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Abstract

We consider stochastic gradient descent (SGD) for least-squares regression with
potentially several passes over the data. While several passes have been widely
reported to perform practically better in terms of predictive performance on unseen
data, the existing theoretical analysis of SGD suggests that a single pass is statisti-
cally optimal. While this is true for low-dimensional easy problems, we show that
for hard problems, multiple passes lead to statistically optimal predictions while
single pass does not; we also show that in these hard models, the optimal number
of passes over the data increases with sample size. In order to define the notion
of hardness and show that our predictive performances are optimal, we consider
potentially infinite-dimensional models and notions typically associated to kernel
methods, namely, the decay of eigenvalues of the covariance matrix of the features
and the complexity of the optimal predictor as measured through the covariance
matrix. We illustrate our results on synthetic experiments with non-linear kernel
methods and on a classical benchmark with a linear model.

1 Introduction

Stochastic gradient descent (SGD) and its multiple variants—averaged (1), accelerated (2), variance-
reduced (3; 4; 5)—are the workhorses of large-scale machine learning, because (a) these methods
looks at only a few observations before updating the corresponding model, and (b) they are known in
theory and in practice to generalize well to unseen data (6).

Beyond the choice of step-size (often referred to as the learning rate), the number of passes to make
on the data remains an important practical and theoretical issue. In the context of finite-dimensional
models (least-squares regression or logistic regression), the theoretical answer has been known for
many years: a single passes suffices for the optimal statistical performance (1; 7). Worse, most of the
theoretical work only apply to single pass algorithms, with some exceptions leading to analyses of
multiple passes when the step-size is taken smaller than the best known setting (8; 9).

However, in practice, multiple passes are always performed as they empirically lead to better
generalization (e.g., loss on unseen test data) (6). But no analysis so far has been able to show that,
given the appropriate step-size, multiple pass SGD was theoretically better than single pass SGD.
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The main contribution of this paper is to show that for least-squares regression, while single pass
averaged SGD is optimal for a certain class of “easy” problems, multiple passes are needed to reach
optimal prediction performance on another class of “hard” problems.

In order to define and characterize these classes of problems, we need to use tools from infinite-
dimensional models which are common in the analysis of kernel methods. De facto, our analysis
will be done in infinite-dimensional feature spaces, and for finite-dimensional problems where the
dimension far exceeds the number of samples, using these tools are the only way to obtain non-vacuous
dimension-independent bounds. Thus, overall, our analysis applies both to finite-dimensional models
with explicit features (parametric estimation), and to kernel methods (non-parametric estimation).

The two important quantities in the analysis are:

(a) The decay of eigenvalues of the covariance matrix Σ of the input features, so that the ordered
eigenvalues λm decay as O(m−α); the parameter α > 1 characterizes the size of the feature
space, α = 1 corresponding to the largest feature spaces and α = +∞ to finite-dimensional
spaces. The decay will be measured through trΣ1/α =

∑
m λ

1/α
m , which is small when the

decay of eigenvalues is faster than O(m−α).

(b) The complexity of the optimal predictor θ∗ as measured through the covariance matrix Σ,
that is with coefficients 〈em, θ∗〉 in the eigenbasis (em)m of the covariance matrix that
decay so that 〈θ∗,Σ1−2rθ∗〉 is small. The parameter r > 0 characterizes the difficulty
of the learning problem: r = 1/2 corresponds to characterizing the complexity of the
predictor through the squared norm ‖θ∗‖2, and thus r close to zero corresponds to the
hardest problems while r larger, and in particular r > 1/2, corresponds to simpler problems.

Dealing with non-parametric estimation provides a simple way to evaluate the optimality of learning
procedures. Indeed, given problems with parameters r and α, the best prediction performance
(averaged square loss on unseen data) is well known (10) and decay as O(n

−2rα
2rα+1 ), with α = +∞

leading to the usual parametric rate O(n−1). For easy problems, that is for which r > α−1
2α , then it

is known that most iterative algorithms achieve this optimal rate of convergence (but with various
running-time complexities), such as exact regularized risk minimization (11), gradient descent on the
empirical risk (12), or averaged stochastic gradient descent (13).

We show that for hard problems, that is for which r 6 α−1
2α (see Example 1 for a typical hard problem),

then multiple passes are superior to a single pass. More precisely, under additional assumptions
detailed in Section 2 that will lead to a subset of the hard problems, with Θ(n(α−1−2rα)/(1+2rα))

passes, we achieve the optimal statistical performance O(n
−2rα
2rα+1 ), while for all other hard problems,

a single pass only achieves O(n−2r). This is illustrated in Figure 1.

We thus get a number of passes that grows with the number of observations n and depends precisely
on the quantities r and α. In synthetic experiments with kernel methods where α and r are known,
these scalings are precisely observed. In experiments on parametric models with large dimensions,
we also exhibit an increasing number of required passes when the number of observations increases.
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Figure 1 – (Left) easy and hard problems in the (α, r)-plane. (Right) different regions for which
multiple passes improved known previous bounds (green region) or reaches optimality (red region).
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2 Least-squares regression in finite dimension

We consider a joint distribution ρ on pairs of input/output (x, y) ∈ X×R, where X is any input space,
and we consider a feature map Φ from the input space X to a feature space H, which we assume
Euclidean in this section, so that all quantities are well-defined. In Section 4, we will extend all the
notions to Hilbert spaces.

2.1 Main assumptions

We are considering predicting y as a linear function fθ(x) = 〈θ,Φ(x)〉H of Φ(x), that is estimating
θ ∈ H such that F (θ) = 1

2E(y − 〈θ,Φ(x)〉H)2 is as small as possible. Estimators will depend on n
observations, with standard sampling assumptions:

(A1) The n observations (xi, yi) ∈ X × R, i = 1, . . . , n, are independent and identically
distributed from the distribution ρ.

Since H is finite-dimensional, F always has a (potentially non-unique) minimizer in H which we
denote θ∗. We make the following standard boundedness assumptions:

(A2) ‖Φ(x)‖ 6 R almost surely, |y − 〈θ∗,Φ(x)〉H| is almost surely bounded by σ and |y| is
almost surely bounded by M .

In order to obtain improved rates with multiple passes, and motivated by the equivalent previously
used condition in reproducing kernel Hilbert spaces presented in Section 4, we make the following
extra assumption (we denote by Σ = E[Φ(x)⊗H Φ(x)] the (non-centered) covariance matrix).

(A3) For µ ∈ [0, 1], there exists κµ > 0 such that, almost surely, Φ(x)⊗H Φ(x) 4H κ2
µR

2µΣ1−µ.
Note that it can also be written as ‖Σµ/2−1/2Φ(x)‖H 6 κµR

µ.

Assumption (A3) is always satisfied with any µ ∈ [0, 1], and has particular values for µ = 1, with
κ1 = 1, and µ = 0, where κ0 has to be larger than the dimension of the space H.

We will also introduce a parameter α that characterizes the decay of eigenvalues of Σ through the
quantity trΣ1/α, as well as the difficulty of the learning problem through ‖Σ1/2−rθ∗‖H, for r ∈ [0, 1].
In the finite-dimensional case, these quantities can always be defined and most often finite, but may
be very large compared to sample size. In the following assumptions the quantities are assumed to be
finite and small compared to n.

(A4) There exists α > 1 such that tr Σ1/α <∞.

Assumption (A4) is often called the “capacity condition”. First note that this assumption implies
that the decreasing sequence of the eigenvalues of Σ, (λm)m>1, satisfies λm = o (1/mα). Note that
trΣµ 6 κ2

µR
2µ and thus often we have µ > 1/α, and in the most favorable cases in Section 4, this

bound will be achieved. We also assume:

(A5) There exists r > 0, such that ‖Σ1/2−rθ∗‖H <∞.

Assumption (A5) is often called the “source condition”. Note also that for r = 1/2, this simply says
that the optimal predictor has a small norm.

In the subsequent sections, we essentially assume that α, µ and r are chosen (by the theoretical
analysis, not by the algorithm) so that all quantities Rµ, ‖Σ1/2−rθ∗‖H and trΣ1/α are finite and
small. As recalled in the introduction, these parameters are often used in the non-parametric literature
to quantify the hardness of the learning problem (Figure 1).

We will use result with O(·) and Θ(·) notations, which will all be independent of n and t (number of
observations and number of iterations) but can depend on other finite constants. Explicit dependence
on all parameters of the problem is given in proofs. More precisely, we will use the usual O(·) and
Θ(·) notations for sequences bnt and ant that can depend on n and t, as ant = O(bnt) if and only if,
there exists M > 0 such that for all n, t, ant 6Mbnt, and ant = Θ(bnt) if and only if, there exist
M,M ′ > 0 such that for all n, t, M ′bnt 6 ant 6Mbnt.
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2.2 Related work

Given our assumptions above, several algorithms have been developed for obtaining low values of
the expected excess risk E

[
F (θ)

]
− F (θ∗).

Regularized empirical risk minimization. Forming the empirical risk F̂ (θ), it minimizes F̂ (θ) +
λ‖θ‖2H, for appropriate values of λ. It is known that for easy problems where r > α−1

2α , it achieves

the optimal rate of convergence O(n
−2rα
2rα+1 ) (11). However, algorithmically, this requires to solve a

linear system of size n times the dimension of H. One could also use fast variance-reduced stochastic
gradient algorithms such as SAG (3), SVRG (4) or SAGA (5), with a complexity proportional to the
dimension of H times n+R2/λ.

Early-stopped gradient descent on the empirical risk. Instead of solving the linear system directly,
one can use gradient descent with early stopping (12; 14). Similarly to the regularized empirical
risk minimization case, a rate of O(n−

2rα
2rα+1 ) is achieved for the easy problems, where r > α−1

2α .
Different iterative regularization techniques beyond batch gradient descent with early stopping have
been considered, with computational complexities ranging from O(n1+ α

2rα+1 ) to O(n1+ α
4rα+2 ) times

the dimension of H (or n in the kernel case in Section 4) for optimal predictions (12; 15; 16; 17; 14).

Stochastic gradient. The usual stochastic gradient recursion is iterating from i = 1 to n,

θi = θi−1 + γ
(
yi − 〈θi−1,Φ(xi)〉H

)
Φ(xi),

with the averaged iterate θ̄n = 1
n

∑n
i=1 θi. Starting from θ0 = 0, (18) shows that the expected excess

performance E[F (θ̄n)] − F (θ∗) decomposes into a variance term that depends on the noise σ2 in
the prediction problem, and a bias term, that depends on the deviation θ∗ − θ0 = θ∗ between the
initialization and the optimal predictor. Their bound is, up to universal constants, σ

2dim(H)
n +

‖θ∗‖2H
γn .

Further, (13) considered the quantities α and r above to get the bound, up to constant factors:

σ2trΣ1/α(γn)1/α

n
+
‖Σ1/2−rθ∗‖2

γ2rn2r
.

We recover the finite-dimensional bound for α = +∞ and r = 1/2. The bounds above are valid for
all α > 1 and all r ∈ [0, 1], and the step-size γ is such that γR2 6 1/4, and thus we see a natural
trade-off appearing for the step-size γ, between bias and variance.

