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Abstract

Regularized nonlinear acceleration (RNA) is a generic extrapolation scheme for
optimization methods, with marginal computational overhead. It aims to improve
convergence using only the iterates of simple iterative algorithms. However, so
far its application to optimization was theoretically limited to gradient descent
and other single-step algorithms. Here, we adapt RNA to a much broader setting
including stochastic gradient with momentum and Nesterov’s fast gradient. We use
it to train deep neural networks, and empirically observe that extrapolated networks
are more accurate, especially in the early iterations. A straightforward application
of our algorithm when training ResNet-152 on ImageNet produces a top-1 test error
of 20.88%, improving by 0.8% the reference classification pipeline. Furthermore,
the code runs offline in this case, so it never negatively affects performance.

1 Introduction

Stochastic gradient descent is a popular and effective method to train neural networks [11, 4]. A lot
of efforts have been invested in accelerating stochastic algorithms, in particular by deriving methods
that adapt to the structure of the problem. Algorithms such as RMSProp [18] or Adam [10] are
examples of direct modifications of gradient descent, and estimate some statistical momentum during
optimization to speed up convergence. Unfortunately, these methods can fail to converge on some
simple problems [14], and may fail to achieve state-of-the-art test accuracy on image classification
problems. Other techniques have been developed to improve convergence speed or accuracy, such as
adaptive batch-size for distributed SGD [7], or quasi-second-order methods which improve the rate
of convergence of stochastic algorithms [1]. However, only a limited number of settings are covered
by such techniques, which are not compatible with state-of-the-art architectures.

The approach we propose here is completely different as our method is built on top of existing
optimization algorithms. Classical algorithms typically retain only the last iterate or the average [13]
of iterates as their best estimate of the optimum, throwing away all the information contained in the
converging sequence of iterates. As it is highly wasteful from a statistical perspective, extrapolation
schemes estimate the optimum of an optimization problem using a weighted average of the last
iterates produced by an algorithm, where the weights depend on the iterates.

For example, Aitken-∆2 or Wynn’s ε-algorithm (a good survey can be found in [2]), provide an
improved estimate of the limit of a sequence using the last few iterates, and these methods have
been extended to the vector case, where they are known as Anderson acceleration [19], minimal
polynomial extrapolation [3] or reduced rank extrapolation [5].

Network ensembling [20] can also be seen as combining several neural networks to improve conver-
gence. However, contrary to our strategy, ensembling consists in training different networks from
different starting points and then averaging the predictions or the parameters. Averaging the weights
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of successive different neural networks from SGD iterations has been studied in [9], and our method
can also be seen as an extension of this averaging idea for SGD, but with non-uniform adaptive
weights.

Recent results by [16] adapted classical extrapolation techniques such as Aitken’s ∆2 and minimal
polynomial extrapolation to design regularized extrapolation schemes accelerating convergence of
basic methods such as gradient descent. They showed in particular that using only iterates from a
very basic fixed-step gradient descent, these extrapolation algorithms produced solutions reaching
the optimal convergence rate of [12], without any modification to the original algorithm. However,
these results were limited to single-step algorithms such as gradient descent, thus excluding the much
faster momentum-based methods such as SGD with momentum or Nesterov’s algorithm. Our results
here seek to accelerate these accelerated methods.

Overall, nonlinear acceleration has marginal computational complexity. On convex problems, the
online version (which modifies iterations) is competitive with L-BFGS in our experiments (see
Figure 1), and is robust to misspecified strong convexity parameters. On neural network training
problems, the offline version improves both the test accuracy of early iterations, as well as the final
accuracy (see Figures 2 and 4), with only minor modifications of existing learning pipelines (see
Appendix C). It never hurts performance as it runs on top of the algorithm and does not affect
iterations. Finally, our scheme produces smoother learning curves. When training neural networks,
we observe in our experiments in Figure 3 that the convergence speedup produced by acceleration
is much more significant in early iterations, which means it could serve for “rapid prototyping” of
network architectures, with significant computational savings. 1

2 Regularized Nonlinear Acceleration

2.1 Vector extrapolation methods

Vector extrapolation methods look at the sequence {x0, . . . , xk} produced by an iterative algorithm,
and try to find its limit x∗. Typically, they assume xk was produced by a fixed-point iteration with
function g as follow,

xk+1 = g(xk). (1)

In the case of optimization methods, x∗ is the function minimizer and g usually corresponds to a
gradient step. In most cases, convergence analysis bounds are based on a Taylor approximation of g,
and produce only local rates.

