phonetic Alignment

Alignments are crucial for historical language comparison to search for regular sound correspondence patterns, layers of borrowed words, or even use them as the starting point for linguistic reconstruction [START_REF] Fox | Linguistic reconstruction[END_REF]. A further important advantage is that they can be easily quantified, as we will see in Sec. 5. Since phonetic alignment is heavily influenced by bioinformatics, linguists using phonetic alignments should have some basic understanding of original algorithms and terminology. In this context, it is not necessarily important to understand how the algorithms work in detail. Instead, we think it is more important to learn (also by testing the algorithms with different data and parameters) how the different options from which users can choose influence the results. In the following, we will quickly introduce basic algorithms and concepts involving alignments in historical linguistics, and how they relate to alignments in bioinformatics. We will follow the traditional division into pairwise and multiple alignments (which result from the differences in complexity of the algorithms), and introduce the most important concepts and parameters that users should know when applying the methods.

Segmentation matters Example

Consistent phonetic transcription and segmentation are of crucial importance for automatic sequence comparison. Computers cannot guess whether multiple graphemes represent separate or single sound segments.

NOT: Fila [eutSi] "all" BUT: Fila [e u tS i] "all"

Aim for high coverage Example

Each language should have about the same number of words recorded across the wordlist. A high mutual coverage is important to allow algorithms to find enough information to determine the major signal.

NOT:

L 1 150, L 2 50 BUT: L 1 200, L 2 200
No mixing of data from different sources Example

Mixing data for the same language from various sources can lead to inconsistencies in the phonetic representation of words, even if they are all given in plain phonetic transcriptions. This will weaken the evidence for regular sound correspondences.

NOT:

L 1 =Source 1 +Source 2 BUT: L 1 =Source 1 , L 2 =Source 2

Evade synonyms Example

Languages often have multiple words for a given meaning. However, these can cause problems for sequence comparison and further downstream analyses like phylogenetic reconstruction. Having abundant synonyms in the data (e.g., 40 words for snow) will necessarily blur this signal.

NOT:

Tahitian [tai] 'sea', [moana]
'ocean'

BUT: Tahitian 'sea'

Pairwise Alignment Analyses

Pairwise alignment analyses in biology and computer science date back to the 1970s when scholars like [START_REF] Saul | A gene method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF], and [START_REF] Wagner | The string-to-string correction problem[END_REF] proposed algorithms based on the dynamic programming paradigm (Eddy, 2004b) which drastically reduced the computation time for the task of aligning two sequences with each other. The basic idea of the algorithms by Needleman & Wunsch and Wager & Fischer was to split the problem of finding one optimal alignment between two sequences into subparts and building the general solution from optimal alignments of smaller subsequences (Durbin et al., 2002, 19). 3The major parameters of pairwise alignment algorithms are the scoring function, the gap function and the alignment mode. The scoring function (Figure 3A, Tutorial: 3.1.1) determines how the matching of segments is penalized (or favored). In biology, it is well-known that amino-acid mutations follow certain transition preferences. The scoring function defines transition probabilities for each segment pair, and biologists make use of a large number of empirically derived scoring functions (Eddy, 2004a). In linguistics, on the other hand, we know well that certain sounds are more likely to occur in correspondence relations with each other [START_REF] Dolgopolsky | Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii s verojatnostej točky zrenija[END_REF][START_REF] Cecil | Sound correspondences in the world's languages[END_REF], and this knowledge can be used as a proxy when designing a scoring function in linguistics. While biology deals with small alphabets, in linguistics, the numbers of possible sounds in the languages of the world amounts to the thousands [START_REF] Moran | PHOIBLE Online[END_REF]. It is not practical to design a matrix containing and confronting all sounds with each other, and most algorithms reduce the size of the alphabet by lumping similar sounds into a set of pre-defined sound classes (Figure 3B, Tutorial: 3.1.2), for which transition probabilities can be efficiently

A Scoring Function

Determines how segments are compared with each other. Most generally represented as a symmetric matrix of transition probability scores. Scores between segments are usually given in logarithmic scale, with unexpected matches being smaller 0 and expected ones being greater 0. On the right, a short scoring matrix is shown, in which matches between vowels (a) and consonants (p, f, h) are not allowed and therefore assigned high negative values.

B Sound Classes

To reduce the huge number of sounds in phonetic alignment analyses, sounds are clustered into classes, assuming that correspondences inside a class are more likely than outside a class. Scoring functions are defined for sound classes, and sound sequences are converted to sound-class sequences before aligning them. On the right, it is shown, how Austral "you" can be rendered in different sound-class alphabets.

