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Abstract
We investigate a standard operator on classes of languages: unambiguous polynomial closure.
We show that if C is a class of regular languages having some mild properties, the membership
problem for its unambiguous polynomial closure UPol(C) reduces to the same problem for C. We
give a new, self-contained and elementary proof of this result. We also show that unambiguous
polynomial closure coincides with alternating left and right deterministic closure. Finally, if addi-
tionally C is finite, we show that the separation and covering problems are decidable for UPol(C).
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1 Introduction

Most of the interesting classes of regular languages are built using a restricted set of operators.
From a class C, one may consider its Boolean closure Bool(C), its polynomial closure Pol(C),
and deterministic variants thereof, which yield usually a more elaborate class than C. It is
therefore desirable to investigate the operators themselves rather than individual classes.

The polynomial closure Pol(C) of a class C is its closure under union and marked concat-
enation (a marked concatenation of K and L is a language of the form KaL for a letter a).
Together with the Boolean closure, it is used to define concatenation hierarchies: starting
from a given class (level 0 in the hierarchy), level n + 1

2 is the polynomial closure of level n,
and level n + 1 is the Boolean closure of level n + 1

2 . The importance of these hierarchies
stems from the fact that they are the combinatorial counterpart of quantifier alternation
hierarchies in logic, which count the number of ∀/∃ alternations needed to define a language.

The main question when investigating a class of languages is whether it is recursive: can
we decide whether a given input language belongs to the class? This is the membership
problem. Despite decades of research on concatenation hierarchies, one knows little about
this question. The state of the art is that when level 0 is finite and has some mild properties,
membership is decidable for levels 1

2 , 1, 3
2 , and 5

2 [18, 15, 12, 19]. These results imply those
that were obtained previously [3, 2, 22, 10, 11] and even go beyond by investigating the
separation problem, a generalization of membership. Unlike membership, which takes a single
language as input, the separation problem for a class C takes two. It asks whether there exists
a third language from C, containing the first and disjoint from the second. Membership is the
special case of separation when the input consists of a language and its complement. Although
more difficult than membership, separation is also more rewarding. This is witnessed by a
transfer theorem [15, 19]: membership for Pol(C) reduces to separation for C. The results on
membership quoted above actually come from this theorem and the fact that separation is
decidable for Pol(C), BPol(C) and Pol(BPol(C)) when C is finite with some mild properties.
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XX:2 Separating without any ambiguity

Unambiguous closure. Deterministic variants of the polynomial closure are also important.
The most classical example is the unambiguous closure, where marked concatenations are
required to be unambiguous. A marked concatenation KaL is unambiguous if every word w

of KaL has a unique factorization w = w′aw′′ with w′ ∈ K and w′′ ∈ L. The unambiguous
closure UPol(C) of C is the closure of C under disjoint union and unambiguous concatenation.
Note that it is not clear on the definition whether UPol(C) is a Boolean algebra, even when C is.

The class of unambiguous languages [21] is the unambiguous polynomial closure of the
Boolean algebra generated by languages of the form A∗aA∗ (where A is the working alphabet).
It is one of the most investigated class. It is robust, with several definitions [23, 4, 6, 5, 24].
Unambiguous polynomial closure also appears in concatenation hierarchies as intermediate
levels. Pin and Weil [10, 11] have shown that UPol(C) = Pol(C) ∩ co-Pol(C), where co-Pol(C)
is the class consisting of all complements of languages in Pol(C).
Contributions. By considering separation, we obtained a better understanding of the
results that were already known for this kind of problem and we were able to prove new ones.
Aside from the case of unambiguous languages [14], unambiguous polynomial closure was
not yet investigated with respect to separation. This is the starting point of this paper: we
look for a generic separation result applying to UPol(C), similar to the ones obtained for
Pol(C) and BPol(C) in [18]. In this paper, we present such a result: our main theorem states
that when C is finite and satisfies some mild hypotheses (the same as for getting decidability
of Pol(C)-separation), separation for UPol(C) is decidable. However, as it is usually the case
with separation, we also obtain several additional results as a byproduct of our work which
improve our understanding of the UPol operator:

We had to rethink the way membership is classically handled for UPol(C) in order to lift
the techniques to separation. This yields a completely new, self-contained and elementary
proof that under some natural hypothesis on C, membership for UPol(C) reduces to
membership for C. This proof also precisely pinpoints why this result holds for UPol(C)
but not Pol(C). More precisely, we show that the languages from C needed to construct
an UPol(C) expression for a language L are all recognized by any recognizer of L.
We obtain a new proof that UPol(C) is a quotienting Boolean algebra when C is one.
We obtain a new proof that UPol(C) = Pol(C)∩co-Pol(C) using our results on Pol(C) [19].
We obtain a previously unknown characterization of UPol(C) in terms of alternating
left and right deterministic concatenations, which are restricted forms of unambiguous
concatenation. A marked concatenation KaL is left (resp. right) deterministic when
KaA∗ ∩ K = ∅ (resp. A∗aL ∩ L = ∅). We prove that UPol(C) coincides with ADet(C),
the closure of C under left and right deterministic concatenation. This was observed in
the above particular case, but not known in general.

Related work. UPol(C) was characterized in [8, 9]. However [8] starts from an alternate
definition that assumes closure under Boolean operations already. Both papers use elaborate
mathematical tools (categories, bilateral kernel, relational morphisms) and both use black
boxes (results by Schützenberger [21] in [8] and a very general result of Rhodes [20] in
[9]). The reduction from Pol(C)-membership to C-membership was also investigated in [1].
While our reduction is direct, the proof if [1] is not, as it uses the nontrivial equality
UPol(C) = Pol(C) ∩ co-Pol(C).

2 Preliminaries

Words and languages. For the whole paper, we fix an arbitrary finite alphabet A. We
denote by A∗ the set of all finite words over A, and by ε ∈ A∗ the empty word. Given two
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words u, v ∈ A∗, we write u · v (or simply uv) their concatenation. A language (over A) is a
subset of A∗. Abusing terminology, we denote by u the singleton language {u}. It is standard
to extend the concatenation operation to languages: given K, L ⊆ A∗, we write KL for the
language KL = {uv | u ∈ K and v ∈ L}. Moreover, we also consider marked concatenation,
which is less standard. Given K, L ⊆ A∗, a marked concatenation of K with L is a language
of the form KaL for some a ∈ A.

A class of languages C is simply a set of languages. We say that C is a lattice when ∅ ∈ C,
A∗ ∈ C and C is closed under union and intersection: for any K, L ∈ C, we have K ∪ L ∈ C
and K ∩ L ∈ C. Moreover, a Boolean algebra is a lattice C which is additionally closed under
complement: for any L ∈ C, we have A∗ \ L ∈ C. Finally, a class C is quotienting if it is closed
under quotients. That is, for any L ∈ C and any word u ∈ A∗, the following properties hold:

u−1L
def= {w ∈ A∗ | uw ∈ L} and Lu−1 def= {w ∈ A∗ | wu ∈ L} both belong to C.

All classes that we consider are quotienting Boolean algebras of regular languages.
Regular languages. These are the languages that can be equivalently defined by non-
deterministic finite automata, finite monoids or monadic second-order logic. In the paper,
we work with the definition by monoids, which we recall now.

A monoid is a set M endowed with an associative multiplication (s, t) 7→ s · t (we often
write st for s · t) having a neutral element 1M , i.e., such that 1M · s = s · 1M = s for every
s ∈ M . An idempotent of a monoid M is an element e ∈ M such that ee = e. It is folklore
that for any finite monoid M , there exists a natural number ω(M) (denoted by ω when M

is understood) such that for any s ∈ M , the element sω is an idempotent.
Our proofs make use of the Green relations [7], which are defined on monoids (we use

them as induction parameters). We briefly recall them. Given a monoid M and s, t ∈ M ,

s 6J t when there exist x, y ∈ M such that s = xty

s 6L t when there exist x ∈ M such that s = xt

s 6R t when there exist y ∈ M such that s = ty

Clearly, 6J, 6L and 6R are preorders (i.e., they are reflexive and transitive). We write <J,
<L and <R for their strict variants (for example, s <J t when s 6J t but t 66J s). Finally, we
write J, L and R for the corresponding equivalence relations (for example, s J t when s 6J t

and t 6J s). There are many technical results about Green relations. We shall only need the
following simple lemma which applies to finite monoids (we recall its proof in appendix).

I Lemma 1. Consider a finite monoid M and s, t ∈ M such that s J t. Then, s 6R t

implies s R t. Symmetrically, s 6L t implies s L t.

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral element
is ε). Thus, we may consider monoid morphisms α : A∗ → M where M is an arbitrary
monoid. Given such a morphism and some language L ⊆ A∗, we say that L is recognized
by α when there exists a set F ⊆ M such that L = α−1(F ).

Given any language L, there exists a canonical morphism which recognizes it. Let us
briefly recall its definition. One may associate to L an equivalence ≡L over A∗: the syntactic
congruence of L. Given u, v ∈ A∗, u ≡L v if and only if xuy ∈ L ⇔ xvy ∈ L for any
x, y ∈ A∗. It is known and simple to verify that “≡L” is a congruence on A∗. Thus, the
set of equivalence classes ML = A∗/≡L is a monoid and the map αL : A∗ → ML which
maps any word to its equivalence class is a morphism recognizing L called the syntactic
morphism of L. Finally, it is known that L is regular if and only if ML is finite (i.e., ≡L has
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finite index): this is Myhill-Nerode theorem. In that case, one may compute the syntactic
morphism αL : A∗ → ML from any representation of L (such as a finite automaton).
Decision problems. The two problems that we consider in the paper are both parametrized
by an arbitrary class of languages C: they serve as mathematical tools for analyzing C. The
C-membership problem is the simplest one. It takes as input a single regular language L and
asks whether L ∈ C. The second one, C-separation, is more general: it takes two regular
languages L1, L2 as input and asks whether L1 is C-separable from L2, that is, whether there
exists K ∈ C such that L1 ⊆ K and L2 ∩ K = ∅. The language K is called a separator of
L1 and L2. Note that C-membership is easily reduced to C-separation: given any regular
language L, we have L ∈ C if and only if L is C-separable from A∗ \ L (which is also regular).

I Remark. When C is closed under complement (which is always the case in the paper), L1
is C-separable from L2 if and only if L2 is C-separable from L1.

