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Nonlinear Acceleration of Deep Neural Networks

Regularized nonlinear acceleration (RNA) is a generic extrapolation scheme for optimization methods, with marginal computational overhead. It aims to improve convergence using only the iterates of simple iterative algorithms. However, so far its application to optimization was theoretically limited to gradient descent and other single-step algorithms. Here, we adapt RNA to a much broader setting including stochastic gradient with momentum and Nesterov's fast gradient. We use it to train deep neural networks, and empirically observe that extrapolated networks are more accurate, especially in the early iterations. A straightforward application of our algorithm when training ResNet-152 on ImageNet produces a top-1 test error of 20.88%, improving by 0.8% the reference classification pipeline. Furthermore, the code runs offline in this case, so it never negatively affects performance.

Introduction

Stochastic gradient descent is a popular and effective method to train neural networks [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF][START_REF] Deng | Recent advances in deep learning for speech research at microsoft[END_REF]. A lot of efforts have been invested in accelerating stochastic algorithms, in particular by deriving methods that adapt to the structure of the problem. Algorithms such as RMSProp [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF] or Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] are examples of direct modifications of gradient descent, and estimate some statistical momentum during optimization to speed up convergence. Unfortunately, these methods can fail to converge on some simple problems [START_REF] Reddi | On the convergence of adam and beyond[END_REF], and may fail to achieve state-of-the-art test accuracy on image classification problems. Other techniques have been developed to improve convergence speed or accuracy, such as adaptive batch-size for distributed SGD [START_REF] Goyal | Accurate, large minibatch sgd: training imagenet in 1 hour[END_REF], or quasi-second-order methods which improve the rate of convergence of stochastic algorithms [START_REF] Bollapragada | A progressive batching L-BFGS method for machine learning[END_REF]. However, only a limited number of settings are covered by such techniques, which are not compatible with state-of-the-art architectures.

The approach we propose here is completely different as our method is built on top of existing optimization algorithms. Classical algorithms typically retain only the last iterate or the average [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] of iterates as their best estimate of the optimum, throwing away all the information contained in the converging sequence of iterates. As it is highly wasteful from a statistical perspective, extrapolation schemes estimate the optimum of an optimization problem using a weighted average of the last iterates produced by an algorithm, where the weights depend on the iterates.

For example, Aitken-∆ 2 or Wynn's ε-algorithm (a good survey can be found in [START_REF] Brezinski | Extrapolation methods: theory and practice[END_REF]), provide an improved estimate of the limit of a sequence using the last few iterates, and these methods have been extended to the vector case, where they are known as Anderson acceleration [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF], minimal polynomial extrapolation [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF] or reduced rank extrapolation [START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF].

Network ensembling [START_REF] Zhou | Ensembling neural networks: many could be better than all[END_REF] can also be seen as combining several neural networks to improve convergence. However, contrary to our strategy, ensembling consists in training different networks from different starting points and then averaging the predictions or the parameters. Averaging the weights of successive different neural networks from SGD iterations has been studied in [START_REF] Izmailov | Averaging weights leads to wider optima and better generalization[END_REF], and our method can also be seen as an extension of this averaging idea for SGD, but with non-uniform adaptive weights.

Recent results by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] adapted classical extrapolation techniques such as Aitken's ∆ 2 and minimal polynomial extrapolation to design regularized extrapolation schemes accelerating convergence of basic methods such as gradient descent. They showed in particular that using only iterates from a very basic fixed-step gradient descent, these extrapolation algorithms produced solutions reaching the optimal convergence rate of [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], without any modification to the original algorithm. However, these results were limited to single-step algorithms such as gradient descent, thus excluding the much faster momentum-based methods such as SGD with momentum or Nesterov's algorithm. Our results here seek to accelerate these accelerated methods.

Overall, nonlinear acceleration has marginal computational complexity. On convex problems, the online version (which modifies iterations) is competitive with L-BFGS in our experiments (see Figure 1), and is robust to misspecified strong convexity parameters. On neural network training problems, the offline version improves both the test accuracy of early iterations, as well as the final accuracy (see Figures 2 and4), with only minor modifications of existing learning pipelines (see Appendix C). It never hurts performance as it runs on top of the algorithm and does not affect iterations. Finally, our scheme produces smoother learning curves. When training neural networks, we observe in our experiments in Figure 3 that the convergence speedup produced by acceleration is much more significant in early iterations, which means it could serve for "rapid prototyping" of network architectures, with significant computational savings. 12 Regularized Nonlinear Acceleration

Vector extrapolation methods

Vector extrapolation methods look at the sequence {x 0 , . . . , x k } produced by an iterative algorithm, and try to find its limit x * . Typically, they assume x k was produced by a fixed-point iteration with function g as follow,

x k+1 = g(x k ). (1) 
In the case of optimization methods, x * is the function minimizer and g usually corresponds to a gradient step. In most cases, convergence analysis bounds are based on a Taylor approximation of g, and produce only local rates.

