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ABSTRACT

We extend recent work on mathematical morphology for sig-
nal processing on weighted graphs, based on discrete tropical
algebra. The framework is general and can be applied to any
scalar function defined on a graph. We show applications in
structure tensors analysis and the regularization of grayscale
images.

Index Terms— Mathematical morphology, signal pro-
cessing on graphs, tropical algebra.

1. INTRODUCTION

Classical signal and image processing uses the natural ge-
ometry of the space supporting the signal (often Euclidean,
or a regular discrete set) to define analysis operators such
as differentiation, convolution, Fourier transform, interpola-
tion. Processing a function supported by a graph requires
to overcome the lack of regular geometrical structure, which
leaves us without concepts as simple as translation, for exam-
ple. Lately, signal processing on graphs has gained interest
to address this kind of issues [1, 2, 3]. This effort includes
the extension of non-linear operators, and in particular math-
ematical morphology, to signals on graphs [4].

Mathematical morphology (MM) first arose as a branch of
non-linear image processing [5] and since then has been ex-
tended to a general mathematical framework based on lattice
theory [6]. The formulation of morphological operators on
graphs is a classical quest, but the previous formulations were
mainly focused on unweighted graphs (use of graph structur-
ing elements) [7] or based on max/min operations between
vertices and edges weights [8]. The latter is appropriate to
formulate watershed segmentation as a graph transform.

In [4] the authors introduce a formalism for MM for sig-
nals on graphs that generalizes a wide range of mathemati-
cal morphology operators usually defined for images, includ-
ing flat, non-flat and adaptive erosions and dilations. This
formalism is clearly inspired by the idea of non-local mor-
phology [9, 10]. Interestingly, although in [4] the authors do
not emphasize this aspect, they write dilations and erosions
as max-plus and min-plus “linear” functions, in other words
as the product of a matrix by a vector in the “max-plus” and
“min-plus” algebras, also called idempotent or tropical alge-

bras [11]. This is just a hint of how much the field of idempo-
tent mathematics can be suited to the processing of signals on
graphs from a mathematical morphology perspective. There
are indeed strong links between idempotent algebras and op-
timal paths computations in graphs [12], as well as between
these algebras and mathematical morphology [13, 14, 15, 16].

The goal of this paper is twofold. First, we introduce a
general framework for morphological signal processing on
graphs, using a tropical algebraic formulation. This opens
the very rich field of max-plus algebra [17] to image pro-
cessing and mathematical morphology. Secondly, we show
two examples of applications based on the structure tensors
of 2D images. One is the processing of the structure tensors
anisotropy for the enhancement of fibre-like structures such
as vessels. The second application is the morphological regu-
larization of grayscale images.

2. SETTING AND DEFINITIONS

2.1. Discrete max-plus algebra

We consider the semiring Rmax = R∪ {−∞} equipped with
the two binary operations x ⊕ y = max(x, y) and x ⊗ y =
x+y. The neutral element for⊕ is−∞ (max(x,−∞) = x),
which is also absorbing for ⊗ (x + (−∞) = −∞), and the
neutral element for ⊗ is 0. What is more, both operations are
associative and commutative, and ⊗ is distributive over ⊕.
Therefore in this setting the ⊕ operation is the counterpart of
the addition in the usual algebra, whereas ⊗ is analogous to
the multiplication. However one specificity of (Rmax,⊕,⊗)
is the idempotency of the ⊕ (max(x, x) = x), for which it is
called an idempotent semiring.

The set of matrices with elements in Rmax also have their
natural “max-plus” counterpart of linear operations, based on
⊕ and ⊗. Let A and B be two m × n and n × p matrices,
respectively. Then A � B is the m × p matrix defined by
(A � B)ij = ⊕nk=1aik ⊗ bkj = max1≤k≤n(aik + bkj). For
two matrices of the same size we also have the ⊕ operation
defined by (A⊕B)ij = aij ⊕ bij = max(aij , bij).