3 Unambiguous polynomial closure

In this section, we define the unambiguous polynomial closure operation, which is the main
focus of the paper. Furthermore, we investigate the associated membership problem.

3.1 Definition
Given two languages H, L ⊆ A∗, we say that their concatenation HL is unambiguous when
any word w ∈ HL admits a unique decomposition witnessing this membership: for any
u, u′ ∈ H and v, v′ ∈ L, if w = uv = u′v′, then u = u′ and v = v′. More generally, we
say that a product of n languages L1 · · · Ln is unambiguous when any word w ∈ L1 · · · Ln

admits a unique decomposition witnessing this membership. Note that unambiguous marked
concatenations are well-defined: HaL is a product of three languages, namely H, {a} and L.

I Remark. Clearly, not all products are unambiguous. For example, A∗aA∗ is ambiguous:
aa ∈ A∗aA∗ admits two decompositions witnessing this membership (εaa and aaε).

I Remark. Being unambiguous is a semantic property: whether HL is unambiguous may
not be apparent on the definitions of H and L. Moreover, this depends on the product HL

and not only on the resulting language K = HL. It may happen that two products represent
the same language but one is unambiguous while the other is not. For example, A∗aA∗ is
ambiguous while (A \ {a})∗aA∗ (which represents the same language) is unambiguous.

In the paper, we shall only need to use two special kinds of unambiguous products, which
we now present. Let K, L ⊆ A∗ and a ∈ A. We say that the marked concatenation KaL,

is left deterministic when K ∩ KaA∗ = ∅.
is right deterministic when L ∩ A∗aL = ∅.

I Fact 2. Any left or right deterministic marked concatenation is unambiguous.

We use these definitions to introduce three standard operations on classes of languages.
Consider an arbitrary class C.

The polynomial closure of C, denoted by Pol(C), is the smallest class containing C and
closed under marked concatenation and union: for any H, L ∈ Pol(C) and a ∈ A, we
have HaL ∈ Pol(C) and H ∪ L ∈ Pol(C). Furthermore, we denote by co-Pol(C) the class
containing all complements of languages in Pol(C): L ∈ co-Pol(C) when A∗ \ L ∈ Pol(C).
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The unambiguous polynomial closure of C, denoted by UPol(C), is the smallest class
containing C and closed under unambiguous marked concatenation and disjoint union.
That is, for any H, L ∈ UPol(C) and a ∈ A, if HaL is unambiguous, then HaL ∈ UPol(C)
and if H ∩ L = ∅, then H ] L ∈ UPol(C). Here, we denote union by “]” to underline the
fact that H and L are disjoint (we use this convention in the whole paper).
The alternating deterministic closure of C, denoted by ADet(C), is the smallest class
containing C and closed under deterministic marked concatenation and disjoint union.
That is, for any H, L ∈ ADet(C) and a ∈ A, if HaL is either left or right deterministic,
then HaL ∈ ADet(C) and if H ∩ L = ∅, then H ] L ∈ ADet(C).

It is immediate by definition and Fact 2 that we have C ⊆ ADet(C) ⊆ UPol(C) ⊆ Pol(C). In
general the inclusion UPol(C) ⊆ Pol(C) is strict. On the other hand, we shall prove that
when C is a quotienting Boolean algebra, ADet(C) = UPol(C).

It is not immediate that Pol(C), UPol(C) and ADet(C) have robust closure properties
beyond those that are explicitly stated in the definitions. However, it turns out that when C
satisfies robust properties itself, this is the case for these three classes as well. It was shown
by Arfi [3] that when C is a quotienting lattice of regular languages, then Pol(C) is one as
well. Here, we are mostly interested in UPol(C). We prove the following theorem which
combines and extends several results by Pin, Straubing, Thérien and Weil [9, 11].

I Theorem 3. Let C be a quotienting Boolean algebra of regular languages. Then, UPol(C) is
a quotienting Boolean algebra as well. Moreover, UPol(C) = ADet(C) = Pol(C) ∩ co-Pol(C).

That UPol(C) is a quotienting Boolean algebra of regular languages is due to Pin,
Straubing and Thérien [9]. The correspondence between UPol(C) and Pol(C) ∩ co-Pol(C) is
due to Pin and Weil [11]. The correspondence between UPol(C) and ADet(C) is a new result,
up to our knowledge. Let us point out that the original proofs of these results require a
stronger hypothesis on C, which needs additionally to be closed under inverse morphic image.
Moreover, these proofs require to introduce and manipulate a lot of algebraic machinery.
This is because they are based on a generic algebraic characterization of UPol(C).

While we use a similar approach (i.e., we prove a generic algebraic characterization of
UPol(C)), our argument is much more elementary. The only algebraic notion that we need is
the syntactic morphism of a regular language.

3.2 Algebraic characterization
We now present a generic algebraic characterization of UPol(C). It holds provided that C
is a quotienting Boolean algebra of regular languages. It implies Theorem 3, but also that
UPol(C)-membership reduces to C-membership.

The characterization is parameterized by two relations that we define now. Let C be
some class of languages. Consider a finite monoid M and a surjective morphism α : A∗ → M

(such as the syntactic morphism of some language). Given a pair (s, t) ∈ M × M ,

(s, t) is a C-pair (for α) when no language of C can separate α−1(s) from α−1(t).
(s, t) is a saturated C-pair (for α) when no language of C recognized by α can separate
α−1(s) from α−1(t).

Note that any C-pair is also a saturated C-pair (the converse is not true in general). By
definition, we are able to compute all C-pairs as soon as we have an algorithm for C-separation.
On the other hand, computing all saturated C-pairs boils down to deciding C-membership, as
it suffices to check which languages recognized by α (the potential separators) belong to C.

ICALP 2018
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I Remark. An equivalent definition of the saturated C-pairs is to introduce them as the
transitive closure of the C-pairs. We prove this in appendix. In fact, when C is a quotienting
Boolean algebra, the saturated C-pair relation is a congruence whose equivalence classes
correspond exactly to the languages recognized by α which belong to C.

We may now state the following characterization of UPol(C).

I Theorem 4. Let C be a quotienting Boolean algebra of regular languages. Consider a regular
language L and let α : A∗ → M be its syntactic morphism. The following are equivalent:

1. L ∈ UPol(C).
2. L ∈ ADet(C).
3. L ∈ Pol(C) ∩ co-Pol(C).
4. For all C-pairs (s, t) ∈ M2, we have sω+1 = sωtsω.
5. For all saturated C-pairs (s, t) ∈ M2, we have sω+1 = sωtsω.

Theorem 3 is a simple corollary of Theorem 4 (it is straightforward to verify that
any class satisfying Item (4) in the theorem has to be a quotienting Boolean algebra).
Another consequence is that if C is a quotienting Boolean algebra of regular languages,
UPol(C)-membership reduces to the same problem for C. Indeed, given as input a regular
language L, one may compute its syntactic morphism α. By Theorem 4, deciding whether L ∈
UPol(C) amounts to checking whether α satisfies Item (5). This is possible provided that we
have all saturated C-pairs for α in hand. In turn, an algorithm for C-membership immediately
yields an algorithm for computing them all. Altogether, we obtain the following corollary.

I Corollary 5. Let C be a quotienting Boolean algebra of regular languages and assume that
C-membership is decidable. Then UPol(C)-membership is decidable as well.

We now focus on proving Theorem 4. A first point is that we do not show the equivalence
(3) ⇔ (4): it follows from the generic characterization of Pol(C) which is not our main
focus in the paper (a full proof is available in [15]). Here, we concentrate on proving the
implications (1) ⇒ (4) ⇒ (5) ⇒ (2) ⇒ (1). The implication (2) ⇒ (1) (ADet(C) ⊆ UPol(C))
is immediate. Even though the presentation is different, the equivalence (4) ⇔ (5) is a result
of [1] (which investigates Pol(C) ∩ co-Pol(C)). We prove this equivalence in appendix. We
postpone the implication (1) ⇒ (4) to the appendix as well, to focus on (5) ⇒ (2), which
is the most interesting implication: when a language satisfies (5), we show that it belongs
to ADet(C).

We fix a quotienting Boolean algebra of regular languages C for the proof. Consider an
arbitrary surjective morphism α : A∗ → M satisfying Item (5) in Theorem 4. We show that
any language recognized by α belongs to ADet(C). We start with a preliminary lemma.

I Lemma 6. There exists a finite monoid N and a surjective morphism β : M → N which
satisfies the following properties:

For any s, t ∈ M , (s, t) is a saturated C-pair if and only if β(s) = β(t).
Any language recognized by the composition γ = β ◦ α : A∗ → N belongs to C.

Lemma 6 is obtained by proving that the saturated C-pair relation is a congruence on M

and that for any equivalence class F ⊆ M , α−1(F ) ∈ C. It then suffices to define N as the
quotient of M by this congruence. The proof is presented in appendix.

Let us come back to the main proof. Let β : M → N and the composition γ = β ◦ α be
defined as in Lemma 6. Given any r1, r2, s ∈ M and any x ∈ N , we define:

Lx
s [r1, r2] = {w ∈ γ−1(x) | r1 · α(w) · r2 = s}.
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The purpose of introducing Lx
s [r1, r2] is that it provides induction parameters s, r1, r2 and it

coincides with α−1(s) when x = β(s), r1 = r2 = 1M . Our goal is to show that it is in ADet(C).

I Proposition 7. Let r1, r2, s ∈ M and x ∈ N . Then, Lx
s [r1, r2] ∈ ADet(C).

Before proving this proposition, let us use it to finish the main proof. By definition, a
language recognized by α is a disjoint union of sets α−1(s) for s ∈ M . Therefore, it suffices to
prove that α−1(s) ∈ ADet(C) for any s ∈ M . Let x = β(s). Clearly, L

β(s)
s [1M , 1M ] = α−1(s).

Thus, Proposition 7 yields that α−1(s) ∈ ADet(C), finishing the proof.
It remains to prove Proposition 7. We let r1, r2, s ∈ M and x ∈ N . Our objective is to

show that Lx
s [r1, r2] ∈ ADet(C). Observe that we may assume without loss of generality

that β(s) = β(r1)xβ(r2). Otherwise, Lx
s [r1, r2] = ∅ ∈ ADet(C) by definition and the result is

immediate. The proof is an induction on the three following parameters listed by order of
importance (the three of them depend on Green’s relations in both M and N):

1. The rank of β(s) which is the number of elements y ∈ N such that β(s) 6J y.
2. The right index of r1 which is the number of elements t ∈ M such that t 6R r1.
3. The left index of r2 which is the number of elements t ∈ M such that t 6L r2.

