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ABSTRACT: Using mass conservation and Darcy’s law to describe flow through isotropic porous media leads 

to a Laplace equation which may be solved numerically at each time step using the boundary integral method. 

For anisotropic porous media in which the permeability matrix is symmetric, the problem can be solved in the 

same way by rotating and stretching the coordinates. The numerical model has been compared with analytical 

solutions in the case of radial front flows. In addition, we have proceeded to a comparison between finite and 

boundary element methods in the case of a frontal injection.  

 

1 INTRODUCTION 

 

 

The Resin Transfer Moulding (RTM) process is 

widely used in the manufacturing of large components 

of fiber reinforced materials. In RTM, the resin is 

injected into a mould filled with reinforcing fibers. 

The reinforcement is composed of several layers of 

fibers mats or woven roving laid inside the mould 

cavity. The resin enters the mould through one or 

several injection gates and impregnate progressively 

the preform. Proper design of the vent and injection 

port location is crucial to prevent large air pocket 

from being trapped during flow. Therefore, the 

analysis of resin flow in the mould is a very important 

task in designing the RTM mould. 

 

 Several numerical methods have been developed to 

simulate the filling step based either on finite 

difference as in Li and Gauvin (1991) or control 

volume method as in James Lee et al. (1994) and on 

finite element method (Trochu et al. 1994). Following 

on Um and Lee (1991) and Hadavinia et al. (1995) in 

this study, the resin flow will be solved numerically 

by the boundary integral method (BEM). This method 

offers the great advantage of describing the flow by 

its boundary values only while reducing the problem 

dimensions by one. In addition, it permits to 

accurately capture the transient free surface. 

 

2 GOVERNING EQUATIONS 

 

The impregnation of a fibrous preform is usually 

modelled as a flow through anisotropic homogeneous 

porous media. It is governed by Darcy’s law:  

v  
K 


p              (1) 

 

where v  is the velocity vector, K  
K11 K12

K12 K22







 

the permeability tensor, p the resin pressure and  the 

viscosity (constant for a Newtonian resin). Combining 

(1) with the continuity equation gives : 

 

 

. 
K 


p
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 Equation (2) can be reduced to Laplace’s equation 

by rotating and stretching the coordinates. The new 



coordinates (x,y) may be deduced from the previous 

coordinates (X,Y) using the following relationship : 

 

 

x 
1.X 1.Y

1

y 
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







           (3) 

 

 

where 1,1,2,2  and 1,2  are the 

components of the eigenvectors and the eigenvalues 

of the permeability matrix respectively. Hence, using 

the coordinates (x,y), equations (1) and (2) reduce 

simply to : 

 

v  
1


p              (4) 

 

 

p  0                (5) 

 

 

 The boundary conditions are sketched in fig. 1. 

1is the part of the boundary  where a known value 

of pressure p  is applied; 2  the part of the boundary 

 where a known value of pressure gradient q  

perpendicular to the solid wall is prescribed (for a 

non-penetration condition q   0). 

 

Figure 1. Boundary conditions 

 

 
 

3 NUMERICAL METHOD 

 

 

3.1 Boundary Integral Equation 

 

 

The transformed equation (5) is multiplied by 

weighting function p* and integrated over the 

calculation domain using Green’s theorem to yield 

(Brebbia 1992): 

 

 
pi

2
 pq * d



  p * qd




        (6) 

 

 

where pi  is the value of the pressure at a point M i 

located on the boundary (which is supposed to be 

smooth), q* pressure gradient associated with p*. The 

weighting function p* is the fundamental solution 

satisfying : 

 

 

p
*
  i  0              (7) 

 

where  i  is the Dirac delta function. For a 

bidimensional medium, p* and q* are given as 

(Ozisik 1980): 

 

 

p* 
1
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ln

1

r






and q* 
1

2

 r .n 

r
2      (8) 

 

 

where r is the distance from the point M i of 

application of the delta function to any point under 

consideration. 

 

3.2 Boundary Element Equation 

 

 

Dividing the boundary into N constant boundary 

elements and apply eq. (6), the following equation is 

obtained: 

 

 

1

2
pi  pq* d

j


j1

N

  p * qd

j


j1

N

      (9) 



 

 

where  j represents each boundary element. For this 

type of element, the values of p and q are assumed to 

be constant over each element and equal to the value 

at the mid-element node. Equation (9) can be 

rewritten in matrix form as: 

 

 

Hijp j
j1

N

  Gijq j
j1

N

           (10a) 

 

 

where  

 

 

Hij 
1

2
 ij  q * d

j


         (10b)

 

Gij  p* d

j


           (10c)

 

 

 

 For the particular case of constant elements, the 

Hii  and Gii  integrals can be computed analytically 

(Brebbia 1992). Integrals like Hij  and Gij  i  j  are 

calculated using simple Gauss quadrature rules (4 

points rule). 

 



3.3 Resin Front Updating 

 

 

At each time step t, the flow of resin inside the 

mould is regarded as quasi-steady. Unknown pressure 

p and pressure gradient q on the boundary are 

calculated by using eq. (10a). Then, the new location 

of the resin front is updated using a forward Euler 

integration scheme: 

 

 

x t t  x t t v .n  n        (11) 

 

 

 Only the normal component of the resin velocity is 

needed on the resin front as there is no tangential 

component of the velocity. Using eq. (4), eq. (11) 

reduces to: 

 

 

x t  t   x t   t
q


n 




 


       (12) 

 

 

 The updated nodes close to the mould which have 

moved out of the solid wall are relocated using an 

orthogonal condition. 

