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On the maximum likelihood estimator statistics for
unimodal elliptical distributions in the high

signal-to-noise ratio regime
Steeve Zozor Member IEEE , Chengfang Ren Member IEEE and Alexandre Renaux

Abstract—In this paper, we study the behavior of the maximum
likelihood estimator in the framework of low noise level (or high
signal-to-noise ratio), when the data follow an unimodal elliptical
distribution. The maximum likelihood estimator appears to be the
same as in the Gaussian context, regardless the noise distribution.
We also show that the asymptotic distribution of this estimator
is unimodal elliptical, where the law is intimately linked to that
of the noise distribution. Additionally, this estimator is shown to
be not efficient, except in the Gaussian noise case. Finally, we
validate our analytic results by some simulations.

Index Terms—Maximum likelihood estimator statistics, high
signal-to-noise ratio regime, elliptically symmetric distribution.

I. INTRODUCTION

The statistics of the maximum likelihood estimator (MLE)
is fundamental in order to fully characterize the quality of
this estimator. The determination of its estimates distribution
is not a tractable problem in a general setting. But such a
study is generally performed in an asymptotic framework. By
asymptotic, one understand in general that the number of data
tends to infinity (i.e., is large enough) [1].

However, one may face to the estimation problem dealing
with a small number of data, and to be interested in the
situation where the signal-to-noise ratio (SNR) is high, or
equivalently the noise level is low. This framework is of
interest for instance in array processing because the collected
data are, in practice, limited by the small number of sensors,
by the acquisition time slot and by the memory of the system.
This estimation problem in high SNR context was recently
studied in [2]–[4] for a very precise context, namely that of
the estimation of a parameter observed through a nonlinear
function and corrupted by an additive Gaussian noise.

Due to the central limit theorem, modeling an observation to
be Gaussian is usual, since data are generally collected under
numerous number of sources of perturbations. However, in
many situations, this modeling seems not adequate. In the
high resolution radar domain for instance, the noise can be
consequence of the sum of a small number of echos, this
number being different cell to cell, and thus modeled as
random. In this domain, the noise is more likely modeled as
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a Gaussian scale mixture x
d
=
√
τ g where τ is a positive ran-

dom variable and g a Gaussian vector, independent of τ [5]–
[8]. If a such model is quite common in radar processing [9]–
[11], its use is also frequent in image processing, where the
random variable τ models the texture of an image [12], [13].
The Gaussian scale mixtures belong to the more general class
of elliptically distributed random vectors, characterized by the
ellipsoidal form of the level sets for the probability density
function [14]. Such random vectors are intensively studied in
signal processing domains [15]–[20]. The study of the MLE
in such a context is thus of high interest. The purpose of this
paper is precisely to extend the work of [2], [4] in the context
of unimodal elliptically distributed noise.

The paper is organized as follows. Section II presents the
basics on the elliptically distributed random vector that we
need for our study. Then, section III, the core of the paper,
is devoted to the maximum likelihood estimation (MLE) of
a parameter θ, observed via n samples through a possibly
nonlinear function, and additively corrupted by an unimodal
elliptically distributed random vector . The goal of this section
is to determine the statistics of the MLE of θ in the high SNR
context. To this end, we follow step by step the outline of [2]
and show that, in this low noise level regime, the MLE belongs
to the class of elliptically distributed random vectors with a
distribution intimately linked to that of the noise. Moreover,
we prove that the Cramér-Rao lower bound (CRLB) is not
reached, except when the noise is Gaussian. These results
differ from what happens in general in the asymptotic regime
in terms of high number of samples [1, thm 3.10 p. 449].
Finally, in section IV, we experimentally validate our analytic
study with several simulations and goodness-of-fit tests.

II. ELLIPTICALLY DISTRIBUTED RANDOM VECTORS

In the sequel, we place the study to the framework of
random vectors x admitting a probability density function
(pdf) px w.r.t. the Lebesgue measure.