We consider three cases depending on the following properties of s, r1, r2 and x.

We say that x is smooth when x J β(s).
We say that r1 is right stable when there exists t ∈ M such that β(t) R x and r1t R r1.
We say that r2 is left stable when there exists t ∈ M such that β(t) L x and tr2 L r2.

In the base case, we assume that all three properties hold. Otherwise, we consider two
inductive cases. First, we assume that x is not smooth. Then, we assume that either r1 is
not right stable or r2 is not left stable.

Base case. Assume that x is smooth and that r1, r2 are respectively right and left stable.
We use this hypothesis to prove the following lemma.

I Lemma 8. For any u, v ∈ γ−1(x), we have r1α(u)r2 = r1α(v)r2.

Observe that Lemma 8 concludes the proof. Indeed, by definition of Lx
s [r1, r2], it implies

that either Lx
s [r1, r2] = γ−1(x) (when r1α(w)r2 = s for all w ∈ γ−1(x)) or Lx

s [r1, r2] = ∅
(when r1α(w)r2 6= s for all w ∈ γ−1(x)). Since both of these languages belong to C ⊆ ADet(C)
by Lemma 6, Proposition 7 follows. It remains to prove Lemma 8 to conclude the base case.
The argument relies on the following fact (this is where we use our hypothesis on r1 and r2).

I Fact 9. When Item (5) in Theorem 4 holds, the two following properties hold as well:

For all t ∈ M such that β(t) R x, we have r1t R r1.
For all t ∈ M such that β(t) L x, we have tr2 L r2.

Let us first use the fact to prove Lemma 8 and finish the base case. Consider u, v ∈ γ−1(x),
i.e., β(α(u)) = β(α(v)) = x. We show that r1α(u)r2 = r1α(v)r2.

By hypothesis, we have β(s) = β(r1)xβ(r2). Moreover, β(s) J x since x is smooth by
hypothesis. Thus, xβ(r2) J x and β(r1)x J x. Hence, since xβ(r2) 6R x and β(r1)x 6L x,
Lemma 1 implies xβ(r2) R x and β(r1)x L x. Since β(α(u)) = x, this yields β(α(u)r2) R x

and β(r1α(u)) L x. By Fact 9, it follows that r1α(u)r2 R r1 and r1α(u)r2 L r2. We get
p, q ∈ M such that r1 = r1α(u)r2p and r2 = qr1α(u)r2. Let t = qr1α(u)r2p = r2p = qr1.
We combine our two equalities for r1 and r2 to obtain,

r1 = r1α(u)t = r1(α(u)t)ω and r2 = tα(u)r2 = (tα(u))ω+1r2.

ICALP 2018
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Since β(α(u)) = β(α(v)), we know that β(α(u)t) = β(α(v)t). Therefore, (α(u)t, α(v)t) is a
saturated C-pair by Lemma 6, and Item (5) yields (α(u)t)ω+1 = (α(u)t)ωα(v)t(α(u)t)ω. We
may now multiply by r1 on the left and by α(u)r2 on the right to get,

r1(α(u)t)ωα(u)(tα(u))ω+1r2 = r1(α(u)t)ωα(v)(tα(u))ω+1r2.

Since we already established that r1 = r1(α(u)t)ω and r2 = (tα(u))ω+1r2, we get as desired
that r1α(u)r2 = r1α(v)r2, finishing the proof of Lemma 8. It remains to prove Fact 9.

Proof of Fact 9. By symmetry, we focus on the first property and leave the second to the
reader. Let t ∈ M such that β(t) R x. We show that r1t R r1. By hypothesis, r1 is right
stable which yields t′ ∈ M such that β(t′) R x R β(t) and r1t′ R r1. Since β(t′) R β(t), we
have y ∈ N such that β(t′) = β(t)y. Let p ∈ M such that β(p) = y: we have β(t′) = β(tp).
Since r1t′ R r1, we have q ∈ M such that r1 = r1t′q which yields r1 = r1(t′q)ω = r1(t′q)ω+1.
We have β(t′q) = β(tpq) which means that (t′q, tpq) is a saturated C-pair by Lemma 6.
Therefore, Equation (5) yields that (t′q)ω+1 = (t′q)ωtpq(t′q)ω. Finally, we obtain,

r1 = r1(t′q)ω+1 = r1(t′q)ωtpq(t′q)ω = r1tpq(t′q)ω.

This implies that r1 6R r1t. Since it is immediate that r1t 6R r1, we get r1t R r1. J

First inductive case. We now assume that x is not smooth: x and β(s) are not J-equivalent.
We use induction on our first parameter (the rank of β(s)). Recall that we assumed
β(s) = β(r1)xβ(r2), which yields β(s) 6J x. Thus, we have β(s) <J x by hypothesis.

By definition, Lx
s [r1, r2] is the disjoint union of all languages α−1(t) where t ∈ M satisfies

β(t) = x and r1tr2 = s. Therefore, it suffices to show that for any t ∈ M such that β(t) = x,
we have α−1(t) ∈ ADet(C). This is immediate by induction. Indeed, since β(t) = x, we have
α−1(t) = Lx

t [1M , 1M ]. Moreover, since β(s) <J x, we have β(s) <J β(t). It follows that the
rank of β(t) is strictly smaller than the one of β(s). Hence, we may apply induction on our
first and most important parameter to get Lx

t [1M , 1M ] ∈ ADet(C).

Second inductive case. We assume that either r1 is not right stable or r2 is not left stable.
By symmetry, we treat the case when r1 is not right stable and leave the other to the reader.

I Remark. We only apply induction on our two first parameters. Moreover, we show that
Lx

s [r1, r2] is built from languages in ADet(C) (obtained from induction) using only disjoint
union and left deterministic marked concatenations. Induction on our third parameter and
right deterministic marked concatenations are used in the case when r2 is not left stable.

Observe that we have x <J 1N (x is not maximal for 6J). Indeed, otherwise, we would
have x R 1N by Lemma 1 and r1 would be left stable: 1M ∈ M would satisfy β(1M ) = 1N R x

and r1 · 1M = r1 R r1. Therefore, there are elements y ∈ N such that x <J y.
We use this observation to define T as the set of all triples (y, a, z) ∈ N × A × N such

that x = y · γ(a) · z, x <J y and x J y · γ(a). Using the definition of T and the fact that
x <J 1N , one may decompose Lx

s [r1, r2] as follows (this lemma is proved in appendix).

I Lemma 10. The language Lx
s [r1, r2] is equal to the following disjoint union,

Lx
s [r1, r2] =

⊎
(y,a,z)∈T

 ⊎
t∈β−1(y)

α−1(t) · a · Lz
s[r1tα(a), r2]

 .
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We now use Lemma 10 to show as desired that Lx
s [r1, r2] ∈ ADet(C). Since ADet(C) is

closed under disjoint union by definition, it suffices to show that for any (y, a, z) ∈ T and
any t ∈ β−1(y), we have,

α−1(t) · a · Lz
s[r1tα(a), r2] ∈ ADet(C).

We prove that this is a left deterministic marked concatenation of two languages in ADet(C)
which concludes the proof.

We start with α−1(t) ∈ ADet(C). Since y = β(t), we have α−1(t) = Ly
t [1M , 1M ].

Moreover, since β(s) = β(r1)xβ(r2), we have β(s) 6J x. Finally, by definition of T we have
x <J y = β(t). Altogether, we get β(s) <J β(t): the rank of β(t) is strictly smaller than the
one of β(s) and induction on our first parameter yields α−1(t) = Ly

t [1M , 1M ] ∈ ADet(C).
We turn to Lz

s[r1tα(a), r2] ∈ ADet(C). By definition of T , we have x J y · γ(a) and
x = y · γ(a) · z which yields that x R y · γ(a) by Lemma 1. Moreover, since y = β(t), it follows
that x R β(tα(a)). Therefore, since we know that r1 is not right stable (this is our hypothesis),
it follows that r1 and r1tα(a) are not R-equivalent. Since it is clear that r1tα(a) 6R r1, it
follows that r1tα(a) <R r1: the right index of r1tα(a) is strictly smaller than the one of r1.
By induction on our second parameter, we then get that Lz

s[r1tα(a), r2] ∈ ADet(C).
It remains to show that α−1(t) · a · Lz

s[r1tα(a), r2] is a left deterministic marked concat-
enation, i.e., that α−1(t) ∩ α−1(t)aA∗ = ∅. Since β(t) = y, we have α−1(t) ⊆ γ−1(y) and
it suffices to show that γ−1(y) ∩ γ−1(y)aA∗ = ∅. Let w ∈ γ−1(y) and w′ ∈ γ−1(y)aA∗, we
show that w 6= w′. Since (x, a, z) ∈ T , we have x <J y and x J y · γ(a). It follows that
y · γ(a) <J y. Finally, we have γ(w) = y and γ(w′) = yγ(a)y′ for some y′ ∈ N . This implies
that γ(w′) 6J yγ(a) <J y = γ(w). Therefore γ(w) 6= γ(w′) which implies that w 6= w′.

4 Separation

We now turn to separation for UPol(C) and show that the problem is decidable for any finite
quotienting Boolean algebra C. For the sake of avoiding clutter, we fix C for the section.
I Remark. This result may seem weak: our solution for UPol(C)-separation requires C to
be finite while UPol(C)-membership reduces to C-membership. This intuition is wrong: the
result on separation is the strongest. The proof of Theorem 4 shows that when L ∈ UPol(C),
the basic languages in C needed to build L are all recognized by the syntactic morphism of L.
Hence, L ∈ UPol(C) if and only if L ∈ UPol(D) where D ⊆ C is a finite class obtained from
the syntactic morphism of L. We lose this when moving to separation: the languages in C
needed to build a potential separator in UPol(C) may not be encoded in our two inputs.

Our algorithm is based on a general framework designed to handle separation problems
and to present solutions in an elegant way. It was introduced in [16, 17]. We first summarize
what we need in this framework to present our solution for UPol(C)-separation.
I Remark. The framework of [16, 17] is actually designed to handle a more general decision
problem: covering, which generalizes separation to arbitrarily many input languages. Thus,
our solution actually yields an algorithm for UPol(C)-covering as well. While we do not
detail this point due to lack of space, this follows from the definitions of [16, 17].