IPA ʔ oː ɢ u a Dolgo H V K V V SCA H U K Y A ASJP 7 o q u a

C Gap Function

Global Alignment

Ra'ivavae ʔ oː ɢ u a Mangareva k oː r u a Local Alignment Ra'ivavae (ʔoː) ɢ - - u a Mangareva - k oː r u a Semi-Global Alignment Ra'ivavae ʔ oː ɢ - - u a Mangareva - - k oː r u a
Figure 3: Basic parameters and concepts in pairwise alignment analyses defined, and which are then given as input for the alignment algorithm (List, 2012a;[START_REF] Holman | Explorations in automated lexicostatistics[END_REF]. The introduction of gaps in an alignment (Figure 3C, Tutorial: 3.1.3) can be seen as a special case of a scoring function. Instead of comparing two segments, the algorithm checks whether the introduction of a gap might be preferable. While gaps were originally given the same penalty, independent of the element with which they were compared, later studies showed that they could even be individually adjusted for each position in a sequence (Thompson et al., 1994). In linguistics, we know that sounds in certain positions (like initial consonants) are less likely to be lost and that new sounds tend to appear in specific contexts as well. In LingPy, position-specific gap penalties are derived from the prosodic profiles of sequences (List, 2012a). Prosodic profiles essentially reflect for each segment of a word whether it occurs in weak or strong prosodic positions, and the user-defined gap penalty is modified accordingly.

The alignment mode (Figure 3D, Tutorial: 3.1.4) basically determines which parts of individual sequences are compared. It is often impossible to compare two words entirely. Instead, we compare only certain parts of which we know that they are cognate, ignoring parts of which we know they are not. Since the same problem occurs when comparing the genes of diverse species in bioinformatics, biologists have long since been working on solutions, reflected in local alignment analyses [START_REF] Smith | Identification of common molecular subsequences[END_REF] in which only the most similar parts of sequences are compared (see Figure 3), while the rest is ignored, or semi-global alignments (Durbin et al., 2002, 26f).

What should users keep in mind when carrying out pairwise alignment analyses? As a rule of thumb, we recommend caution with local alignment analyses, since these can show unexpected behaviour. We also recommend care with custom-changes applied to the scoring or the gap function. Users often naively think that just "telling" the computers which sound changes they should assume would automatically lead to excellent alignments and at times complain that LingPy's standard algorithms fail to "detect certain obvious changes". However, alignments are no way to determine sound changes, they are at best a first step for linguistic reconstruction, and none of the algorithms which have been proposed so far models any kind of change. What is modeled instead are correspondences of sounds. It is difficult, if not impossible, to design an algorithm that aligns sequences of all kinds of diversity without proposing certain analyses which look awkward to a trained linguist. But remember: automatic sequence comparison is not there to replace the experts, but to help them.

Multiple Alignment Analyses in Linguistics

Pairwise alignments are crucial for most automatic cognate detection methods (List, 2014b;[START_REF] Jäger | Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual wordlists[END_REF]. In order to visualize cognate judgments, or to reconstruct proto-forms, however, pairwise alignments are not of great help, as most linguistic research applies to at least three if not more language varieties. It may sound counter-intuitive for readers not familiar with the major workflows for automatic cognate detection that pairwise alignments are mainly used to detect cognates across multiple languages, while multiple alignments are only later computed from existing cognate sets. Why not compute multiple alignments right from the beginning, as for example, proposed by [START_REF] Wheeler | Historical linguistics as a sequence optimization problem: the evolution and biogeography of Uto-Aztecan languages[END_REF]? The reason for this workflow is that alignments only make sense when representing cognate words -aligning unrelated words just leads to chance similarities.

For reasons of algorithmic complexity, pairwise alignment algorithms cannot simply be rewritten to account for an arbitrary number of sequences. In order to address this problem, early approaches used heuristics that approximate optimal multiple alignments [START_REF] Feng | Progressive sequence alignment as a prerequisite to correct phylogenetic trees[END_REF]Thompson et al., 1994). Most of these algorithms compute pairwise alignments in a first step and then combine the data in a pairwise fashion until all alignments are merged into one multiple alignment. The easiest way to do so is with help of a guide tree, a clustering of all sequences, which determines in which order sequences are merged with each other. This procedure is illustrated in Figure 4 for the alignment of four words for 'dog' in four Polynesian languages (Tutorial: 3.2).