Recently, [16] showed global rates of convergence of regularized versions of Anderson acceleration.
These results show in particular that, without regularization, classical extrapolation methods are
highly unstable when applied to the iterates produced by optimization algorithms. However, the
results hold only for sequences generated by (1) where g has a symmetric Jacobian.

To give a bit of intuition on extrapolation, let f be a (potentially) noisy objective function. We
are interested in finding its minimizer x∗ ∈ Rd. To find this point, we typically use an iterative
optimization algorithm and after N iterations obtain a sequence of points {xi} = {x0, x1, . . . , xN}
converging to the critical point x∗ where the gradient is zero. Vector extrapolation algorithms find
linear combinations of the iterates {xi} with coefficients ci to minimize the norm of the gradient, i.e.,

xextr =

N∑
i=1

cixi where c ≈ arg min
c

∥∥∥∥∥∇f
(

N∑
i=1

cixi

)∥∥∥∥∥
2

. (2)

However, this problem is non-linear and hard to solve. The difference between extrapolation
algorithms resides in the way they approximate the solution to (2).

1The source code for the numerical experiments can be found on GitHub: https://github.com/
windows7lover/RegularizedNonlinearAcceleration
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2.2 Regularized Nonlinear Acceleration (RNA) Algorithm.

In this paper, instead of considering the iterations produced by (1), we will look at a pair of sequences
{xk}, {yk} generated by {

xk = g(yk−1)

yk =
∑k
i=1 α

(k)
i xi +

∑k−1
i=0 β

(k)
i yi,

(3)

where both xk, yk converge to x∗. In this section, we will develop an extrapolation scheme for (3).

Algorithm 1 Regularized Nonlinear Acceleration (Complexity: O(N2d) if N � d)
Input: Sequences of length N from (3): {y0, . . . , yN−1}, {x1, . . . , xN}. Regularization param. λ.

Compute matrix of residues R = [x1 − y0, . . . , xN − yN−1].
Solve the linear system (RTR+ λI)z = 1.
Normalize c = z/(1T z).

Output: The extrapolated point xNextr =
∑N
i=1 cixi.

Intuition. In this section, we show how to design the RNA algorithm for the special case where g(x)
is the gradient step with fixed step size h,

g(x) = x− h∇f(x). (4)

The RNA algorithm approximates (2) by assuming that the function is approximately quadratic in the
neighbourhood of {xi}. This is a common assumption in optimization for the design of second-order
methods, such as the Newton’s method or BFGS, and implies that∇f is approximately linear, so∥∥∥∥∥∇f

(
N∑
i=1

cixi

)∥∥∥∥∥
2

≈

∥∥∥∥∥
N∑
i=1

ci∇f(xi)

∥∥∥∥∥
2

.

Since we apply g on yk−1 in (3), in view of (4) we have access to the gradient∇f(yk−1) instead of
∇f(xk). The optimal coefficients can be recovered by solving

arg min
c

∥∥∑N
i=1 ci∇f(yi−1)

∥∥ s.t.
∑N
i=1 ci = 1, (5)

where the constraint on c ensures convergence [16]. Even if we do not have an explicit access to the
gradient, we can recover it from the differences between sequences {xk} and {yk} since

xk − yk−1 = xk − g(xk) = −h∇f(yk−1).

Writing R = [∇f(y0), ∇f(y1), . . .], we can solve (5) explicitly, with

c =
(RTR)−11

1T (RTR)−11
or again (RTR)z = 1 then c =

z∑N
i=1 zi

.

Omitting the regularization, these are the two main steps of the RNA Algorithm 1. In Appendix A we
give a geometric interpretation of the algorithm.

Because the gradients are increasingly colinear as the algorithm converges, the matrix of gradients R
quickly becomes ill-conditioned. Without regularization, solving (5) is highly unstable. We illustrate
the impact of regularization on the conditioning in Figure 6 (in Appendix A), when optimizing a
quadratic function. Even for this simple problem, the extrapolation coefficients ci are large and
oscillate between highly negative and positive values, and regularization dampens this behaviour.