Recently, [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] showed global rates of convergence of regularized versions of Anderson acceleration. These results show in particular that, without regularization, classical extrapolation methods are highly unstable when applied to the iterates produced by optimization algorithms. However, the results hold only for sequences generated by [START_REF] Bollapragada | A progressive batching L-BFGS method for machine learning[END_REF] where g has a symmetric Jacobian.

To give a bit of intuition on extrapolation, let f be a (potentially) noisy objective function. We are interested in finding its minimizer x * ∈ R d . To find this point, we typically use an iterative optimization algorithm and after N iterations obtain a sequence of points {x i } = {x 0 , x 1 , . . . , x N } converging to the critical point x * where the gradient is zero. Vector extrapolation algorithms find linear combinations of the iterates {x i } with coefficients c i to minimize the norm of the gradient, i.e.,

x extr = N i=1 c i x i where c ≈ arg min c ∇f N i=1 c i x i 2 . (2) 
However, this problem is non-linear and hard to solve. The difference between extrapolation algorithms resides in the way they approximate the solution to (2).

Regularized Nonlinear Acceleration (RNA) Algorithm.

In this paper, instead of considering the iterations produced by (1), we will look at a pair of sequences {x k }, {y k } generated by x k = g(y k-1 )

y k = k i=1 α (k) i x i + k-1 i=0 β (k) i y i , (3) 
where both x k , y k converge to x * . In this section, we will develop an extrapolation scheme for (3). Compute matrix of residues

R = [x 1 -y 0 , . . . , x N -y N -1 ]. Solve the linear system (R T R + λI)z = 1. Normalize c = z/(1 T z). Output: The extrapolated point x N extr = N i=1 c i x i .
Intuition. In this section, we show how to design the RNA algorithm for the special case where g(x)

is the gradient step with fixed step size h,

g(x) = x -h∇f (x). (4) 
The RNA algorithm approximates (2) by assuming that the function is approximately quadratic in the neighbourhood of {x i }. This is a common assumption in optimization for the design of second-order methods, such as the Newton's method or BFGS, and implies that ∇f is approximately linear, so

∇f N i=1 c i x i 2 ≈ N i=1 c i ∇f (x i ) 2 .
Since we apply g on y k-1 in (3), in view of (4) we have access to the gradient ∇f (y k-1 ) instead of ∇f (x k ). The optimal coefficients can be recovered by solving

arg min c N i=1 c i ∇f (y i-1 ) s.t. N i=1 c i = 1, (5) 
where the constraint on c ensures convergence [START_REF] Scieur | Regularized nonlinear acceleration[END_REF]. Even if we do not have an explicit access to the gradient, we can recover it from the differences between sequences {x k } and {y k } since

x k -y k-1 = x k -g(x k ) = -h∇f (y k-1 ).
Writing R = [∇f (y 0 ), ∇f (y 1 ), . . .], we can solve (5) explicitly, with

c = (R T R) -1 1 1 T (R T R) -1 1 or again (R T R)z = 1 then c = z N i=1 z i .
Omitting the regularization, these are the two main steps of the RNA Algorithm 1. In Appendix A we give a geometric interpretation of the algorithm.

Because the gradients are increasingly colinear as the algorithm converges, the matrix of gradients R quickly becomes ill-conditioned. Without regularization, solving (5) is highly unstable. We illustrate the impact of regularization on the conditioning in Figure 6 (in Appendix A), when optimizing a quadratic function. Even for this simple problem, the extrapolation coefficients c i are large and oscillate between highly negative and positive values, and regularization dampens this behaviour.

