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Abstract
We tackle the issue of classifier combinations when observations have multiple views. Our method jointly

learns view-specific weighted majority vote classifiers (i.e. for each view) over a set of base voters, and a second
weighted majority vote classifier over the set of these view-specific weighted majority vote classifiers. We show
that the empirical risk minimization of the final majority vote given a multiview training set can be cast as the
minimization of Bregman divergences. This allows us to derive a parallel-update optimization algorithm for learning
our multiview model. We empirically study our algorithm with a particular focus on the impact of the training set
size on the multiview learning results. The experiments show that our approach is able to overcome the lack of
labeled information.

1 Introduction
In many real-life applications, observations are produced by more than one source and are so-called multiview Sun
[2013]. For example, in multilingual regions of the world, including many regions of Europe or in Canada, documents
are available in more than one language. The aim of multiview learning is to use this multimodal information by
combining the predictions of each classifier (or the models themselves) operating over each view (called view-specific
classifier) in order to improve the overall performance beyond that of predictors trained on each view separately, or
by combining directly the views Snoek et al. [2005].

Related works. The main idea here follows the conclusion of the seminal work of Blum and Mitchell Blum and
Mitchell [1998] which states that correlated yet not completely redundant views contain valuable information for
learning. Based on this idea, many studies on multiview learning have been conducted and they can be grouped
in three main categories. These approaches exploit the redundancy in different representations of data, either by
projecting the view-specific representations in a common canonical space Gönen and Alpayd [2011], Zhang and
Zhang [2011], Xu et al. [2014], or by constraining the classifiers to have similar outputs on the same observations;
for example by adding a disagreement term in their objective functions Sindhwani and Rosenberg [2008], or lastly
by exploiting diversity in the views in order to learn the final classifier defined as the majority vote over the set of
view-specific classifiers Peng et al. [2011, 2017], Xiao and Guo [2012]. While the two first families of approaches
were designed for learning with labeled and unlabeled training data, the last one, were developed in the context
of supervised learning. In this line, most of the supervised multiview learning algorithms dealt with the particular
case of two view learning Farquhar et al. [2006], Janodet et al. [2009], Xu and Sun [2010], and some recent works
studied the general case of multiview learning with more than two views under the majority vote setting. Amini et al.
Amini et al. [2009] derived a generalization error bound for classifiers learned on multiview examples and identified
situations where it is more interesting to use all views to learn a uniformly weighted majority vote classifier instead
of single view learning. Koço et al. Koço and Capponi [2011] proposed a Boosting-based strategy that maintains
a different distribution of examples with respect to each view. For a given view, the corresponding distribution
is updated based on view-specific weak classifiers from that view and all the other views with the idea of using
all the view-specific distributions to weight hard examples for the next iteration. Peng et al. Peng et al. [2011,
2017] enhanced this idea by maintaining a single weight distribution among the multiple views in order to ensure
consistency between them. Xiao et al. Xiao and Guo [2012] proposed a multiview learning algorithm where they
boost the performance of view-specific classifiers by combining multiview learning with Adaboost.
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Figure 1: Illustration of MωMvC2 with V=3. For all views v ∈ {1, 2, 3}, we have a set of view-specific weak
classifiers (Hv)1≤v≤V that are learned over a multiview training set. The objective is then to learn the weights
Π (black histograms) associated to (Hv)1≤v≤V ; and the weights ρ (hatched histograms) associated to weighted
majority vote classifiers such that the ρΠ-weighted majority vote classifier BρΠ (Equation 1) will have the smallest
possible generalization error.

Contribution. In this work, we propose a multiview Boosting-based algorithm, called MωMvC2, for the general case
where observations are described by more than two views. Our algorithm combines previously learned view-specific
classifiers as in Amini et al. [2009] but with the difference that it jointly learns two sets of weights for, first, combining
view-specific weak classifiers; and then combining the obtained view-specific weighted majority vote classifiers to get
a final weighted majority vote classifier. We show that the minimization of the classification error over a multiview
training set can be cast as the minimization of Bregman divergences allowing the development of an efficient parallel
update scheme to learn the weights. Using a large publicly available corpus of multilingual documents extracted from
the Reuters RCV1 and RCV2 corpora as well as MNIST1 and MNIST2 collections, we show that our approach
consistently improves over other methods, in the particular when there are only few training examples available for
learning. This is a particularly interesting setting when resources are limited, and corresponds, for example, to the
common situation of multilingual data.