4.1 Methodology
We briefly recall the framework of [16, 17]. We refer the reader to [17] for details. The
approach is based on “rating maps”, a notion designed to measure how well a language
separate others.
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The definition of rating maps relies on semirings. A semiring is a set R equipped with two
binary operations + and ·, called addition and multiplication, satisfying the following axioms:

(R, +) is a commutative monoid whose neutral element is denoted by 0R.
(R, ·) is a monoid whose neutral element is denoted by 1R.
The multiplication distributes over addition: r · (s + t) = rs + rt and (s + t) · r = sr + tr.
The element 0R is a zero for multiplication: for any r ∈ R, 0R · r = r · 0R = 0R.

Moreover, we say that a semiring R is idempotent when any element r ∈ R is idempotent for
addition: r + r = r. Any idempotent semiring R can be equipped with a canonical order
“≤”: given s, r ∈ R, we have s ≤ r when s + r = r. It can be verified that this is indeed an
order which is compatible with addition and multiplication (R being idempotent is required).

I Example 11. The set 2A∗ of all languages over A is an idempotent semiring: the addition
is union and the multiplication is language concatenation. In this case, the canonical order is
inclusion (H ⊆ L if and only if H ∪L = L). Another important example is the powerset 2M of
any monoid M . Again the addition is union (thus, the order is inclusion). The multiplication
is obtained from the one of M : given S, T ∈ 2M , S · T = {st | s ∈ S and t ∈ T}.

Rating maps. A rating map1 is a semiring morphism, ρ : 2A∗ → R where R is a finite
idempotent semiring. It can be verified that any rating map is compatible with the canonical
order (K ⊆ L ⇒ ρ(K) ≤ ρ(L)). For the sake of improved readability, when applying a rating
map ρ to a singleton language {w}, we shall simply write ρ(w) for ρ({w}). The connection
with separation only requires to consider special rating maps called “nice”. A rating map
ρ : 2A∗ → R is nice when for any language K ⊆ A∗, ρ(K) =

∑
w∈K ρ(w) (while infinite, this

sum boils down to a finite one as R is a finite idempotent commutative monoid for addition).

I Remark. Any nice rating map ρ : 2A∗ → R is finitely representable: it is determined by the
images ρ(a) of letters a ∈ A. We may speak of algorithms whose inputs are nice rating maps.

SolvingUPol(C)-separation requires to consider a special class of rating maps: the
C-compatible ones (our algorithm is restricted to them). The definition is based on a
canonical equivalence ∼C on A∗ associated to C. Given u, v ∈ A∗, we write u ∼C v if and
only if u ∈ L ⇔ v ∈ L for all L ∈ C. Clearly, ∼C is an equivalence relation. For any
word w ∈ A∗, we shall write [w]C ⊆ A∗ for the ∼C-class of w. Moreover, since C is a finite
quotienting Boolean algebra, we have the following classical properties (we present a proof in
appendix).

I Lemma 12. The equivalence ∼C is a congruence of finite index for word concatenation.
Moreover, for any language L ⊆ A∗, we have L ∈ C if and only if L is a union of ∼C-classes.

Lemma 12 implies that the set A∗/∼C of ∼C-classes is a finite monoid and the map
w 7→ [w]C is a morphism. For the sake of avoiding confusion with language concatenation,
we shall write “•” for the monoid multiplication of A∗/∼C. In general, if C, D ⊆ A∗ are
∼C-classes, then C • D 6= CD (usually, CD is not even a ∼C-class).

We may now define C-compatibility. We say that a rating map ρ : 2A∗ → R is C-compatible
when for any two ∼C-classes C and D, if there exists an element r ∈ R \ {0R} such that
r ≤ ρ(C) and r ≤ ρ(D), then C = D.

1 What we call rating map here is called multiplicative rating map in [17] (the “true” rating maps are
weaker and do not require a multiplication). We abuse terminology for the sake of improved readability.
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Optimal covers. We use rating maps to define objects called “optimal universal D-covers”,
which encode separation-related information. Here, D is an arbitrary fixed Boolean algebra
for which one wants a D-separation algorithm (we are interested in the case D = UPol(C)).
We fix D for the definition.

A cover of some language L is a finite set of languages K such that L ⊆
⋃

K∈K K. When
L = A∗, we speak of universal cover. Moreover, we say that K is a D-cover when all K ∈ K
belong to D. A fixed rating map ρ : 2A∗ → R is used to define a “quality measure” for
D-covers which yields a notion of “best” universal D-cover. Given a finite set of languages K
(such as a universal D-cover), the ρ-imprint I[ρ](K) of K is the following subset of R:

I[ρ](K) = {r ∈ R | r ≤ ρ(K) for some K ∈ K}.

We now define the optimal universal D-covers as those with the smallest possible ρ-imprint
(with respect to inclusion). A universal D-cover K is optimal for ρ when I[ρ](K) ⊆ I[ρ](K′)
for any universal D-cover K′. In general, there can be infinitely many optimal universal
D-covers for a given rating map ρ. The crucial point is that there always exists a least one.
This is simple and proved in [17]. The key idea is that there are finitely many possible
ρ-imprints (since R is finite) and given two universal D-covers, one may always build a third
one which has a smaller ρ-imprint than the first two, by simple use of language intersections.

Finally, a key observation is that by definition, all optimal universal D-covers for ρ share
the same ρ-imprint. This unique ρ-imprint is a canonical object for D and ρ called the
D-optimal universal ρ-imprint and we denote it by ID[ρ]. That is, ID[ρ] = I[ρ](K) for any
optimal universal D-cover K for ρ.
The connection with separation. We may now explain how these notions are used to
handle separation. This is summarized by the following lemma.

I Lemma 13. Let D be a Boolean algebra and assume that there exists an algorithm that takes
as input a nice C-compatible rating map ρ : 2A∗ → R and outputs ID[ρ]. Then, D-separation
is decidable.

Let us sketch how to go from computing D-optimal ρ-imprints to D-separation (see [16]
or the appendix for a full proof of Lemma 13). Consider two regular languages L1 and L2:
we wish to know whether L1 is D-separable from L2. Since C is finite, one can build a monoid
morphism α : A∗ → M , with M finite, recognizing both L1 and L2 as well as all languages
in C. Furthermore, one may lift α as a map ρ : 2A∗ → 2M by defining ρ(K) = {α(w) | w ∈ K}
for any language K ⊆ A∗. It is simple to verify that this map ρ is a nice C-compatible rating
map. Moreover, the two following properties (which we prove in appendix) hold:

L1 is D-separable from L2 iff for any s1 ∈ α(L1) and s2 ∈ α(L2), we have {s1, s2} 6∈ ID[ρ].
When the first item holds, one may build a separator in D from any optimal universal
D-cover K for ρ: this separator is the union of all languages intersecting L1 in K.

By the first item, having an algorithm that computes ID[ρ] ⊆ 2M suffices to decide whether
L1 is D-separable from L2. Moreover, by the second item, having an algorithm that computes
an optimal universal D-cover K for ρ is enough to build a separator (when it exists).
I Remark. Here, we only use the sets of size two in ID[ρ] ⊆ 2M . However, ID[ρ] contains more
information corresponding to the more general D-covering problem considered in [16, 17].

4.2 Computing UPol(C)-optimal universal imprints
We use the framework defined above to present an algorithm for UPol(C)-separation. We
give a characterization UPol(C)-optimal imprints. It yields a procedure for computing them.
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Consider a rating map ρ : 2A∗ → R. For any subset S ⊆ R, we say that S is
UPol(C)-saturated (for ρ) if it contains the set Itriv[ρ] = {r ∈ R | r ≤ ρ(w) for some w ∈ A∗}
and is closed under the following operations:

1. Downset: for any s ∈ S, if r ∈ R satisfies r ≤ s, then we have r ∈ S.
2. Multiplication: For any s, t ∈ S, we have st ∈ S.
3. UPol(C)-closure: Given two ∼C-classes C, D and s, t ∈ S such that s ≤ ρ(C • D) and

t ≤ ρ(D • C), we have sω · ρ(C) · tω ∈ S

We are ready to state the main theorem of this section: when ρ is C-compatible, UPol(C)-
saturation characterizes the UPol(C)-optimal universal ρ-imprint.

I Theorem 14. Let ρ : 2A∗ → R be a C-compatible rating map. Then, IUPol(C)[ρ] is the
smallest UPol(C)-saturated subset of R (with respect to inclusion).

Clearly, given a nice C-compatible rating map ρ : 2A∗ → R as input, one may compute
the smallest UPol(C)-saturated subset of R with a least fixpoint algorithm. One starts from
Itriv[ρ] (which is clearly computable) and saturates this set with the three above operations.
Thus, we get a procedure for computing IUPol(C)[ρ] from any input nice C-compatible rating
map. By Lemma 13, this yields the desired corollary: UPol(C)-separation is decidable.

I Corollary 15. For any finite quotienting Boolean algebra C, UPol(C)-separation is decidable.

The proof of Theorem 14 is a difficult generalization of the argument we used to show
the algebraic characterization of UPol(C) (i.e., Theorem 4). It is presented in appendix.
An interesting byproduct of this proof is an algorithm which computes optimal universal
UPol(C)-covers (and therefore UPol(C)-separators when they exist, as we explained above).

5 Conclusion

We presented a new, self-contained proof that for any quotienting Boolean algebra regular
languages C, membership for UPol(C) reduces to membership for C. An interesting byproduct
of this proof is that UPol(C) corresponds exactly to the class ADet(C), which is obtained
by restricting the unambiguous marked concatenations to left or right deterministic ones.
Moreover, we showed that when C is a finite quotienting Boolean algebra, UPol(C)-separation
is decidable. This completes similar results of [18] for Pol(C) and Bool(Pol(C)) and of [13]
for Pol(Bool(Pol(C))). These results raise several natural questions.

Historically, UPol(C) was investigated together with two weaker operations: left and
right deterministic closures. The left (resp. right) deterministic closure of C, is the smallest
class containing C closed under disjoint union and left (resp. right) deterministic marked
concatenation. Our results can be adapted to these two weaker operations. In both cases,
membership reduces to C-membership when C is a quotienting Boolean algebra of regular
languages and separation is decidable when C is a finite quotienting Boolean algebra. In fact,
these operations are simpler to handle than UPol(C). We leave this for further work.