Complexity. Roughly speaking, the RNA algorithm assumes that iterates follow a vector autoregressive process of the form (x k+1 -y k+1 ) = A(x k -y k ) for some matrix A [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], which is true when using gradient descent on quadratic functions, and holds asymptotically otherwise, provided some regularity conditions. The output of Algorithm 1 could be achieved by identifying the matrix A, recovering the quadratic function, then computing its minimum explicitly. Of course, the RNA algorithm does not perform these steps explicitly, so its complexity is bounded by N 2 d where d is the dimension of the iterates and N the number of iterates used in estimating the optimum. In our experiments, N is typically equal to 5, so we can consider Algorithm 1 to be linear O(d). In practice, computing the extrapolated solution on a CPU is faster than a single forward pass on a mini-batch.

Stochastic gradients. In the stochastic case, the concept of "iteration" is not as straightforward since one stochastic gradient is usually very noisy and non-informative, while it is not feasible to compute a full gradient due to problem scales. In this paper, we consider one iteration being one pass on the data with the stochastic algorithm and estimate the gradient on the fly.

Note that the extrapolated point x extr in Algorithm 1 is computed only from the two sequences {x k } and {y k }. Its computation does not require the function g, or access to the data set. Therefore, RNA can be used offline. On the other hand, we will see in the next subsection that it is possible to use RNA "online": we combine the extrapolation with the original algorithm. This often improves the observed rate of convergence.

Offline versus online acceleration. We now discuss several strategies for implementing RNA. The most basic one uses it offline: we simply generate an auxiliary sequence x N extr without interfering with the original algorithm. The main advantage of this strategy is to be at least as good as the vanilla algorithm, since we keep the sequences {x k } and {y k } unchanged. In addition, we can apply it after the N iterations of (3), since we only need the sequences and nothing else.

However, since x N extr is a better estimate of the optimum, restarting iterations from the extrapolated point can potentially improve convergence. The experiments in [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] restart the gradient method after a fixed number of iterations, to produce sequences that converge faster than classical accelerated methods in most cases.

Momentum acceleration. Concretely, we extend the results of [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] to handle iterative algorithms of the form (3) where g is a nonlinear iteration with a symmetric Jacobian. It allows push the approach a bit further, using the extrapolated point online, at each step. This was not possible in the scheme detailed in [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] because, as many other extrapolation schemes, [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] requires iterations of the form of (1).

In fact, the class of algorithms following (3) contains most common optimization schemes such as gradient descent with line-search or averaging and momentum-based methods. In fact, picking an algorithm is exactly equivalent to choosing values for α

(k) i and β (k) i .
For example, in the case of Nesterov's method for L-smooth and convex functions, we get

g(x) = x - 1 L ∇f (x), α (k) 
k = 1 + k -2 k + 1 , α (k) k-1 = - k -2 k + 1 , β i≤k-1 = α (k) i≤k-2 = 0, (6) 
while for the gradient method with momentum to train neural networks we obtain

g(x) = x -h∇f (x), α (k) k = 1, β (k) k-1 = m, β (k) k-2 = -m, β i≤k-3 = α (k)
i≤k-1 = 0, (7) where h is the learning rate and m the momentum parameter. Running N iterations of (3) produces two sequences of iterates {y 0 , . . . , y N -1 } and {x 1 , . . . , x N } converging to some minimizer x * at a certain rate. In comparison, the setting of [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] corresponds to the special case of (3) where y k = x k , i.e., α k = 1 and all other coefficients are zero. In ( 6) and ( 7) we assume g(x) constant over time, and a variable learning rate is captured by the α (k) i and β k i instead. Because the extrapolation in ( 2) is a linear combination of previous iterates, it matches exactly the description of y k in (3), with α k i = c i and RNA can thus be directly injected in the algorithmic scheme in (3) as follows,

x k = g(y k-1 ) y k = x (k) extr = RNA({y 0 , . . . , y k-1 }, {x 1 , . . . , x k }), λ). . ( 8 
)
This trick potentially improves the previous version of RNA with "restarts", since we benefit from acceleration more often. We will see that this online version often improves significantly the rate of convergence of gradient and Nesterov methods for convex losses.

Optimal Convergence Rate for Linear Mappings

We now analyze the rate of convergence of the extrapolation step produced by Algorithm 1 as a function of the length of the sequences {x k } and {y k }. We restrict our result to the specific case when g is the linear mapping

g(x) = G(x -x * ) + x * . (9) 
This holds asymptotically if g is smooth enough. The matrix G should be symmetric, and its norm is strictly bounded by one, i.e., G 2 ≤ 1 -κ < 1. Typically, 1 -κ is the rate of convergence of the "vanilla" algorithm, where κ is usually linked to the condition number of the problem. The assumptions are the same as [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] for the linear case, except now the linear mapping g is coupled with an extra linear combination step in (3) which allows us to handle momentum terms or accelerated methods.