Organization of the paper. In the next section, we present the double weighted majority vote classifier for multiview
learning. Section 3 shows that the learning problem is equivalent to a Bregman-divergence minimization and describes
the Boosting-based algorithm we developed to learn the classifier. In Section 4, we present experimental results
obtained with our approach. Finally, in Section 5 we discuss the outcomes of this study and give some pointers to
further research.

2 Notations and Setting
For any positive integer N , [N ] denotes the set [N ]

.
={1, . . . , N}. We consider binary classification problems

with V≥2 input spaces Xv ⊂ Rdv ;∀v ∈ [V ], and an output space Y={−1,+1}. Each multiview observation
x ∈ X1× · · ·×XV is a sequence x

.
=(x1, · · · , xV ) where each view xv provides a representation of the same

observation in a different vector space Xv (each vector space are not necessarily of the same dimension). We further
assume that we have a finite set of weak classifiersHv

.
={hv,j : Xv → {−1,+1} | j ∈ [nv]} of size nv. We aim at

learning a two-level encompassed weighted majority vote classifier where at the first level a weighted majority vote
is build for each view v∈[V ] over the associated set of weak classifiers Hv, and the final classifier, referred to as
the Multiview double ωeighted Majority vote Classifier (MωMvC2), is a weighted majority vote over the previous
view-specific majority vote classifiers (see Figure 1 for an illustration). Given a training set S=(xi, yi)1≤i≤m of size
m drawn i.i.d. with respect to a fixed, yet unknown, distribution D over (X1× · · ·×XV )×Y , the learning objective
is to train the weak view-specific classifiers (Hv)1≤v≤V and to choose two sets of weights; Π = (πv)1≤v≤V , where
∀v ∈ [V ], πv=(πv,j)1≤j≤nv

, and ρ=(ρv)1≤v≤V , such that the ρΠ-weighted majority vote classifier BρΠ

BρΠ(x) =

V∑
v=1

ρv

nv∑
j=1

πv,j hv,j(x
v) (1)

has the smallest possible generalization error on D. We follow the Empirical Risk Minimization principle Vapnik
[1999], and aim at minimizing the 0/1-loss over S:

L̂0/1
m(BρΠ,S) =

1

m

m∑
i=1

1yiBρΠ(xi)≤0,
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where 1p is equal to 1 if the predicate p is true, and 0 otherwise. As this loss function is non-continuous and
non-differentiable, it is typically replaced by an appropriate convex and differentiable proxy. Here, we replace 1z≤0

by the logistic upper bound a log(1 + e−z), with a=(log 2)−1. The misclassification cost becomes

L̂m(BρΠ,S) =
a

m

m∑
i=1

ln
(

1 + exp
(
− yiBρΠ(xi)

))
, (2)

and the objective would be then to find the optimal combination weights Π? and ρ? that minimize this surrogate
logistic loss.

3 An iterative parallel update algorithm to learn MωMvC2

In this section, we first show how the minimization of the surrogate loss of Equation 2 is equivalent to the minimization
of a given Bregman divergence. Then, this equivalence allows us to employ a parallel-update optimization algorithm
to learn the weights Π=(πv)1≤v≤V and ρ leading to this minimization.

3.1 Bregman-divergence optimization
We first recall the definition of a Bregman divergence Bregman [1967], Lafferty [1999].

Definition 1 (Bregman divergence) Let Ω ⊆ Rm and F : Ω → R be a continuously differentiable and strictly
convex real-valued function. The Bregman divergence DF associated to F is defined for all (p,q) ∈ Ω× Ω as

DF (p||q)
.
= F (p)− F (q)− 〈∇F (q), (p− q)〉 , (3)

where ∇F (q) is the gradient of F estimated at q, and the operator 〈·, ·〉 is the dot product function.