Many extensions of the classical guide-tree heuristics have been proposed in the biological literature [START_REF] Notredame | T-Coffee[END_REF][START_REF] Morgenstern | Segment-based scores for pairwise and multiple sequence alignments[END_REF] and also adapted in linguistic appli-cations (List, 2012a;[START_REF] Jäger | Factoring lexical and phonetic phylogenetic characters from word lists[END_REF][START_REF] Hruschka | Detecting regular sound changes in linguistics as events of concerted evolution[END_REF]. While the fine-tuning of the algorithms may have a solid impact on multiple alignment analyses involving large sets of language varieties, as we often encounter in dialectology (compare the results of [START_REF] Prokić | Multiple sequence alignments in linguistics[END_REF]compared to List 2012a), the problem of erroneous alignments is much less pronounced when using smaller datasets and working in workflows which start from cognate detection and compute multiple alignments in a later stage. For these reasons, we refrain from giving more detailed descriptions of multiple sequence alignment here, but instead refer the readers to the literature that we quoted in this section and the examples in the interactive tutorial (Tutorial: 3.2).

ʔ u l i o ʔ iː l i - k o r i - k u ʔ i - ʔ u l i o ʔ iː l i - k o r i - ʔ u l i o ʔ iː l i -

Automatic Cognate Detection

As mentioned in the previous section, we can only meaningfully align words if we know they are historically related. In order to identify which words are related, however, we still need to compare them, and most automatic approaches, including the core methods available in LingPy, make use of pairwise sequence comparison techniques in order to find historically related words in linguistic datasets.

The basic workflow of most automatic cognate detection methods can be divided into two major steps. In the first step, pairwise alignment is used to align all words to retrieve distance scores for each pair of words in the data which occur in the same concept slot. If normalized, distance scores typically rank between 0 and 1, with 0 indicating the identity of the objects under comparison, and 1 indicating the maximal difference that can be encountered for the objects. In a second step, these distances are used to partition the words into presumable cognate sets using tree-or network-based partitioning algorithms. If we take five words for "neck" from our Polynesian data, Ra'ivavae [PagapoPa], Hawaiian [Pa:Pi:], Mangareva [kaki], Maori [ua], and Rapanui [Nao], for example, we can use the normalized edit distance to compare all four words with each other and write the results into a matrix, as shown in Table 5A. 4In Table 5B, we have carried out the same pairwise comparison, but this time with a different sequence comparison measure, following the sound-class based alignment method (SCA, List 2012a), in which the idea of sound classes is combined with sequence alignment methods. Table 5C shows the results retrieved from the LexStat method [START_REF] List | Automatic detection of cognates in multilingual wordlists[END_REF] from a previous search for regular sound correspondences. As can be seen, when comparing only the matrices, the methods generally differ in the way they handle sequence similarities. While NED has rather high scores which do not vary much from each other, SCA has consistently smaller scores with more variation, and LexStat has higher scores but more variation than NED.

In the second step, the matrix of word-pair distances is used to partition the words into cognate sets. For this, partitioning algorithms are used which split the words into cognate sets by trying to account as closely as possible for the pairwise distances of all words in a given meaning slot. Early approaches were based on a flat version of the well-known UPGMA algorithm [START_REF] Sokal | A statistical method for evaluating systematic relationships[END_REF], which is an agglomerative cluster algorithm that returns the data in form of a tree. The flat variant of UPGMA stops merging words into bigger subgroups once a user-defined threshold of average pairwise distances among the words in each cluster has been reached [START_REF] List | Automatic detection of cognates in multilingual wordlists[END_REF]. In order to show how algorithms arrive from pairwise distance scores in a matrix at cognate set partitions, we provide a concrete example in Figure 5. First, we have marked all cells in which the distance is smaller than the recommended threshold for each method (following [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]).5 Second, we added guide trees (reflecting the clustering proposed when applying the UPGMA algorithm without stopping it earlier) below each matrix, which show how the flat clustering algorithm proceeds. If the algorithm stops grouping words into a given cluster, because the average threshold has been reached, this is indicated by a dashed line, which indicates how the clustering would have proceeded if the algorithm had not stopped. Given that we know that of these five words in the figure, only Hawaiian [Pa:Pi:] and Mangareva [kaki] are cognate, we can immediately see that the LexStat algorithm is proposing the correct cognates in this example.

The performance of LexStat is not surprising, if we take its more sophisticated working procedure into account. LexStat uses global and local pairwise alignments to preanalyze the data,

A Pairwise Distance Calculation

In order to calculate distances between words, different methods can be used. A simple way is to count, how often two two aligned strings show different characters (edit distance). By dividing this number by the length of the alignment, we can normalize this distance so that it ranges between 0 and 1. More sophisticated ways consist in computing the alignment scores (which are rendered as similarities) and converting these to distance scores using a formula for normalization [START_REF] Downey | Computational feature-sensitive reconstruction of language relationships: developing the ALINE distance for comparative historical linguistic reconstruction[END_REF].