Complexity. Roughly speaking, the RNA algorithm assumes that iterates follow a vector auto-
regressive process of the form (xk+1 − yk+1) = A(xk − yk) for some matrix A [16], which is true
when using gradient descent on quadratic functions, and holds asymptotically otherwise, provided
some regularity conditions. The output of Algorithm 1 could be achieved by identifying the matrix A,
recovering the quadratic function, then computing its minimum explicitly. Of course, the RNA
algorithm does not perform these steps explicitly, so its complexity is bounded by N2d where d is
the dimension of the iterates and N the number of iterates used in estimating the optimum. In our
experiments, N is typically equal to 5, so we can consider Algorithm 1 to be linear O(d). In practice,
computing the extrapolated solution on a CPU is faster than a single forward pass on a mini-batch.
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Stochastic gradients. In the stochastic case, the concept of “iteration” is not as straightforward since
one stochastic gradient is usually very noisy and non-informative, while it is not feasible to compute
a full gradient due to problem scales. In this paper, we consider one iteration being one pass on the
data with the stochastic algorithm and estimate the gradient on the fly.

Note that the extrapolated point xextr in Algorithm 1 is computed only from the two sequences {xk}
and {yk}. Its computation does not require the function g, or access to the data set. Therefore, RNA
can be used offline. On the other hand, we will see in the next subsection that it is possible to use
RNA “online”: we combine the extrapolation with the original algorithm. This often improves the
observed rate of convergence.

Offline versus online acceleration. We now discuss several strategies for implementing RNA. The
most basic one uses it offline: we simply generate an auxiliary sequence xNextr without interfering with
the original algorithm. The main advantage of this strategy is to be at least as good as the vanilla
algorithm, since we keep the sequences {xk} and {yk} unchanged. In addition, we can apply it after
the N iterations of (3), since we only need the sequences and nothing else.

However, since xNextr is a better estimate of the optimum, restarting iterations from the extrapolated
point can potentially improve convergence. The experiments in [16] restart the gradient method after
a fixed number of iterations, to produce sequences that converge faster than classical accelerated
methods in most cases.

Momentum acceleration. Concretely, we extend the results of [16] to handle iterative algorithms of
the form (3) where g is a nonlinear iteration with a symmetric Jacobian. It allows push the approach
a bit further, using the extrapolated point online, at each step. This was not possible in the scheme
detailed in [16] because, as many other extrapolation schemes, [16] requires iterations of the form
of (1).

In fact, the class of algorithms following (3) contains most common optimization schemes such as
gradient descent with line-search or averaging and momentum-based methods. In fact, picking an
algorithm is exactly equivalent to choosing values for α(k)

i and β(k)
i .

For example, in the case of Nesterov’s method for L−smooth and convex functions, we get

g(x) = x− 1

L
∇f(x), α

(k)
k = 1 +

k − 2

k + 1
, α

(k)
k−1 = −k − 2

k + 1
, βi≤k−1 = α

(k)
i≤k−2 = 0, (6)

while for the gradient method with momentum to train neural networks we obtain

g(x) = x− h∇f(x), α
(k)
k = 1, β

(k)
k−1 = m, β

(k)
k−2 = −m, βi≤k−3 = α

(k)
i≤k−1 = 0, (7)

where h is the learning rate and m the momentum parameter. Running N iterations of (3) produces
two sequences of iterates {y0, . . . , yN−1} and {x1, . . . , xN} converging to some minimizer x∗ at a
certain rate. In comparison, the setting of [16] corresponds to the special case of (3) where yk = xk,
i.e., αk = 1 and all other coefficients are zero. In (6) and (7) we assume g(x) constant over time, and
a variable learning rate is captured by the α(k)

i and βki instead.

Because the extrapolation in (2) is a linear combination of previous iterates, it matches exactly the
description of yk in (3), with αki = ci and RNA can thus be directly injected in the algorithmic
scheme in (3) as follows,

xk = g(yk−1)

yk = x
(k)
extr = RNA({y0, . . . , yk−1}, {x1, . . . , xk}), λ).

. (8)

This trick potentially improves the previous version of RNA with “restarts”, since we benefit from
acceleration more often. We will see that this online version often improves significantly the rate of
convergence of gradient and Nesterov methods for convex losses.