Definition 1 (Fang et al. [14]). A random vector x, defined
over a set Ω ⊆ Rn, is said elliptically distributed around a
deterministic vector µ ∈ Ω if there exist a symmetric positive
definite matrix R such that for any orthogonal matrix O,
OR−

1
2 (x−µ)

d
= R−

1
2 (x−µ) where “ d=” means equality in

distribution and where R
1
2 is the unique symmetric positive

definite matrix being square root of R. When x admits a pdf
as assumed all along this paper, its pdf is of the form

px(x) = |R|−
1
2 dn

(
(x− µ)t R−1(x− µ)

)
, (1)
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where ·t denotes the transposition. µ is a location parameter,
R is called characteristic matrix, and dn : R+ 7→ R+ is called
density generator. In the sequel, we write in the compact form
x ∼ ED (µ,R, dn).

Under condition of existence, µ is the mean of x and R
is proportional to its covariance matrix. The definition could
indeed extend to complex random vectors but one can restrict
to the real context using the mapping in [14, Chap. 2] or [2].

The denomination “elliptically distributed” is justified by
the form of the level set of the pdf that are ellipsoidal located
around µ. Moreover, when µ = 0 and R ∝ I the identity
matrix, x is said spherically distributed, written in short, x ∼
SD (dn).

The class of elliptical distributions contains various fa-
mous distributions [20], [21], such that the Gaussian law
for dn(u) ∝ e−

u
2 , the Student-t distribution for dn(u) ∝(

1 + u
ν

)−n+ν
2 , ν > 0, the Student-r law where dn(u) ∝(

1− u
ν

) ν−n
2

+
, ν > n − 2, the generalized Laplacian or K-

distributions where dn(u) ∝ u
ν−n

4 K ν−n
2

(
√
νu), ν > 0), the

sub-Gaussian α-stable laws, among many others [14], [22].
These distributions share numerous properties that can be

found in [14], [20], [21]. Among them, a useful one is that
an elliptically random vector can stochastically be written as a
scale mixture of uniform over the n-dimensional unit sphere,

Property 1 (Fang et al. [14]). Let x ∼ ED (µ,R, dn). Then

r =
∥∥R− 1

2 (x− µ)
∥∥ and u = R−

1
2 (x−µ)∥∥R− 1
2 (x−µ)

∥∥ are independent,

so that

x = µ+ rR
1
2 u (2)

where u is uniformly distributed on the unit sphere Sn−1 =
{s ∈ Rn : ‖s‖ = 1} and r is a positive random variable
independent of u and of pdf pr(r) = ωnr

n−1dn
(
r2
)

with
ωn = 2π

n
2

1

Γ(n2 )
the surface of Sn−1. Moreover, E [uut] =

n−1I. Thus, if r admit a second order moment, the covariance
matrix of x is given by Cov [x] = n−1E

[
r2
]
R.

If the density generator dn of x is completely monotonic,
i.e., for all k, (−1)kd

(k)
n ≥ 0 where d

(k)
n stands for the kth

derivative, then x also stochastically writes x
d
= µ+

√
τ R

1
2 g

where g is a standardized Gaussian vector [6]–[8], [23], i.e.,
x is a Gaussian Scale Mixture (GSM). The mixture is said
consistent [24] when τ is not parameterized by n. However,
the GSM class is more limited than the elliptically distributed
one, for instance the Student-r law is not a GSM (see also [20],
[21] for various other examples).

Another quality is the conservation of elliptically symmetric
pdf subject to a non degenerate affine transform:

Property 2 (Fang & Kotz [14]). If x ∼ ED (µ,R, dn), then,
for any full rank m × n matrix M with m ≤ n, and for
any vector β ∈ Rm, β+ Mx ∼ ED (β + Mµ,MRMt, dm),
where, for m < n,

dm(u) =
π
n−m

2

Γ
(
n−m

2

) ∫
R+

v
n−m

2 −1 dn(u+ v) dv (3)

The assumption m ≤ n and M of full rank are nec-
essary to insure that β + Mx admits a pdf. Moreover, it
is straightforward to see that for a consistent GSM, the
texture τ being independent of the dimension n, the marginal
density generator dm has the same expression than dn, simply
replacing the dimension n by m. For instance, if x is Student-t
with ν degrees of freedom, τ is Gamma distributed with scale
and shape parameters both equals to ν

2 [20], [25] and β+Mx
remains Student-t with the same degrees of freedom ν.