Convergence Bound

We now prove that the RNA algorithm applied to the iterates in (3) reaches an optimal rate of convergence when g is a linear mapping and when {x k } and {y k } are generated by [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF]. The theorem is valid for any choice of α N i , β N i (up to some mild assumptions), i.e., for any algorithm which can be written as (3).

To prove the convergence, we will bound the residue x k -g(x k ) , which corresponds to the norm of the gradient when g is a gradient step. This is a classical convergence bound for algorithms applied to non-convex problems. In particular, the following Theorem shows the rate of convergence to a critical point x * where ∇f (x * ) = 0.

Because a critical point is not guaranteed to be a local minimum, the extrapolation can converge to a saddle point or a local maximum if (3) is doing so. However, if (3) converges to a minimum, then Algorithm 1 too. Theorem 3.1. Let {x 1 , . . . , x N } and {y 0 , . . . , y N -1 } be the two sequences produced by running N iterations of the optimization algorithm in (3), where g(x) is the linear mapping [START_REF] Izmailov | Averaging weights leads to wider optima and better generalization[END_REF]. Assume G is symmetric with G ≤ 1 -κ < 1 and α

(N ) i , β (N ) i are arbitrary coefficients such that α (N ) N = 0 and N i=1 α (N ) i + N -1 i=0 β (N ) i = 1. Let x (N )
extr be the output of the RNA Algorithm 1 using these sequences. When λ = 0, the rate of convergence of the residue g(x

(N ) extr ) -x (N )
extr 2 is optimal and bounded by g(x

(N ) extr ) -x (N ) extr 2 ≤ 2 2ξ N 1 + ξ 2N g(x 0 ) -x 0 2 , where ξ = 1- √ κ 1+ √ κ (10) ≤ 2(1 - √ κ) N g(x 0 ) -x 0 2 .
In particular, when g(x) is a simple gradient step on a quadratic function f , this means ∇f (x

(N ) extr ) ≤ 2(1 - √ κ) N ∇f (x 0 ) 2 .
Proof. For clarity, we remove the superscript (N ) in the scope of this proof, and assume β i = 0 without loss of generality. By definition,

x extr = N i=1 c i x i , so g(x extr ) -x extr = (G -I) N i=1 c i x i -x * . Since G 2 ≤ (1 -κ) < 1, we can bound G -I 2 ≤ 2, hence if c is constructed as in Algorithm 1 (G -I) N i=1 c i x i -x * ≤ 2 N i=1 c i x i -x * , = 2 min 1 T c=1 N i=1 c i (x i -x * ) . (11) 
We will now show by induction that all terms x k -x * are computed using matrix polynomials in G of degree exactly k satisfying p(1) = 1 applied to the vector (x 0 -x * ). This holds trivially for k = 1. Assume now this is true for k with

x k -x * = p k (G)(x 0 -x * ), p(1) = 1, and deg(p k ) = k.
In this case,

y k = k i=1 α i p i (G)(x 0 -x * ) = q k (G)(x 0 -x * )
where q k is a polynomial of degree ≤ k. In fact, we can show that deg(q k ) = k. Indeed,

deg(q k ) = deg k i=1 α i p i = deg(α k p k )
because by the induction hypothesis, deg(p i ) < k when i < k. Since α k = 0 by assumption,

deg(q k ) = deg(p k ) = k.
We will now show that q k (1) = 1. Indeed,

q k (1) = k i=1 α i p i (1) = k i=1 α i = 1,
where the first equality is obtained by the induction hypothesis, and the second using our assumption on the coefficients α i . Finally,

x k+1 -x * = Gq k (G)(x 0 -x * ) = p k+1 (x)(x 0 -x * )
which means p k+1 (x) = xq k (x). Clearly,

deg(p k+1 ) = 1 + deg q k = k + 1 and p k+1 (1) = 1q k (1) = 1,
which proves the induction. This means that the family of polynomial {p i } generates P N , the subspace of polynomial of degree ≤ N . We can thus rewrite (11) using polynomials,

min 1 T c=1 N i=1 c i (x i -x * ) = min c:1 T c=1 N i=1 c i p i (G)(x 0 -x * ) = min p∈P N p(G)(x 0 -x * ) .
The explicit solution involves rescaled Chebyshev polynomials described in [START_REF] Golub | Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order richardson iterative methods[END_REF], whose optimal value is exactly [START_REF] Kingma | A method for stochastic optimization[END_REF], as stated, e.g., in Proposition 2.2 of [START_REF] Scieur | Regularized nonlinear acceleration[END_REF].