3 Optimal Convergence Rate for Linear Mappings

We now analyze the rate of convergence of the extrapolation step produced by Algorithm 1 as a
function of the length of the sequences {xk} and {yk}. We restrict our result to the specific case
when g is the linear mapping

g(x) = G(x− x∗) + x∗. (9)
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This holds asymptotically if g is smooth enough. The matrix G should be symmetric, and its norm
is strictly bounded by one, i.e., ‖G‖2 ≤ 1 − κ < 1. Typically, 1−κ is the rate of convergence
of the “vanilla” algorithm, where κ is usually linked to the condition number of the problem. The
assumptions are the same as [16] for the linear case, except now the linear mapping g is coupled with
an extra linear combination step in (3) which allows us to handle momentum terms or accelerated
methods.

3.1 Convergence Bound

We now prove that the RNA algorithm applied to the iterates in (3) reaches an optimal rate of
convergence when g is a linear mapping and when {xk} and {yk} are generated by (3). The theorem
is valid for any choice of αNi , β

N
i (up to some mild assumptions), i.e., for any algorithm which can

be written as (3).

To prove the convergence, we will bound the residue ‖xk − g(xk)‖, which corresponds to the norm
of the gradient when g is a gradient step. This is a classical convergence bound for algorithms applied
to non-convex problems. In particular, the following Theorem shows the rate of convergence to a
critical point x∗ where ‖∇f(x∗)‖ = 0.

Because a critical point is not guaranteed to be a local minimum, the extrapolation can converge to a
saddle point or a local maximum if (3) is doing so. However, if (3) converges to a minimum, then
Algorithm 1 too.

Theorem 3.1. Let {x1, . . . , xN} and {y0, . . . , yN−1} be the two sequences produced by running
N iterations of the optimization algorithm in (3), where g(x) is the linear mapping (9). Assume G is
symmetric with ‖G‖ ≤ 1− κ < 1 and α(N)

i , β(N)
i are arbitrary coefficients such that

α
(N)
N 6= 0 and

∑N
i=1α

(N)
i +

∑N−1
i=0 β

(N)
i = 1.

Let x(N)
extr be the output of the RNA Algorithm 1 using these sequences. When λ = 0, the rate of

convergence of the residue ‖g(x
(N)
extr )− x(N)

extr ‖2 is optimal and bounded by

‖g(x
(N)
extr )− x(N)

extr ‖2 ≤ 2
2ξN

1 + ξ2N
‖g(x0)− x0‖2, where ξ = 1−

√
κ

1+
√
κ

(10)

≤ 2(1−
√
κ)N‖g(x0)− x0‖2.

In particular, when g(x) is a simple gradient step on a quadratic function f , this means

‖∇f(x
(N)
extr )‖ ≤ 2(1−

√
κ)N‖∇f(x0)‖2.

Proof. For clarity, we remove the superscript (N) in the scope of this proof, and assume βi = 0
without loss of generality. By definition,

xextr =

N∑
i=1

cixi , so g(xextr)− xextr = (G− I)
( N∑
i=1

cixi − x∗
)
.

Since ‖G‖2 ≤ (1− κ) < 1, we can bound ‖G− I‖2 ≤ 2, hence if c is constructed as in Algorithm 1∥∥∥∥∥(G− I)

(
N∑
i=1

cixi − x∗
)∥∥∥∥∥ ≤ 2

∥∥∥∥∥
N∑
i=1

cixi − x∗
∥∥∥∥∥ ,

= 2 min
1T c=1

∥∥∥ N∑
i=1

ci(xi − x∗)
∥∥∥. (11)

We will now show by induction that all terms xk − x∗ are computed using matrix polynomials in
G of degree exactly k satisfying p(1) = 1 applied to the vector (x0 − x∗). This holds trivially for
k = 1. Assume now this is true for k with

xk − x∗ = pk(G)(x0 − x∗), p(1) = 1, and deg(pk) = k.
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In this case,

yk =

k∑
i=1

αipi(G)(x0 − x∗) = qk(G)(x0 − x∗)

where qk is a polynomial of degree ≤ k. In fact, we can show that deg(qk) = k. Indeed,

deg(qk) = deg
( k∑
i=1

αipi
)

= deg(αkpk)

because by the induction hypothesis, deg(pi) < k when i < k. Since αk 6= 0 by assumption,

deg(qk) = deg(pk) = k.