In the sequel, we slightly restrict the study to the framework
of unimodal laws, i.e., such that the density generator dn is
decreasing on R+. We denote such a distribution ED+ in the
elliptical case, and SD+

n the spherical restriction.

III. BEHAVIOR OF THE MLE IN HIGH SNR CONTEXT AND
UNIMODAL ELLIPTICAL FRAMEWORK

We consider the estimation problem of a real parameter
vector1 θ ∈ Θ ⊆ Rp observed on n ≥ p samples, through
a function m, not necessarily linear, and corrupted by an
additive noise. More specifically, the noise vector is assumed
to be unimodal and elliptically distributed around 0 without
loss of generality with characteristic matrix R and density
generator dn which implies that x = [x1 x2 · · · xn]t ∼
ED+ (m(θ),R, dn) with m : Θ 7→ Rn. Rewriting the
characteristic matrix under the form R = σ2 C with matrix
C normalized to have the trace Tr(C) = n, the observation
rewrites as follows

x = m(θ) + σξ (4)

with ξ ∼ ED+ (0,C, dn) and where σ ≥ 0 represents the
noise level. Indeed, when r d

=
∥∥∥C− 1

2 ξ
∥∥∥ admits a second order

moment, σ2 Tr(Cov[ξ]) = σ2E
[
r2
]

represents the “total”
power of the noise (see property 1) and thus σ tunes the SNR
‖m(θ)‖2
σ2 E[r2] . Matrix C and function m are supposed to be known

whereas σ is unknown. Moreover, m belongs to the class of
C2 and is an injective map. The last condition ensures the
identifiability of the problem.

As introduced, our purpose is to extend the results of [2] on
the ML estimator θ̂ml of θ for the above described model (4),
when σ → 0. By definition, the MLE is defined by,

θ̂ml = argmax
θ∈Θ

px(x;θ) (5)

where px(x;θ) is the pdf of x, parameterized by θ. Since
px(x;θ) =

∣∣σ2C
∣∣− 1

2 dn
(

1
σ2 (x−m(θ))tC−1(x−m(θ))

)
where the density generator dn is decreasing, we obtain

θ̂ml = argmin
θ∈Θ

(x−m(θ))tC−1(x−m(θ)). (6)

In other words, the MLE is independent of the noise level σ
and of the density generator dn, leading to the same expression
as in the Gaussian context. Thus, the study in the asymptotic
regime σ → 0 exactly follows the steps in [2]. We come back
hereafter to the main steps, leading the asymptotic statistics
of θ̂ml in the elliptical context considered here.

1Dealing with complex parameters, one can write it as real by putting into
two blocks its real and imaginary part respectively.
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Proposition 1. Let θ0 be the true parameter of underlying
model (4) and θ̂ml the MLE, solution of eq. (6). Then, in the
asymptotic regime,

θ̂ml
a.s.−→
σ→0

θ0. (7)

where a.s. means that the convergence is almost sure.

Proof. Following [2], let us denote by g the quadratic form,

g(θ, σ) = (x−m(θ))tC−1(x−m(θ))

= (m(θ0) + σξ −m(θ))tC−1(m(θ0) + σξ −m(θ))

omitting the dependence of g on ξ to simplify the notations.
C−1 being symmetric positive definite, g(θ, σ) ≥ 0 with
equality if and only if (iif)

m(θ0) + σξ −m(θ) = 0 (8)

In the limit σ → 0, equality (8) is satisfied iif m(θ0) = m(θ),
i.e., iif θ = θ0 due to the injectivity of m (identifiability
assumption). Thus, for almost any realization of ξ, θ0 is the
unique global minimum of g(θ, 0), that finishes the proof.

