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INTRODUCTION

The Resin Transfer Moulding (RTM) process is widely used in the manufacturing of large components of fiber reinforced materials. In RTM, the resin is injected into a mould filled with reinforcing fibers. The reinforcement is composed of several layers of fibers mats or woven roving laid inside the mould cavity. The resin enters the mould through one or several injection gates and impregnate progressively the preform. Proper design of the vent and injection port location is crucial to prevent large air pocket from being trapped during flow. Therefore, the analysis of resin flow in the mould is a very important task in designing the RTM mould.

Several numerical methods have been developed to simulate the filling step based either on finite difference as in [START_REF] Li | Numerical Analysis of the Resin Flow in Resin Transfer Molding[END_REF] or control volume method as in James [START_REF] Lee | Mold filling and cure modelling of RTM and SRIM processes[END_REF] and on finite element method [START_REF] Trochu | An Integrated Software Environment for the Computer Simulation of the Resin Transfer Molding Process[END_REF]. Following on [START_REF] Um | A study on the Mold Filling Process In the Resin Transfer Molding[END_REF] and [START_REF] Hadavinia | The evolution of radial fingering in a hele-Shaw cell using C 1 continuous Overhauser boundary element method[END_REF] in this study, the resin flow will be solved numerically by the boundary integral method (BEM). This method offers the great advantage of describing the flow by its boundary values only while reducing the problem dimensions by one. In addition, it permits to accurately capture the transient free surface.

GOVERNING EQUATIONS

The impregnation of a fibrous preform is usually modelled as a flow through anisotropic homogeneous porous media. It is governed by Darcy's law:

v   K     p (1)
where v is the velocity vector,

K    K 11 K 12 K 12 K 22   



  the permeability tensor, p the resin pressure and  the viscosity (constant for a Newtonian resin). Combining (1) with the continuity equation gives :

 .  K     p        0 (2)
Equation ( 2) can be reduced to Laplace's equation by rotating and stretching the coordinates. The new coordinates (x,y) may be deduced from the previous coordinates (X,Y) using the following relationship :

x

  1 .X   1 .Y  1 y   2 .X   2 .Y  2      (3) 
where

 1 , 1 , 2 , 2   and  1 , 2   are the
components of the eigenvectors and the eigenvalues of the permeability matrix respectively. Hence, using the coordinates (x,y), equations (1) and ( 2) reduce simply to :

v   1   p (4) p  0 (5) 
The boundary conditions are sketched in fig. 1.  1 is the part of the boundary  where a known value of pressure p is applied;  2 the part of the boundary  where a known value of pressure gradient q perpendicular to the solid wall is prescribed (for a non-penetration condition q  0). 

Boundary Integral Equation

The transformed equation ( 5) is multiplied by weighting function p* and integrated over the calculation domain using Green's theorem to yield [START_REF] Brebbia | Boundary Element : An introduction course[END_REF]:

p i 2  pq * d    p * qd   (6)
where p i is the value of the pressure at a point M i located on the boundary (which is supposed to be smooth), q* pressure gradient associated with p*. The weighting function p* is the fundamental solution satisfying :

p *   i  0 (7)
where  i is the Dirac delta function. For a bidimensional medium, p* and q* are given as [START_REF] Ozisik | Heat Conduction[END_REF]):

p*  1 2 ln 1 r     and q*  1 2  r .n r 2 (8)
where r is the distance from the point M i of application of the delta function to any point under consideration.

Boundary Element Equation

Dividing the boundary into N constant boundary elements and apply eq. ( 6), the following equation is obtained:

1 2 p i  pq* d  j  j1 N   p * qd  j  j1 N  (9)
where  j represents each boundary element. For this type of element, the values of p and q are assumed to be constant over each element and equal to the value at the mid-element node. Equation ( 9) can be rewritten in matrix form as:

H ij p j j1 N   G ij q j j1 N  (10a)
where

H ij  1 2  ij  q * d  j  (10b) G ij  p* d  j  (10c)
For the particular case of constant elements, the H ii and G ii integrals can be computed analytically [START_REF] Brebbia | Boundary Element : An introduction course[END_REF]. Integrals like H ij and

G ij i  j
  are calculated using simple Gauss quadrature rules (4 points rule).

Resin Front Updating

At each time step t, the flow of resin inside the mould is regarded as quasi-steady. Unknown pressure p and pressure gradient q on the boundary are calculated by using eq. ( 10a). Then, the new location of the resin front is updated using a forward Euler integration scheme:

x t  t    x t    t v .n  n (11)
Only the normal component of the resin velocity is needed on the resin front as there is no tangential component of the velocity. Using eq. ( 4), eq. ( 11) reduces to:

x t  t    x t    t q  n       (12) 
The updated nodes close to the mould which have moved out of the solid wall are relocated using an orthogonal condition.

Automatic remeshing

With an updated lagrangian formulation, the nodes of the mesh follow the kinematics evolution of the material points. This method may result in too distorted elements, when large deformations occur. An automatic remeshing procedure is used. The procedure consists in the following steps :

• addition of nodes on the current boundary (overdiscretisation);

• elimination of some of these nodes in order to generate an appropriate set of boundary nodes which must be compatible with the old mesh boundary and satisfy curvature and homogeneity conditions.