We will now show that qk(1) = 1. Indeed,

qk(1) =

k∑
i=1

αipi(1) =

k∑
i=1

αi = 1,

where the first equality is obtained by the induction hypothesis, and the second using our assumption
on the coefficients αi. Finally,

xk+1 − x∗ = Gqk(G)(x0 − x∗) = pk+1(x)(x0 − x∗)
which means pk+1(x) = xqk(x). Clearly,

deg(pk+1) = 1 + deg qk = k + 1 and pk+1(1) = 1qk(1) = 1,

which proves the induction. This means that the family of polynomial {pi} generates PN , the
subspace of polynomial of degree ≤ N . We can thus rewrite (11) using polynomials,

min
1T c=1

∥∥∥ N∑
i=1

ci(xi − x∗)
∥∥∥ = min

c:1T c=1

∥∥∥ N∑
i=1

cipi(G)(x0 − x∗)
∥∥∥

= min
p∈PN

∥∥∥p(G)(x0 − x∗)
∥∥∥.

The explicit solution involves rescaled Chebyshev polynomials described in [6], whose optimal value
is exactly (10), as stated, e.g., in Proposition 2.2 of [16].

More concretely, this last result allows us to apply RNA to stochastic gradient algorithms featuring a
momentum term. It also allows using a full extrapolation step at each iteration of Nesterov’s method,
instead of the simple momentum term in the classical formulation in this method. As we will observe
in the numerical section, this yields significant computation gains in both cases.

The previous result also shows that our method is adaptive. Whatever the algorithm we use for
optimizing a quadratic function, if the iteration g(x) converges, the coefficients αi and βi sum to
one and we have αN non-zero, we obtain an optimal rate of convergence. For example, when the
strong convexity parameter is unknown, Nesterov’s method (6) has a rate of convergence in O(1/k2)
on a quadratic functions, even if the function is strongly convex. By post-processing the iterates,
we transform this method into an optimal algorithm, automatically adapting to the strong convexity
constant, hence extrapolation adaptively recovers the optimal rate of convergence even when a bad
momentum parameter is used.

The setting of Theorem 3.1 assumes we store indefinitely the points xk and yk. In practice we only
keep a constant window, but it still improves the convergence speed by a constant factor (see Section
4 and Figure 1 for more details). The link between the theorem and a windowed version of RNA is
similar to the one between BFGS, whose optimal convergence is also proved for quadratics, and its
limited memory version L-BFGS used in practice.

Because it applies only to quadratics, our result is essentially asymptotic. However, an argument
similar to that detailed in [15] would also give us non asymptotic, albeit less explicit, bounds.
Similarly, the bound looks only at the non-regularized version, but it is possible to extend it using
the solution of the regularized Chebyshev polynomial ([15], Proposition 3.3). Overall, as for the
theoretical bounds on BFGS, these global bounds on RNA performance are highly conservative and
do not faithfully reflect its numerical efficiency.
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4 Numerical Experiments

The following numerical experiments seek to highlight the benefits of RNA in its offline and online
versions when applied to the gradient method (with or without momentum term). Since the complexity
grows quadratically with the number N of points in the sequences {xi} and {yi}, we will use RNA
with a fixed window size (N = 5 for stochastic and N = 10 for convex problems) in all these
experiments. These values are sufficiently large to show a significant improvement in the rate of
convergence, but can of course be fine-tuned. For simplicity, we fix λ = 10−8 · ‖RTR‖2.

4.1 Logistic Regression
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Figure 1: Logistic loss on Madelon [8]. Left: offline acceleration on gradient and Nesterov algorithms,
both with backtracking line-search. Right: online RNA algorithm performs as well as L-BFGS
methods, though RNA does not use line-search and requires 10 times less memory.

We solve a classical regression problem on the Madelon-UCI dataset [8] using the logistic loss with
`2 regularization. The regularization has been set such that the condition number of the function is
equal to 106. We compare to standard algorithms such as the simple gradient scheme, Nesterov’s
method for smooth and strongly convex objectives [12] and L-BFGS. For the step length parameter,
we used a backtracking line-search strategy. We compare these methods with their offline RNA
accelerated counterparts, as well as with the online version of RNA described in (8). Results are
reported in Figure 1.