Another question is whether our results can be pushed to classes built by combining
unambiguous polynomial closure with other operations. A natural example is as follows. It
is known [13] that Pol(Bool(Pol(C)))-separation is decidable when C is a finite quotienting
Boolean algebra. Is this true as well for UPol(Bool(Pol(C)))? This seems difficult: the proof
of [13] crucially exploits the fact that Pol(Bool(Pol(C))) is closed under concatenation (which
is not the case for UPol(Bool(Pol(C)))) to handle the first polynomial closure.
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A Proofs for Lemma 1 and Lemma 12

Here, we prove two independent lemmas that we shall use throughout the whole appendix.
The first one states a simple property of Green relations while the second one applies to
canonical equivalence associated to some finite quotienting Boolean algebra.

A.1 Lemma 1

I Lemma 1. Consider a finite monoid M and s, t ∈ M such that s J t. Then, s 6R t

implies s R t. Symmetrically, s 6L t implies s L t.

Proof. Consider a finite monoid M and s, t ∈ M such that s J t. We have to show that
s 6R t implies s R t and s 6L t implies s L t. By symmetry we only prove the former.

Assume that s 6R t. This yields x ∈ M such that s = tx. Moreover, since s J t, we have
y, z ∈ M such that t = ysz. Therefore, we get that,

t = ytxz = yωt(xz)ω = yωt(xz)ω(xz)ω = t(xz)ω

Therefore, t = tx(zx)ω−1z = s(zx)ω−1z. This exactly says that t 6R s. Since we already
have s 6R t, this yields s R t, as desired. J

A.2 Lemma 12

I Lemma 12. For any quotienting Boolean algebra C, the equivalence ∼C is a congruence of
finite index for word concatenation. Moreover, for any language L ⊆ A∗, we have L ∈ C if
and only if L is a union of ∼C-classes.

Proof. Recall that given any finite quotienting Boolean algebra C, we associate a canonical
equivalence ∼C on A∗ to C. Given u, v ∈ A∗, we write u ∼C v when u ∈ L ⇔ v ∈ L for all
L ∈ C. Clearly, ∼C is an equivalence relation. We need to prove that ∼C is a congruence of
finite index for word concatenation and for any language L ⊆ A∗, we have L ∈ C if and only
if L is a union of ∼C-classes.

It is immediate that ∼C has finite index, since C is a finite class. Indeed, by definition, the
∼C-class [w]C of a word w ∈ A∗ only depends on which languages of C contain w. Therefore,
there are at most 2|C| classes, where |C| denotes the number of languages in C.

We now prove that C is a congruence. This is because C is closed under quotients. Let
u1, v1, u2, v2 ∈ A∗ be words such that u1 ∼C v1 and u2 ∼C v2. We have to show that
u1u2 ∼C v1v2: for any L ∈ C, u1u2 ∈ L ⇔ v1v2 ∈ L. Thus, we fix L ∈ C. By symmetry,
we only prove the left to right implication. Assume that u1u2 ∈ L, we show that v1v2 ∈ L.
Since u1u2 ∈ L, we have u1 ∈ L(u2)−1. Moreover, since C is closed under quotients, we have
L(u2)−1 ∈ C. Therefore, u1 ∼C v1 yields that v1 ∈ L(u2)−1, i.e., v1u2 ∈ L. Consequently,
we have u2 ∈ (v1)−1L. Again, since C is closed under quotients, we have (v1)−1L ∈ C. Thus,
u2 ∼C v2 yields that v2 ∈ (v1)−1L, which exactly says that v1v2 ∈ L, finishing the proof.

It remains to show that the languages in C are the unions of ∼C-classes. This is because
C is a Boolean algebra. Consider L ⊆ A∗. We have two implications to show. That any
L ∈ C is a union of ∼C-classes is immediate from the definition of ∼C . Indeed, given L ∈ C,
if u ∈ L and u ∼C v for some v ∈ A∗, then v ∈ L by definition. Therefore, we concentrate
on the converse implication: any union of ∼C-classes belongs to C. Since C is closed under
union, it suffices to show that any ∼C-class belongs to C. Consider w ∈ A∗, we show that
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[w]C ∈ C. By definition, it is immediate that,

[w]C =

 ⋂
{L∈C|w∈L}

L

 ∩

 ⋂
{L∈C|w 6∈L}

A∗ \ L

 .

Hence, since C is a finite Boolean algebra, it is immediate that [w]C ∈ C. J

B A characteristic property of UPol(C)

This second appendix presents a characteristic property of UPol(C). We shall use it in two
proofs: the direction (1) ⇒ (4) in Theorem 4 (the algebraic characterization of UPol(C)) and
one direction in Theorem 14 (the characterization of UPol(C)-optimal imprints).

This property applies to the unambiguous polynomial closure of finite quotienting Boolean
algebras. Recall that when C is a finite quotienting Boolean algebra, we associate a canonical
equivalence ∼C over A∗ (two words are equivalent when they belong to the same languages
in C). Since C is closed under quotients, ∼C must be a congruence of finite index for word
concatenation by Lemma 12.

I Proposition 13. Let C be a finite quotienting Boolean algebra and let A be a finite alphabet.
Consider a language L ⊆ A∗ in UPol(C). Then, there exists an integer h ∈ N such that for any
` ≥ h and u1, u2, v, v′, x, y, z ∈ A∗ satisfying v ∼C v′, vz ∼C v′z ∼C u1 and zv ∼C zv′ ∼C u2,
we have,

x(u1)`v(u2)`y ∈ L if and only if x(u1)`v′(u2)`y ∈ L.

Before proving Proposition 13, we present a corollary which states a simpler version of
the same property. This variant is the one that we shall use when proving the direction
(1) ⇒ (4) in Theorem 4 (the full variant stated in Proposition 13 is required for Theorem 14).

I Corollary 14. Let C be a finite quotienting Boolean algebra and let A be a finite alphabet.
Consider a language L ⊆ A∗ in UPol(C). There exists an integer h ∈ N such that for any
` ≥ h and u, v, x, y ∈ A∗ satisfying u ∼C v, we have,

xu2`+1y ∈ L if and only if xu`vu`y ∈ L

Proof. This is the special case of Proposition 13 when u1 = u2 = v′ and z = ε. J

We now concentrate on proving Proposition 13. We fix the finite quotienting Boolean
algebra C for the proof. Consider a language L ⊆ A∗ in UPol(C). We first need to choose a
natural number h ∈ N depending on L.

Recall that since ∼C is a congruence of finite index, the set A∗/∼C of ∼C-classes if a
finite monoid. Thus, it has an idempotent power ω. We shall denote it by p ≥ 1 in the proof.
Observe that since the map w 7→ [w]C is a morphism, we have the following fact by definition
of p.

I Fact 15. For any w ∈ A∗ and any m, m′ ≥ 1, wpm ∼C wpm′ .

Moreover, since L belongs to UPol(C), it is built from languages in C using only disjoint
union and unambiguous marked concatenation. It is simple to verify that these two operations
commute. Hence, L is a finite disjoint union of unambiguous products having the form:

L0a1L1 · · · amLm,
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where a1, . . . , am ∈ A and L0, . . . , Lm ∈ C. We define n ∈ N as a natural number such that
for any unambiguous product L0a1L1 · · · amLm in the union, we have m ≤ n. Finally, we let,

h = (2n + 1) × p.

It remains to show that h satisfies the desired property. Let ` ≥ h and u1, u2, v, v′, x, y, z ∈ A∗

such that v ∼C v′, vz ∼C v′z ∼C u1 and zv ∼C zv′ ∼C u2. We have to show that,

x(u1)`v(u2)`y ∈ L if and only if x(u1)`v′(u2)`y ∈ L

Since our hypotheses on v and v′ are symmetrical, we focus on the left to right direction
(the converse one is obtained by symmetry). Therefore, we assume that x(u1)`v(u2)`y ∈ L

and show that x(u1)`v′(u2)`y ∈ L.

By hypothesis, we know that there exists a unambiguous product L0a1L1 · · · amLm ⊆ L

with a1, . . . , am ∈ A, L0, . . . , Lm ∈ C and m ≤ n such that x(u1)`v(u2)`y ∈ L0a1L1 · · · amLm.
It follows that x(u1)`v(u2)`y admits a unique decomposition,

x(u1)`v(u2)`y = w0a1w1 · · · amwm

such that wi ∈ Li for all i ≤ m. The argument is based on the following lemma which is
where we use our choice of h and the fact that L0a1L1 · · · amLm is unambiguous. It states
that the central infix v in x(u1)`v(u2)`y must be contained within one of the infixes wi.

I Lemma 16. There exist i ≤ m and x1, x2 ∈ A∗ such that,

wi = x1vx2.
w0a1w1 · · · aix1 = x(u1)`.
x2ai+1 · · · amwm = (u2)`y.

Before we prove Lemma 16, let us use it to finish the main argument. Recall that
by hypothesis v ∼C v′. Thus, since ∼C is a congruence, we have wi = x1vx2 ∼C x1v′x2.
Moreover, since wi ∈ Li which is a language of C, it follows from the definition of ∼C that
x1v′x2 ∈ Li. Therefore, since wj ∈ Lj for all j,

w0a1w1 · · · aix1v′x2ai+1 · · · amwm ∈ L0a1L1 · · · amLm

By the last two items in Lemma 16, this exactly says that x(u1)`v′(u2)`y ∈ L0a1L1 · · · amLm.
Since we have L0a1L1 · · · amLm ⊆ L by definition, this implies that x(u1)`v′(u2)`y ∈ L,
finishing the proof. It remains to prove Lemma 16.

Proof of Lemma 16. Recall that we have the following equality,

x(u1)`v(u2)`y = w0a1w1 · · · amwm

Since ` ≥ h = (2n + 1) × p ≥ (2m + 1) × p, it follows from the pigeon-hole principle that
there exist i ≤ j ≤ m such that,

An infix (u1)p of the prefix x(u1)` is contained in wi.
An infix (u2)p of the suffix (u2)`y is contained in wj .

We show that i = j. It will then be immediate that v is contained in wi = wj as well
and the lemma will follow. We proceed by contradiction. Assume that i < j and let
K = ai+1Li+1 · · · aj−1Lj−1aj . Observe that since L0a1L1 · · · amLm is unambiguous, the
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sub-product LiKLj must be unambiguous as well. Using our hypotheses, we contradict this
property by exhibiting a word w ∈ LiKLj admitting two decompositions witnessing this
membership.