Hawaiian ʔ aː ʔ iː Mangareva k a k i 1 + 1 + 1 + 1 = 4 / 4 = 1.0 Mangareva k a k i Rapanui ŋ a - o 1 + 0 + 1 + 1 = 3 / 4 = 0.75

B Flat Clustering (Partitioning)

Algorithms for flat clustering (also called partitioning algorithms) take a matrix of pairwise distances between objects as input and return a partition of the objects in which each object is assigned to exactly one group. As a common notation, we can assign each object a numeric ID.

In this way we can easily compare to which degree different partition proposals for the same data differ.

Objects

Part. 1 Part. 2 Part. 3

A 1 1 1 B 1 2 1 C 2 2 1

C Permutation Test

It is not possible to use simple combinatorics to predict how many sound correspondences we would expect if all languages in our data were unrelated, since we do not know the underlying phonotactics of our languages. But we can compute the sound correspondences by shuffling our data multiple times, comparing words expressing different concepts, and counting how many correspondences we find for presumably unrelated word pairs. The table on the right shows correspondence distributions and the resulting LexStat score for some sounds in Sikaiana and Tuamotuan.

Sikaiana Tuamotuan Distributions

IPA Class IPA Class Att. Exp. Score

f, v B f, v B 10.0 1.1 7.32 f, v B k K 0 1.8 -3.33 h H h, ʔ H 28.0 8.4 5.69 h H k K 1.0 4.2 -3.33
Figure 6: Some basic concepts important for automatic cognate detection computing language-specific scoring functions [START_REF] List | Automatic detection of cognates in multilingual wordlists[END_REF], in which the similarity of the segments in a given language pair depends on the overall number of matches that could be found in the preprocessing stage. 6 In these scoring functions, sound segments for all languages in the data are represented as sound-class strings in a certain prosodic environment. This representation is useful to handle sound correspondences in different contexts (word-initial, word-final, etc.). For each language pair in the data, LexStat creates an attested and an expected distribution of sound correspondences. The attested distribution is computed for words with the same meaning and whose SCA-score is beyond a user-defined threshold. The expected distribution is computed by shuffling the word lists in such a way that words with different meanings are aligned and compared, with the users defining, how often word lists should be shuffled. This permutation test following suggestions by [START_REF] Kessler | The significance of word lists[END_REF] makes sure that the sound correspondences identified are unlikely to have arisen by chance. The distributions resulting from this permutation test are then combined in log-odds scores (see Figure 3 above) which can then in turn be used to re-align all words and determine their LexStat-distance.7 These scores are then again used to create a matrix of pairwise distances as shown in Figure 5. Our interactive tutorial shows how input data can be quickly checked before carrying out the (at times time-consuming) computa-tion (Tutorial: 4.1) and provides additional information regarding the differences between the cognate detection methods available in LingPy (Tutorial: 4.2) and illustrates in detail how each of them can be applied (Tutorial: 4.3). More recent approaches for cognate set partitioning use Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF], a community detection algorithm which uses random walks in a graph representation of the data to identify those clusters in which significantly more edges can be found inside a group than outside [START_REF] Newman | Finding community structure in networks using the eigenvectors of matrices[END_REF]. In order to model the data as a graph, words are represented as nodes and distances between words are represented as edges which are drawn between all nodes whose pairwise distance is beyond a user-defined threshold [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. Recent studies have shown that the graph-based partitioning approaches slightly outperform the flat agglomerative clustering procedures [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF](List et al., , 2016b;;[START_REF] Jäger | Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual wordlists[END_REF].