In the remaining of the paper we will note Ap the p-th
power of a square matrix A in the max-plus sense, for any
integer p ≥ 0 (for p = 0, Ap is the max-plus identity matrix,
for which aii = 0 and aij = −∞ for i 6= j). The coefficients



of the matrix Ap will be noted a
(p)
ij . Finally, we will note

Matn(Rmax) the set of n×nmatrices with elements in Rmax.
In this paper we focus on a particular class of square matrices,
defined hereafter.

Definition 1 (Conservative morphological weight matrix [4])
A matrix W ∈ Matn(Rmax) is a conservative morpholog-
ical weight matrix if −∞ ≤ wij ≤ 0 and wii = 0 for any
(i, j), 1 ≤ i, j ≤ n.

2.2. Graphs with conservative morphological weights

Let G = (V,E) be a weighted and directed graph containing
n vertices, whose n×n adjacency matrix, noted W , is a con-
servative morphological weight matrix (see Def. 1). We now
recall and adapt a few definitions from graph theory.

A path from vertex i to vertex j in G is a tuple of vertices
(k1, . . . , kl) such that k1 = i, kl = j, and (kp, kp+1) ∈ E
for 1 ≤ p ≤ l − 1. We note Γij the set of paths from i to
j in G, and Γ

(p)
ij the set of paths from i to j in G containing

at most p vertices, p ≥ 1. Given the weight matrix W , the
weight of a path γ = (k1, . . . , kl), noted ω(γ), is the sum
ω(γ) =

∑l−1
p=1 wkpkp+1

. One can easily show that the set
{ω(γ), γ ∈ Γij} has a (finite) maximum value whenever Γij
is non empty. We call maximal weight and note ω∗(Γ) this
value and a maximal path is a path achieving it. For com-
pleteness, we set ω∗(∅) = −∞.

The following results show some strong links between
tropical algebra and graphs. They can be found in various
forms in the literature (e.g. [12, 18]) hence the proof is omit-
ted here. We recall that the powers W p are intended in the
max-plus sense (Section 2.1).

Proposition 1 Let p ∈ N. Then for any 1 ≤ i, j ≤ n,
1. w

(p)
ij > −∞ if and only if there is at least a path from

vertex i to vertex j in G containing at most p+ 1 vertices;
2. w(p)

ij is the maximal weight of the set of paths from vertex i
to vertex j containing at most p+ 1 vertices.

Interestingly,W p is also a conservative morphological weight
matrix. Its corresponding graph, that we note Gp, can be seen
as the original graph G to which an edge is added between
vertices i and j whenever there is a path containing at most
p+1 vertices from i to j. The weight associated with this new
edge is w(p)

ij = ω∗(Γ
(p+1)
ij ), the maximal weight for the paths

from i to j containing at most p + 1 vertices. The following
corollary is straightforward from the graph interpretation of
the max-plus powers of W , given by Proposition 1.

Corollary 1 Wn = Wn−1 and therefore there exists an in-
teger pmax = min{p ∈ N,W p = W p+1}.

Recall that n is the number of columns (or rows) of W . We
will note W∞ =̇ W pmax = Wn−1. It is clear from Propo-
sition 1 that w(∞)

ij > −∞ if and only if there is a path from i

to j, and w(∞)
ij is the maximal weight over the paths from i to

j: w(∞)
ij = ω∗(Γij). What is more, one can easily check that

W p+1 ≥ W p and therefore W∞ = ⊕p≥0W p is the closure
(or Kleene star [19]) of W , also noted W ∗.

2.3. Morphological operators

In this section we link the max-plus product W � x (Sec-
tion 2.1) to morphological operators on a vector x supported
by a graph G with conservative morphological weights (Sec-
tion 2.2). This formulation, that will be summarized by Equa-
tion 3 (see infra) generalizes many of the dilations and ero-
sions defined on graphs and in image processing applications.