When r > α−1
2α , then the optimal step-size minimizing the bound above is γ ∝ n

−2αmin{r,1}−1+α
2αmin{r,1}+1 ,

and the obtained rate is optimal. Thus a single pass is optimal. However, when r 6 α−1
2α , the best

step-size does not depend on n, and one can only achieve O(n−2r).

Finally, in the same multiple pass set-up as ours, (9) has shown that for easy problems where r > α−1
2α

(and single-pass averaged SGD is already optimal) that multiple-pass non-averaged SGD is becoming
optimal after a correct number of passes (while single-pass is not). Our proof principle of comparing
to batch gradient is taken from (9), but we apply it to harder problems where r 6 α−1

2α . Moreover we
consider the multi-pass averaged-SGD algorithm, instead of non-averaged SGD, and take explicitly
into account the effect of Assumption (A3).

3 Averaged SGD with multiple passes

We consider the following algorithm, which is stochastic gradient descent with sampling with
replacement with multiple passes over the data (we experiment in Section E of the Appendix with
cycling over the data, with or without reshuffling between each pass).

• Initialization: θ0 = θ̄0 = 0, t = maximal number of iterations, γ = 1/(4R2) = step-size
• Iteration: for u = 1 to t, sample i(u) uniformly from {1, . . . , n} and make the step

θu = θu−1 + γ
(
yi(u) − 〈θt−1,Φ(xi(u))〉H

)
Φ(xi(u)) and θ̄u = (1− 1

u )θ̄u−1 + 1
uθu.

In this paper, following (18; 13), but as opposed to (19), we consider unregularized recursions. This
removes a unnecessary regularization parameter (at the expense of harder proofs).
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3.1 Convergence rate and optimal number of passes

Our main result is the following (see full proof in Appendix):

Theorem 1. Let n ∈ N∗ and t > n, under Assumptions (A1), (A2), (A3), (A4), (A5), (A6), with
γ = 1/(4R2).

• For µα < 2rα+ 1 < α, if we take t = Θ(nα/(2rα+1)), we obtain the following rate:

EF (θ̄t)− F (θ∗) = O(n−2rα/(2rα+1)).

• For µα > 2rα+ 1, if we take t = Θ(n1/µ (log n)
1
µ ), we obtain the following rate:

EF (θ̄t)− F (θ∗) 6 O(n−2r/µ).

Sketch of proof. The main difficulty in extending proofs from the single pass case (18; 13) is that
as soon as an observation is processed twice, then statistical dependences are introduced and the
proof does not go through. In a similar context, some authors have considered stability results (8),
but the large step-sizes that we consider do not allow this technique. Rather, we follow (16; 9) and
compare our multi-pass stochastic recursion θt to the batch gradient descent iterate ηt defined as
ηt = ηt−1 + γ

n

∑n
i=1

(
yi − 〈ηt−1,Φ(xi)〉H

)
Φ(xi) with its averaged iterate η̄t. We thus need to

study the predictive performance of η̄t and the deviation θ̄t − η̄t. It turns out that, given the data, the
deviation θt − ηt satisfies an SGD recursion (with the respect to the randomness of the sampling with
replacement). For a more detailed summary of the proof technique see Section B.

The novelty compared to (16; 9) is (a) to use refined results on averaged SGD for least-squares, in
particular convergence in various norms for the deviation θ̄t − η̄t (see Section A), that can use our
new Assumption (A3). Moreover, (b) we need to extend the convergence results for the batch gradient
descent recursion from (14), also to take into account the new assumption (see Section D). These two
results are interesting on their own.

Improved rates with multiple passes. We can draw the following conclusions:

• If 2αr + 1 > α, that is, easy problems, it has been shown by (13) that a single pass with a
smaller step-size than the one we propose here is optimal, and our result does not apply.

• If µα < 2rα + 1 < α, then our proposed number of iterations is t = Θ(nα/(2αr+1)),
which is now greater than n; the convergence rate is then O(n

−2rα
2rα+1 ), and, as we will see in

Section 4.2, the predictive performance is then optimal when µ 6 2r.

• If µα > 2rα+ 1, then with a number of iterations is t = Θ(n1/µ), which is greater than n
(thus several passes), with a convergence rate equal to O(n−2r/µ), which improves upon
the best known rates of O(n−2r). As we will see in Section 4.2, this is not optimal.

Note that these rates are theoretically only bounds on the optimal number of passes over the data,
and one should be cautious when drawing conclusions; however our simulations on synthetic data,
see Figure 2 in Section 5, confirm that our proposed scalings for the number of passes is observed in
practice.

4 Application to kernel methods

In the section above, we have assumed that H was finite-dimensional, so that the optimal predic-
tor θ∗ ∈ H was always defined. Note however, that our bounds that depends on α, r and µ are
independent of the dimension, and hence, intuitively, following (19), should apply immediately to
infinite-dimensional spaces.

We now first show in Section 4.1 how this intuition can be formalized and how using kernel methods
provides a particularly interesting example. Moreover, this interpretation allows to characterize the
statistical optimality of our results in Section 4.2.
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4.1 Extension to Hilbert spaces, kernel methods and non-parametric estimation

Our main result in Theorem 1 extends directly to the case where H is an infinite-dimensional Hilbert
space. In particular, given a feature map Φ : X → H, any vector θ ∈ H is naturally associated to
a function defined as fθ(x) = 〈θ,Φ(x)〉H. Algorithms can then be run with infinite-dimensional
objects if the kernel K(x′, x) = 〈Φ(x′),Φ(x)〉H can be computed efficiently. This identification of
elements θ of H with functions fθ endows the various quantities we have introduced in the previous
sections, with natural interpretations in terms of functions. The stochastic gradient descent described
in Section 3 adapts instantly to this new framework as the iterates (θu)u6t are linear combinations of
feature vectors Φ(xi), i = 1, . . . , n, and the algorithms can classically be “kernelized” (20; 13), with
an overall running time complexity of O(nt).

First note that Assumption (A3) is equivalent to, for all x ∈ X and θ ∈ H, |fθ(x)|2 6
κ2
µR

2µ〈fθ,Σ1−µfθ〉H, that is, ‖g‖2L∞ 6 κ2
µR

2µ‖Σ1/2−µ/2g‖2H for any g ∈ H and also im-
plies1 ‖g‖L∞ 6 κµR

µ‖g‖µH‖g‖
1−µ
L2

, which are common assumptions in the context of kernel
methods (22), essentially controlling in a more refined way the regularity of the whole space of
functions associated to H, with respect to the L∞-norm, compared to the too crude inequality
‖g‖L∞ = supx | 〈Φ(x), g〉H | 6 supx ‖Φ(x)‖H‖g‖H 6 R‖g‖H.

The natural relation with functions allows to analyze effects that are crucial in the context of learning,
but difficult to grasp in the finite-dimensional setting. Consider the following prototypical example of
a hard learning problem,
Example 1 (Prototypical hard problem on simple Sobolev space). Let X = [0, 1], with x sampled
uniformly on X and

y = sign(x− 1/2) + ε, Φ(x) = {|k|−1e2ikπx}k∈Z∗ .

This corresponds to the kernel K(x, y) =
∑
k∈Z∗ |k|−2e2ikπ(x−y), which is well defined (and lead

to the simplest Sobolev space). Note that for any θ ∈ H, which is here identified as the space
of square-summable sequences `2(Z), we have fθ(x) = 〈θ,Φ(x)〉`2(Z) =

∑
k∈Z∗

θk
|k|e

2ikπx. This

means that for any estimator θ̂ given by the algorithm, fθ̂ is at least once continuously differentiable,
while the target function sign(· − 1/2) is not even continuous. Hence, we are in a situation where θ∗,
the minimizer of the excess risk, does not belong to H. Indeed let represent sign(· − 1/2) in H,
for almost all x ∈ [0, 1], by its Fourier series sign(x− 1/2) =

∑
k∈Z∗ αke

2ikπx, with |αk| ∼ 1/k,
an informal reasoning would lead to (θ∗)k = αk|k| ∼ 1, which is not square-summable and thus
θ∗ /∈ H. For more details, see (23; 24).

This setting generalizes important properties that are valid for Sobolev spaces, as shown in the
following example, where α, r, µ are characterized in terms of the smoothness of the functions in H,
the smoothness of f∗ and the dimensionality of the input space X.
Example 2 (Sobolev Spaces (25; 22; 26; 10)). Let X ⊆ Rd, d ∈ N, with ρX supported on X,
absolutely continous with the uniform distribution and such that ρX(x) > a > 0 almost everywhere,
for a given a. Assume that f∗(x) = E[y|x] is s-times differentiable, with s > 0. Choose a kernel,
inducing Sobolev spaces of smoothness m with m > d/2, as the Matérn kernel

K(x′, x) = ‖x′ − x‖m−d/2Kd/2−m(‖x′ − x‖),

where Kd/2−m is the modified Bessel function of the second kind. Then the assumptions are satisfied
for any ε > 0, with α = 2m

d , µ = d
2m + ε, r = s

2m .

In the following subsection we compare the rates obtained in Thm. 1, with known lower bounds
under the same assumptions.

4.2 Minimax lower bounds

In this section we recall known lower bounds on the rates for classes of learning problems satisfying
the conditions in Sect. 2.1. Interestingly, the comparison below shows that our results in Theorem 1

1Indeed, for any g ∈ H, ‖Σ1/2−µ/2g‖H = ‖Σ−µ/2g‖L2 6 ‖Σ−1/2g‖µL2
‖g‖1−µL2

= ‖g‖µH‖g‖
1−µ
L2

, where
we used that for any g ∈ H, any bounded operator A, s ∈ [0, 1]: ‖Asg‖L2 6 ‖Ag‖sL2

‖g‖1−sL2
(see (21)).
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are optimal in the setting 2r > µ. While the optimality of SGD was known for the regime {2rα+1 >
α ∩ 2r > µ}, here we extend the optimality to the new regime α > 2rα + 1 > µα, covering
essentially all the region 2r > µ, as it is possible to observe in Figure 1, where for clarity we plotted
the best possible value for µ that is µ = 1/α (10) (which is true for Sobolev spaces).

When r ∈ (0, 1] is fixed, but there are no assumptions on α or µ, then the optimal minimax rate of
convergence is O(n−2r/(2r+1)), attained by regularized empirical risk minimization (11) and other
spectral filters on the empirical covariance operator (27).

When r ∈ (0, 1] and α > 1 are fixed (but there are no constraints on µ), the optimal minimax rate
of convergence O(n

−2rα
2rα+1 ) is attained when r > α−1

2α , with empirical risk minimization (14) or
stochastic gradient descent (13).

When r > α−1
2α , the rate of convergence O(n

−2rα
2rα+1 ) is known to be a lower bound on the opti-

mal minimax rate, but the best upper-bound so far is O(n−2r) and is achieved by empirical risk
minimization (14) or stochastic gradient descent (13), and the optimal rate is not known.