The advantage of LexStat and similar algorithms is that the algorithm infers a lot of information from the data itself. Instead of assuming language-independent distance scores which would be the same for all languages in the world, it essentially infers potential sound correspondences for each language pair in separation and uses this information to determine language-specific distance scores. The disadvantages of LexStat are the computation time and the dependency of data with high mutual coverage. It was designed in such a way that it refuses to cluster words into cognate sets if sufficient information is lacking. As a rule of thumb, derived from earlier studies (List, 2014a), we recommend applying LexStat only if the basic concept lists of a given dataset consists of at least 200 words, and if the mutual coverage of the data exceeds 150 word pairs. If the data is too sparse, such as, for example, in the ASJP database [START_REF] Wichmann | for the Science of Human History[END_REF] which gives maximally 40 concepts per language, we recommend to use either the SCA approach, or to turn to more sophisticated machine learning approaches [START_REF] Jäger | Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual wordlists[END_REF], which have been designed and trained in such a way that they yield their best scores on smaller datasets. In all cases, users should be aware that the algorithms may fail to detect certain cognates. The reasons range from rare sound correspondences which can trigger problematic alignments, via sparseness of data (especially when dealing with divergent languages), up to problems of morphological change which may easily confuse the algorithms as they may yield partial cognates and produce words that cannot be fully aligned anymore [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. In Table 3, we summarize some basic differences between the four methods mentioned so far. Once the words have been clustered into cognate sets, it is advisable to align all cognate words with each other, using a multiple alignment algorithm (Tutorial: 4.4). Alignments are useful in multiple ways. First, users can easily inspect them with web-based tools (Tutorial: 4.5). Second, they can be used to statistically investigate the identified sound correspondence patterns in the data (see Tutorial: 4.6). Both the manual and the automatic check of the results provided by automatic cognate detection methods are essential for a successful application of the methods. Only in this way users can either convince themselves that the results come close to their expectations or that something weird is going on. In the latter situation, we recommend that users thoroughly check to which degree they have conformed to our SANE rules for dataset sanity outlined above in Sec. 3. We also recommend that users do not change the different parameters too much, especially when applying LingPy the first time. Instead of trying to fix minor errors (such as obvious cognates missed or lookalikes marked as cognates) by changing parameters, it is often more efficient to correct errors manually. Although [START_REF] Rama | Are automatic methods for cognate detection good enough for phylogenetic reconstruction in historical linguistics[END_REF] report promising results on fully automated workflows, we do not recommend relying entirely on automatic cognate detection when it comes to phylogenetic reconstruction, since the algorithms tend to be too conservative, often missing valid cognates [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]), but we are confident enough to recommend it for initial data exploration, and for the preparsing of data in order to increase the efficiency of cognate annotation.

Evaluation

We have claimed above that automatic cognate detection had made great progress of late. We make this claim based on tests in which the performance of automatic cognate detection algorithms was compared with expert cognate judgments [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. There are different ways to compare expert cognate judgments with algorithmic ones. A very simple but nevertheless important first one is to compare different cognate judgments manually, by eyeballing the data. Even if one lacks expert cognate judgments for a given dataset, this may be useful, as it helps to get a quick impression on potential weaknesses of the algorithm used for a given analysis. Comparing cognate judgments in concrete, however, can be quite tedious, especially if the data are not presented in any ordered fashion. For this reason, LingPy offers a specific format that helps to compare different cognate judgments in a rather convenient way. How this comparison can be carried out is illustrated in Table 4, where we use the numeric annotation for cognate clusters as described in Figure 6 to compare expert cognate judgments for 'to turn' in eight East Polynesian language with those produced by edit distance, the SCA, and the LexStat method, respectively. As can be seen from the table, NED lumps all words into one cluster, obviously being confused by the similarity of the vowels across all words. SCA comes close to the expert annotation, but wrongly separates Hawaiian [wili] from the first cluster, obviously being confused by the dissimilarity of the sound classes. LexStat correctly identifies all cognates, obviously thanks to its initial search for language-specific similarities between sound classes. In the interactive tutorial, we show how users can compute similar overviews on differences in cognate detection analyses and conveniently compare them (Tutorial: 5.1).

While manual inspection is important it is also crucial to have an independent and objective score that tells us how well algorithms perform on a given dataset. Knowing the approximate performance may for example be useful when working with large datasets which would take too long to be analysed manually. If we annotate part of the data and see that the automatic methods perform well enough, we could then use the automatic approaches to carry out our analyses and report the expected accuracy in the study. Our recommended evaluation measure are B-Cubed scores [START_REF] Bagga | Entity-based cross-document coreferencing using the vector space model[END_REF][START_REF] Amigó | A comparison of extrinsic clustering evaluation metrics based on formal constraints[END_REF] which [START_REF] Hauer | Clustering semantically equivalent words into cognate sets in multilingual lists[END_REF] introduced as a measure to assess the quality of cognate detection algorithms compared to expert judgments.