Mathematical morphology is usually defined on complete
lattices [20]. A complete lattice (L,≤) is a partially ordered
set for which every subset A ⊆ L has a supremum noted∨
A and an infimum noted

∧
A. A mapping δ : L → L

is a dilation if it commutes with the supremum, and an ero-
sion ε is an operator that commutes with the infimum: for
a family (xk)k∈K of L, δ(

∨
k∈K xk) =

∨
k∈K δ(xk) and

ε(
∧
k∈K xk) =

∧
k∈K ε(xk), where K is an index set.

We recall that W denotes a n × n conservative morpho-
logical weight matrix. We note L = ([0, 1]n,≤) the com-
plete lattice equipped with the usual product partial ordering
(Pareto ordering): x ≤ y ⇐⇒ xi ≤ yi ∀i ∈ {1, . . . , n}.
The supremum and infimum on L are induced by the Pareto
ordering: for a family (x(k))k∈K of L,

∨
k∈K x(k) is the vec-

tor y defined by yi =
∨
k∈K x

(k)
i , which may not be any of

the x(k) (and the same holds for
∧

). Then the “max-plus-
linear” function

δW :

{
L → L
x 7→ W � x

(1)

is a dilation on L. Similarly, noting xc = 1− x,

εW (x) =
(
WT � xc

)c
(2)

is an erosion onL and the pair (εW , δW ) forms an adjunction:
∀x,y ∈ L, δW (x) ≤ y ⇐⇒ x ≤ εW (y).

Let x = (x1, . . . , xn) ∈ L be a signal on G, meaning that
each value xi is supported by vertex i. Then the dilation and
erosion of Equations 1 and 2 can be written for 1 ≤ i ≤ n

δW (x)i = max
j∈Ni

(
xj +wij

)
, εW (x)i = min

j,i∈Nj

(
xj −wji

)
(3)

whereNi =̇
{
j ∈ {1, . . . , n}, (i, j) ∈ E

}
is the set of neigh-

bours of vertex i inG. At this point one should remember that
thewij are non positive. The closerwij is to 0, the more likely
vertex j is to contribute to the max (resp. the min) in the di-
lation (resp. erosion) of vertex i. Conversely, the closer wij
is to −∞, the more likely vertex j is to be irrelevant in these
computations. In fact, the max can be taken over Ni in the
dilation because wij = −∞ if j /∈ Ni, and the same holds



(a) (b)

Fig. 1. (a) A grayscale image and (b) its structure tensors
Tσ for σ = 3 pixels, obtained with [21]. The corresponding
anisotropy image is shown in Figure 3 top left.

for the erosion. The dilation thus appears as a max-plus “non-
local” convolution where coefficients wij model the weight
of the neighbouring vertices in the graph. Note that Equa-
tion 3 generalizes many adjunctions in image processing. For
example, setting wij = log(1Bi

(j)) with Bi a structuring el-
ement for pixel i, we get the usual flat dilation and erosion. If
the family (Bi)i∈I is not translation invariant, we get the so
called adaptive morphology framework; if Bi is not a spatial
neighbourhood of i, we get the typical non-local operators.

As it is well known in mathematical morphology, if a dila-
tion δ and an erosion ε form an adjunction, then δp = δ◦· · ·◦δ
and εp = ε ◦ · · · ◦ ε are also adjoint dilation and erosion. The
associativity of the max-plus product � yields the following
result for these iterated dilation and erosion.

Proposition 2 Let W a conservative morphological weight
matrix, and p ∈ N. Then δpW = δ(Wp) and εpW = ε(Wp).

This also implies the semi-group property δ(Wp)δ(W q) =
δ(Wp+q), and an easy writing for δpW and εpW :

δpW (x)i = max
j∈Np

i

(
xj+w

(p)
ij

)
, εpW (x)i = min

j,i∈Np
j

(
xj−w(p)

ji

)
(4)

whereN p
i is the set of neighbours of vertex i in Gp or, equiv-

alently, the set of vertices in G that can be reached from i
through a path containing at most p+ 1 vertices.