The consistency of the estimator insure its convergence to
the true parameter when σ → 0. As in [2], one can go a step
further, determining the asymptotic pdf of the estimator, or
more precisely that of σ−1(θ̂ml − θ0), as follows.

Proposition 2. Let us denote by Jm(θ) = ∂m
∂θt

(θ) the Jaco-
bian matrix of m, with components ∂mi

∂θj
. m being injective,

this n × p (with p ≤ n) matrix is of full rank [26, chap. 3]
and thus Jtm(θ0) C−1Jm(θ) is a positive definite Hermitian
matrix (and thus invertible). One thus shows that

σ−1
(
θ̂ml − θ0

) d−→
σ→0

ED+ (0,Ψm, dp)

where Ψ−1
m = Jtm(θ0) C−1Jm(θ0) and where “ d−→” means

that the convergence is in distribution.

Proof. From eq. (6), function m being of class C2 and thus
differentiable, the MLE θ̂ml is solution of equation

h(θ, σ) ,
∂g

∂θ
(θ, σ) = 0 (9)

where ∂g
∂θ is a column vector of components ∂g

∂θi
. We omit here

also the dependence of h on ξ. Eq. (9) has not necessarily
a unique solution for a given σ and a given realization ξ.
However, when σ → 0, the couple (θ0, 0) is the unique
solution of eq. (9). Moreover, θ0 is asymptotically achieved by
θ̂ml due to its consistency proved in proposition 1. Let us then
consider θ̂ml around (θ0, 0). Following the steps of [2], we use
the implicit function theorem [26, chap. 3], that summarizes
in our context as follows. (i) Let f : Rp × R 7→ Rp be a
function of class C1, (ii) Let (u0, v0) be a point such that
f(u0, v0) = 0, and (iii) Let assume that the Jacobian matrix
∂f
∂ut is invertible at point (u0, v0). Then, there exist a unique
function ϕ, of class C1 in a neighbor V of v0, and a neighbor
W of (u0, v0) in Rp × V such that

∀ (u, v) ∈W, f(u, v) = 0 ⇔ u = ϕ(v), (10)

and
∂ϕ

∂v
(v0) = −

(
∂f

∂ut
(u0, v0)

)−1
∂f

∂v
(u0, v0). (11)

One thus applies this theorem to h: (i) Function m being C2,
function h is C1; (ii) h vanishes in (θ0, 0); (iii) the Jacobian
of h vs θ in point (θ0, 0) writes

∂h

∂θt
(θ0, 0) = 2 Jtm(θ0) C−1Jm(θ0) = 2 Ψ−1

m (12)

that is is invertible. From the implicit function theorem,
there exists a unique function ϕ defined in the neighbor of
(θ0, 0) such that for any (θ, σ) in this neighbor satisfying
h(θ, σ) = 0, then θ = ϕ(σ). Because θ̂ml is a solution of
h(θ, σ) = 0, and from the consistency property θ̂ml

a.s.−→
σ→0

θ0,

there exists a value ε > 0 such that for any σ ≤ ε, θ̂ml is
solution of equation h(θ, σ) = 0 in a neighbor of (θ0, 0),
i.e., from eq. (10), for σ < ε, θ̂ml = ϕ(σ). The first order
expansion of θ̂ml in the neighbor of θ0 writes thus (almost
surely) θ̂ml = ϕ(σ) = ϕ(0) + σ ∂ϕ∂σ (0) + o(σ) where o(σ)
is a small-o or negligible remainder with respect to σ when
σ → 0. Now, from ϕ(0) = θ0, eqs. (11)-(12) and noting that
∂h
∂σ (θ0, 0) = 2 Jtm(θ0)C−1ξ, we get (almost surely)