 

3.4 Automatic remeshing 

 

 

With an updated lagrangian formulation, the nodes of 

the mesh follow the kinematics evolution of the 

material points. This method may result in too 

distorted elements, when large deformations occur. 

An automatic remeshing procedure is used. The 

procedure consists in the following steps : 

 

• addition of nodes on the current boundary 

(overdiscretisation); 

 

• elimination of some of these nodes in order to 

generate an appropriate set of boundary nodes which 

must be compatible with the old mesh boundary and 

satisfy curvature and homogeneity conditions. 

 

 The curvature Ci  at a given edge is calculated 

using the difference of the outwardly directed normal 

n i1 et n i1  of connected boundary elements: 

 

 

C i  n i1  n i1           (13) 

 

 

4 APPLICATION 

 

 

4.1 Comparisons with Analytical Results 

 

Let us consider the radial impregnation of fibrous 

medium by an incompressible and Newtonian fluid 

(fig. 2). 

 

Figure 2. Initial mesh and boundary conditions 

 

 

 
 

 

 If we assume that the porous medium is isotropic 

and homogeneous, the flow front should be of circular 

shape. Hammami et al. (1996) gave the following 

solution : 

 

 

Rf

Ro
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. 2ln
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4Kpot

Ro
2

    (14) 

 

 

where R f  is the flow front radius at time t, R o  the 

inlet radius, po  the constant injection pressure, t the 



elapsed time, K the permeability. The values of the 

different parameters are given in tab. 1 

 

Table 1. Processing and rheological parameters 

K (m
2
)  (Pa.s)   p o  (Pa)   R o  (m) 

4. 10
-11

 0.1 10
5
 0.001 

 

 

 Fig. 3 shows the comparison between the flow 

front which has been computed using the boundary 

element method and the analytical solution (14) at 

t=200 s. The computation time takes less than 1 min. 

The number of nodes of the final mesh is 80. The 

time step used for the numerical simulation is 

t=0.1s. The agreement is fair considering the large 

stretching ratio 
Rf 200 

Ro
 35 and the boundary 

element model based on constant element. 

 



Figure 3. Comparison between computed and 

analytical flow fronts at t=200s for the isotropic 

medium 
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 If we consider now that the fibrous medium is 

anisotropic, the flow front should be of elliptic shape. 

The previous relationship has to be modified in order 

to compute the principal axis of the ellipse Rfex and 

Rfey to yield: 
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  (15) 

 

 

and 

 

 

Rfey  Rfex

Ky y

Kxx




 




1

2
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where 

 

 

Ke  Kxx .Ky y

Roe  Ro.
Kxx

Ky y











1

4







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          (17) 

 

 

 The values of the processing and rheological 

parameters are the same as in tab. 1 except for the 

permeabilities for which the values are: 

 

 

K xx  6.5 10
11

m  and Kyy1.510
11

m 

 

 

Again the agreement between the flow front 

computed using the boundary element method and the 

analytical one is fair as shown in fig. 4 except near the 

solid wall (i.e. where the gradient pressure q is 

prescribed). This is due to the relocation of the nodes 

close to the mould which have moved out of the solid 

wall. Nevertheless, these comparisons with analytical 

solutions have permitted to test the capability of the 

boundary element model. 

 

Figure 4. Comparison between computed and 

analytical flow fronts at t=200s for the anisotropic 

medium 
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4.2 Comparison with Finite Element Simulation 

 

 

We proceed now to the simulation of a frontal 

injection of resin into a fibrous preform located 

between two parallel solid walls using finite element 

and boundary element methods. The resin is assumed 

to be an incompressible and Newtonian fluid which 

flows through an anisotropic one layer medium. 

 



 The finite element simulation has been carried out 

using a numerical model first developed by Hoareau 

et al. (1993) and derived from FORGE2


 software. 

The numerical model is based upon an updated 

lagrangian finite element method (FEM).The domain 

is meshed using quadratic triangles (six nodes) as 

shown in fig. 5. The values of the processing and 

rheological parameters are given in tab. 2. 

 

 

Table 2. Processing and rheological parameters 

K xx (m
2

)

 

Kyy(m
2

)  Kxy (m
2

)

 

(Pa.s)   p o (Pa) 

  4 10
11    4 10

11  2.5 10
11

 

0.1 10
5
 

 

 



Figure 5. Finite element mesh at t=200s 

 
 

 Fig. 6 presents the comparison between boundary 

element and finite element flow fronts at t=200s. In 

the centre of the flow front, the agreement is fair. Due 

to the different relocation schemes used in FEM and 

BEM simulations, the discrepancy between the two 

flow fronts increases for the nodes close to the mould. 

In addition, the remeshing procedure using the 

Delaunay's algorithm in FORGE2


 may have a 

significant influence on the finite element solution. 

 

Figure 6. Comparison between boundary element and 

finite element flow fronts at t=200s 
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5 CONCLUSION 

 

The flow of a Newtonian resin through anisotropic 

and homogeneous media has been simulated using a 

boundary element method. The algorithm which is 

used to capture the transient front flow is rather 

simple and has permitted to accurately predict the 

front shape at a low cost. 

 

 The relocation scheme used for the nodes close to 

the mould which have moved out of the solid wall has 

to be improved in order to better take into account the 

contact between the resin and the mould. 

 

 In addition, the BEM simulations should be 

compared to experiments. 

 

 Further developments will include the simulation 

of the flow of resin through a typical RTM 

reinforcement in 3D. The boundary element 

procedure can be then applied to each subregion in 

turn (which is assumed to be piecewise homogenous) 

as if they are independent of each other. 
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