Since W p is a conservative morphological weight matrix
for any p, it is clear from Equation 4 that δpW is extensive and
εpW is anti-extensive. From Corollary 1 and Proposition 2 we
get the idempotence of δ∞W =̇δ(W∞) and ε∞W =̇ε(W∞), which
are therefore a closing and an opening respectively, that verify
δ∞W ε

∞
W = ε∞W and ε∞W δ

∞
W = δ∞W .

3. APPLICATION TO STRUCTURE TENSORS

In this section we introduce a class of graphs based on the
co-circularity of the structure tensors principal directions.
Structure tensors and anisotropy image [21]. Given an
image f , the scale zero tensor T0 maps each pixel (x, y) to
the symmetric positive semi-definite matrix with rank ≤ 1,

Ladder

Fig. 2. Left: a set of elements (p, θ) co-circular to the central
element (p0, θ0) where p0 is the origin and θ0 = 0 rad; Right:
the elements from the left hand image that comply with the
additional constraint to avoid ladder configurations.

T0(x, y) = ∇f(x, y) · ∇f(x, y)
T . The gradient ∇f(x, y)

is eigenvector of T0(x, y) with ||∇f(x, y)||2 as correspond-
ing eigenvalue, and 0 is the other eigenvalue. Then for
σ > 0 the tensor Tσ is the smoothed version Tσ = Gσ ∗ T0
where Gσ is the σ-scale Gaussian kernel. Note that, for any
u = (x, y), Tσ(u) is a weighted sum of tensors T0(v) with
positive weights, and is therefore a positive semi-definite ma-
trix that can be represented by an ellipse (Fig. 1(b)). For each
u = (x, y), we note 0 ≤ λ2(u) ≤ λ1(u) the eigenvalues
of Tσ(u) and (e1(u), e2(u)) its basis of orthogonal eigen-
vectors. If we represent Tσ(u) by its corresponding ellipse
then its main direction is given by the second eigenvector
e2(u). We note θ2(u) = arg(e2(u)). From the tensor field
Tσ we can build the anisotropy image Ia = λ1−λ2

λ1+λ2
. Then

0 ≤ Ia ≤ 1, and the closer Ia(u) to 1, the more Tσ(u) is
anisotropic (Fig. 3).
Co-circularity (Fig. 2). Given two points u1, u2 ∈ R2

and two angles θ1, θ2 we say that (u1, θ1) and (u2, θ2) are
co-circular if there is a circle (with possibly infinite radius)
tangent in u1 and u2 to the lines directed by the vectors
[cos(θ1), sin(θ1)]T and [cos(θ2), sin(θ2)]T , respectively.
An undirected graph with binary weights. The graphG we
consider is built for an image containing n pixels. It is undi-
rected and contains n vertices, one per pixel. Noting W its
adjacency matrix, we set wij = 0 iff the point uj = (xj , yj)
is in a square window of fixed size 2k + 1, centered on ui,
and (ui, θ2(i)) and (uj , θ2(j)) are co-circular up to a certain
angular tolerance α, with an additional constraint to avoid
ladder configurations (Figure 2). Otherwise, wij = −∞.

3.1. Processing anisotropy

Processing an array of non-scalar data containing directional
information is a complex task which can be of crucial interest.
An example is tractography, which consists in tracking white
matter fibres in 3D diffusion MRI of the brain [22]. Another
possible application is the analysis of thin structures such as
vessels in 2D images, through their sets of structure tensors
(Figure 1 (b)). We present a method for the latter application,
based on the operators defined in the previous sections.