On Figure 1, we observe that offline RNA improves the convergence speed of gradient descent and
Nesterov’s method. However, the improvement is only a constant factor: the curves are shifted
but have the same slope. Meanwhile, the online version greatly improves the rate of convergence,
transforming the basic gradient method into an optimal algorithm competitive with line-search
L-BFGS.

In opposition to most quasi-newton methods (such as L-BFGS), RNA does not require a Wolfe line-
search to be convergent. This is because the algorithm is stabilized with a Tikhonov regularization.
In addition, the regularization in a way controls the impact of the noise in the iterates, making the
RNA algorithm suitable for stochastic iterations [15].

4.2 Image Classification

We now describe experiments with CNNs for image classification. Because one stochastic iteration is
not informative due to the noise, we refer to xk as the model parameters (including batch normalization
statistics) corresponding to the final iteration of the epoch k. In this case, we do not have an explicit
access to “(xk − yk−1)”, so we will estimate it during the stochastic steps. Let y(t)k be the parameters
of the network at epoch k after t stochastic iterations, and x(t+1)

k be the parameters after one stochastic
gradient step. Then, for a data set of size D,

xk − yk−1 ≈
1

D

D∑
t=1

(x
(t+1)
k − y(t)k ) = −h 1

D

D∑
t=1

∇f(y
(t)
k ).
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This means the matrix R in Algorithm 1 will be the matrix of (estimated) gradients as described
in (5). In Appendix C, we provide a pseudo-code implementation of RNA algorithm.

Because the learning curve is highly dependent on the learning rate schedule, we decided to use a
linearly decaying learning rate to better illustrate the benefits of acceleration, even if acceleration also
works with a constant learning rate schedule (see [17] and Figure 3). In all our experiments, until
epoch T , the learning rate decreases linearly from an initial value h0 to a final value hT , with

hk = h0 + (k/T )(hT − h0). (12)

We then continue the optimization during 10 additional epochs using hT to stabilize the curve. We
summarize the parameters used for the optimization in Table 1.

CIFAR10. CIFAR-10 is a standard 10-class image dataset comprising 5 · 104 training samples and
104 samples for testing. Except for the linear learning rate schedule above, we follow the standard
practice for CIFAR-10. We applied the standard augmentation via padding of 4 pixels. We trained the
networks VGG19, ResNet-18 and DenseNet121 during 100 epochs (T = 90) with a weight decay of
5 · 10−4.

We observe in Figure 7 in Appendix B that the online version does not perform as well as in the
convex case. More surprisingly, it is outperformed by its offline version (Figure 2) which computes
the iterates on the side.

In fact, the offline experiments detailed in Figure 2 exhibit much more significant gains. It produces a
similar test accuracy, and the offline version converges faster than SGD, especially for early iterations.
We reported speedup factors to reach a certain tolerance in Tables 2, 3 and 4. This suggests that the
offline version of RNA is a good candidate for training neural networks, as it converges faster while
guaranteeing performance at least as good as the reference algorithm. Additional figures of networks
VGG19 and DenseNet121 can be found in Appendix B, Figure 8.

ImageNet. Here, we apply the RNA algorithm to the standard ImageNet dataset. We trained the
networks during 90 epochs (T = 80) with a weight decay of 10−4. We reported the test accuracy on
Figure 4 for the networks ResNet-50 and ResNet-152. We only tested the offline version of RNA
here, because in previous experiments it gives better result than its online counterpart.

We again observe that the offline version of Algorithm 1 improves the convergence speed of SGD
with and without momentum. In addition, we show a substantial improvement of the accuracy over
the non-accelerated baseline. The improvement in the accuracy is reported in Figure 5. Interestingly,
the resulting training loss is smoother than its non accelerated counterpart, which indicates a noise
reduction.

5 Conclusion

We extend the Regularized Nonlinear Acceleration scheme in [16] to cover algorithms such as
stochastic gradient methods with momentum and Nesterov’s method. As the original scheme, it has
optimal complexity on convex quadratic problems, but it is also amenable to non-convex optimization
problems such as deep CNNs training.