More concretely, this last result allows us to apply RNA to stochastic gradient algorithms featuring a momentum term. It also allows using a full extrapolation step at each iteration of Nesterov's method, instead of the simple momentum term in the classical formulation in this method. As we will observe in the numerical section, this yields significant computation gains in both cases.

The previous result also shows that our method is adaptive. Whatever the algorithm we use for optimizing a quadratic function, if the iteration g(x) converges, the coefficients α i and β i sum to one and we have α N non-zero, we obtain an optimal rate of convergence. For example, when the strong convexity parameter is unknown, Nesterov's method (6) has a rate of convergence in O(1/k 2 ) on a quadratic functions, even if the function is strongly convex. By post-processing the iterates, we transform this method into an optimal algorithm, automatically adapting to the strong convexity constant, hence extrapolation adaptively recovers the optimal rate of convergence even when a bad momentum parameter is used.

The setting of Theorem 3.1 assumes we store indefinitely the points x k and y k . In practice we only keep a constant window, but it still improves the convergence speed by a constant factor (see Section 4 and Figure 1 for more details). The link between the theorem and a windowed version of RNA is similar to the one between BFGS, whose optimal convergence is also proved for quadratics, and its limited memory version L-BFGS used in practice.

Because it applies only to quadratics, our result is essentially asymptotic. However, an argument similar to that detailed in [START_REF] Scieur | Nonlinear acceleration of stochastic algorithms[END_REF] would also give us non asymptotic, albeit less explicit, bounds.

Similarly, the bound looks only at the non-regularized version, but it is possible to extend it using the solution of the regularized Chebyshev polynomial ( [START_REF] Scieur | Nonlinear acceleration of stochastic algorithms[END_REF], Proposition 3.3). Overall, as for the theoretical bounds on BFGS, these global bounds on RNA performance are highly conservative and do not faithfully reflect its numerical efficiency.

Numerical Experiments

The following numerical experiments seek to highlight the benefits of RNA in its offline and online versions when applied to the gradient method (with or without momentum term). Since the complexity grows quadratically with the number N of points in the sequences {x i } and {y i }, we will use RNA with a fixed window size (N = 5 for stochastic and N = 10 for convex problems) in all these experiments. These values are sufficiently large to show a significant improvement in the rate of convergence, but can of course be fine-tuned. For simplicity, we fix λ = 10 -8 • R T R 2 . We solve a classical regression problem on the Madelon-UCI dataset [START_REF] Guyon | Design of experiments of the nips 2003 variable selection benchmark[END_REF] using the logistic loss with 2 regularization. The regularization has been set such that the condition number of the function is equal to 10 6 . We compare to standard algorithms such as the simple gradient scheme, Nesterov's method for smooth and strongly convex objectives [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] and L-BFGS. For the step length parameter, we used a backtracking line-search strategy. We compare these methods with their offline RNA accelerated counterparts, as well as with the online version of RNA described in [START_REF] Guyon | Design of experiments of the nips 2003 variable selection benchmark[END_REF]. Results are reported in Figure 1.

Logistic Regression

On Figure 1, we observe that offline RNA improves the convergence speed of gradient descent and Nesterov's method. However, the improvement is only a constant factor: the curves are shifted but have the same slope. Meanwhile, the online version greatly improves the rate of convergence, transforming the basic gradient method into an optimal algorithm competitive with line-search L-BFGS.

In opposition to most quasi-newton methods (such as L-BFGS), RNA does not require a Wolfe linesearch to be convergent. This is because the algorithm is stabilized with a Tikhonov regularization.

In addition, the regularization in a way controls the impact of the noise in the iterates, making the RNA algorithm suitable for stochastic iterations [START_REF] Scieur | Nonlinear acceleration of stochastic algorithms[END_REF].