We define w′ = ai+1wi+1 · · · aj−1wj−1aj . Note that w′ ∈ K by definition of K. By
construction of i and j, we have words x1, y1, x2, y2 ∈ A∗ satisfying the following properties:

wi = x1(u1)py1.
wj = x2(u2)py2.
y1w′x2 = (u1)k1v(u2)k2 for some k1, k2 ∈ N.

Recall that by hypothesis, we have a word z ∈ A∗ such that vz ∼C u1 and zv ∼C u2. We
define w ∈ A∗ as follows,

w = x1(u1)p((u1)k1v(u2)k2z)py1w′x2(u2)py2

We show that w ∈ LiKLj and that there are two decompositions witnessing this membership.
Thus, this proves that LiKLj is not unambiguous which is a contradiction.

Since vz ∼C u1, zv ∼C u2 and ∼C is a congruence, it follows that,

(u1)k1v(u2)k2z ∼C (vz)k1v(zv)k2z = (vz)k1+k2+1 ∼C (u1)k1+k2+1

Therefore, by definition of p, Fact 15 yields that,

x1(u1)p((u1)k1v(u2)k2z)py1 ∼C x1(u1)py1 = wi

Finally, since wi ∈ Li which is a language of C, it follows by definition of ∼C that,

x1(u1)p((u1)k1v(u2)k2z)py1 ∈ Li

Moreover, we have, w′ ∈ K by definition and x2(u2)py2 = wj ∈ Lj . Therefore,

w = x1(u1)p((u1)k1v(u2)k2z)py1w′x2(u2)py2 ∈ LiKLj

It remains to find a second decomposition of w witnessing this membership.
Recall that we have y1w′x2 = (u1)k1v(u2)k2 . Thus, it is simple to verify from the

definition of w that,

w = x1(u1)p((u1)k1v(u2)k2z)py1w′x2(u2)py2
w = x1(u1)p((u1)k1v(u2)k2z)p(u1)k1v(u2)k2(u2)py2
w = x1(u1)p(u1)k1v(u2)k2(z(u1)k1v(u2)k2)p(u2)py2
w = x1(u1)py1w′x2(z(u1)k1v(u2)k2)p(u2)py2

Using similar arguments to those we applied above, one may then verify that,

x2(z(u1)k1v(u2)k2)p(u2)py2 ∈ Lj

Moreover, x1(u1)py1 = wi ∈ Li and w′ ∈ K. Thus, we get a second decomposition witnessing
the membership of w in LiKLJ which concludes the proof. J

C Proof of Theorem 4

In this appendix, we complete the proof of Theorem 4. It remained to prove the directions
(1) ⇒ (4) and (4) ⇒ (5) as well as two lemmas in our proof for the direction (5) ⇒ (2). We
start by presenting a few results about C-pairs and saturated C-pairs that we shall need for
our arguments.
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C.1 Preliminary results on C-pairs
Let us briefly recall the definitions of C-pairs and saturated C-pairs. Let C be some class of
languages. Consider a finite monoid M and a surjective morphism α : A∗ → M . Given a
pair (s, t) ∈ M × M ,

(s, t) is a C-pair (for α) when no language of C can separate α−1(s) from α−1(t).
(s, t) is a saturated C-pair (for α) when no language of C recognized by α can separate
α−1(s) from α−1(t).

We start with a lemma presenting an important property of C-pairs. This relation
is reflexive and compatible with multiplication when C is a quotienting lattice of regular
languages (it is also symmetric when C is a Boolean algebra, but we do not use this property).

I Lemma 17. Let C be a quotienting lattice of regular languages, M be a finite monoid and
α : A∗ → M be a surjective morphism. Then, the C-pair relation is reflexive and compatible
with multiplication

Proof. Clearly, the C-pair relation is reflexive: given s ∈ M , the language α−1(s) is nonempty
since α is reflexive, whence it cannot be separated from α−1(s). Therefore, (s, s) is a C-pair.

We now prove that the relation is a congruence: for any two C-pairs (s1, t1) and (s2, t2),
(s1s2, t1t2) is a C-pair as well. We show the contrapositive. Assume that (s1s2, t1t2) is not a
C-pair. We show that either (s1, t1) is not a C-pair or (s2, t2) is not a C-pair. By hypothesis,
we have a separator K ∈ C such that α−1(s1s2) ⊆ K and K ∩ α−1(t1t2) = ∅. We define,

H1 =
⋂

w∈α−1(s2)

Kw−1

By definition, H1 ∈ C since C is a quotienting lattice and contains only regular languages
(thus K has finitely many right quotients by Myhill-Nerode theorem). Additionally, since
α−1(s1s2) ⊆ K, one may verify from the definition that α−1(s1) ⊆ H1. There are now two
cases.

If α−1(t1) ∩ H1 = ∅ then H1 ∈ C separates α−1(s1) from α−1(t1) and we are done: (s1, t1)
is not a C-pair.
Otherwise, there exists a word u1 ∈ α−1(t1) ∩ H1 6= ∅. Let H2 = (u1)−1K ∈ C. We claim
that H2 separates α−1(s2) from α−1(t2) which concludes the proof: (s2, t2) is not a C-pair.
Indeed, given w ∈ α−1(s2), we have u1 ∈ H1 ⊆ Kw−1 by definition which means that
u1w ∈ K and therefore that w ∈ H2 = (u1)−1K. Therefore, α−1(s2) ⊆ H2. Now, assume
by contradiction that there exists v ∈ α−1(t2) ∩ H2. Since H2 = (u1)−1K, it follows
that u1v ∈ K. Finally, since α(u1) = t1 and α(v) = t2, it follows that u1v ∈ α−1(t1t2).
Therefore, we would have u1v ∈ K ∩ α−1(t1t2), a contradiction since this language is
empty by hypothesis.

J

We now turn to the properties of saturated C-pairs. The key result is that when C is a
Boolean algebra, the saturated C-pair relation is an equivalence on M (contrary to the C-pair
relation, which is not transitive in general). Moreover, the equivalence classes correspond
exactly to the languages recognized by α which belong to C.
I Remark. When C is only a lattice, the saturated C-pair relation is only a preorder and
the languages recognized by α which belong to C correspond to its upper sets. We do not
consider this case.
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I Lemma 18. Let C be a Boolean algebra, let M be a finite monoid and let α : A∗ → M

be a surjective morphism. Then, the saturated C-pair relation is an equivalence relation.
Moreover, for any F ⊆ M , the two following properties are equivalent:

1. α−1(F ) ∈ C.
2. F is a union of equivalence classes for the saturated C-pair relation.

Proof. We first show that that the saturated C-pair relation is an equivalence. Clearly, it is
reflexive: given s ∈ M , α−1(s) (which is nonempty since α is surjective) cannot be separated
from α−1(s), thus (s, s) is a saturated C-pair.

We turn to transitivity. Consider r, s, t ∈ M such that (r, s) and (s, t) are saturated
C-pairs. We show that (r, t) is a saturated C-pair as well. That is, we must show that no
language of C recognized by α separates α−1(r) from α−1(t). Consider L ∈ C recognized by
α such that α−1(r) ⊆ L. We have to show that α−1(t) ∩ L 6= ∅. Since (r, s) is a saturated
C-pair, L cannot separate α−1(r) from α−1(s). Thus, α−1(s) ∩ L 6= ∅. Moreover, since L is
recognized by α, this implies that α−1(s) ⊆ L. Finally, since (s, t) is a saturated C-pair, L

cannot separate α−1(s) from α−1(t). Thus, α−1(t) ∩ L 6= ∅ and we are finished.
Finally, we prove that the saturated C-pair relation is symmetric. We use the fact that C

is closed under complement. Consider a saturated C-pair (s, t) ∈ M2. We show that (t, s)
is a saturated C-pair as well. By contradiction assume that we have H ∈ C(A) recognized
by α separating α−1(t) from α−1(s). It follows that A∗ \ H separates α−1(s) from α−1(t).
Clearly, A∗ \ H is still recognized by α and since C is closed under complement, A∗ \ H ∈ C.
Thus, this contradicts the hypothesis that (s, t) is a saturated C-pair. This concludes the
proof that the saturated C-pair relation is an equivalence.

It remains to prove the equivalence between the two items in the lemma. Consider F ⊆ M .
We start with the direction (1) ⇒ (2). Assume that α−1(F ) ∈ C, we show that F is a union
of equivalence classes for the saturated C-pair relation. Consider s ∈ F and t ∈ M such that
(s, t) is a saturated C-pair, we have to show that t ∈ F . We proceed by contradiction, assume
that t 6∈ F . In that case it is immediate that α−1(F ) separates α−1(s) from α−1(t). Since
we have α−1(F ) ∈ C, this contradicts the hypothesis that (s, t) is a saturated C-pair and we
are done.

We turn to the direction (2) ⇒ (1). Assume that F is a union of equivalence classes for
the saturated C-pair relation. We show that α−1(F ) ∈ C. Consider s ∈ F and t 6∈ F . By the
hypothesis on F and since s ∈ F , the whole class of s for the saturated C-pair relation is
included in F . Therefore, (s, t) is not a saturated C-pair, so that there exists a language
Ls,t in C recognized by α that separates α−1(s) from α−1(t), that is, such that Ls,t ∈ C,
α−1(s) ⊆ Ls,t and α−1(t) ∩ Ls,t = ∅. One may then verify that,

α−1(F ) =
⋃

s∈F

⋂
t6∈F

Ls,t.

Since C is a closed under union and intersection, it follows that α−1(F ) ∈ C. This concludes
the proof. J

We may now connect our two relations with the following lemma. The saturated C-pairs
are the transitive closure of the C-pairs.

I Lemma 19. Consider a Boolean algebra C, a finite monoid M and a surjective morphism
α : A∗ → M . Then, for any (s, t) ∈ M × M , the following properties are equivalent:

1. (s, t) is a saturated C-pair.
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2. There exist n ∈ N and r0, . . . , rn+1 ∈ M such that r0 = s, rn+1 = t and (ri, ri+1) is a
C-pair for all i ≤ n.