As an online algorithm, RNA substantially improves the convergence rate of Nesterov’s algorithm on
convex problems such as logistic regression. On the other hand, when applied offline to CNN training,
it improves both accuracy and convergence speed. This could be prove useful for fast prototyping of
neural networks architectures.
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h0 hT momentum
SGD and Online RNA (8) 1.0 0.01 0
SGD + momentum 0.1 0.001 0.9

Table 1: Parameters used in (12) to generate the learning rate for optimizers. We used the same
setting for their accelerated version with RNA.
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Figure 2: Resnet-18 on Cifar10, 100 epochs. SGD with and without momentum, and their off-line
accelerated versions with a window size 5. Left: training loss. Right: top-1 validation error.
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Figure 3: Prototyping networks: acceleration (bottom) gives a smoother convergence, producing a
clearer ranking of architectures, earlier (flat learning rate). Right plot zooms on left one.

Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 68 (0.87×) 59 21 (2.81×) 16 (3.69×)
2.0% 78 (0.99×) 77 47 (1.64×) 40 (1.93×)
1.0% 82 (1.00×) 82 67 (1.22×) 59 (1.39×)
0.5% 84 (1.02×) 86 75 (1.15×) 63 (1.37×)
0.2% 86 (1.13×) 97 84 (1.15×) 85 (1.14×)

Table 2: Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with
a Resnet18, using several algorithms (best accuracy is 5% here). The speed-up compared to the
SGD+momentum baseline is in parenthesis.
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Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 69 (0.87×) 60 26 (2.31×) 24 (2.50×)
2.0% 83 (0.99×) 82 52 (1.58×) 45 (1.82×)
1.0% 84 (1.02×) 86 71 (1.21×) 60 (1.43×)
0.5% 89 (0.98×) 87 73 (1.19×) 62 (1.40×)
0.2% N/A 90 99 (0.90×) 63 (1.43×)

Table 3: Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with
VGG19. Here, the best accuracy is 6.54%

Tolerance SGD SGD+momentum SGD+RNA SGD+momentum+RNA
5.0% 65 (0.86×) 56 22 (2.55×) 13 (4.31×)
2.0% 80 (0.98×) 78 45 (1.73×) 38 (2.05×)
1.0% 83 (1.00×) 83 60 (1.38×) 56 (1.48×)
0.5% 87 (0.99×) 86 80 (1.08×) 66 (1.30×)
0.2% 92 (1.01×) 93 86 (1.08×) 75 (1.24×)

Table 4: Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with
DenseNet121. Here, the best accuracy is 4.62%.
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Figure 4: Training a Resnet-52 (left) and ResNet-152 (right) on validation ImageNet for 90 epochs
using SGD with and without momentum, and their off-line accelerated versions.

Pytorch SGD SGD+mom. SGD+RNA SGD+mom.+RNA
Resnet-50 23.85 23.808 23.346 23.412 (-0.396%) 22.914 (-0.432%)
Resnet-152 21.69 N/A 21.294 N/A 20.884 (-0.410%)

Table 5: Best validation top-1 error percentage on ImageNet. In parenthesis the improvement due to
RNA. The first column corresponds to the performance of Pytorch pre-trained models.
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Appendices
A Geometric interpretation of RNA

Figure 5: Regularized nonlinear acceleration
can be viewed as finding the center of mass (in
red). The gradients represent the forces and the
green point is the real critical point x∗, whose
gradient is equal to zero.
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Figure 6: Condition number of the matrix
(RTR + λI) and the norm of the coefficient
c produced by Algorithm 1. In plain line the
non-regularized version, and in dashed-line the
regularized version, with λ = ‖RTR‖22 · 10−8.

We can give a geometric interpretation of the RNA algorithm. In view of (5), we can link its output
with the center of mass of an object, whose forces are represented with gradients. In Figure 5 we
show the trajectory of a gradient + momentum algorithm, where the extrapolated point is shown in
red while the real solution x∗ is in green.

B Additional Figures
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Figure 7: Training a Resnet-18 on Cifar10 for 100 epochs with SGD and the online RNA (8). On the
left, the evolution of the loss value. On the right, the error percentage on the testing set. We see the
online version does not improve the performance of SGD. This may be explained by the presence of
the batchnorm module. The presence of a statistical estimation while the optimization is running is
not taken into account in the iteration model (9), and thus makes theoretical analysis more complex.
In addition, because we are optimizing a nonconvex function, and the online version interferes with
the optimization scheme, the final performance is not guaranteed to be as good as the non-accelerated
version of the optimizer.
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Figure 8: Training a VGG19 (top) and a DenseNet-121 (bottom) on Cifar10 for 100 epochs. SGD
with and without momentum, and their off-line accelerated versions with a window size of 5. On the
left, the evolution of the loss value. On the right, the error percentage on the testing set.
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C Pseudo-code for Standard Deep Learning Pipelines with RNA