The details of how B-Cubed scores are computed are explained elsewhere in detail [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF], and it would go beyond the scope of this tutorial to introduce them here again. For users interested in automatic cognate detection, but reluctant to learning in depth about evaluation measures in computational linguistics, it is sufficient to know how the B-Cubed scores should be interpreted. Usually the scores are given in three forms, which all rank between 0 and 1: precision, recall, and F-Score. Precision comes closest to the notion of true positives in historical linguistics. Recall is close to the notion of true negatives, accordingly, and the F-Score, the harmonic mean of precision and recall, can be seen as a general summary of the two, derived by the formula 2 P ×R P +R , where P is the precision and R is the recall. If the scores are high, this means the algorithms come close to the judgment of the experts, a score of 1.0 in precision and recall (and therefore also the F-Score) means that the results are 100% identical. In Table 5 we report the results achieved by four automatic cognate detection methods on a small subset of ten East Polynesian languages which we retrieved from our Polynesian dataset for illustrative purposes.8 In addition to the three methods reported already in Table 4, we added a random cognate detector which was sampled from 100 trials, and the Infomap version of the LexStat algorithm (LS-Infomap), in which the cognate set partitioning is carried out with the Infomap algorithm instead of the flat version of UPGMA (see Sec. 5 above). 9 NED shows a rather low precision compared to the other non-random approaches, indicating that it proposes many false positives (as we could see above in Table 4). On the other hand, its recall is very high, indicating that it does not miss many cognate sets. SCA obviously has a lot of problems with the data, performing worse than NED in general, with a rather low precision and recall. Both LexStat approaches largely outperform the other approaches in general, and especially the very high precision is very comforting, since it indicates that the algorithms do not propose too many false positives. That the Infomap version of LexStat performs better than LexStat with UPGMA is also shown in this comparison, although the differences are much lower than reported in [START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. It would be very interesting to compare the scores we achieved with general scores of levels of agreement among human experts. Unfortunately, no systematic study has been carried out so far. 10 The interactive tutorial gives a detailed introduction into the computation of B-Cubed scores with LingPy (Tutorial: 5.2).

Given the differences in the results regarding precision, recall, and generalized F-scores, it is obvious that the choice of the algorithm to use depends on the task at hand. If users plan to invest much time into manual data correction, having an algorithm with high recall that identifies most of the cognates in the data while proposing a couple of erroneous ones is probably the best choice. Users can achieve this by choosing a high threshold or an algorithm such as NED, which yields a rather high recall in form of the B-Cubed scores, at least for the Polynesian data in our sample. In other cases, however, when user-correction is not feasible because of the size of the dataset, it is useful to choose low thresholds or generally conservative algorithms with high B-Cubed precision in order to minimize the amount of false positives.

Data Export

LingPy provides direct export of the cognate judgments to the Nexus format [START_REF] Maddison | NEXUS: an extensible file format for systematic information[END_REF], allowing users to analyse automated cognate judgments with popular packages for phylogenetic reconstruction, such as SplitsTree [START_REF] Daniel | SplitsTree: analyzing and visualizing evolutionary data[END_REF], MrBayes [START_REF] Ronquist | Bayesian phylogenetic analysis using MrBayes[END_REF], or BEAST 2 (Bouckaert et al. 2014, see Tutorial: 6.1). If phylogenetic trees are computed from distance matrices, both matrices and trees can be written to file and further imported in software packages for tree manipulation and visualization (Tutorial: 6.2). In addition, data can be exported (and also be imported) to the wordlist format proposed by the CLDF initiative [START_REF] Forkel | CLDF. Cross-Linguistic Data Formats[END_REF], which is intended to serve as a generic format for data sharing in cross-linguistic studies (Tutorial: 6.3).

Concluding Remarks

In this tutorial we have tried to show how automatic sequence comparison in LingPy can be carried out. Given the scope of this paper, it is clear that we could not cover all aspects of alignments and cognate detection in all due detail. We hope, however, that we could help readers understand what they should keep in mind if they want to carry out sequence comparison analyses on their own. Additional questions will be answered in an interactive tutorial supplemented with this paper, and for deeper questions going beyond the pure application of sequence comparison algorithms -such as additional analyses (e.g., the minimal lateral network method for borrowing detection, [START_REF] List | Networks of lexical borrowing and lateral gene transfer in language and genome evolution[END_REF], or an algorithm for the detection of partial cognates, List et al. 2016b), routines for plotting and data visualization, or customization routines for user-defined sound-class models. -we recommend the readers to turn to the extensive online documentation of the LingPy package (http://lingpy.org). We have emphasized multiple times throughout this paper that the algorithms cannot and should not be used to replace trained linguists. Instead, they should be seen as a useful complement to the large arsenal of methods for historical language comparison which can help experts to derive initial hypotheses on cognacy, speed up tedious the annotation of cognate sets, and increase their efficiency and consistency.

Figure 1 :

 1 Figure 1: Early alignment example for translational equivalents of "nail" in aboriginal languages of California (based on Dixon and Kroeber 1919), contrasted with a "modern" representation using the EDICTOR tool (List 2017).