Image Classification

We now describe experiments with CNNs for image classification. Because one stochastic iteration is not informative due to the noise, we refer to x k as the model parameters (including batch normalization statistics) corresponding to the final iteration of the epoch k. In this case, we do not have an explicit access to "(x k -y k-1 )", so we will estimate it during the stochastic steps. Let y

(t)
k be the parameters of the network at epoch k after t stochastic iterations, and x (t+1) k be the parameters after one stochastic gradient step. Then, for a data set of size D,

x k -y k-1 ≈ 1 D D t=1 (x (t+1) k -y (t) k ) = -h 1 D D t=1 ∇f (y (t) k ).
This means the matrix R in Algorithm 1 will be the matrix of (estimated) gradients as described in [START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF]. In Appendix C, we provide a pseudo-code implementation of RNA algorithm.

Because the learning curve is highly dependent on the learning rate schedule, we decided to use a linearly decaying learning rate to better illustrate the benefits of acceleration, even if acceleration also works with a constant learning rate schedule (see [START_REF] Scieur | Nonlinear acceleration of cnns[END_REF] and Figure 3). In all our experiments, until epoch T , the learning rate decreases linearly from an initial value h 0 to a final value h T , with

h k = h 0 + (k/T )(h T -h 0 ). (12) 
We then continue the optimization during 10 additional epochs using h T to stabilize the curve. We summarize the parameters used for the optimization in Table 1.

CIFAR10. CIFAR-10 is a standard 10-class image dataset comprising 5 • 10 4 training samples and 10 4 samples for testing. Except for the linear learning rate schedule above, we follow the standard practice for CIFAR-10. We applied the standard augmentation via padding of 4 pixels. We trained the networks VGG19, ResNet-18 and DenseNet121 during 100 epochs (T = 90) with a weight decay of 5 • 10 -4 .

We observe in Figure 7 in Appendix B that the online version does not perform as well as in the convex case. More surprisingly, it is outperformed by its offline version (Figure 2) which computes the iterates on the side.

In fact, the offline experiments detailed in Figure 2 exhibit much more significant gains. It produces a similar test accuracy, and the offline version converges faster than SGD, especially for early iterations. We reported speedup factors to reach a certain tolerance in Tables 2, 3 and 4. This suggests that the offline version of RNA is a good candidate for training neural networks, as it converges faster while guaranteeing performance at least as good as the reference algorithm. Additional figures of networks VGG19 and DenseNet121 can be found in Appendix B, Figure 8.

ImageNet. Here, we apply the RNA algorithm to the standard ImageNet dataset. We trained the networks during 90 epochs (T = 80) with a weight decay of 10 -4 . We reported the test accuracy on Figure 4 for the networks ResNet-50 and ResNet-152. We only tested the offline version of RNA here, because in previous experiments it gives better result than its online counterpart.

We again observe that the offline version of Algorithm 1 improves the convergence speed of SGD with and without momentum. In addition, we show a substantial improvement of the accuracy over the non-accelerated baseline. The improvement in the accuracy is reported in Figure 5. Interestingly, the resulting training loss is smoother than its non accelerated counterpart, which indicates a noise reduction.

Conclusion

We extend the Regularized Nonlinear Acceleration scheme in [START_REF] Scieur | Regularized nonlinear acceleration[END_REF] to cover algorithms such as stochastic gradient methods with momentum and Nesterov's method. As the original scheme, it has optimal complexity on convex quadratic problems, but it is also amenable to non-convex optimization problems such as deep CNNs training.

As an online algorithm, RNA substantially improves the convergence rate of Nesterov's algorithm on convex problems such as logistic regression. On the other hand, when applied offline to CNN training, it improves both accuracy and convergence speed. This could be prove useful for fast prototyping of neural networks architectures.

h 0 h T momentum SGD and Online RNA (8) 1.0 0.01 0 SGD + momentum 0.1 0.001 0.9 Table 1: Parameters used in [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] to generate the learning rate for optimizers. We used the same setting for their accelerated version with RNA. We can give a geometric interpretation of the RNA algorithm. In view of ( 5), we can link its output with the center of mass of an object, whose forces are represented with gradients. In Figure 5 we show the trajectory of a gradient + momentum algorithm, where the extrapolated point is shown in red while the real solution x * is in green. 8). On the left, the evolution of the loss value. On the right, the error percentage on the testing set. We see the online version does not improve the performance of SGD. This may be explained by the presence of the batchnorm module. The presence of a statistical estimation while the optimization is running is not taken into account in the iteration model [START_REF] Izmailov | Averaging weights leads to wider optima and better generalization[END_REF], and thus makes theoretical analysis more complex.
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In addition, because we are optimizing a nonconvex function, and the online version interferes with the optimization scheme, the final performance is not guaranteed to be as good as the non-accelerated version of the optimizer. 