σ−1
(
θ̂ml − θ0

)
= −Ψm Jtm(θ0)C−1ξ + σ−1o(σ). (13)

The result is thus a consequence of property 2.
One of the main consequence of proposition 2 is the

asymptotic unbiasness and efficiency of the MLE as stated
in the next proposition:

Proposition 3. Assume that σ−2
∣∣θ̂ml − θ0

∣∣2 is uniformly
integrable and that θ̂ml admit a first and second order moment.
Thus, the MLE is unbiased in the asymptotic regime σ → 0.
However, the CRLB is asymptotically achieved by the MLE
iif the noise is Gaussian distributed.

Proof. Under uniformly integrability hypothesis, the conver-
gence in distribution implies the convergence of first and
second order moment [27, p.84, thm 6.2]. Therefore, one
immediately has 1

σE
[
θ̂ml − θ0

]
−→
σ→0

0 which proves the

asymptotic unbiasness of θ̂ml.
Then, from eq. (13) and property 1, we have

σ−2Cov
[
θ̂ml

]
−→
σ→0

n−1E
[
r2
]
Ψm (14)

where r
d
= ‖C− 1

2 ξ‖ has pdf pr(r) = ωnr
n−1dn

(
r2
)
.

Moreover, from the expression of the pdf of x we have
∂ log px
∂θ

∣∣∣
θ=θ0

= − 2
σJtm(θ0)C−1ξ φn

(
ξtC−1ξ

)
where

φn(r) =
d′n(r)
dn(r) . Hence, from property 1 we immediately obtain

the Fisher information F(θ) = E
[
∂ log px
∂θ

∂ log px
∂θt

]
in θ0 as

F(θ0) = 4n−1σ−2E
[
r2φ2

n(r2)
]
Ψ−1

m (15)

(see Slepian-Bangs like formula given in [28]). Then, one has
E2
[
r2φn(r2)

]
≤ E

[
r2
]
E
[
r2φ2

n(r2)
]

using Cauchy-Schwarz
inequality. From an integration by parts, E

[
r2φn

(
r2
)]

=

ωn

∫
R+

rn+1d′n(r2) dr = −2n

∫
R+

ωnr
n−1dn(r2) dr = −2n

so that 4n2 ≤ E
[
r2
]
E
[
r2φ2

n(r2)
]

(the existence of the
first moment insures that the integrated term vanishes). To-
gether with eqs. (14) and (15), the Cramér-Rao inequality
Cov

[
θ̂ml

]
≥ F−1(θ0) is obviously recovered in the asymp-

totic regime. But more important, the equality case is reached
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iif r ∝ r φn
(
r2
)
, that means φn =

d′n
dn

is constant leading to
dn being an exponential, i.e., the noise being Gaussian.

IV. EXPERIMENTAL VALIDATION

A. Scenario

Let us consider the problem of spectral analysis which is
frequently encountered in signal processing applications for
direction of arrival estimation [29]–[32]:

xt = sin(2πf0t) + σξt, t = 1, . . . , n (16)

where f0 ∈
[
− 1

4 ; 1
4

)
is an unknown normalized frequency

and the noise ξt is assumed such that the concatenated vector
ξ = [ξ1 · · · ξn]

t ∼ ED+(0,C, dn). Matrix C is assumed
known, for instance precalculated with secondary data which
only contains noise measurement. In our application, we
suppose that ξ is Student-t distributed with ν > 0 degree of
freedom, i.e., dn(u) ∝

(
1 + u

ν

)−n+ν
2 , which is often consider

as a more robust model that the Gaussian one [33] and
m(f0) = sin(2πf0t), t = [1 · · ·n]t (function of a vector
is to be understood term by term). The MLE is thus given by
eq. (6) where θ = f ∈

[
− 1

4 ; 1
4

)
and thanks to proposition 2

its asymptotic behavior is given by

σ−1
(
f̂ml − f0

) d−→
σ→0

ED+ (0, ψ, d1) (17)

where ψ =
(
4π2[t� cos(2πf0t)]tC−1[t� cos(2πf0t)]

)−1
,

the operator � denoting the Hadamard product (element-
wise). The density generator d1 can be obtained using eq. (3)
but the Student-t random vector being a consistent Gaussian
scale mixture [20], [24], d1 is the Student-t density generator
with ν degrees of freedom, d1(u) ∝

(
1 + u

ν

)− 1+ν
2 .