Proof. The direction (2) ⇒ (1) is immediate since any C-pair is also a saturated C-pair
and we showed in Lemma 18 that the saturated C-pair relation is transitive. Therefore, we
concentrate on the direction (1) ⇒ (2). Let (s, t) be a saturated C-pair. Let F ⊆ M be the
smallest subset of M satisfying the two following properties:

1. s ∈ F .
2. For any C-pair (u, v) ∈ M × M , if u ∈ F , then v ∈ F as well.

We have s ∈ F by definition. We show that α−1(F ) ∈ C. By Lemma 18, this will imply that
t ∈ F as well since (s, t) is a saturated C-pair. Thus, Item (2) holds. We now show that
α−1(F ) ∈ C. Observe that for any u ∈ F , we may build a language Hu ∈ C such that,

α−1(u) ⊆ Hu ⊆ α−1(F )

Indeed, for any v 6∈ F , we know that (u, v) is not a C-pair by definition of F . Thus, we have
Hu,v ∈ C which separates α−1(u) from α−1(v) and since C is closed under intersection, it
suffices to define,

Hu =
⋂

v 6∈F

Hu,v ∈ C

We now observe that,

α−1(F ) =
⋃

u∈F

α−1(u) ⊆
⋃

u∈F

Hu ⊆ α−1(F )

Thus, α−1(F ) =
⋃

u∈F Hu belong to C since C is closed under union. J

Finally, a corollary of these results is that when C is a quotienting Boolean algebra of
regular languages the saturated C-pair relation is a congruence.

I Lemma 20. Let C be a quotienting Boolean algebra of regular languages, M a finite monoid
and α : A∗ → M a surjective morphism. Then, the saturated C-pair relation is a congruence.

Proof. By Lemma 18, we already know that the saturated C-pair relation is an equivalence.
Moreover, it is immediate from Lemma 19 that it is compatible with multiplication since we
already know that this is the case for the C-pair relation by Lemma 17. J

C.2 Direction (1) ⇒ (4) in Theorem 4
Recall that a quotienting Boolean algebra of regular languages C is fixed. Consider a regular
language L ∈ UPol(C) and let α : A∗ → M be its syntactic morphism. Given any C-pair
(s, t) ∈ M × M , we have to show that sω+1 = sωtsω. We first prove the following simple fact.

I Fact 21. There exists a finite quotienting Boolean algebra D ⊆ C such that L ∈ UPol(D).

Proof. Since L ∈ UPol(C), it is built from finitely many languages in C using disjoint unions
and unambiguous marked concatenations. We let F ⊆ C as the finite class containing all
basic languages in C used in the construction. Moreover, we let D as the smallest quotienting
Boolean algebra containing F . Clearly D ⊆ C since C is a quotienting Boolean algebra
itself. Moreover, L ∈ UPol(D) since D contains all languages in C required to build L by
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definition. It remains to show that D remains finite. By definition, the languages in D
are built from those in F by applying Boolean operations and quotients. Therefore, since
quotients commute with Boolean operations, any language in D is a Boolean combination of
quotients of languages in F . Finally, any regular language has finitely many quotients by
Myhill-Nerode theorem. Thus, since F was finite, this is the case for D as well. J

We work with the canonical equivalence ∼D over A∗ associated to the finite quotienting
Boolean algebra D. Since (s, t) is a C-pair, we know that α−1(s) is not C-separable from
α−1(t). Therefore, since D ⊆ C, it follows that α−1(s) is not D-separable from α−1(t). By
Lemma 12 the unions of ∼D classes belong to D. Therefore, some ∼D-class intersects both
α−1(s) and α−1(t) (otherwise, the union of all ∼D-classes intersecting α−1(s) would be a
separator in D). Hence, we have u ∈ α−1(s) and v ∈ α−1(t) such that u ∼D v. Hence, we
may apply Corollary 14 which yields a natural number h ∈ N such that for any x, y ∈ A∗,

xuhωvuhωy ∈ L if and only if xuhω+1y ∈ L

This exactly says that uhωvuhω and uhω+1 are equivalent for the syntactic congruence ≡L of
L. By definition of the syntactic morphism, it then follows that,

sω+1 = α(uhω+1) = α(uhωvuhω) = sωtsω

This concludes the proof for this direction.

C.3 Direction (4) ⇒ (5) in Theorem 4
Recall that a quotienting Boolean algebra C is fixed. Consider a regular language L and let
α : A∗ → M be its syntactic morphism. Assume that Equation (4) in Theorem 4 holds: for
any C-pair (s, t) ∈ M2, we have sω+1 = sωtsω. We have to show that Equation (5) holds as
well: for any saturated C-pair (s, t) ∈ M2, we have sω+1 = sωtsω

Consider a saturated C-pair (s, t) ∈ M2. We show that sω+1 = sωtsω. By Lemma 19, we
know that there exist n ∈ N and r0, . . . , rn+1 ∈ M such that r0 = s, rn+1 = t and (ri, ri+1)
is a C-pair for all i ≤ n. We prove by induction that for all 1 ≤ k ≤ n + 1, we have,

sω+1 = sωrksω

The case k = n + 1 yields the desired result since rn+1 = t. When k = 1, it is immediate by
hypothesis (i.e. Equation (4) holds) that sω+1 = sωr1sω since (s, r1) is a C-pair. We now
assume that k > 1. Using induction, we get that,

sω+1 = sωrk−1sω

Therefore, we obtain,

sω = (sω+1)ω = (sωrk−1sω)ω

Since (rk−1, rk) is a C-pair, It is immediate from Lemma 17 that, (sωrk−1sω, sωrksω) is a
C-pair as well. Thus, since Equation (4) holds, we get that,

(sωrk−1sω)ω+1 = (sωrk−1sω)ωsωrksω(sωrk−1sω)ω

Since sω+1 = sωrk−1sω and sω = (sωrk−1sω)ω, this yields,

sω+1 = (sω+1)ω+1 = sωsωrksωsω = sωrksω

This concludes the proof.
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C.4 Missing proofs for the direction (5) ⇒ (2) in Theorem 4
Recall that a quotienting Boolean algebra C is fixed. For this direction, it only remained to
prove Lemma 6 and Lemma 10. We start with the former.

C.4.1 Proof of Lemma 6
We have a surjective morphism α : A∗ → M in hand and we need to show that there exists
a finite monoid N and a surjective morphism β : M → N which satisfies the following
properties:

For any s, t ∈ M , (s, t) is a saturated C-pair if and only if β(s) = β(t).
Any language recognized by the composition γ = β ◦ α : A∗ → N belongs to C.

By Lemmas 18 and 20, we now that the saturated C-pair relation is a congruence on M .
Therefore, we may define N as the monoid obtained by quotienting M by this congruence
and β : M → N as the corresponding morphism (which associates it equivalence class to any
element s ∈ M). The first item is then immediate by definition.

For the second item, it follows by definition that any language L recognized by the
composition β ◦ α : A∗ → N is of the form L = α−1(F ) where F is a union of equivalence
classes for the saturated C-pair relation. Thus, it follows from Lemma 18 that L ∈ C.

C.4.2 Proof of Lemma 10
Let us first recall the situation. We have two finite monoids M and N together with two
surjective morphisms α : A∗ → M and β : M → N . Moreover, γ denotes the composition
β ◦ α : A∗ → N . We have r1, r2, s ∈ M and any x ∈ N and we are considering the following
language:

Lx
s [r1, r2] = {w ∈ γ−1(x) | r1 · α(w) · r2 = s}

Additionally, we are working under the hypothesis that x <J 1N . In this situation, we defined
T as the set of all triples (y, a, z) ∈ N × A × N satisfying the three following conditions:
x = y · γ(a) · z, x <J y and x J y · γ(a). Lemma 10 states that Lx

s [r1, r2] is equal to the
following disjoint union:

Lx
s [r1, r2] =

⊎
(y,a,z)∈T

 ⊎
t∈β−1(y)

α−1(t) · a · Lz
s [r1tα(a), r2]


We first prove the above equality holds and then show that the union is disjoint. We
start with the right to left inclusion. Given a triple (y, a, z) ∈ T , t ∈ β−1(y) and w ∈
α−1(t) · a · Lz

s[r1tα(a), r2], we have to show that w ∈ Lx
s [r1, r2]. By definition, w = uav

with α(u) = t and v ∈ Lz
s[r1tα(a), r2]. The condition on v implies that γ(v) = z and

r1tα(a)α(v)r2 = s. Since α(u) = t, we get r1α(w)r2 = r1α(uav)r2 = s. Moreover, γ(w) =
γ(uav) = β(t) · γ(a) · z = y · γ(a) · z = x by definition of T . We conclude that w ∈ Lx

s [r1, r2].
We turn to the converse inclusion. Consider w ∈ Lx

s [r1, r2]. We have to exhibit (y, a, z) ∈
T and t ∈ β−1(y) such that w ∈ α−1(t) · a · Lz

s [r1tα(a), r2]. By hypothesis, we have x <J 1N .
Thus, since γ(w) = x, we know that w 6= ε. Hence, w has a smallest non-empty prefix u′ ∈ A+

such that γ(u′) J x. We let u, v ∈ A∗ and a ∈ A such that u′ = ua and w = uav. Finally,
we let t = α(u), y = β(t) = γ(u) and z = γ(v). Clearly, t ∈ β−1(y). Therefore, it remains
to show that (y, a, z) ∈ T and w ∈ α−1(t) · a · Lz

s[r1tα(a), r2]. We start with (y, a, z) ∈ T .
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There are three conditions to check. First, it is clear that y · γ(a) · z = γ(uav) = γ(w) = x.
Moreover, ua is by definition the smallest non-empty prefix of w such that γ(ua) J x. Thus,
since y = γ(u), it is immediate that x J y · γ(a). Finally, it also follows that when u is
non-empty, we have x <J γ(u) = y and if u = ε, then y = γ(u) = 1N and we have x <J 1N

by hypothesis. Finally, we show that w ∈ α−1(t) · a · Lz
s[r1tα(a), r2]. Since w = uav and

t = α(u) by definition, it suffices to show that v ∈ Lz
s[r1tα(a), r2]. We have v ∈ γ−1(z) by

definition of z. Moreover, since w ∈ Lx
s [r1, r2]. We have r1α(w)r2 = s. As α(u) = t by

definition, this yields r1tα(a)α(v)r2 = s. Altogether, we obtain that v ∈ Lz
s [r1tα(a), r2].