When r ∈ (0, 1], α > 1 and µ ∈ [1/α, 1] are fixed, then the rate of convergence O(n
−max{µ,2r}α

2max{µ,2r}α+1 )
is known to be a lower bound on the optimal minimax rate (10). This is attained by regularized
empirical risk minimization when 2r > µ (10), and now by SGD with multiple passes, and it is thus
the optimal rate in this situation. When 2r < µ, the only known upper bound is O(n−2αr/(µα+1)),
and the optimal rate is not known.

5 Experiments

In our experiments, the main goal is to show that with more that one pass over the data, we can
improve the accuracy of SGD when the problem is hard. We also want to highlight our dependence
of the optimal number of passes (that is t/n) with respect to the number of observations n.

Synthetic experiments. Our main experiments are performed on artificial data following the setting
in (21). For this purpose, we take kernels K corresponding to splines of order q (see (24)) that fulfill
Assumptions (A1) (A2) (A3) (A4) (A5) (A6). Indeed, let us consider the following function

Λq(x, z) =
∑
k∈Z

e2iπk(x−z)

|k|q
,

defined almost everywhere on [0, 1], with q ∈ R, and for which we have the interesting relationship:
〈Λq(x, ·),Λq′(z, ·)〉L2(dρX) = Λq+q′(x, z) for any q, q′ ∈ R. Our setting is the following:

• Input distribution: X = [0, 1] and ρX is the uniform distribution.

• Kernel: ∀(x, z) ∈ [0, 1], K(x, z) = Λα(x, z).

• Target function: ∀x ∈ [0, 1], θ∗ = Λrα+ 1
2
(x, 0).

• Output distribution : ρ(y|x) is a Gaussian with variance σ2 and mean θ∗.

For this setting we can show that the learning problem satisfies Assumptions (A1) (A2) (A3) (A4)
(A5) (A6) with r, α, andµ = 1/α. We take different values of these parameters to encounter all the
different regimes of the problems shown in Figure 1.

For each n from 100 to 1000, we found the optimal number of steps t∗(n) that minimizes the test
error F (θ̄t) − F (θ∗). Note that because of overfitting the test error increases for t > t∗(n). In
Figure 2, we show t∗(n) with respect to n in log scale. As expected, for the easy problems (where
r > α−1

2α , see top left and right plots), the slope of the plot is 1 as one pass over the data is enough:
t∗(n) = Θ(n). But we see that for hard problems (where r 6 α−1

2α , see bottom left and right plots),
we need more than one pass to achieve optimality as the optimal number of iterations is very close to
t∗(n) = Θ

(
n

α
2rα+1

)
. That matches the theoretical predictions of Theorem 1. We also notice in the

plots that, the bigger α
2rα+1 the harder the problem is and the bigger the number of epochs we have

to take. Note, that to reduce the noise on the estimation of t∗(n), plots show an average over 100
replications.
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To conclude, the experiments presented in the section correspond exactly to the theoretical setting
of the article (sampling with replacement), however we present in Figures 4 and 5 of Section E of
the Appendix results on the same datasets for two different ways of sampling the data: (a)without
replacement: for which we select randomly the data points but never use twice the same point in one
epoch, (b) cycles: for which we pick successively the data points in the same order. The obtained
scalings relating number of iterations or passes to number of observations are the same.

2.0 2.2 2.4 2.6 2.8 3.0
log10n

2.0
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lo
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0
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0
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2.0 2.2 2.4 2.6 2.8 3.0
log10n
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3.5

4.0

lo
g 1

0
t *

line of slope 1.5

Figure 2 – The four plots represent each a different configuration on the (α, r) plan represented in Figure 1, for
r = 1/(2α). Top left (α = 1.5) and right (α = 2) are two easy problems (Top right is the limiting case where
r = α−1

2α
) for which one pass over the data is optimal. Bottom left (α = 2.5) and right (α = 3) are two hard

problems for which an increasing number of passes is required. The blue dotted line are the slopes predicted by
the theoretical result in Theorem 1.

Linear model. To illustrate our result with some real data, we show how the optimal number of
passes over the data increases with the number of samples. In Figure 3, we simply performed linear
least-squares regression on the MNIST dataset and plotted the optimal number of passes over the
data that leads to the smallest error on the test set. Evaluating α and r from Assumptions (A4) and
(A5), we found α = 1.7 and r = 0.18. As r = 0.18 6 α−1

2α ∼ 0.2, Theorem 1 indicates that this
corresponds to a situation where only one pass on the data is not enough, confirming the behavior of
Figure 3. This suggests that learning MNIST with linear regression is a hard problem.

6 Conclusion

In this paper, we have shown that for least-squares regression, in hard problems where single-pass
SGD is not statistically optimal (r < α−1

2α ), then multiple passes lead to statistical optimality with a
number of passes that somewhat surprisingly needs to grow with sample size, with a convergence
rate which is superior to previous analyses of stochastic gradient. Using a non-parametric estimation,
we show that under certain conditions (2r > µ), we attain statistical optimality.

Our work could be extended in several ways: (a) our experiments suggest that cycling over the
data and cycling with random reshuffling perform similarly to sampling with replacement, it would
be interesting to combine our theoretical analysis with work aiming at analyzing other sampling
schemes (28; 29). (b) Mini-batches could be also considered with a potentially interesting effects
compared to the streaming setting. Also, (c) our analysis focuses on least-squares regression, an
extension to all smooth loss functions would widen its applicability. Moreover, (d) providing optimal
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Figure 3 – For the MNIST data set, we show the optimal number of passes over the data with respect to the
number of samples in the case of the linear regression.

efficient algorithms for the situation 2r < µ is a clear open problem (for which the optimal rate is
not known, even for non-efficient algorithms). Additionally, (e) in the context of classification, we
could combine our analysis with (30) to study the potential discrepancies between training and testing
losses and errors when considering high-dimensional models (31). More generally, (f) we could
explore the effect of our analysis for methods based on the least squares estimator in the context of
structured prediction (32; 33; 34) and (non-linear) multitask learning (35). Finally, (g) to reduce the
computational complexity of the algorithm, while retaining the (optimal) statistical guarantees, we
could combine multi-pass stochastic gradient descent, with approximation techniques like random
features (36), extending the analysis of (37) to the more general setting considered in this paper.
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Appendix
The appendix in constructed as follows:

• We first present in Section A a new result for stochastic gradient recursions which generalizes
the work of (18) and (13) to more general norms. This result could be used in other contexts.

• The proof technique for Theorem 1 is presented in Section B.

• In Section C we give a proof of the various lemmas needed in the first part of the proof of
Theorem 1 (deviation between SGD and batch gradient descent).

• In Section D we provide new results for the analysis of batch gradient descent, which are
adapted to our new (A3), and instrumental in proving Theorem 1 in Section B.

• Finally, in Section E we present experiments for different sampling techniques.

A A general result for the SGD variance term

Independently of the problem studied in this paper, we consider i.i.d. observations (zt, ξt) ∈ H ×H
a Hilbert space, and the recursion started from µ0 = 0.

µt = (I − γzt ⊗ zt)µt−1 + γξt (1)

(this will applied with zt = Φ(xi(t))). This corresponds to the variance term of SGD. We denote by
µ̄t the averaged iterate µ̄t = 1

t

∑t
i=1 µi.

The goal of the proposition below is to provide a bound on E
[∥∥Hu/2µ̄t

∥∥2
]

for u ∈ [0, 1
α + 1], where

H = E [zt ⊗ zt] is such that trH1/α is finite. Existing results only cover the case u = 1.

Proposition 1 (A general result for the SGD variance term). Let us consider the recursion in
Eq. (1) started at µ0 = 0. Denote E [zt ⊗ zt] = H , assume that trH1/α is finite, E [ξt] = 0,
E
[
(zt ⊗ zt)2

]
4 R2H , E [ξt ⊗ ξt] 4 σ2H and γR2 6 1/4, then for u ∈ [0, 1

α + 1]:

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]
6 4σ2γ1−u γ

1/αtrH1/α

tu−1/α
. (2)

A.1 Proof principle

We follow closely the proof technique of (18), and prove Proposition 1 by showing it first for a
“semi-stochastic” recursion, where zt⊗ zt is replaced by its expectation (see Lemma 1). We will then
compare our general recursion to the semi-stochastic one.

A.2 Semi-stochastic recursion

Lemma 1 (Semi-stochastic SGD). Let us consider the following recursion µt = (I − γH)µt−1+γξt
started at µ0 = 0. Assume that trH1/α is finite, E [ξt] = 0, E [ξt ⊗ ξt] 4 σ2H and γH 4 I , then
for u ∈ [0, 1

α + 1]:

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]
6 σ2γ1−u γ1/αtrH1/αt1/α−u. (3)
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Proof. For t > 1 and u ∈ [0, 1
α + 1], using an explicit formula for µt and µ̄t (see (18) for details),

we get:

µt = (I − γH)µt−1 + γξt = (I − γH)
t
µ0 + γ

t∑
k=1

(I − γH)
t−k

ξk

µ̄t =
1

t

t∑
u=1

µu =
γ

t

t∑
u=1

u∑
k=1

(I − γH)
u−k

ξk =
1

t

t∑
k=1

H−1
(
I − (I − γH)

t−k+1
)
ξk

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]

=
1

t2
E

t∑
k=1

tr

[(
I − (I − γH)

t−k+1
)2

Hu−2ξk ⊗ ξk
]

6
σ2

t2

t∑
k=1

tr

[(
I − (I − γH)

k
)2

Hu−1

]
using E [ξt ⊗ ξt] 4 σ2H.

Now, let (λi)i∈N∗ be the non-increasing sequence of eigenvalues of the operator H . We obtain:

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]
6
σ2

t2

t∑
k=1

∞∑
i=1

(
I − (I − γλi)k

)2

λu−1
i .

We can now use a simple result2 that for any ρ ∈ [0, 1], k > 1 and u ∈ [0, 1
α + 1], we have :

(1− (1− ρ)k)2 6 (kρ)1−u+1/α, applied to ρ = γλi. We get, by comparing sums to integrals:

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]
6
σ2

t2

t∑
k=1

∞∑
i=1

(
I − (I − γλi)k

)2

λu−1
i

6
σ2

t2

t∑
k=1

∞∑
i=1

(kγλi)
1−u+1/αλu−1

i

6
σ2

t2
γ1−u+1/αtrH1/α

t∑
k=1

k1−u+1/α

6
σ2

t2
γ1−u+1/αtrH1/α

∫ t

1

y1−u+1/αdy

6
σ2

t2
γ1−u γ1/αtrH1/α t2−u+1/α

2− u+ 1/α

6 σ2γ1−u γ1/αtrH1/αt1/α−u,

which shows the desired result.

A.3 Relating the semi-stochastic recursion to the main recursion

Then, to relate the semi-stochastic recursion with the true one, we use an expansion in the powers of
γ using recursively the perturbation idea from (38).

For r > 0, we define the sequence (µrt )t∈N, for t > 1,

µrt = (I − γH)µrt−1 + γΞrt , with Ξrt =

{
(H − zt ⊗ zt)µr−1

t−1 if r > 1

Ξ0
t = ξt

. (4)

We will show that µt '
∑∞
i=0 µ

i
t. To do so, notice that for r > 0, µt−

∑r
i=0 µ

i
t follows the recursion:

µt −
r∑
i=0

µit = (I − zt ⊗ zt)

(
µt−1 −

r∑
i=0

µit−1

)
+ γΞr+1

t , (5)

so that by bounding the covariance operator we can apply a classical SGD result. This is the purpose
of the following lemma.