The optimization problem arising from this definition that we are interested in, is to find a vector p? ∈ Ω—that is the
closest to a given vector q0 ∈ Ω—under the set P of V linear constraints

P .
= {p ∈ Ω|∀v ∈ [V ], ρvp

>Mv = ρvp̃
>Mv},

where p̃∈Ω is a specified vector, and Mv is a m×nv matrix with nv=|Hv| the number of weak classifiers for view
v∈[V ]. Defining the Legendre transform as

LF

(
q,

V∑
v=1

ρvMvπv

)
.
= arg min

p∈Ω

{
DF (p||q) +

V∑
v=1

〈ρvMvπv,p〉

}
.

the dual optimization problem can be stated as finding a vector q? in Q̄, the closure of the set

Q .
=

{
q = LF

(
q0,

V∑
v=1

ρvMvπv

)∣∣∣∣ρ ∈ RV ;∀v,πv ∈ Rnv

}
,

for which DF (p̃||q?) is the lowest. It can be shown that both of these optimization problems have the same unique
solution Della Pietra et al. [1997], Lafferty [1999], with the advantage of having parallel-update optimization
algorithms to find the solution of the dual form in the mono-view case Darroch and Ratcliff [1972], Della Pietra et al.
[1997], Collins et al. [2002], making the use of the latter more appealing.

According to our multiview setting and to optimize Equation (2) through a Bregman divergence, we consider the
function F defined for all p∈Ω=[0, 1]m as

F (p)
.
=

m∑
i=1

pi ln(pi) + (1− pi) ln(1− pi),

which from Definition 1 and the definition of the Legendre transform, yields that for all (p,q) ∈ Ω× Ω and r ∈ Ω

DF (p||q) =

m∑
i=1

pi ln

(
pi
qi

)
+ (1− pi) ln

(
1− pi
1− qi

)
, (4)

and ∀i ∈ [m], LF (q, r)i =
qie
−ri

1− qi + qie−ri
, (5)
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Algorithm 1 Learning MωMvC2

Input: Training set S = (xi, yi)1≤i≤m, where ∀i,xi = (x1
i , . . . , x

V
i ) and yi ∈ {−1, 1}; and a maximal number of

iterations T .
Initialization: ρ(1) ← 1

V 1V and ∀v,π(1)
v ← 1

nV
1nv

Train the weak classifiers (Hv)1≤v≤V over S
For v ∈ [V ] set the m× nv matrix Mv such that ∀i ∈ [m], ∀j ∈ [nv], (Mv)ij = yihv,j(x

v
i )

1: for t = 1, . . . , T do
2: for i = 1, . . . ,m do

3: q
(t)
i = σ

yi V∑
v=1

ρ(t)
v

nv∑
j=1

π
(t)
v,j hv,j(x

v
i )


4: for v = 1, . . . , V do
5: for j = 1, . . . , nv do
6: W

(t)+
v,j =

∑
i:sign((Mv)ij)=+1 q

(t)
i |(Mv)ij |

7: W
(t)−
v,j =

∑
i:sign((Mv)ij)=−1 q

(t)
i |(Mv)ij |

8: δ
(t)
v,j = 1

2 ln

(
W

(t)+
v,j

W
(t)−
v,j

)
9: π

(t+1)
v = π

(t)
v + δ(t)

v

10: Set ρ(t+1), as the solution of :

minρ −
V∑
v=1

ρv

nv∑
j=1

(√
W

(t)+
v,j −

√
W

(t)−
v,j

)2

(8)

s.t.
V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ [V ]

Return: Weights ρ(T ) and Π(T ).

with ai the ith characteristic of a=(ai)1≤i≤m (a being p, q, r or LF (q, r)).
Now, let q0 = 1

2 1m be the vector with all its components set to 1
2 . For all i ∈ [m], we define LF (q0,v)i = σ(vi)

with σ(z) = (1 + ez)−1, ∀z∈ R. We set the matrix Mv as for all (i, j) ∈ [m]× [nv], (Mv)ij = yihv,j(x
v
i ). Then

using Equations (4) and (5), it comes

DF

(
0
∣∣∣∣∣∣LF (q0,

V∑
v=1

ρvMvπv

))
=

m∑
i=1

ln

1+exp

−yi V∑
v=1

ρv

nv∑
j=1

πv,jhv,j(x
v
i )

 . (6)

As a consequence, minimizing Equation (2) is equivalent to minimizing DF (0||q) over q ∈ Q̄0, where for
Ω = [0, 1]m

Q0 =

q ∈ Ω

∣∣∣∣∣qi = σ

yi V∑
v=1

ρv

nv∑
j=1

πv,jhv,j(x
v
i )

 ;ρ,Π

 . (7)

For a set of weak-classifiers (Hv)1≤v≤V learned over a training set S; this equivalence allows us to adapt the
parallel-update optimization algorithm described in Collins et al. [2002] to find the optimal weights Π and ρ defining
MωMvC2 of Equation (1), as described in Algorithm 1.