Figure 4 :

 4 Figure 4: Combining words for 'dog' in Samoan, Hawaiian, North Marquesan, and Anuta into a multiple alignment with help of a guide tree

Table 1 :

 1 Recurring similarities in Sikaiana and Tahitian

	List Sikaiana louse Tahitian louse Sikaiana dog Tahitian dog Sikaiana skin Tahitian skin	Alignment k u ʔ u k u ʔ u k i ʔ i	t t l r l r	u u iː iː i i	Correspondences Sik. Tah. Freq. k ʔ 3 x u u 3 x t t 1 x r l 2 x i(ː) i(ː) 3 x

Table 2 :

 2 SANE Rules for Data Sanity

 Gaps are introduced in alignments if a given element cannot be matched with any other element. Gap penalties can be defined globally, by assigning the same penalty to any segment of a given sequence, or individually, based on the context in which the segment occurs. In phonetic alignment analyses, individual gap penalties can be derived from prosodic profiles which reflect the relative sonority of each segment in a sequence. On the right, it is shown, how individual gap penalties are derived for the Austral "you".Alignment modes determine how sequences are compared. Global alignment compares the sequences entirely, assuming that they are indeed comparable in all their parts. Local alignment seeks to find the most similar subsequence of an alignment and deliberately strips off prefixes or suffixes. Semi-global alignment can only ignore prefixes or suffixes in one of the sequences. If the other sequence also has a suffix, it needs to strip it off. On the right, it is shown, how the different alignment modes account for the phonetic alignment of "you (dual)" in Ra'ivavae and Mangareva. While the local and the semi-global alignment fail to identify the regular sound correspondence of glottal stop and [k], the global alignment correctly matches words. This does not mean, however, that global alignment always yields the best solutions. Unaligned parts are shaded gray.

	IPA	ʔ	oː	ɢ	u	a
	Sonority	1	7	1	7	7
	Prostring	#	V	C	V	>
	Weights	2.0	1.5	1.75 1.3	0.8
	Gap-Scores -4	-3	-3.5 -2.6 -1.6
	D Alignment Mode					

 which derives distances Contrasting distances retrieved from three different alignment approaches for Polynesian words for "neck". Cells shaded in brown indicate that distances are smaller than the default threshold for the algorithms. The first column of each table indicates the cognate decisions resulting from the matrix and the threshold. How these cognate decisions are determined is further illustrated in the trees below each matrix. They show how a flat cluster algorithm which stops once a certain threshold is reached can be used to partition the words into cognate sets.

	Ra'. Haw. Man. Mao. Rap. Ra'ivavae ʔaɢapoʔa 1 0.00 0.75 0.88 0.88 0.75 Hawaiian ʔaːʔiː 1 0.75 0.00 1.00 1.00 1.00 Mangareva kaki 2 0.88 1.00 0.00 0.75 0.75 Maori ua 3 0.88 1.00 0.75 0.00 0.67 Rapanui 3 0.75 1.00 0.75 0.67 0.00 ŋao A NED Ra'ivavae 1 Hawaiian	Ra'. Haw. Man. Mao. Rap. 1 0.00 0.49 0.59 0.83 0.62 2 0.49 0.00 0.67 0.73 0.79 3 0.59 0.67 0.00 0.73 0.39 4 0.83 0.73 0.73 0.00 0.47 3 0.62 0.79 0.39 0.47 0.00 B SCA 1 Ra'ivavae 2 Hawaiian	Ra'. Haw. Man. Mao. Rap. 1 0.00 0.78 0.77 0.98 0.79 2 0.78 0.00 0.51 1.00 0.94 2 0.77 0.51 0.00 1.00 0.74 3 0.98 1.00 1.00 0.00 1.00 4 0.79 0.94 0.74 1.00 0.00 C LexStat 3 Maori 4 Rapanui
	3 2 Mangareva Maori Rapanui	Mangareva Rapanui 4 Maori 3	1Ra'ivavae Hawaiian 2 Mangareva
	Figure 5:		

Table 3 :

 3 Comparing different algorithms for cognate detection implemented in LingPy with respect to some fundamental parameters of sequence comparison.

	Method	Scoring Function	Sound Classes Gap Function	Alignment Mode Partitioning
	NED	identity	-	-	global	flat UPGMA
	SCA	language-independent SCA-model	prosodic profiles global	flat UPGMA
	LexStat	language-specific	SCA-model	prosodic profiles semi-global	flat UPGMA
	LexStat-Infomap language-specific	SCA-model	prosodic profiles semi-global	Infomap

Table 4 :

 4 first Comparing automatic cognate detection methods with expert cognate judgments for words for 'to turn' in East Polynesian languages.