2Indeed, adapting a similar result from (18), on the one hand, 1− (1− ρ)k 6 1 implying that (1− (1−
ρ)k)1−1/α+u 6 1. On the other hand, 1 − (1 − γx)k 6 γkx implying that (1 − (1 − ρ)k)1+1/α−u 6
(kρ)1+1/α−u. Thus by multiplying the two we get (1− (1− ρ)k)2 6 (kρ)1−u+1/α.
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Lemma 2 (Bound on covariance operator). For any r > 0, we have the following inequalities:

E [Ξrt ⊗ Ξrt ] 4 γrR2rσ2H and E [µrt ⊗ µrt ] 4 γr+1R2rσ2I. (6)

Proof. We propose a proof by induction on r. For r = 0, and t > 0, E
[
Ξ0
t ⊗ Ξ0

t

]
= E [ξt ⊗ ξt] 4

σ2H by assumption. Moreover,

E
[
µ0
t ⊗ µ0

t

]
= γ2

t−1∑
k=1

(I − γH)t−kE
[
Ξ0
t ⊗ Ξ0

t

]
(I − γH)t−k 4 γ2σ2

t−1∑
k=1

(I − γH)2(t−k)H 4 γσ2I.

Then, for r > 1,

E
[
Ξr+1
t ⊗ Ξr+1

t

]
4 E[(H − zt ⊗ zt)µrt−1 ⊗ µrt−1(H − zt ⊗ zt)]
= E[(H − zt ⊗ zt)E[µrt−1 ⊗ µrt−1](H − zt ⊗ zt)]
4 γr+1R2rσ2E[(H − zt ⊗ zt)2]

4 γr+1R2r+2σ2H.

And,

E
[
µr+1
t ⊗ µr+1

t

]
= γ2

t−1∑
k=1

(I − γH)t−kE
[
Ξr+1
t ⊗ Ξr+1

t

]
(I − γH)t−k

4 γr+3R2r+2σ2
t−1∑
k=1

(I − γH)2(t−k)H 4 γr+2R2r+2σ2I,

which thus shows the lemma by induction.

To bound µt −
∑r
i=0 µ

i
t, we prove a very loose result for the average iterate, that will be sufficient

for our purpose.
Lemma 3 (Bounding SGD recursion). Let us consider the following recursion µt =
(I − γzt ⊗ zt)µt−1 + γξt starting at µ0 = 0. Assume that E[zt ⊗ zt] = H , E [ξt] = 0, ‖xt‖2 6 R2,
E [ξt ⊗ ξt] 4 σ2H and γR2 < I , then for u ∈ [0, 1

α + 1]:

E
[∥∥∥Hu/2µ̄t

∥∥∥2
]
6 σ2γ2RutrH t. (7)

Proof. Let us define the operators for j 6 i : M i
j = (I − γzi(i) ⊗ zi(i)) · · · (I − γzi(j) ⊗ zi(j)) and

M i
i+1 = I . Since µ0 = 0, note that we have we have, µi = γ

∑i
k=1M

i
k+1ξk. Hence, for i > 1,

E
∥∥∥Hu/2µi

∥∥∥2

= γ2E
∑
k,j

〈M i
j+1ξj , H

uM i
k+1ξk〉

= γ2E
i∑

k=1

〈M i
k+1ξk, H

uM i
k+1ξk〉

= γ2tr

(
E

[
i∑

k=1

M i
k+1

∗
HuM i

k+1ξk ⊗ ξk

])
6 σ2γ2E

[
i∑

k=1

tr
(
M i
k+1

∗
HuM i

k+1H
)]

6 σ2γ2Rui trH,

because tr
(
M i
k+1
∗
HuM i

k+1H
)
6 RutrH . Then,

E
∥∥∥Hu/2µ̄t

∥∥∥2

=
1

t2

∑
i,j

〈Hu/2µi, H
u/2µj〉

6
1

t2
E

(
t∑
i=1

∥∥∥Hu/2µi

∥∥∥)2

6
1

t

t∑
i=1

E
∥∥∥Hu/2µi

∥∥∥2

6 σ2γ2RutrH t,

which finishes the proof of Lemma 3.
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A.4 Final steps of the proof

We have now all the material to conclude. Indeed by the triangular inequality:

(
E
∥∥∥Hu/2µ̄t

∥∥∥2
)1/2

6
r∑
i=1

E
∥∥∥Hu/2µ̄it

∥∥∥2

︸ ︷︷ ︸
Lemma 1


1/2

+

E

∥∥∥∥∥Hu/2

(
µ̄t −

r∑
i=1

µ̄it

)∥∥∥∥∥
2

︸ ︷︷ ︸
Lemma 3


1/2

.

With Lemma 2, we have all the bounds on the covariance of the noise, so that:(
E
∥∥∥Hu/2µ̄t

∥∥∥2
)1/2

6
r∑
i=1

(
γiR2iσ2γ1−u γ1/αtrH1/αt1/α−u

)1/2

+
(
γr+2R2r+utrH t

)1/2
6 (σ2γ1−u γ1/αtrH1/αt1/α−u)1/2

r∑
i=1

(
γR2

)i/2
+
(
γr+2R2r+utrH t

)1/2
.

Now we make r go to infinity and we obtain:(
E
∥∥∥Hu/2µ̄t

∥∥∥2
)1/2

6 (σ2γ1−u γ1/αtrH1/αt1/α−u)1/2 1

1−
√
γR2

+
(
γr+2R2r+utrH t

)1/2︸ ︷︷ ︸
−→
r→∞

0

Hence with γR2 6 1/4,

E
∥∥∥Hu/2µ̄t

∥∥∥2

6 4σ2γ1−u γ1/αtrH1/αt1/α−u,

which finishes to prove Proposition 1.

B Proof sketch for Theorem 1

We consider the batch gradient descent recursion, started from η0 = 0, with the same step-size:

ηt = ηt−1 +
γ

n

n∑
i=1

(
yi − 〈ηt−1,Φ(xi)〉H

)
Φ(xi),

as well as its averaged version η̄t = 1
t

∑t
i=0 ηi. We obtain a recursion for θt − ηt, with the

initialization θ0 − η0 = 0, as follows:

θt − ηt =
[
I − Φ(xi(u))⊗H Φ(xi(u))

]
(θt−1 − ηt−1) + γξ1

t + γξ2
t ,

with ξ1
t = yi(u)Φ(xi(u))− 1

n

∑n
i=1 yiΦ(xi) and ξ2

t =
[
Φ(xi(u))⊗H Φ(xi(u))− 1

n

∑n
i=1 Φ(xi)⊗H

Φ(xi)
]
ηt−1. We decompose the performance F (θt) in two parts, one analyzing the performance of

batch gradient descent, one analyzing the deviation θt − ηt, using

EF (θ̄t)− F (θ∗) 6 2E
[
‖Σ1/2(θt − ηt)‖2H

]
+ 2
[
EF (η̄t)− F (θ∗)

]
.

We denote by Σ̂n = 1
n

∑n
i=1 Φ(xi)⊗ Φ(xi) the empirical second-order moment.

Deviation θt − ηt. Denoting by G the σ-field generated by the data and by Ft the σ-field generated
by i(1), . . . , i(t), then, we have E(ξ1

t |G,Ft−1) = E(ξ2
t |G,Ft−1) = 0, thus we can apply results for

averaged SGD (see Proposition 1 of the Appendix) to get the following lemma.

Lemma 4. For any t > 1, if E
[
(ξ1
t + ξ2

t ) ⊗H (ξ1
t + ξ2

t )|G
]
4 τ2Σ̂n, and 4γR2 = 1, under

Assumptions (A1), (A2), (A4),

E
[
‖Σ̂1/2

n (θ̄t − η̄t)‖2H|G
]
6

8τ2γ1/αtr Σ̂
1/α
n

t1−1/α
. (8)
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In order to obtain the bound, we need to bound τ2 (which is dependent on G) and go from a bound
with the empirical covariance matrix Σ̂n to bounds with the population covariance matrix Σ.

We have

E
[
ξ1
t ⊗H ξ

1
t |G
]
4H E

[
y2
i(u)Φ(xi(u))⊗HΦ(xi(u))|G

]
4H ‖y‖2∞Σ̂n 4H (σ+sup

x∈X
〈θ∗,Φ(x)〉H)2Σ̂n

E
[
ξ2
t⊗ξ2

t |G
]
4H E

[
〈ηt−1,Φ(xi(u))〉2Φ(xi(u))⊗HΦ(xi(u))|G

]
4H sup

t∈{0,...,T−1}
sup
x∈X
〈ηt,Φ(x)〉H)2Σ̂n

Therefore τ2 = 2M2 + 2 supt∈{0,...,T−1} supx∈X〈ηt,Φ(x)〉2H or using Assumption (A3) τ2 =

2M2 + 2 supt∈{0,...,T−1}R
2µκ2

µ‖Σ1/2−µ/2ηt‖2H.

In the proof, we rely on an event (that depend on G) where Σ̂n is close to Σ. This leads to the the
following Lemma that bounds the deviation θ̄t − η̄t.
Lemma 5. For any t > 1, 4γR2 = 1, under Assumptions (A1), (A2), (A4),

E
[
‖Σ1/2(θ̄t − η̄t)‖2H

]
6 16τ2

∞

[
R−2/αtr Σ1/αt1/α

(
1

t
+

(
4

µ

log n

n

)1/µ
)

+ 1

]
. (9)

We make the following remark on the bound.
Remark 1. Note that as defined in the proof τ∞ may diverge in some cases as

τ2
∞ =


O(1) when µ 6 2r,

O(nµ−2r) when 2r 6 µ 6 2r + 1/α,

O(n1−2r/µ) when µ > 2r + 1/α,

with O(·) are defined explicitly in the proof.

Convergence of batch gradient descent. The main result is summed up in the following lemma,
with t = O(n1/µ) and t > n.
Lemma 6. Let t > 1, under Assumptions (A1), (A2), (A3), (A4), (A5), (A6), when, with 4γR2 = 1,

t =

{
Θ(nα/(2rα+1)) 2rα+ 1 > µα

Θ(n1/µ (log n)
1
µ ) 2rα+ 1 6 µα.

(10)

then,

EF (η̄t)− F (θ∗) 6

{
O(n−2rα/(2rα+1)) 2rα+ 1 > µα

O(n−2r/µ) 2rα+ 1 6 µα
(11)

with O(·) are defined explicitly in the proof.
Remark 2. In all cases, we can notice that the speed of convergence of Lemma 6 are slower that the
ones in Lemma 5, hence, the convergence of the gradient descent controls the rates of convergence of
the algorithm.

C Bounding the deviation between SGD and batch gradient descent

In this section, following the proof sketch from Section B, we provide a bound on the deviation
θt − ηt. In all the following let us denote µt = θt − ηt that deviation between the stochastic gradient
descent recursion and the batch gradient descent recursion.

