
HAL Id: hal-01798850
https://hal.science/hal-01798850

Submitted on 24 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kidney Exchange Problem: models and algorithms
Lucie Pansart, Hadrien Cambazard, Nicolas Catusse, Gautier Stauffer

To cite this version:
Lucie Pansart, Hadrien Cambazard, Nicolas Catusse, Gautier Stauffer. Kidney Exchange Problem:
models and algorithms. ROADEF 2018 - 19ème congrès annuel de la société Française de Recherche
Opérationnelle et d’Aide à la Décision, Feb 2018, Lorient, France. �hal-01798850�

https://hal.science/hal-01798850
https://hal.archives-ouvertes.fr


Kidney Exchange Problem: models and algorithms

Lucie Pansart1, Hadrien Cambazard1, Nicolas Catusse1, Gautier Stauffer2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
{lucie.pansart,hadrien.cambazard,nicolas.catusse}@grenoble-inp.fr

2 Kedge Business School, 33000 Bordeaux, France gautier.stauffer@kedgebs.com

Mots-clés : kidney exchange problem, integer programming, column generation

1 Introduction
Kidney transplant is often the only effective treatment to cure end stage renal disease, affecting
one out of thousand European citizens. Waiting for a compatible deceased donor can be really
long and uncertain, so living donor transplant is a good alternative: a close relation can give
one of its kidneys to a patient. As approximately 40% of living donors are incompatible
with their specified recipient, several countries have independently developed kidney exchange
programs to overcome this issue. In such a program, a patient with an incompatible donor can
"swap" its donor with another patient in a similar position (see Figure 1a). More generally,
an exchange can involve several incompatible pairs donor-patient by permutation of donors,
creating cycles of donation (see Figure 1b). It can also include altruistic donors who give their
kidney without waiting another one in return for a relative. Such a donor creates a chain of
donation (see Figure 1c). A Kidney Exchange Program seeks for an optimal exchange. The
objective of the KEP can be defined by different criteria (number of transplants, weight of
exchanges, probability of success...).
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(b) π(i) is the new donor of patient i:
(π(p1), π(p2), π(p3), π(p4)) = (d4, d1, d2, d3)
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FIG. 1: Examples of kidney exchanges. Black edge = compatibility; red and thick edge =
chosen transplant. Donor di is a relative of patient pi.

2 Problem
We define the kidney exchange problem (KEP) as the problem of finding an optimal (here of
maximal weight) kidney exchanges in a pool of pairs donor-patient.

Let’s define a directed graph, called compatibility graph, G = (V = P ∪ N, A) with a
weight function on arcs w : A→ R+. The vertices P are the incompatible pairs donors-patient,
the vertices N are the altruistic donors. We add a weighted arc between vertices u and v if
the donor u can give its kidney to patient v. w(uv) = medical benefit of the transplant.

Thus, a solution to KEP is a set of disjoint walks (cycles and chains) of maximum weight
in graph G (walks must be disjoint because a donor can only give once and a patient must



receive only one kidney). Moreover, in practice a cycle of donation must have a limited size k
since it implies 2k simultaneous surgical operations. A chain of donation can have a limited
size l, but no consensus exists on this parameter. So solving the KEP is equivalent to solving
a Maximum Weighted ≤ k-Cycle and ≤ l-Chain Packing Problem, which is the problem of
finding disjoint cycles of size at most k and chains of size at most l of maximal weight.

Complexity Solving the KEP is NP -hard for k ≥ 3 [1, 3].

3 Solving with integer programming
Many integer programs (IP) exist for this problem [2]. We consider the one called Cycle&
Chain formulation: C is the set of all cycles and chains of size at most k and l in G, we
define the binary decision variables xc = 1 if walk c is chosen in the solution, 0 otherwise. The
objective is to maximize the total weight of selected walks and the constraints are that each
vertex must be selected in at most one walk. The Cycle&Chain Formulation is then:

(CF) max
∑
c∈C

wcxc (1)

st
∑

c∈C:v∈c

xc ≤ 1 ∀v ∈ V (2)

xc ∈ {0, 1} ∀c ∈ C (3)

Unfortunately, the number of variables grows exponentially with l and k. To tackle this
problem, we can use a Branch-and-Price (B&P) algorithm, which mixes Branch-and-Bound –
the standard algorithm solving IP – with Column Generation (CG) [1]. The column generation
solves the linear relaxation on a subset of walks, which grows when a new column (=a new
variable) is generated.

When we add a variable to the set of current variables, we want to choose a variable which
may improve the current solution. Thus, we search a variable (= a feasible walk) with a positive
reduced cost. The problem of finding such a walk is called the pricing problem.
Finding a cycle of size at most k and of positive reduced cost can be done in polynomial
time with a modified Bellman-Ford algorithm [4].
Finding a chain of size at most l beginning with an altruistic donor of positive reduced cost
is NP-complete [5].

No implementation of a KEP solver using the Cycle&Chain formulation has been done in
practice to handle large instances to the best of our knowledge. Indeed, it cannot scale when it
is implemented without column generation and the use of CG is complex due to the hardness
of the pricing problem. The purpose of our work is to provide this solver, thanks to numerous
improvements such as heuristics, dual bound, filtering and cutting planes, as well as reasoning
with other formulations, including an independent set formulation.
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