Algorithm 1

 1 Regularized Nonlinear Acceleration (Complexity: O(N 2 d) if N d) Input: Sequences of length N from (3): {y 0 , . . . , y N -1 }, {x 1 , . . . , x N }. Regularization param. λ.

Figure 1 :

 1 Figure1: Logistic loss on Madelon[START_REF] Guyon | Design of experiments of the nips 2003 variable selection benchmark[END_REF]. Left: offline acceleration on gradient and Nesterov algorithms, both with backtracking line-search. Right: online RNA algorithm performs as well as L-BFGS methods, though RNA does not use line-search and requires 10 times less memory.

Figure 2 :

 2 Figure 2: Resnet-18 on Cifar10, 100 epochs. SGD with and without momentum, and their off-line accelerated versions with a window size 5. Left: training loss. Right: top-1 validation error.

Figure

  Figure 3: Prototyping networks: acceleration (bottom) gives a smoother convergence, producing a clearer ranking of architectures, earlier (flat learning rate). Right plot zooms on left one.
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  Geometric interpretation of RNA

Figure 5 :

 5 Figure 5: Regularized nonlinear acceleration can be viewed as finding the center of mass (in red). The gradients represent the forces and the green point is the real critical point x * , whose gradient is equal to zero.

Figure 6 :

 6 Figure 6: Condition number of the matrix (R T R + λI) and the norm of the coefficient c produced by Algorithm 1. In plain line the non-regularized version, and in dashed-line the regularized version, with λ = R T R 2 2 • 10 -8 .

Figure 7 :

 7 Figure 7: Training a Resnet-18 on Cifar10 for 100 epochs with SGD and the online RNA[START_REF] Guyon | Design of experiments of the nips 2003 variable selection benchmark[END_REF]. On the left, the evolution of the loss value. On the right, the error percentage on the testing set. We see the online version does not improve the performance of SGD. This may be explained by the presence of the batchnorm module. The presence of a statistical estimation while the optimization is running is not taken into account in the iteration model[START_REF] Izmailov | Averaging weights leads to wider optima and better generalization[END_REF], and thus makes theoretical analysis more complex. In addition, because we are optimizing a nonconvex function, and the online version interferes with the optimization scheme, the final performance is not guaranteed to be as good as the non-accelerated version of the optimizer.

  N): self. history_net .pop () # Length (x_k) <= N def accelerate (self ,extrapolated_network ): # Straightforward application of RNA algorithm R = to_matrix (self. history_grad ) # Get Matrix R RR = matrix_mult (R. transpose (),R) # compute R^T * R RR = RR/norm(RR) # Normalization RR = RR + self.reg * eye(self.N) # \ell-2 regularization # Solve (RR+ lambda I)z = 1, then c = z/sum(z) z = solve_system (RR ,ones(self.N ,1)) c = z/sum(z) # Combine previous networks with coefficients c x_extr = matrix_mult ( to_matrix (self. history_net ),c) extrapolated_network . load_params ( x_extr ) Listing 2: Pseudo-code for training a DNN import * packages * ( train_loader , validation_loader ) = getDataset (...) # e.g., CIFAR10 network = getNetwork (...) # DNN , e.g., ResNet -18 criterion = getLoss (...) # Loss , e.g., cross-entropy optimizer = getOptimizer (...) # Optimizer , e.g., SGD with momentum # Plug optimizer into RNA with default parameters rna_optimizer = Rna(network , optimizer , N=5, reg =1e-8) # Offline version : we create a new network on the side network_extr = network .copy () for epoch in range (0, max_epoch ): # Train for one epoch for (inputs , targets ) in train_loader : optimizer . zero_grad () # Forward pass predictions = network . forward ( inputs ) loss. forward ( predictions , targets ) # Backward pass + optimizer step loss. backward () rna_optimizer .step () # Store the gradient estimate , then recover extrapolation rna_optimizer . store () rna_optimizer . accelerate ( network_extr ) # For the online acceleration version , uncomment this line # network . load_params ( network_extr . params ) # Test on the validation set correct = 0 total = 0 for (inputs , targets ) in val_loader : predictions = network_extr ( inputs ) correct += sum( predictions == targets ) total += length ( targets ) print ("Top-1 score : %f", 100.0 * correct / total ) # In comparison to standard script , we modified optimizer into # rna_optimizer and added 4 lines of code: # rna_optimizer = Rna(network , optimizer , N=5, reg =1e-8) # network_extr = network .copy () # rna_optimizer . store () # rna_optimizer . accelerate ( network_extr )# # ################################################################# #Except those lines , no-adhoc modifications of the existing # # Pytorch (or any similar ) code have been applied .# # #################################################################

Table 2 :

 2 3: Prototyping networks: acceleration (bottom) gives a smoother convergence, producing a clearer ranking of architectures, earlier (flat learning rate). Right plot zooms on left one. Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with a Resnet18, using several algorithms (best accuracy is 5% here). The speed-up compared to the SGD+momentum baseline is in parenthesis.