C.1 Proof of Lemma 5

We need to (a) go from Σ̂n to Σ in the result of Lemma 4 and (b) to have a bound on τ . To prove this
result we are going to need the two following lemmas:

Lemma 7. Let λ > 0, δ ∈ (0, 1]. Under Assumption (A3), when n > 11(1 + κ2
µR

2µγµtµ) log 8R2

λδ ,
the following holds with probability 1− δ,∥∥∥(Σ + λI)1/2(Σ̂n + λI)−1/2

∥∥∥2

6 2. (12)
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Proof. This Lemma is proven and stated lately in Lemma 14 in Section D.3. We recalled it here for
the sake of clarity.

Lemma 8. Let λ > 0, δ ∈ (0, 1]. Under Assumption (A3), for t = O
(

1
n1/µ

)
then the following holds

with probability 1− δ,

τ2 6 τ2
∞ and τ2

∞ =


O(1), when µ 6 2r,

O
(
nµ−2r

)
, when 2r 6 µ 6 2r + 1/α,

O
(
n1−2r/µ

)
when µ > 2r + 1/α,

(13)

where the O(·)-notation depend only on the parameters of the problem (and is independent of n
and t).

Proof. This Lemma is a direct implication of Corollary 2 in Section D.3. We recalled it here for the
sake of clarity.

Note that we can take λδn =
(

log n
δ

n

)1/µ

so that Lemma 7 result holds. Now we are ready to prove
Lemma 5.

Proof of Lemma 5. LetAδa be the set for which inequality (12) holds and letBδb be the set for which
inequality (13) holds. Note that P(Acδa) = δa and P(Bcδb) = δb. We use the following decomposition:

E
∥∥∥Σ1/2µ̄t

∥∥∥2

6 E
[∥∥∥Σ1/2µ̄t

∥∥∥2

1Aδa∩Bδb

]
+ E

[∥∥∥Σ1/2µ̄t

∥∥∥2

1Acδa

]
+ E

[∥∥∥Σ1/2µ̄t

∥∥∥2

1Bcδb

]
.

First, let us bound roughly ‖µ̄t‖2.

First, for i > 1, ‖µi‖2 6 γ2
(∑t

i=1 ‖ξ1
i ‖+ ‖ξ2

i ‖
)2

6 16R2γ2τ2t2, so that ‖µ̄t‖2 6
1
t

∑t
i=1 ‖µi‖2 6 16R2γ2τ2t2. We can bound similarly τ2 6 4M2γ2R4t2, so that ‖µ̄t‖2 6

64R2M2γ4t4. Thus, for the second term:

E
[∥∥∥Σ1/2µ̄t

∥∥∥2

1Acδa

]
6 64R8M2γ4t4E1Acδa 6 64R8M2γ4t4δa,

and for the third term:

E
[∥∥∥Σ1/2µ̄t

∥∥∥2

1Bcδb

]
6 64R8M2γ4t4E1Bcδb 6 64R8M2γ4t4δb.

And on for the first term,

E
[∥∥∥Σ1/2µ̄t

∥∥∥2

1Aδa∩Bδb

]
6 E

[∥∥∥Σ1/2(Σ + λδnI)−1/2
∥∥∥2 ∥∥∥(Σ + λδnI)1/2(Σ̂n + λδnI)−1/2

∥∥∥2

∥∥∥(Σ̂n + λδnI)1/2µ̄t

∥∥∥2

1Aδa∩Bδb | G
]

6 2E
[∥∥∥(Σ̂n + λδnI)1/2µ̄t

∥∥∥2

| G
]

= 2E
[∥∥∥Σ̂1/2

n µ̄t

∥∥∥2

| G
]

+ 2λδnE
[
‖µ̄t‖2 | G

]
6 16τ2

∞

γ1/αE
[
tr Σ̂

1/α
n

]
t1−1/α

+ 8λδnτ
2
∞ γ1/αE

[
tr Σ̂1/α

n

]
t1/α,

using Proposition 1 twice with u = 1 for the left term and u = 1 for the right one.

As x→ x1/α is a concave function, we can apply Jensen’s inequality to have :

E
[
tr(Σ̂1/α

n )
]
6 trΣ1/α,
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so that:

E
[∥∥∥Σ1/2µ̄t

∥∥∥2

1Aδa∩Bδb

]
6 16τ2

∞
γ1/αtr Σ1/α

t1−1/α
+ 8λδnτ

2
∞γ γ

1/αtr Σ1/αt1/α

6 16τ2
∞γ

1/αtr Σ1/αt1/α
(

1

t
+ λδn

)
.

Now, we take δa = δb =
τ2
∞

4M2R8γ4t4 and this concludes the proof of Lemma 5, with the bound:

E
∥∥∥Σ1/2µ̄t

∥∥∥2

6 16τ2
∞γ

1/αtr Σ1/αt1/α
(

1

t
+
(2 + 2 logM + 4 log(γR2) + 4 log t

n

)1/µ
)
.

D Convergence of batch gradient descent

In this section we prove the convergence of averaged batch gradient descent to the target function.
In particular, since the proof technique is valid for the wider class of algorithms known as spectral
filters (15; 14), we will do the proof for a generic spectral filter (in Lemma 9, Sect. D.1 we prove that
averaged batch gradient descent is a spectral filter).

In Section D.1 we provide the required notation and additional definitions. In Section D.2, in particular
in Theorem D.2 we perform an analytical decomposition of the excess risk of the averaged batch
gradient descent, in terms of basic quantities that will be controlled in expectation (or probability) in
the next sections. In Section D.3 the various quantites obtained by the analytical decomposition are
controlled, in particular, Corollary 2 controls the L∞ norm of the averaged batch gradient descent
algorithm. Finally in Section D.4, the main result, Theorem 3 controlling in expectation of the excess
risk of the averaged batch gradient descent estimator is provided. In Corollary 3, a version of the
result of Theorem 3 is given, with explicit rates for the regularization parameters and of the excess
risk.

D.1 Notations

In this subsection, we study the convergence of batch gradient descent. For the sake of clarity we
consider the RKHS framework (which includes the finite-dimensional case). We will thus consider
elements of H that are naturally embedded in L2(dρX) by the operator S from H to L2(dρX) and
such that: (Sg)(x) = 〈g,Kx〉, where we have Φ(x) = Kx = K(·, x) where K : X→ X→ R is the
kernel. We recall the recursion for ηt in the case of an RKHS feature space with kernel K:

ηt = ηt−1 +
γ

n

n∑
i=1

(
yi − 〈ηt−1,Kxi〉H

)
Kxi ,

Let us begin with some notations. In the following we will often use the letter g to denote vectors
of H, hence, Sg will denote functions of L2(dρX). We also define the following operators (we may
also use their adjoints, denoted with a ∗):

• The operator Ŝn from H to Rn, Ŝng = 1√
n

(g(x1), . . . g(xn)).

• The operators from H to H, Σ and Σ̂n, defined respectively as Σ = E [Kx ⊗Kx] =∫
X
Kx ⊗KxdρX and Σ̂n = 1

n

∑n
i=1Kxi ⊗Kxi . Note that Σ is the covariance operator.

• The operator L : L2(dρX)→ L2(dρX) is defined by

(Lf)(x) =

∫
X

K(x, z)f(z)dρX(x), ∀f ∈ L2(dρX).

Moreover denote by N(λ) the so called effective dimension of the learning problem, that is
defined as

N(λ) = tr(L(L + λI)−1),

for λ > 0. Recall that by Assumption (A4), there exists α > 1 and Q > 0 such that

N(λ) 6 Qλ−1/α, ∀λ > 0.

We can take Q = trΣ1/α.

18



• P : L2(dρX) → L2(dρX) projection operator on H for the L2(dρX) norm s.t. ranP =
ranS.

Denote by fρ the function so that fρ(x) = E[y|x] ∈ L2(dρX) the minimizer of the expected risk,
defined by F (f) =

∫
X×R(f(x)− y)2dρ(x, y).

Remark 3 (On Assumption (A5)). With the notation above, we express assumption (A5), more
formally, w.r.t. Hilbert spaces with infinite dimensions, as follows. There exists r ∈ [0, 1] and
φ ∈ L2(dρX), such that

Pfρ = Lrφ.

(A6) Let q ∈ [1,∞] be such that ‖fρ − Pfρ‖L2q(X,ρX) <∞.

The assumption above is always true for q = 1, moreover when the kernel is universal it is true even
for q =∞. Moreover if r > 1/2 then it is true for q =∞. Note that we make the calculation in this
Appendix for a general q ∈ [1,∞], but we presented the results for q =∞ in the main paper. The
following proposition relates the excess risk to a certain norm.
Proposition 2. When ĝ ∈ H,

F (ĝ)− inf
g∈H

F (g) = ‖Sĝ − Pfρ‖2L2(dρX).

We introduce the following function gλ ∈ H that will be useful in the rest of the paper gλ =
(Σ + λI)−1S∗fρ.

We introduce the estimators of the form, for λ > 0,
ĝλ = qλ(Σ̂n)Ŝ∗nŷ,

where qλ : R+ → R+ is a function called filter, that essentially approximates x−1 with the approxi-
mation controlled by λ. Denote moreover with rλ the function rλ(x) = 1− xqλ(x). The following
definition precises the form of the filters we want to analyze. We then prove in Lemma 9 that our
estimator corresponds to such a filter.
Definition 1 (Spectral filters). Let qλ : R+ → R+ be a function parametrized by λ > 0. qλ is called
a filter when there exists cq > 0 for which

λqλ(x) 6 cq, rλ(x)xu 6 cqλ
u, ∀x > 0, λ > 0, u ∈ [0, 1].

We now justify that we study estimators of the form ĝλ = qλ(Σ̂n)Ŝ∗nŷ with the following lemma.
Indeed, we show that the average of batch gradient descent can be represented as a filter estimator,
ĝλ, for λ = 1/(γt).

Lemma 9. For t > 1, λ = 1/(γt), η̄t = ĝλ, with respect to the filter, qη(x) =
(

1− 1−(1−γx)t

γtx

)
1
x .

Proof. Indeed, for t > 1,

ηt = ηt−1 +
γ

n

n∑
i=1

(
yi − 〈ηt−1,Kxi〉H

)
Kxi

= ηt−1 + γ(Ŝ∗nŷ − Σ̂nηt−1)

= (I − γΣ̂n)ηt−1 + γŜ∗nŷ

= γ

t−1∑
k=0

(I − γΣ̂n)kŜ∗nŷ =
[
I − (I − γΣ̂n)t

]
Σ̂−1
n Ŝ∗nŷ,

leading to

η̄t =
1

t

t∑
i=0

ηi = qη
(

Σ̂n

)
Ŝ∗nŷ.