B. Simulation results

In order to illustrate the validity of our proposed asymptotic
result, the histogram of MLE estimates is statistically tested
with the predicted distribution for the scenario proposed
in previous section. Data are generated with the following
setup: f0 = 0.1, n = 16, ξ is randomly generated fol-
lowing a Student-t distribution with ν = 5, C is chosen
randomly among symmetric positive definite matrix (and fixed
along the simulations) with Tr(C) = n and thus SNR =
(ν−2)
nνσ2 ‖m(f0)‖2. Since frequency estimation is a non-convex

problem, the MLE f̂ml is computed with a Gauss-Newton
algorithm initialized searching the minimum of the quadratic
form (6) on a grid

[
− 1

4 ; 1
4

)
with a step δf = 10−4.

In figure 1, the normalized histogram of f̂ml is compared
with Gaussian and Student-t distributions. We note that empir-
ical distribution of f̂ml is very close to the asymptotic distribu-
tion. In figure 2, we performed the Kolmogorov-Smirnov (KS),
the chi-square (χ2) and the Anderson-Darling (AD) tests [34].
These tests show that the difference is not significant to reject
the hypothesis of Student-t distribution when the SNR is upper
than 5 dB, -1 dB and 11 dB respectively.

The last figure, fig. 3, shows the variance and the mean of
the MLE and the CRLB wrt SNR. One can remark that both
the mean and the variance of the MLE asymptotically achieves

the predicted mean and variance given by prop. 3 and eq. (14).
We also remark that a threshold phenomena occurs due to the
non-linearity of our model as under Gaussian noise case [2].
Finally, as predicted, the MLE appears to be not efficient.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

·10−3

0

1000

2000

3000

f−f0

Normalized histogram of f̂ml (SNR = 10dB)

Histogram
Student calculated
Student fit
Gaussian fit

Fig. 1: Comparison between the empirical distribution of f̂ml obtained from 105 trials
of Monte-Carlo simulations, the predicted Student-t using eq. (17) and a fitted Gaussian
and Student-t distribution computed by ML method.

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

SNR (dB)
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Normalized KS statistics
Normalized χ2 statistics
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Fig. 2: Comparison of KS, χ2 (with 2500 bins) and AD tests between the empirical
distribution of f̂ml and the asymptotic Student-t distribution versus SNR. The cutoff
value is computed for a level of significance α = 0.05. All the tests are normalized by
their respective cutoff for comparisons purposes.
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MLE variance
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−20 −10 0 10 20 30
0.08

0.09

0.1

SNR (dB)

Mean of the MLE

MLE mean
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Fig. 3: Comparison between the empirical variance of f̂ml, the asymptotic variance and
the CRLB wrt SNR.

V. CONCLUSION

In this paper, we have extended the works of Renaux et
al. [2] and of Ding et al. [4] about the characterization of
the MLE in high SNR regime when the additive noise is
unimodal elliptically distributed but non necessarily Gaussian.
In particular, the asymptotic distribution of the ML estimator
is derived and shown to be intimately linked to the noise distri-
bution. A close-form expression is provided for the asymptotic
distribution of the MLE. It allows us to prove that, the MLE is
unfortunately not efficient in the low noise level regime except
in the case of Gaussian noise. Finally, the proposed theoretical
results are applied to a frequency estimation that frequently
arises in the DOA framework, showing a good agreement
between the variance of the MLE, its asymptotic prediction
and the discrepancy with the CRLB.
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