	Tolerance	SGD	SGD+momentum SGD+RNA SGD+momentum+RNA
	5.0%	68 (0.87×)	59	21 (2.81×)	16 (3.69×)
	2.0%	78 (0.99×)	77	47 (1.64×)	40 (1.93×)
	1.0%	82 (1.00×)	82	67 (1.22×)	59 (1.39×)
	0.5%	84 (1.02×)	86	75 (1.15×)	63 (1.37×)
	0.2%	86 (1.13×)	97	84 (1.15×)	85 (1.14×)

Table 3 :

 3 Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with VGG19. Here, the best accuracy is 6.54%

	Tolerance	SGD	SGD+momentum SGD+RNA SGD+momentum+RNA
	5.0%	65 (0.86×)	56	22 (2.55×)	13 (4.31×)
	2.0%	80 (0.98×)	78	45 (1.73×)	38 (2.05×)
	1.0%	83 (1.00×)	83	60 (1.38×)	56 (1.48×)
	0.5%	87 (0.99×)	86	80 (1.08×)	66 (1.30×)
	0.2%	92 (1.01×)	93	86 (1.08×)	75 (1.24×)

Table 4 :

 4 Number of epochs required to reach the best test accuracy + Tolerance% on CIFAR10 with DenseNet121. Here, the best accuracy is 4.62%.

		50					50			
	Percentage validation error	25 30 35 40 45	SGD SGD + momentum SGD + RNA SGD + momentum + RNA	Percentage validation error	25 30 35 40 45	SGD + momentum SGD + momentum + RNA
		20	1	30	60	90	20	1	30	60	90
				Epoch						Epoch
	Figure 4: Training a Resnet-52 (left) and ResNet-152 (right) on validation ImageNet for 90 epochs
	using SGD with and without momentum, and their off-line accelerated versions.
				Pytorch	SGD	SGD+mom.		SGD+RNA	SGD+mom.+RNA
	Resnet-50	23.85	23.808	23.346	23.412 (-0.396%) 22.914 (-0.432%)
	Resnet-152	21.69	N/A	21.294		N/A		20.884 (-0.410%)

Table 5 :

 5 Best validation top-1 error percentage on ImageNet. In parenthesis the improvement due to RNA. The first column corresponds to the performance of Pytorch pre-trained models.

  C Pseudo-code for Standard Deep Learning Pipelines with RNA

	Listing 1: Pseudo-code for RNA
	class Rna: # This class combines the optimizer with RNA
	def __init__ (self ,network ,optimizer ,N,reg ):
	# -network : DNN to train
	# -optimizer is , for example , an instance of SGD
	# -N is the length of sequences x_k and y_k
	# -reg is the regularization parameter lambda
	self. network = network
	self.K = K
	self. optimizer = optimizer
	self.reg = reg
	self. history_net = [] # Store the seq. x_k
	self. history_grad = [] # Store the seq. x_k-y_{k-1}
	self. running_grad = [] # Estimation of current grad.
	self. grad_counter = 0
	def step(self ):
	# Perform a standard step of the optimizer
	self. optimizer .step ()

# Update the gradient estimate ( running average ) self. grad_counter += 1 coeff = 1.0/ self. grad_counter self. running_grad * = 1-coeff self. running_grad += coeff * self. network .grad def store (self ): # This function stores the network and the current # gradient estimate , then resets the running average self. history_net . append (self. network .copy ()) self. history_grad . append (self. running_grad ); self. running_grad * = 0; # reset estimation if(len(self. history_grad )>self.N): self. history_grad .pop () # Length (x_k-y_{k-1}) <= N if(len(self. history_net )>self.

Preprint. Work in progress.

The source code for the numerical experiments can be found on GitHub: https://github.com/ windows7lover/RegularizedNonlinearAcceleration
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