As there is no meaningful ordering defining a complete
lattice on positive semi-definite matrices, we choose to per-
form a morphological analysis on scalar data inferred from
the matrices. Thus we define the co-circularity graph as de-
scribed above and the processed signal xi on vertex i is the
anisotropy of the structure tensor at pixel i. As Figure 3 shows
(top row), anisotropy can be high even outside the relevant
structures, and thresholding the image would not help iden-
tify the vessel. Our aim is to keep the anisotropy as high as
possible in the vessels, while reducing it in the background.
Figure 3 shows the resulting anisotropy after application of

Fig. 3. Examples of openings γ(p)W on anisotropy images, in
the case of a binary and symmetric matrix W , computed as
explained in Section 3. For each column, from top to bottom:
p = 0 (original anisotropy image), p = 1, 5, 10.

openings γ(p)W =̇δpW ε
p
W for different values of p. As expected,

for an appropriate p, the opening keeps brighter those vertices

Fig. 4. Examples of openings γ(p)W on a natural image, withW
a binary and symmetric matrix, computed from the structure
tensors as explained in Section 3. From top to bottom and left
to right: p = 0 (original image), p = 1, 2, 3.

that are part of large and bright connected components in the
sense of the co-circularity graph. What is more, it produces
homogeneous regions that match the structure of the vessels.
This could be a useful pre-processing that could improve both
segmentation and quantification.

3.2. Morphological anisotropic diffusion

Once the co-circularity graph is computed from the struc-
ture tensors, the operators defined earlier can also be applied
to the original grayscale image, instead of doing so on the
anisotropy image. This produces a regularizing effect pre-
serving the most salient edges. Figure 4 is an example of
openings γ(p)W applied to a landscape picture. Note that γ(p)W is
an idempotent operator, meaning that once p is chosen, the
regularization effect is obtained once and for all after one
opening.

4. CONCLUSION

We introduced a framework that generalizes mathematical
morphology for signals on graphs, and that relies on a max-
plus algebra formulation. This opens several questions such
as the links between the properties of the weight matrix and
those of the morphological operators. These questions shall
be investigated with the support of the rich existing literature
on idempotent mathematics and graphs, and also from the
perspective of applications. The operators we defined based
on the co-circularity of structure tensors show interesting be-
haviours for the processing of anisotropic structures and the
morphological regularization of natural images. However,
further work is needed, as for example the development of a
multi-scale approach or an automatic scale determination.
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[12] B. A. Carré, “An algebra for network routing problems,”
IMA Journal of Applied Mathematics, vol. 7, no. 3, pp.
273–294, 1971.

[13] P. Del Moral and M. Doisy, “Maslov idempotent proba-
bility calculus. II,” Theory of Probability & Its Applica-
tions, vol. 44, no. 2, pp. 319–332, 2000.

[14] B. Burgeth and J. Weickert, “An explanation for the
logarithmic connection between linear and morpholog-
ical system theory,” International Journal of Computer
Vision, vol. 64, no. 2, pp. 157–169, Sep 2005.

[15] P. Maragos, “Chapter Two - Representations for mor-
phological image operators and analogies with linear
operators,” vol. 177 of Advances in Imaging and Elec-
tron Physics, pp. 45 – 187. Elsevier, 2013.

[16] J. Angulo, “Chapter One - Convolution in (max,min)-
algebra and its role in mathematical morphology,” vol.
203 of Advances in Imaging and Electron Physics, pp. 1
– 66. Elsevier, 2017.

[17] S. Gaubert, “Methods and applications of (max,+) lin-
ear algebra,” in 14th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), 1997.

[18] M. Akian, R. Bapat, and S. Gaubert, “Max-plus alge-
bra,” Handbook of linear algebra (Discrete Mathemat-
ics and its Applications), vol. 39, pp. 10–14, 2006.

[19] S. C. Kleene, “Representation of events in nerve nets
and finite automata,” Tech. Rep., Rand Project Air Force
Santa Monica CA, 1951.

[20] C. Ronse, “Why mathematical morphology needs com-
plete lattices,” Signal Processing, vol. 21, no. 2, pp. 129
– 154, 1990.
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