Now, we prove that q has the properties of a filter. First, for t > 1, 1
γtq

η(x) =
(

1− 1−(1−γx)t

γtx

)
1
γtx

is a decreasing function so that 1
γtq

η(x) 6 1
γtq

η(0) 6 1. Second for u ∈ [0, 1], xu(1− xqη(x)) =
1−(1−γx)t

γtx xu. As used in Section A.2, 1− (1− γx)t 6 (γtx)1−u, so that, rη(x)xu 6 (γtx)1−u

γtx xu =
1

(γt)u , this concludes the proof that qη is indeed a filter.
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D.2 Analytical decomposition

Lemma 10. Let λ > 0 and s ∈ (0, 1/2]. Under Assumption (A5) (see Rem. 3), the following holds

‖L−sS(ĝλ − gλ)‖L2(dρX) 6 2λ−sβ2cq‖Σ−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖H + 2βcq‖φ‖L2(dρX)λ

r−s,

where β := ‖Σ1/2
λ Σ̂

−1/2
nλ ‖.

Proof. By Prop. 2, we can characterize the excess risk of ĝλ in terms of the L2(dρX) squared norm of
Sĝλ − Pfρ. In this paper, simplifying the analysis of (14), we perform the following decomposition

L−sS(ĝλ − gλ) = L−sSĝλ − L−sSqλ(Σ̂n)Σ̂ngλ

+ L−sSqλ(Σ̂n)Σ̂ngλ − L−sSgλ.

Upper bound for the first term. By using the definition of ĝλ and multiplying and dividing by Σ
1/2
λ ,

we have that
L−sSĝλ − L−sSqλ(Σ̂n)Σ̂ngλ = L−sSqλ(Σ̂n)(Ŝ∗nŷ − Σ̂ngλ)

= L−sSqλ(Σ̂n)Σ
1/2
λ Σ

−1/2
λ (Ŝ∗nŷ − Σ̂ngλ),

from which
‖L−sS(ĝλ − qλ(Σ̂n)Σ̂ngλ)‖L2(dρX) 6 ‖L−sSqλ(Σ̂n)Σ

1/2
λ ‖ ‖Σ

−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖H.

Upper bound for the second term. By definition of rλ(x) = 1− xqλ(x) and gλ = Σ−1
λ S∗fρ,

L−sSqλ(Σ̂n)Σ̂ngλ − L−sSgλ = L−sS(qλ(Σ̂n)Σ̂n − I)gλ

= −L−sSrλ(Σ̂n) Σ
−(1/2−r)
λ Σ

−1/2−r
λ S∗Lr φ,

where in the last step we used the fact that S∗fρ = S∗Pfρ = S∗Lrφ, by Asm. (A5) (see Rem. 3).
Then
‖L−sS(qλ(Σ̂n)Σ̂n − I)gλ)‖L2(dρX) 6 ‖L−sSrλ(Σ̂n)‖‖Σ−(1/2−r)

λ ‖‖Σ−1/2−r
λ S∗Lr‖‖φ‖L2(dρX)

6 λ−(1/2−r)‖L−sSrλ(Σ̂n)‖‖φ‖L2(dρX),

where the last step is due to the fact that ‖Σ−(1/2−r)
λ ‖ 6 λ−(1/2−r) and that S∗L2rS =

S∗(SS∗)2rS = (S∗S)2rS∗S = Σ1+2r from which

‖Σ−1/2−r
λ S∗Lr‖2 = ‖Σ−1/2−r

λ S∗L2rSΣ
−1/2−r
λ ‖ = ‖Σ−1/2−r

λ Σ1+2rΣ
−1/2−r
λ ‖ 6 1. (14)

Additional decompositions. We further bound ‖L−sSrλ(Σ̂n)‖ and ‖L−sSqλ(Σ̂n)Σ
1/2
λ ‖. For the

first, by the identity L−sSrλ(Σ̂n) = L−sSΣ̂
−1/2
nλ Σ̂

1/2
nλ rλ(Σ̂n), we have

‖L−sSrλ(Σ̂n)‖ = ‖L−sSΣ̂
−1/2
nλ ‖‖Σ̂1/2

nλ rλ(Σ̂n)‖,
where

‖Σ̂1/2
nλ rλ(Σ̂n)‖ = sup

σ∈σ(Σ̂n)

(σ + λ)1/2rλ(σ) 6 sup
σ>0

(σ + λ)1/2rλ(σ) 6 2cqλ
1/2.

Similarly, by using the identity

L−sSqλ(Σ̂n)Σ
1/2
λ = L−sSΣ̂

−1/2
nλ Σ̂

1/2
nλ qλ(Σ̂n)Σ̂

1/2
nλ Σ̂

−1/2
nλ Σ

1/2
λ ,

we have
‖L−sSqλ(Σ̂n)Σ

1/2
λ ‖ = ‖L−sSΣ̂

−1/2
nλ ‖ ‖Σ̂1/2

nλ qλ(Σ̂n)Σ̂
1/2
nλ ‖ ‖Σ̂

−1/2
nλ Σ

1/2
λ ‖.

Finally note that

‖L−sSΣ̂
−1/2
nλ ‖ 6 ‖L−sSΣ

−1/2+s
λ ‖‖Σ−sλ ‖‖Σ

1/2
λ Σ̂

−1/2
nλ ‖,

and ‖L−sSΣ
−1/2+s
λ ‖ 6 1, ‖Σ−sλ ‖ 6 λ−s, and moreover

‖Σ̂1/2
nλ qλ(Σ̂n)Σ̂

1/2
nλ ‖ = sup

σ∈σ(Σ̂n)

(σ + λ)qλ(σ) 6 sup
σ>0

(σ + λ)qλ(σ) 6 2cq,

so, in conclusion

‖L−sSrλ(Σ̂n)‖ 6 2cqλ
1/2−sβ, ‖L−sSqλ(Σ̂n)Σ

1/2
λ ‖ 6 2cqλ

−sβ2.

The final result is obtained by gathering the upper bounds for the three terms above and the additional
terms of this last section.
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Lemma 11. Let λ > 0 and s ∈ (0,min(r, 1/2)]. Under Assumption (A5) (see Rem. 3), the following
holds

‖L−s(Sĝλ − Pfρ)‖L2(dρX) 6 λr−s‖φ‖L2(dρX).

Proof. Since SΣ−1
λ S∗ = LL−1

λ = I − λL−1
λ , we have

L−s(Sgλ − Pfρ) = L−s(SΣ−1
λ S∗fρ − Pfρ) = L−s(SΣ−1

λ S∗Pfρ − Pfρ)
= L−s(SΣ−1

λ S∗ − I)Pfρ = L−s(SΣ−1
λ S∗ − I)Lr φ

= −λL−sL−1
λ Lrφ = −λr−s λ1−r+sL

−(1−r+s)
λ L

−(r−s)
λ Lr−s φ,

from which

‖L−s(Sgλ − Pfρ)‖L2(dρX) 6 λr−s‖λ1−r+sL
−(1−r+s)
λ ‖‖L−(r−s)

λ Lr−s‖ ‖φ‖L2(dρX)

6 λr−s‖φ‖L2(dρX).

Theorem 2. Let λ > 0 and s ∈ (0,min(r, 1/2)]. Under Assumption (A5) (see Rem. 3), the following
holds

‖L−s(Sĝλ − Pfρ)‖L2(dρX) 6 2λ−sβ2cq‖Σ−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖H +

(
1 + β2cq‖φ‖L2(dρX)

)
λr−s

where β := ‖Σ1/2
λ Σ̂

−1/2
nλ ‖.

Proof. By Prop. 2, we can characterize the excess risk of ĝλ in terms of the L2(dρX) squared norm of
Sĝλ − Pfρ. In this paper, simplifying the analysis of (14), we perform the following decomposition

L−s(Sĝλ − Pfρ) = L−sSĝλ − L−sSgλ

+ L−s(Sgλ − Pfρ).
The first term is bounded by Lemma 10, the second is bounded by Lemma 11.

D.3 Probabilistic bounds

In this section denote by N∞(λ), the quantity

N∞(λ) = sup
x∈S
‖Σ−1/2

λ Kx‖2H,

where S ⊆ X is the support of the probability measure ρX.
Lemma 12. Under Asm. (A3), we have that for any g ∈ H

sup
x∈supp(ρX)

|g(x)| 6 κµR
µ‖Σ1/2(1−µ)g‖H = κµR

µ‖L−µ/2Sg‖L2(dρX).

Proof. Note that, Asm. (A3) is equivalent to

‖Σ−1/2(1−µ)Kx‖ 6 κµR
µ,

for all x in the support of ρX. Then we have, for any x in the support of ρX,

|g(x)| = 〈g,Kx〉H =
〈

Σ1/2(1−µ)g,Σ−1/2(1−µ)Kx

〉
H

6 ‖Σ1/2(1−µ)g‖H‖Σ−1/2(1−µ)Kx‖ 6 κµR
µ‖Σ1/2(1−µ)g‖H.

Now note that, since Σ1−µ = S∗L−µS, we have

‖Σ1/2(1−µ)g‖2H =
〈
g,Σ1−µg

〉
H

=
〈
L−µ/2Sg,L−µ/2Sg

〉
L2(dρX)

.

Lemma 13. Under Assumption (A3), we have

N∞(λ) 6 κ2
µR

2µλ−µ.
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Proof. First denote with fλ,u ∈ H the function Σ
−1/2
λ u for any u ∈ H and λ > 0. Note that

‖fλ,u‖H = ‖Σ−1/2
λ u‖H 6 ‖Σ−1/2

λ ‖‖u‖H 6 λ−1/2‖u‖H.

Moreover, since for any g ∈ H the identity ‖g‖L2(dρX) = ‖Sg‖H, we have

‖fλ,u‖L2(dρX) = ‖SΣ
−1/2
λ u‖H 6 ‖SΣ

−1/2
λ ‖‖u‖H 6 ‖u‖H.

Now denote with B(H) the unit ball in H, by applying Asm. (A3) to fλ,u we have that

N∞(λ) = sup
x∈S
‖Σ−1/2

λ Kx‖2 = sup
x∈S,u∈B(H)

〈
u,Σ

−1/2
λ Kx

〉2

H

= sup
x∈S,u∈B(H)

〈fλ,u,Kx〉2H = sup
u∈B(H)

sup
x∈S
|fλ,u(x)|2

6 κ2
µR

2µ sup
u∈B(H)

‖fλ,u‖2µH ‖fλ,u‖
2−2µ
L2(dρX)

6 κ2
µR

2µλ−µ sup
u∈B(H)

‖u‖2H 6 κ2
µR

2µλ−µ.

Lemma 14. Let λ > 0, δ ∈ (0, 1] and n ∈ N. Under Assumption (A3), we have that, when

n > 11(1 + κ2
µR

2µλ−µ) log
8R2

λδ
,

then the following holds with probability 1− δ,

‖Σ1/2
λ Σ̂

−1/2
nλ ‖2 6 2.

Proof. This result is a refinement of the one in (39) and is based on non-commutative Bernstein
inequalities for random matrices (40). By Prop. 8 in (21), we have that

‖Σ1/2
λ Σ̂

−1/2
nλ ‖2 6 (1− t)−1, t := ‖Σ−1/2

λ (Σ− Σ̂n)Σ
−1/2
λ ‖.