	Doculect	Form	Expert NED SCA LexStat
	Ra'ivavae	ta:viåi 4580 1	1	1	1
	Hawaiian	wili 5835	1	1	4	1
	North-Marquesan kaviPi 3575 1	1	1	1
	Rapanui	taviri 1838	1	1	1	1
	Hawaiian	huli 5834	2	1	2	2
	Maori	huri 936	2	1	2	2
	Sikaiana	tahuli 3283 2	1	2	2
	Mangareva	ti:rori 2101 3	1	3	3

Table 5 :

 5 B-Cubed scores for different cognate detection algorithms compared against a test set of East Polynesian languages

		RANDOM NED SCA LexStat LS-Infomap
	Precision 0.47	0.81 0.88 0.95	0.94
	Recall	0.73	0.96 0.84 0.92	0.93
	F-Score	0.57	0.88 0.86 0.93	0.94

Linguists are often skeptical when they hear that LingPy requires explicit phonetic transcriptions, and often, they are even reluctant to interpret their data along the lines of the IPA. But in order to give the algorithms a fair chance to interpret the data in the same way in which they would be interpreted by linguists, a general practice for phonetic transcriptions is indispensable, and the IPA is the most widely employed transcription system.

We know well how difficult it is to conform to the latter point. What is clear is that tossing coins to select one out of many synonyms, as originally suggested by[START_REF] Gudschinsky | The ABC's of lexicostatistics (glottochronology)[END_REF], will have a deleterious impact on any analysis[START_REF] List | Tossing coins: linguistic phylogenies and extensive synonymy. The Genealogical World of Phylogenetic Networks[END_REF]. In order to avoid synonyms in qualitative work, we recommend to thoroughly review the guidelines in[START_REF] Kassian | The Swadesh wordlist. An attempt at semantic specification[END_REF].

It would go beyond the scope of this tutorial to explain these famous algorithms in all detail. Instead we refer the readers toKondrak (2002, 20-65) as well as an interactive demo of the Wagner-Fischer algorithm in[START_REF] List | Wagner-Fischer Demo[END_REF].

In the normalized edit distance (NED), the edit distance between two strings is further normalized by dividing it by the length of the longer string. In this way, we can control for the length of the compared sequences.

The threshold for the algorithms are: NED: 0.75, SCA: 0.45, LexStat: 0.6.

For an example, consider the matches between Sikaiana and Tahitian shown in Table1. Although Sikaiana [k] is different from [P], they are similar from a language-specific perspective, since they recur across many aligned cognate sets between both languages. When comparing [k] in English with [P] in German, however, they are not similar, as we won't find a cognate set in which those two sounds correspond.

As alignment algorithms yield similarity scores as a default, the similarity scores are converted to distance scores with help of the formula proposed by[START_REF] Downey | Computational feature-sensitive reconstruction of language relationships: developing the ALINE distance for comparative historical linguistic reconstruction[END_REF].

We have not fully explored the practical limitations in terms of number of languages or number of concepts when comparing languages with LingPy.[START_REF] Jäger | Using support vector machines and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual wordlists[END_REF] and[START_REF] Rama | Fast and unsupervised methods for multilingual cognate clustering[END_REF] report successful applications of LingPy's cognate detection algorithms for as many as 100 languages. Although we think that the number might in fact be even higher, based on tests we carried out ourselves on 150 and more languages, we recommend to be

careful when analysing too many languages, as algorithmic performance may drastically drop when investigation samples that are too large.9 The threshold for LexStat-Infomap was set to 0.55, following[START_REF] List | The potential of automatic word comparison for historical linguistics[END_REF]. The random cognate annotation algorithm was designed in such a way that it has the tendency to lump cognates to larger clusters.10 The only study known to us addressing these problems is[START_REF] Geisler | Beautiful trees on unstable ground. Notes on the data problem in lexicostatistics[END_REF], but it has, unfortunately, not been sufficiently quantified.

Acknowledgments

This research was supported by the ERC Starting Grant "Computer-Assisted Language Comparison" (Grant CALC 715618, JML, TT) and the Australian Research Council's Centre of Excellence for the Dynamics of Language (Australian National University, Grant CE140100041, SJG). As part of the GlottoBank project (http://glottobank.org), this work was further supported by the Department of Linguistic and Cultural Evolution of the Max Planck Institute for the Science of Human History (Jena) and the Royal Society of New Zealand (Marsden Fund, Grant 13-UOA-121). We are grateful to three anonymous reviewers for challenging and constructive advice. We thank Russell Gray for encouraging and helpful advice during the preparation of this project, and to Christoph Rzymski for helpful comments on an earlier version of this draft.

Supplementary Material

The supplementary material contains the code, the data, and the extended interactive tutorial in form of an Ipython (Jupyter) notebook and as HTML document and can be accessed via GitHub (https://github.com/lingpy/lingpy-tutorial), Zenodo (https: //zenodo.org/record/1252231), and the Open Science Framework (https://osf. io/xc7tj/). Updates to this tutorial will appear on GitHub and released to Zenodo. The tutorial can also be accessed online (http://htmlpreview.github.io/?https:// github.com/lingpy/lingpy-tutorial/blob/master/notebook.html).