The curvature C

i at a given edge is calculated using the difference of the outwardly directed normal n i1 et n i1 of connected boundary elements:

C i  n i1  n i1 (13) 
4 APPLICATION

Comparisons with Analytical Results

Let us consider the radial impregnation of fibrous medium by an incompressible and Newtonian fluid (fig. 2).

Figure 2. Initial mesh and boundary conditions

If we assume that the porous medium is isotropic and homogeneous, the flow front should be of circular shape. [START_REF] Hammami | Directional Permeability Measurement of Deformed Reinforcement[END_REF] If we consider now that the fibrous medium is anisotropic, the flow front should be of elliptic shape. The previous relationship has to be modified in order to compute the principal axis of the ellipse R fex and R fey to yield: 

where

K e  K xx .K yy R oe  R o . K xx K yy       1 4      (17) 
The values of the processing and rheological parameters are the same as in tab. 1 except for the permeabilities for which the values are:

K xx  6.5 10 11 m and K yy  1.5 10 11 m
Again the agreement between the flow front computed using the boundary element method and the analytical one is fair as shown in fig. 4 except near the solid wall (i.e. where the gradient pressure q is prescribed). This is due to the relocation of the nodes close to the mould which have moved out of the solid wall. Nevertheless, these comparisons with analytical solutions have permitted to test the capability of the boundary element model. 

Comparison with Finite Element Simulation

We proceed now to the simulation of a frontal injection of resin into a fibrous preform located between two parallel solid walls using finite element and boundary element methods. The resin is assumed to be an incompressible and Newtonian fluid which flows through an anisotropic one layer medium.

The finite element simulation has been carried out using a numerical model first developed by [START_REF] Hoareau | Proc. of ICCM-9[END_REF] and derived from FORGE2  software.

The numerical model is based upon an updated lagrangian finite element method (FEM).The domain is meshed using quadratic triangles (six nodes) as shown in fig. 5. The values of the processing and rheological parameters are given in tab. 2. The flow of a Newtonian resin through anisotropic and homogeneous media has been simulated using a boundary element method. The algorithm which is used to capture the transient front flow is rather simple and has permitted to accurately predict the front shape at a low cost.

The relocation scheme used for the nodes close to the mould which have moved out of the solid wall has to be improved in order to better take into account the contact between the resin and the mould.

In addition, the BEM simulations should be compared to experiments. Further developments will include the simulation of the flow of resin through a typical RTM reinforcement in 3D. The boundary element procedure can be then applied to each subregion in turn (which is assumed to be piecewise homogenous) as if they are independent of each other.
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  Figure 1. Boundary conditions
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 3 Fig.3shows the comparison between the flow front which has been computed using the boundary element method and the analytical solution (14) at t=200 s. The computation time takes less than 1 min. The number of nodes of the final mesh is 80. The time step used for the numerical simulation is t=0.1s. The agreement is fair considering the large stretching ratio R f 200   R o  35 and the boundary element model based on constant element.
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 3 Figure 3. Comparison between computed and analytical flow fronts at t=200s for the isotropic medium C e g ra p h is me d e fo r m a t E nc a p s ula te d P o s tc r ip t ( E P S ) ne c o m p r e n d p a s d 'a p e r ç u. L 'im p r e s s io n s e r a b o nne s ur u ne im p r im a nte P o s ts c rip t. N o m d u fic hic e rc le a n gla is . e p s T itr e : C ré a te ur : M A T L A B , T h e M a thw o rk s , In c . D a te d e c ré a tio 1 2 /1 7 /9 7 1 5 :2 4 :2 3 N o mb r e d 1

Figure 4 .

 4 Figure 4. Comparison between computed and analytical flow fronts at t=200s for the anisotropic medium C e g ra p h is me d e fo r m a t E nc a p s ula te d P o s tc r ip t ( E P S ) ne c o m p r e n d p L 'im p r e s s io n s e r a b o nne s ur u ne im p r im a nte P o s ts c rip t. N o m d u fic hie llip s e a ngla is .e p s T itr e : C ré a te ur : M A T L A B , T h e M a thw o rk s , In c . D a te d e c ré a tio 1 2 /1 7 /9 7 1 5 :2 4 :5 4 N o mb r e d 1

Figure 5 .

 5 Figure 5. Finite element mesh at t=200s

Figure 6 .

 6 Figure 6. Comparison between boundary element and finite element flow fronts at t=200s C e g ra p h is me d e fo r m a t E nc a p s u la te d P o s tc r ip t ( E P S ) ne c o mp r e nd p a s d 'a p e rç u. L 'im p r e s s io n s e r a b o nne s ur u ne imp r ima nte P o s ts c r ip t. N o m d u fic hic o m p B E E F a ng .e p s T itr e : C ré a te ur : M A T L A B , T h e M a thw o r k s , I nc . D a te d e c ré a tio 1 2 /1 7 /9 7 1 4 :2 0 :1 8 N o mb r e d 1

Table 2 .

 2 Processing and rheological parameters

	K xx (m	2 ) K yy (m 2 ) K xy (m	2 ) (Pa.s) p o (Pa)
	4 10 11 4 10