When 0 < λ 6 ‖Σ‖, by Prop. 6 of (21) (see also (41) Lemma 9 for more refined constants), we have
that the following holds with probability at least 1− δ,

t 6
2η(1 + N∞(λ))

3n
+

√
2ηN∞(λ)

n
,

with η = log 8R2

λδ . Finally, by selecting n > 11(1 + κ2
µR

2µλ−µ)η, we have that t 6 1/2 and so

‖Σ1/2
λ Σ̂

−1/2
nλ ‖2 6 (1− t)−1 6 2, with probability 1− δ.

To conclude note that when λ > ‖Σ‖, we have

‖Σ1/2
λ Σ̂

−1/2
nλ ‖2 6 ‖Σ + λI‖‖(Σ̂n + λI)−1‖ 6 ‖Σ‖+ λ

λ
= 1 +

‖Σ‖
λ

6 2.

Lemma 15. Under Assumption (A3), (A4), (A5) (see Rem. 3), (A6) we have

1. Let λ > 0, n ∈ N, the following holds

E[‖Σ−1/2
λ (Ŝ∗nŷ−Σ̂ngλ)‖2H] 6 ‖φ‖2L2(dρX)λ

2r+
2κ2

µR
2µλ−(µ−2r)

n
+

4κ2
µR

2µAQλ−
q+µα
qα+α

n
,

where A := ‖fρ − Pfρ‖2−2/(q+1)
L2q(X,ρX) .
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2. Let δ ∈ (0, 1], under the same assumptions, the following holds with probability at least
1− δ

‖Σ−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖H 6 c0λ

r +
4(c1λ

−µ2 + c2λ
−r−µ) log 2

δ

n

+

√
16κ2

µR
2µ(λ−(µ−2r) + 2AQλ−

q+µα
qα+α ) log 2

δ

n
,

with c0 = ‖φ‖L2(dρX), c1 = κµR
µM + κ2

µR
2µ(2R)2r−µ‖φ‖L2(dρX), c2 =

κ2
µR

2µ‖φ‖L2(dρX)

Proof. First denote with ζi the random variable

ζi = (yi − gλ(xi))Σ
−1/2
λ Kxi .

In particular note that, by using the definitions of Ŝn, ŷ and Σ̂n, we have

Σ
−1/2
λ (Ŝ∗nŷ − Σ̂ngλ) = Σ

−1/2
λ (

1

n

n∑
i=1

Kxiyi −
1

n
(Kxi ⊗Kxi)gλ) =

1

n

n∑
i=1

ζi.

I So, by noting that ζi are independent and identically distributed, we have

E[‖Σ−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖2H] = E[‖ 1

n

n∑
i=1

ζi‖2H] =
1

n2

n∑
i,j=1

E[〈ζi, ζj〉H]

=
1

n
E[‖ζ1‖2H] +

n− 1

n
‖E[ζ1]‖2H.

Now note that

E[ζ1] = Σ
−1/2
λ (E[Kx1

y1]− E[Kx1
⊗Kx1

]gλ) = Σ
−1/2
λ (S∗fρ − Σgλ).

In particular, by the fact that S∗fρ = Pfρ, Pfρ = Lrφ and Σgλ = ΣΣ−1
λ S∗fρ and ΣΣ−1

λ =

I − λΣ−1
λ , we have

Σ
−1/2
λ (S∗fρ − Σgλ) = λΣ

−3/2
λ S∗fρ = λr λ1−rΣ

−(1−r)
λ Σ

−1/2−r
λ S∗Lr φ.

So, since ‖Σ−1/2−r
λ S∗Lr‖ 6 1, as proven in Eq. 14, then

‖E[ζ1]‖H 6 λr‖λ1−rΣ
−(1−r)
λ ‖ ‖Σ−1/2−r

λ S∗Lr‖ ‖φ‖L2(dρX) 6 λr‖φ‖L2(dρX) := Z.

Morever

E[‖ζ1‖2H] = E[‖Σ−1/2
λ Kx1

‖2H(y1 − gλ(x1))2] = Ex1
Ey1|x1

[‖Σ−1/2
λ Kx1

‖2H(y1 − gλ(x1))2]

= Ex1 [‖Σ−1/2
λ Kx1‖2H(fρ(x1)− gλ(x1))2].

Moreover we have

E[‖ζ1‖2H] = Ex[‖Σ−1/2
λ Kx‖2H(fρ(x)− gλ(x))2]

= Ex[‖Σ−1/2
λ Kx‖2H((fρ(x)− (Pfρ)(x)) + ((Pfρ)(x)− gλ(x)))2]

6 2Ex[‖Σ−1/2
λ Kx‖2H(fρ(x)− (Pfρ)(x))2] + 2Ex[‖Σ−1/2

λ Kx‖2H((Pfρ)(x)− gλ(x))2].

Now since E[AB] 6 (ess supA)E[B], for any two random variables A,B, we have

Ex[‖Σ−1/2
λ Kx‖2H((Pfρ)(x)− gλ(x))2] 6 N∞(λ)Ex[((Pfρ)(x)− gλ(x))2]

= N∞(λ)‖Pfρ − Sgλ‖2L2(dρX)

6 κ2
µR

2µλ−(µ−2r),

where in the last step we bounded N∞(λ) via Lemma 13 and ‖Pfρ − Sgλ‖2L2(dρX), via Lemma. 11

applied with s = 0. Finally, denoting by a(x) = ‖Σ−1/2
λ Kx‖2H and b(x) = (fρ(x) − (Pfρ)(x))2
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and noting that by Markov inequality we have Ex[1{b(x)>t}] = ρX({b(x) > t}) = ρX({b(x)q >

tq}) 6 Ex[b(x)q]t−q , for any t > 0. Then for any t > 0 the following holds

Ex[a(x)b(x)] = Ex[a(x)b(x)1{b(x)6t}] + Ex[a(x)b(x)1{b(x)>t}]

6 tEx[a(x)] +N∞(λ)Ex[b(x)1{b(x)>t}]

6 tN(λ) +N∞(λ)Ex[b(x)q]t−q.

By minimizing the quantity above in t, we obtain

Ex[‖Σ−1/2
λ Kx‖2H(fρ(x)− (Pfρ)(x))2] 6 2‖fρ − Pfρ‖

q
q+1

Lq(X,ρX)N(λ)
q
q+1N∞(λ)

1
q+1

6 2κ2
µR

2µAQλ−
q+µα
qα+α .

So finally
E[‖ζ1‖2H] 6 2κ2

µR
2µλ−(µ−2r) + 4κ2

µR
2µAQλ−

q+µα
qα+α := W 2.

To conclude the proof, let us obtain the bound in high probability. We need to bound the higher
moments of ζ1. First note that

E[‖ζ1 − E[ζ1]‖pH] 6 E[‖ζ1 − ζ2‖pH] 6 2p−1E[‖ζ1|pH + ‖ζ2‖pH] 6 2pE[‖ζ1|pH].

Moreover, denoting by S ⊆ X the support of ρX and recalling that y is bounded in [−M,M ], the
following bound holds almost surely

‖ζ1‖ 6 sup
x∈S
‖Σ−1/2

λ Kx‖(M + |gλ(x)|) 6 (sup
x∈S
‖Σ−1/2

λ Kx‖)(M + sup
x∈S
|gλ(x)|)

6 κµR
µλ−µ/2(M + κµR

µ‖Σ1/2(1−µ)gλ‖H).

where in the last step we applied Lemma 13 and Lemma 12. In particular, by definition of gλ, the fact
that S∗fρ = S∗Pfρ, that Pfρ = Lrφ and that ‖Σ−(1/2+r)

λ S∗Lr‖ 6 1 as proven in Eq. 14, we have

‖Σ1/2(1−µ)gλ‖H = ‖Σ1/2(1−µ)Σ−1
λ S∗Lrφ‖H

6 ‖Σ1/2(1−µ)Σ−1/2(1−µ)‖‖Σ−(µ/2−r)
λ ‖‖Σ−(1/2+r)

λ S∗Lr‖‖φ‖L2(dρX)

6 ‖Σr−µ/2λ ‖‖φ‖L2(dρX).

Finally note that if r 6 µ/2 then ‖Σr−µ/2λ ‖ 6 λ−(µ/2−r), if r > µ/2 then

‖Σr−µ/2λ ‖ = (‖C‖+ λ)r−µ/2 6 (2‖C‖)r−µ/2 6 (2R)2r−µ.

So in particular
‖Σr−µ/2λ ‖ 6 (2R)2r−µ + λ−(µ/2−r).

Then the following holds almost surely

‖ζ1‖ 6 (κµR
µM + κ2

µR
2µ(2R)2r−µ‖φ‖L2(dρX))λ

−µ/2 + κ2
µR

2µ‖φ‖L2(dρX)λ
r−µ := V.

So finally

E[‖ζ1 − E[ζ1]‖pH] 6 2pE[‖ζ1‖pH] 6
p!

2
(2V )p−2(4W 2).

By applying Pinelis inequality, the following holds with probability 1− δ

‖ 1

n

n∑
i=1

(ζi − E[ζi])‖H 6
4V log 2

δ

n
+

√
8W log 2

δ

n
.

So with the same probability

‖ 1

n

n∑
i=1

ζi‖H 6 ‖ 1

n

n∑
i=1

(ζi − E[ζi])‖H + ‖E[ζ1]‖H 6 Z +
4V log 2

δ

n
+

√
8W log 2

δ

n
.

24



Lemma 16. Let λ > 0, n ∈ N and s ∈ (0, 1/2]. Let δ ∈ (0, 1]. Under Assumption (A3), (A4), (A5)
(see Rem. 3), (A6), when

n > 11(1 + κ2
µR

2µλ−µ) log
16R2

λδ
,

then the following holds with probability 1− δ,

‖L−sS(ĝλ − gλ)‖L2(dρX) ≤ c0λ
r−s +

(c1λ
−µ2−s + c2λ

r−µ−s) log 4
δ

n

+

√
(c3λ−(µ+2s−2r) + c4λ

− q+µαqα+α−2s) log 4
δ

n
.

with c0 = 7cq‖φ‖L2(dρX), c1 = 16cq(κµR
µM + κ2

µR
2µ(2R)2r−µ‖φ‖L2(dρX)), c2 =

16cqκ
2
µR

2µ‖φ‖L2(dρX), c3 = 64κ2
µR

2µc2q , c4 = 128κ2
µR

2µAQc2q .

Proof. Let τ = δ/2, the result is obtained by combining Lemma 10, with Lemma 15 with probability
τ , and Lemma 14, with probability τ and then taking the intersection bound of the two events.

Corollary 1. Let λ > 0, n ∈ N and s ∈ (0, 1/2]. Let δ ∈ (0, 1]. Under the assumptions of Lemma 16,
when

n > 11(1 + κ2
µR

2µλ−µ) log
16R2

λδ
,

then the following holds with probability 1− δ,

‖L−sSĝλ‖L2(dρX) ≤ R2r−2s + (1 + c0)λr−s +
(c1λ

−µ2−s + c2λ
r−µ−s) log 4

δ

n

+

√
(c3λ−(µ+2s−2r) + c4λ

− q+µαqα+α−2s) log 4
δ

n
+

with the same constants c0, . . . , c4 as in Lemma 16.