3.2 A multiview parallel update algorithm
Once all view-specific weak classifiers (Hv)1≤v≤V have been trained, we start from an initial point q(1) ∈ Q0

(Eq. 7) corresponding to uniform values of weights ρ(1) = 1
V 1V and ∀v ∈ [V ], π

(1)
v = 1

nv
1nv

. Then, we iteratively

update the weights such that at each iteration t, using the current parameters ρ(t),Π(t) and q(t) ∈ Q0, we seek new
parameters ρ(t+1) and δ(t)

v such that for

q(t+1) = LF (q0,

V∑
v=1

ρ(t+1)
v Mv(π

(t)
v + δ(t)

v )), (9)

Technical Report V 1 4



Goyal, Morvant, Amini Multiview Learning of Weighted Majority Vote

we get DF (0||q(t+1)) ≤ DF (0||q(t)).
Following [Collins et al., 2002, Theorem 3], it is straightforward to show that in this case, the following inequality

holds:

DF (0||q(t+1))−DF (0||q(t)) ≤ A(t) , (10)

where A(t) = −
V∑
v=1

ρ(t+1)
v

nv∑
j=1

(
W

(t)+
v,j (e−δ

(t)
v,j − 1)−W (t)−

v,j (eδ
(t)
v,j − 1)

)2

,

with ∀j ∈ [nv];W
(t)±
v,j =

∑
i:sign((Mv)ij)=±1 q

(t)
i |(Mv)ij |.

By fixing the set of parameters ρ(t+1); the parameters δ(t)
v that minimize A(t) are defined as ∀v ∈ [V ],∀j ∈

[nv]; δ
(t)
v,j = 1

2 ln

(
W

(t)+
v,j

W
(t)−
v,j

)
. Plugging back these values into the above equation gives

A(t) = −
V∑
v=1

ρ(t+1)
v

nv∑
j=1

(√
W

(t)+
v,j −

√
W

(t)−
v,j

)2

. (11)

Now by fixing the set of parameters (W
(t)±
v,j )v,j , the weights ρ(t+1) are found by minimizing Equation (11) under

the linear constraints ∀v ∈ [V ], ρv ≥ 0 and
∑V
v=1 ρv = 1. This alternating optimization of A(t) bears similarity

with the block-coordinate descent technique Bertsekas [1999], where at each iteration, variables are split into two
subsets—the set of the active variables, and the set of the inactive ones—and the objective function is minimized
along active dimensions while inactive variables are fixed at current values.

Convergence of Algorithm. The sequences of weights (Π(t))t∈N and (ρ(t))t∈N found by Algorithm 1 converge to
the minimizers of the multiview classification loss (Equation 2), as with the resulting sequence (q(t))t∈N (Equation 9),
the sequence (DF (0||q(t)))t∈N is decreasing and since it is lower-bounded (Equation 6), it converges to the minimum
of Equation (2).

4 Experimental Results
We present below the results of the experiments we have performed to evaluate the efficiency of Algorithm 1 to learn
the set of weights Π and ρ involved in the definition of the ρΠ-weighted majority vote classifier BρΠ (Equation (1)).

4.1 Datasets
MNIST is a publicly available dataset consisting of 70, 000 images of handwritten digits distributed over 10
classes Lecun et al. [1998]. For our experiments, we created 2 multiview collections from the initial dataset.
Following Chen and Denoyer [2017], the first dataset (MNIST1) was created by extracting 4 no-overlapping quarters
of each image considered as its 4 views. The second dataset (MNIST2) was made by extracting 4 overlapping quarters
from each image as its 4 views. We randomly splitted each collection by keeping 10, 000 images for testing and the
remaining images for training.

Reuters RCV1/RCV2 is a multilingual text classification data extracted from Reuters RCV1 and RCV2 corpus1.
It consists of more than 110, 000 documents written in five different languages (English, French, German, Italian
and Spanish) distributed over six classes. In this paper we consider each language as a view. We reserved 30% of
documents for testing and the remaining for training.