Listing 1: Pseudo-code for RNA

class Rna: # This class combines the optimizer with RNA

def __init__(self,network,optimizer ,N,reg):
# − network: DNN to train
# − optimizer is, for example, an instance of SGD
# − N is the length of sequences x_k and y_k
# − reg is the regularization parameter lambda

self.network = network
self.K = K
self.optimizer = optimizer
self.reg = reg
self.history_net = [] # Store the seq. x_k
self.history_grad = [] # Store the seq. x_k−y_{k−1}
self.running_grad = [] # Estimation of current grad.
self.grad_counter = 0

def step(self):
# Perform a standard step of the optimizer
self.optimizer.step()

# Update the gradient estimate (running average)
self.grad_counter += 1
coeff = 1.0/self.grad_counter
self.running_grad ∗= 1−coeff
self.running_grad += coeff∗self.network.grad

def store(self):
# This function stores the network and the current
# gradient estimate, then resets the running average

self.history_net.append(self.network.copy())
self.history_grad.append(self.running_grad);
self.running_grad ∗= 0; # reset estimation

if(len(self.history_grad)>self.N):
self.history_grad.pop() # Length(x_k−y_{k−1}) <= N

if(len(self.history_net)>self.N):
self.history_net.pop() # Length(x_k) <= N

def accelerate(self,extrapolated_network):
# Straightforward application of RNA algorithm

R = to_matrix(self.history_grad) # Get Matrix R
RR = matrix_mult(R.transpose(),R) # compute R^T∗R
RR = RR/norm(RR) # Normalization
RR = RR + self.reg∗eye(self.N) # \ell−2 regularization

# Solve (RR+lambda I)z = 1, then c = z/sum(z)
z = solve_system(RR,ones(self.N,1))
c = z/sum(z)

# Combine previous networks with coefficients c
x_extr = matrix_mult(to_matrix(self.history_net),c)
extrapolated_network.load_params(x_extr)
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Listing 2: Pseudo-code for training a DNN

import ∗packages∗

(train_loader ,validation_loader) = getDataset(...) # e.g., CIFAR10
network = getNetwork(...) # DNN, e.g., ResNet−18
criterion = getLoss(...) # Loss, e.g., cross−entropy
optimizer = getOptimizer(...) # Optimizer , e.g., SGD with momentum

# Plug optimizer into RNA with default parameters
rna_optimizer = Rna(network, optimizer , N=5, reg=1e−8)

# Offline version: we create a new network on the side
network_extr = network.copy()

for epoch in range(0, max_epoch):

# Train for one epoch
for (inputs, targets) in train_loader:

optimizer.zero_grad()

# Forward pass
predictions = network.forward(inputs)
loss.forward(predictions , targets)

# Backward pass + optimizer step
loss.backward()
rna_optimizer.step()

# Store the gradient estimate, then recover extrapolation
rna_optimizer.store()
rna_optimizer.accelerate(network_extr)

# For the online acceleration version, uncomment this line
# network.load_params(network_extr.params)

# Test on the validation set
correct = 0
total = 0
for (inputs, targets) in val_loader:

predictions = network_extr(inputs)
correct += sum(predictions == targets)
total += length(targets)

print("Top−1 score: %f", 100.0∗correct/total)

# In comparison to standard script, we modified optimizer into
# rna_optimizer and added 4 lines of code:
# rna_optimizer = Rna(network, optimizer , N=5, reg=1e−8)
# network_extr = network.copy()
# rna_optimizer.store()
# rna_optimizer.accelerate(network_extr)
#
##################################################################
# Except those lines, no−adhoc modifications of the existing #
# Pytorch (or any similar) code have been applied. #
##################################################################

15


	Introduction
	Regularized Nonlinear Acceleration
	Vector extrapolation methods
	Regularized Nonlinear Acceleration (RNA) Algorithm.

	Optimal Convergence Rate for Linear Mappings
	Convergence Bound

	Numerical Experiments
	Logistic Regression
	Image Classification

	Conclusion
	Appendices
	Geometric interpretation of RNA
	Additional Figures
	Pseudo-code for Standard Deep Learning Pipelines with RNA