Proof. First note that
‖L−sSĝλ‖L2(dρX) 6 ‖L−sS(ĝλ − gλ)‖L2(dρX) + ‖L−sSgλ‖L2(dρX).

The first term on the right hand side is controlled by Lemma 16, for the second, by using the definition
of gλ and Asm. (A5) (see Rem. 3), we have

‖L−sSgλ‖L2(dρX) 6 ‖L−sSΣ
−1/2+s
λ ‖‖Σ−(s−r)

λ ‖‖Σ−1/2−r
λ S∗Lr‖‖φ‖L2(dρX)

6 ‖Σr−sλ ‖‖φ‖L2(dρX),

where ‖Σ−1/2−r
λ S∗Lr‖ 6 1 by Eq. 14 and analogously ‖L−sSΣ

−1/2+s
λ ‖ 6 1. Note that if s > r

then ‖Σr−sλ ‖ 6 λ−(s−r). If s < r, we have

‖Σr−sλ ‖ = (‖Σ‖+ λ)r−s 6 ‖C‖r−s + λr−s 6 R2r−2s + λr−s.

So finally ‖Σr−sλ ‖ 6 R2r−2s + λr−s.

Corollary 2. Let λ > 0, n ∈ N and s ∈ (0, 1/2]. Let δ ∈ (0, 1]. Under Assumption (A3), (A4), (A5)
(see Rem. 3), (A6), when

n > 11(1 + κ2
µR

2µλ−µ) log
16R2

λδ
,

then the following holds with probability 1− δ,

sup
x∈X
|ĝλ(x)| ≤ κµR

µR2r−2s + κµR
µ(1 + c0)λr−µ/2 + κµR

µ (c1λ
−µ + c2λ

r−3/2µ) log 4
δ

n

+ κµR
µ

√
(c3λ−(2µ−2r) + κµRµc4λ

− q+µαqα+α−µ) log 4
δ

n
.

with the same constants c0, . . . , c4 in Lemma 16.

Proof. The proof is obtained by applying Lemma 12 on ĝλ and then Corollary 1.
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D.4 Main Result

Theorem 3. Let λ > 0, n ∈ N and s ∈ (0,min(r, 1/2)]. Under Assumption (A3), (A4), (A5) (see
Rem. 3), (A6), when

n > 11(1 + κ2
µR

2µλ−µ) log
c0

λ3+4r−4s
,

then

E[‖L−s(Sĝλ − Pfρ)‖2L2(dρX)] 6 c1
λ−(µ+2s−2r)

n
+ c2

λ−
q+µα
qα+α−2s

n
+ c3λ

2r−2s,

where m4 = M4, c0 = 32R4−4sm4 + 32R8−8r−8s‖φ‖4L2(dρX), c1 = 16c2qκ
2
µR

2µ, c2 =

32c2qκ
2
µR

2µAQ, c3 = 3 + 8c2q‖φ‖2L2(dρX).

Proof. Denote byR(ĝλ), the expected riskR(ĝλ) = E(ĝλ)−infg∈H E(g). First, note that by Prop. 2,
we have

Rs(ĝλ) = ‖L−s(Sĝλ − Pfρ)‖2L2(dρX).

Denote by E the event such that β as defined in Thm. 2, satisfies β 6 2. Then we have

E[Rs(ĝλ)] = E[Rs(ĝλ)1E ] + E[R(ĝλ)1Ec ].

For the first term, by Thm. 2 and Lemma 15, we have

E[Rs(ĝλ)1E ] 6 E[
(

2λ−2sβ4c2q‖Σ
−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖2H

+ 2
(

1 + β22c2q‖φ‖2L2(dρX)

)
λ2r−2s

)
1E ]

6 8λ−2sc2qE[‖Σ−1/2
λ (Ŝ∗nŷ − Σ̂ngλ)‖2H] + 2

(
1 + 4c2q‖φ‖2L2(dρX)

)
λ2r−2s

6
16c2qκ

2
µR

2µλ−µ+2r−2s

n
+

32c2qκ
2
µR

2µAQλ−
q+µα
qα+α−2s

n
+
(

2 + 8c2q‖φ‖2L2(dρX)

)
λ2r−2s.

For the second term, since Σ̂
1/2
nλ qλ(Σ̂n)Σ̂

1/2
nλ = Σ̂nλqλ(Σ̂n) 6 supσ>0(σ + λ)qλ(σ) 6 cq by

definition of filters, and that Pfρ = Lrφ, we have

Rs(ĝλ)1/2 6 ‖L−sSĝλ‖L2(dρX) + ‖L−sPfρ‖L2(dρX)

6 ‖L−sS‖‖Σ̂−1/2
nλ ‖‖Σ̂1/2

nλ qλ(Σ̂n)Σ̂
1/2
nλ ‖‖Σ̂

−1/2
nλ Ŝ∗n‖‖ŷ‖+ ‖L−sLr‖‖φ‖L2(dρX)

6 R1/2−sλ−1/2‖ŷ‖+R2r−2s‖φ‖L2(dρX)

6 λ−1/2(R1/2−s(n−1
n∑
i=1

yi) +R1+2r−2s‖φ‖L2(dρX)),

where the last step is due to the fact that 1 6 λ−1/2‖L‖1/2 since λ satisfies 0 < λ 6 ‖Σ‖ = ‖L‖ 6
R2. Denote with δ the quantity δ = λ2+4r−4s/c0. Since E[1cE ] corresponds to the probability
of the event Ec, and, by Lemma 14, we have that Ec holds with probability at most δ since
n > 11(1 + κ2

µR
2µλ−µ) log 8R2

λδ , then we have that

E[R(ĝλ)1Ec ] 6 E[‖Sĝλ‖2L2(dρX)1Ec ] 6
√
E[‖Sĝλ‖4L2(dρX)]

√
E[1Ec ]

6

√
4R2−4sn−2(

∑n
i,j=1 E[y2

i y
2
j ]) + 4R4−8r−8s‖φ‖4L2(dρX)

λ2

√
δ

6

√
δ

λ

√
4R2−4sm4 + 4R4−8r−8s‖φ‖4L2(dρX)

=

√
δc0/(8R2)

λ
6 λ2r−2s.
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Corollary 3. Let λ > 0 and n ∈ N and s = 0. Under Assumption (A3), (A4), (A5) (see Rem. 3), (A6),
when

λ = B1

{
n−α/(2rα+1+µα−1

q+1 ) 2rα+ 1 + µα−1
q+1 > µα

n−1/µ (logB2n)
1
µ 2rα+ 1 + µα−1

q+1 6 µα.
(15)

then,

E E(ĝλ)− inf
g∈H

E(g) 6 B3

{
n−2rα/(2rα+1+µα−1

q+1 ) 2rα+ 1 + µα−1
q+1 > µα

n−2r/µ 2rα+ 1 + µα−1
q+1 6 µα

(16)

where B2 = 3 ∨ (32R6m4)
µ

3+4rB−µ1 and B1 defined explicitly in the proof.

Proof. The proof of this corollary is a direct application of Thm. 3. In the rest of the proof
we find the constants to guarantee that the condition relating n, λ in the theorem is always
satisfied. Indeed to guarantee the applicability of Thm. 3, we need to be sure that n >
11(1 + κ2

µR
2µλ−µ) log 32R6m4

λ3+4r . This is satisfied when both the following conditions hold n >

22 log 32R6m4

λ3+4r and n > 2κ2
µR

2µλ−µ log 32R6m4

λ3+4r . To study the last two conditions, we recall that for
A,B, s, q > 0 we have that An−s log(Bnq) satisfy

An−s log(Bnq) =
qABs/q

s

logBs/qns

Bs/qns
6
qABs/q

es
,

for any n > 0, since logx
x 6 1

e for any x > 0. Now we define explicitly B1, let τ =

α/
(

2rα+ 1 + µα−1
q+1

)
, we have

B1 =

(
22(3 + 4r)

eµ
(32R6m4)

µ
3+4r

) 1
µ

∨ (17)

∨


(

2M(3+4r)
e(1/τ−µ) (32R6m4)

1/τ−µ
3+4r

)τ
2rα+ 1 + µα−1

q+1 > µα(
2M(3+4r)

µ

) 1
µ

2rα+ 1 + µα−1
q+1 6 µα

. (18)

For the first condition, we use the fact that λ is always larger than B1n
−1/µ, so we have

22

n
log

32R6m4

λ3+4r
6

22

n
log

32R6m4n
(3+4r)/µ

B3+4r
1

6
22(3 + 4r)(32R6m4)µ/(3+4r)

eµBµ1
6 1.

For the second inequality, when 2rα+ 1 + µα−1
q+1 > µα, we have λ = B1n

−τ , so

2κ2
µR

2µ

n
λ−µ log

32R6m4

λ3+4r
6

2κ2
µR

2µ

Bµ1 n
1−µτ log

32R6m4n
(3+4r)τ

B3+4r
1

6
2κ2

µR
2µ(3 + 4r)τ

e(1− µτ)

(32R6m4)
1/τ−µ
3+4r

B
1/τ
1

6 1.

Finally, when 2rα+ 1 + µα−1
q+1 > µα, we have λ = B1n

−1/µ(logB2n)1/µ. So since log(B2n) > 1,
we have

2κ2
µR

2µ

n
log

32R6m4

λ3+4r
6

2κ2
µR

2µ

Bµ1

log 32R6m4n
(3+4r)/µ

B3+4r
1

log(B2n)
=

2κ2
µR

2µ(3 + 4r)

µBµ1

log (32R6m4)µ/(3+4r)n
Bµ1

log(B2n)
6 1.

So by selecting λ as in Eq. 15, we guarantee that the condition required by Thm. 3 is satisfied.

Finally the constant B3 is obtained by

B3 = c1 max(1, w)−(µ+2s−2r) + c2 max(1, w)−
q+µα
qα+α−2s + c3 max(1, w)2r−2s,

with w = B1 log(1 +B2) and c1, c2, c3 as in Thm. 3.
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E Experiments with different sampling

We present here the results for two different types of sampling, which seem to be more stable, perform
better and are widely used in practice :
Without replacement (Figure 4): for which we select randomly the data points but never use two
times over the same point in one epoch.
Cycles (Figure 5): for which we pick successively the data points in the same order.
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Figure 4 – The sampling is performed by cycling over the data The four plots represent each a different
configuration on the (α, r) plan represented in Figure 1, for r = 1/(2α). Top left (α = 1.5) and right (α = 2)
are two easy problems (Top right is the limiting case where r = α−1

2α
) for which one pass over the data is

optimal. Bottom left (α = 2.5) and right (α = 3) are two hard problems for which an increasing number of
passes is recquired. The blue dotted line are the slopes predicted by the theoretical result in Theorem 1.
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Figure 5 – The sampling is performed without replacement. The four plots represent each a different
configuration on the (α, r) plan represented in Figure 1, for r = 1/(2α). Top left (α = 1.5) and right (α = 2)
are two easy problems (Top right is the limiting case where r = α−1

2α
) for which one pass over the data is

optimal. Bottom left (α = 2.5) and right (α = 3) are two hard problems for which an increasing number of
passes is recquired. The blue dotted line are the slopes predicted by the theoretical result in Theorem 1.
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