4.2 Experimental Protocol
In our experiments, we set up binary classification tasks by using all multiview observations from one class as
positive examples and all the others as negative examples. We reduced the imbalance between positive and negative
examples by subsampling the latter in the training sets, and used decision trees as view specific weak classifiers. We
compare our approach to the following seven algorithms.

• Mono is the best performing decision tree model operating on a single view.

1https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+
Test+collection
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Table 1: Test classification accuracy and F1-score of different approaches averaged over all the classes and over 20
random sets of m = 100 labeled examples per training set. Along each column, the best result is in bold, and second
one in italic. ↓ indicates that a result is statistically significantly worse than the best result, according to a Wilcoxon
rank sum test with p < 0.02.

Strategy MNIST1 MNIST2 Reuters
Accuracy F1 Accuracy F1 Accuracy F1

Mono .7827± .008↓ .4355± .009↓ .7896± .008↓ .4535± .011↓ .7089± .017↓ .4439± .007↓

Concat .7988± .011↓ .4618± .015↓ .7982± .017↓ .4653± .021↓ .6918± .029↓ .4378± .015↓

Fusion .8167± .017↓ .4769± .018↓ .8244± .019↓ .4955± .027↓ .7086± .029↓ .4200± .021↓

MVMLsp .7221± .021↓ .3646± .019↓ .7669± .032↓ .4318± .025↓ .6037± .020↓ .3181± .022↓

MV-MV .8381± .009↓ .5238± .015↓ .8380± .010↓ .5307± .016↓ .7453± .023↓ .4979± .012↓

MVWAB .8470± .015↓ .5704± .012↓ .8331± .016↓ .5320± .011↓ .7484± .017↓ .5034± .016↓

rBoost.SH .7580± .011↓ .4067± .009↓ .8247± .009↓ .5148± .015↓ .7641± .014 .5093± .010↓

MωMvC2 .8659± .011 .5914± .015 .8474± .012 .5523± .018 .7662± .010 .5244± .012

• Concat is an early fusion approach, where a mono-view decision tree operates over the concatenation of all
views of multiview observations.

• Fusion is a late fusion approach, sometimes referred to as stacking, where view-specific classifiers are
trained independently over different views using 60% of the training examples. A final multiview model is
then trained over the predictions of the view-specific classifiers using the rest of the training examples.

• MVMLsp Huusari et al. [2018] is a multiview metric learning approach, where multiview kernels are learned
to capture the view-specific information and relation between the views. We kept the experimental setup of
Huusari et al. [2018] with Nyström parameter 0.24.2

• MV-MV Amini et al. [2009] is a multiview algorithm where view-specific classifiers are trained over the views
using all the training examples. The final model is the uniformly weighted majority vote.

• MVWAB Xiao and Guo [2012] is a Multiview Weighted Voting AdaBoost algorithm, where multiview learning
and ababoost techniques are combined to learn a weighted majority vote over view-specific classifiers but
without any notion of learning weights over views.

• rBoost.SH Peng et al. [2011, 2017] is a multiview boosting approach where a single distribution over
different views of training examples is maintained and, the distribution over the views are updated using the
multiarmed bandit framework. For the tuning of parameters, we followed the experimental setup of Peng et al.
[2017].

Fusion, MV-MV, MVWAB, and rBoost.SH make decision based on some majority vote strategies, as the
proposed MωMvC2 classifier. The difference relies on how the view-specific classifiers are combined. For MVWAB and
rBoost.SH, we used decision tree model to learn view-specific weak classifiers at each iteration of algorithm and
fixed the maximum number of iterations to T = 100. To learn MωMvC2, we generated the matrix Mv by considering
a set of weak decision tree classifiers with different depths (from 1 to maxd−2, where maxd is maximum possible
depth of a decision tree). We tuned the maximum number of iterations by cross-validation which came out to be
T = 2 in most of the cases and that we fixed throughout all of the experiments. To solve the optimization problem for
finding the weights ρ (Equation 8), we used the Sequential Least SQuares Programming (SLSQP) implementation of
scikit-learn Pedregosa et al. [2011], that we also used to learn the decision trees. Results are computed over the test
set using the accuracy and the standard F1-score Powers [2011], which is the harmonic average of precision and
recall. Experiments are repeated 20 times by each time splitting the training and the test sets at random over the
initial datasets.

4.3 Results
Table 1 reports the results obtained for m=100 training examples by different methods averaged over all classes and
the 20 test results obtained over 20 random experiments3. From these results it becomes clear that late fusion and
other multiview approaches (except MVMLsp) provide consistent improvements over training independent mono-view
classifiers and with early fusion, when the size of the training set is small. Furthermore, MωMvC2 outperforms the

2We used the Python code available from https://lives.lif.univ-mrs.fr/?page_id=12
3We also did experiments for Mono, Concat, Fusion, MV-MV using Adaboost. The performance of Adaboost for these baselines is similar

to that of decision trees.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 2: Evolution of accuracy and F1-score w.r.t to the number of labeled examples in the initial labeled training
sets on MNIST1, MNIST2 and Reuters datasets.

other approaches and compared to the second best strategy the gain in accuracy (resp. F1-score) varies between
0.2% and 2.2% (resp. 2.2% and 3.8%) across the collections. These results provide evidence that majority voting for
multiview learning is an effective way to overcome the lack of labeled information and that all the views do not have
the same strength (or do not bring information in the same way) as the learning of weights, as it is done in MωMvC2,
is much more effective than the uniform combination of view-specific classifiers as it is done in MV-MV.

We also analyze the behavior of the algorithms for growing initial amounts of labeled data. Figure 2 illustrates
this by showing the evolution of the accuracy and the F1-score with respect to the number of labeled examples in
the initial labeled training sets on MNIST1, MNIST2 and Reuters datasets. As expected, all performance curves
increase monotonically w.r.t the additional labeled data. When there are sufficient labeled examples, the performance
increase of all algorithms actually begins to slow, suggesting that the labeled data carries sufficient information and
that the different views do not bring additional information.

An important point here is that rBoost.SH—which takes into account both view-consistency and diversity
between views—provides the worst results on MNIST1 where there is no overlapping between the views, while the
weighted majority vote as it is performed in MωMvC2 still provides an efficient model. Furthermore, MVMLsp—which
learns multiview kernels to capture views-specific informations and relation between views—performs worst on all
the datasets. We believe that the superior performance of our method stands in our two-level framework. Indeed,
thanks to this trick, we are able to consider the view-specific information by learning weights over view-specific
classifiers, and to capture the importance of each view in the final ensemble by learning weights over the views.
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4.4 A note on the Complexity of Algorithm
For each view v, the complexity of learning decision tree classifiers is O(dvmlog(m)). We learn the weights over
the views by optimizing Equation (11) (Step 10 of our algorithm) using SLSQP method which has time complexity
of O(V 3). Therefore, the overall complexity is O(V dvm.log(m) + T (V 3 +

∑V
v=1mnv)). Note that it is easy to

parallelize our algorithm: by using V different machines, we can learn the view-specific classifiers and weights over
them (Steps 4 to 9).

5 Conclusion
In this paper, we tackle the issue of classifier combination when observations have different representations (or have
multiple views). Our approach jointly learns weighted majority vote view-specific classifiers (i.e. at the view level)
over a set of base classifiers, and a second weighted majority vote classifier over the previous set of view specific
weighted majority vote classifiers. We show that the minimization of the multiview classification error is equivalent
to the minimization of Bregman divergences. This embedding allowed to derive a parallel-update optimization
boosting-like algorithm to learn the weights of the double weighted multiview majority vote classifier. Our results
show clearly that our method allows to reach high performance in terms of accuracy and F1-score on three datasets
in the situation where few initial labeled training documents are available. It also comes out that compared to the
uniform combination of view-specific classifiers, the learning of weights allows to better capture the strengths of
different views.

As future work, we would like to extend our algorithm to the semi-supervised case, where one has access
to an additionally unlabeled set during the training. One possible way is to learn a view-specific classifier using
pseudo-labels (for unlabeled data) generated from the classifiers trained from other views, e.g. Xu et al. [2016].
Moreover, the question of extending our work to the case where all the views are not necessarily available or not
complete (missing views or incomplete views, e.g. Amini et al. [2009], Xu et al. [2015]), is very exciting. One
solution could be to adapt the definition of the matrix Mv to allow to deal with incomplete data; this may be done by
considering a notion of diversity to complete Mv .
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