It remains to prove that the union is disjoint. Consider (y, a, z), (y′, a′, z′) ∈ T , t ∈ β−1(y)
and t′ ∈ β−1(y′). Moreover, assume that we have a word w ∈ A∗ such that,

w ∈
(
α−1(t) · a · Lz

s[r1tα(a), r2]
)

∩
(

α−1(t′) · a′ · Lz′

s [r1t′α(a′), r2]
)

We show that (y, a, z) = (y′, a′, z′) and t = t′. Since w ∈ α−1(t) ·a ·Lz
s [r1tα(a), r2], it admits a

decomposition w = uav with α(u) = t and v ∈ Lz
s [r1tα(a), r2]. Moreover, since (y, a, z) ∈ T ,

we have x <J y = γ(u) and x J y · γ(a) = γ(ua). Thus, ua is the smallest non-empty prefix
of w such that x J γ(ua). Symmetrically, since w ∈ α−1(t′) · a′ · Lz′

s [r1t′α(a′), r2], it admits
a decomposition w = u′a′v′ with α(u′) = t′ and v′ ∈ Lz′

s [r1t′α(a′), r2]. Using the same
argument as above, we obtain that u′a′ is the smallest non-empty prefix of w such that
x J γ(u′a′). Thus, we get that ua = u′a′ which entails that u = u′, a = a′ and v = v′. This
implies as desired that (y, a, z) = (y′, a′, z′) and t = t′, finishing the proof.

D Proof of Lemma 13

In this appendix, we prove Lemma 13. Recall that a finite quotienting Boolean algebra C is
fixed. Let us recall the statement of Lemma 13.

I Lemma 13. Let D be a Boolean algebra and assume that there exists an algorithm that takes
as input a nice C-compatible rating map ρ : 2A∗ → R and outputs ID[ρ]. Then, D-separation
is decidable.

We assume that there exists an algorithm which takes as input a nice C-compatible rating
map ρ : 2A∗ → R and outputs ID[ρ]. We describe an algorithm for D-separation. This
procedures involves two steps:

1. First, we explain how to compute a C-compatible rating map ρ from two input regular
languages L1 and L2.

2. Then, we show that ID[ρ] (which we may compute by hypothesis) is enough information
to decide whether L1 is D-separable from L1 and L2.

When put together, these two steps prove that D-separation is decidable. We fix the two
regular languages L1 and L2 for the proof. Since they are regular, one may compute two
finite monoids M1, M2 and two morphisms α1 : A∗ → M1 and α2 : A∗ → M2 recognizing L1
and L2 respectively.

Construction of the rating map ρ. Recall that since C is a finite quotienting Boolean
algebra, the quotient set A∗/∼C is a finite monoid and the map w 7→ [w]C a morphism. We
define M as the following monoid equipped with the component-wise multiplication:

M = M1 × M2 × (A∗/∼C)
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Furthermore, we define α : A∗ → M as the following morphism,

α : A∗ → M

w 7→ (α1(w), α2(w), [w]C)

By definition α recognizes both L1 and L2. We now consider the rating map, ρ : 2A∗ → 2M

defined by,

ρ : 2A∗ → 2M

K 7→ {α(w) | w ∈ K}

It is straightforward to verify that ρ is a nice rating map (this is true for any morphism
α : A∗ → M). Clearly, one may compute it from L1 and L2. Moreover, by construction of α,
ρ is C-compatible.

I Fact 14. The rating map ρ is C-compatible.

Proof. Consider two ∼C-classes C and D. We have to show that when there exists S ∈
2M \ {∅} such that S ⊆ ρ(C) and S ⊆ ρ(D), then C = D. Since S 6= ∅, we have s ∈ S. By
definition s ∈ M is a triple s = (s1, s2, E) where E is a ∼C-class. We show that E = C = D.
By symmetry, it suffices to prove that E = C. Since S ⊆ ρ(C), we have (s1, s2, E) ∈ ρ(C)
and by definition of ρ, this yields w ∈ C such that α(w) = (s1, s2, E). Thus, by definition of
α, we have [w]C = E. Since w ∈ C, this yields C = E. J

Connection with D-separation. In view of Fact 14, we may apply our hypothesis
algorithm to compute ID[ρ]. We now show in the next lemma that this information suffices
to decide whether L1 is D-separable from L2 which concludes the proof of Lemma 13.

I Lemma 15. The two following properties are equivalent:

1. L1 is D-separable from L2.
2. For any s1 ∈ α(L1) and s2 ∈ α(L2), we have {s1, s2} 6∈ ID[ρ].

The remainder of this appendix is devoted to proving Lemma 15. Assume first that
L1 is D-separable from L2. Given s1 ∈ α(L1) and s2 ∈ α(L2), we have to show that
{s1, s2} 6∈ ID[ρ]. By hypothesis, we have K ∈ D such that L1 ⊆ K and L2 ∩ K = ∅. Clearly,
K = {K, A∗ \ K} is a universal D-cover (note that A∗ \ K ∈ D because D is a Boolean
algebra). Hence, by definition of ID[ρ], we have,

ID[ρ] ⊆ I[ρ](K)

Hence, it suffices to show that {s1, s2} 6∈ I[ρ](K). By contradiction assume that {s1, s2} ∈
I[ρ](K). By definition, this means that either {s1, s2} ⊆ ρ(K) or {s1, s2} ⊆ ρ(A∗ \ K).

In the former case, we get {s2} ⊆ ρ(K) which means that there exists w ∈ K such that
α(w) = s2. Since s2 ∈ α(L2) and L2 is recognized by α, this implies w ∈ L2. This is a
contradiction as we know that L2 ∩ K = ∅ by hypothesis.
In the latter case, we get {s1} ⊆ ρ(A∗ \ K) which means that there exists w /∈∈ K such
that α(w) = s1. Since s1 ∈ α(L1) and L1 is recognized by α, this implies w ∈ L1. This is
a contradiction as we know that L1 ⊆ K by hypothesis.
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We turn to the converse direction. Assume that for any s1 ∈ α(L1) and s2 ∈ α(L2),
we have {s1, s2} 6∈ ID[ρ]. We show that L1 is D-separable from L2. Let K be an optimal
universal D-cover for ρ. In other words, I[ρ](K) = ID[ρ]. Moreover, we define,

H =
⋃

{K∈K|K∩L1 6=∅}

K

Clearly H ∈ D since it is a union of languages in K which is a D-cover. We show that H

separates L1 from L2, finishing the proof.
It is immediate that L1 ⊆ H by definition since K is a universal D-cover which means

that any word in A∗ (and in particular any word in L1) belongs to some language K ∈
K. Thus, we may concentrate on proving that L2 ∩ H = ∅. By contradiction Assume
that there exists w2 ∈ L2 ∩ H. By definition of H, this yields some K ∈ K such that
K ∩ L1 6= ∅ and w2 ∈ K. Therefore, K contains w2 ∈ L2, and w1 ∈ L1. By definition of
ρ, this implies that {α(w1), α(w2)} ⊆ ρ(K). Moreover, by definition of I[ρ](K), this yields
{α(w1), α(w2)} ∈ I[ρ](K) = ID[ρ]. This is a contradiction. Indeed, since w1 ∈ L1 and
w2 ∈ L2, we have α(w1) ∈ α(L1) and α(w2) ∈ α(L2). In this case, our hypothesis states that
{α(w1), α(w2)} 6∈ ID[ρ].

E Proof of Theorem 14

This appendix is devoted to proving Theorem 14. Recall that C is a fixed finite quotienting
Boolean algebra. Given a rating map ρ : 2A∗ → R and a subset S of R, we say that S is
UPol(C)-saturated (for ρ) if it contains the set Itriv[ρ] = {r ∈ R | r ≤ ρ(w) for some w ∈ A∗}
and is closed under the following operations:

1. Downset: for any s ∈ S, if r ∈ R satisfies r ≤ s, then we have r ∈ S.
2. Multiplication: For any s, t ∈ S, we have st ∈ S.
3. UPol(C)-closure: Given two ∼C-classes C, D and s, t ∈ S such that s ≤ ρ(C • D) and

t ≤ ρ(D • C), we have sω · ρ(C) · tω ∈ S

The statement of Theorem 14 is as follows.

I Theorem 14. Let ρ : 2A∗ → R be a C-compatible rating map. Then, IUPol(C)[ρ] is the
smallest UPol(C)-saturated subset of R (with respect to inclusion).

Therefore, we fix a C-compatible rating map ρ. The proof is organized around two
separate arguments which correspond respectively to soundness and completeness in the
least fixpoint procedure computing IUPol(C)[ρ] ⊆ R:

First, we show that IUPol(C)[ρ] is UPol(C)-saturated. This is the soundness part of the
proof: the least fixpoint procedure only computes elements of IUPol(C)[ρ].
Then, we show that IUPol(C)[ρ] is smaller than any UPol(C)-saturated subset. This is
the completeness part of the proof: our least fixpoint procedure computes all elements in
IUPol(C)[ρ]. This direction is of particular interest as it describes a generic procedure for
building optimal UPol(C)-covers.

E.1 Soundness
We prove the soundness part of Theorem 14. In other words, our objective is to show
that IUPol(C)[ρ] is UPol(C)-saturated. We show that it contains Itriv[ρ] and is closed under
downset, multiplication and UPol(C)-closure.
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Since UPol(C) is a quotienting Boolean algebra of regular languages (see Theorem 3), we
already know that IUPol(C)[ρ] contains Itriv[ρ] and is closed under downset and multiplication.
Indeed, it was shown in [17] that this is a generic property of quotienting Boolean algebras
of regular languages. Hence, we may concentrate on proving that IUPol(C)[ρ] satisfies
UPol(C)-closure. Consider two ∼C-classes C, D and s, t ∈ IUPol(C)[ρ] such that s ≤ ρ(C • D)
and t ≤ ρ(D • C). We have to show that,

sω · ρ(C) · tω ∈ IUPol(C)[ρ]

Let us first observe that we may assume without loss of generality that s 6= 0R and t 6= 0R.
Indeed, otherwise, s = 0R or t = 0R and it is immediate that sω · ρ(C) · tω = 0R ∈ IUPol(C)[ρ].
Hence, we assume from now on that s, t 6= 0R.

By definition, proving that sω · ρ(C) · tω ∈ IUPol(C)[ρ] amounts to showing that for any
universal UPol(C)-cover K, we have sω · ρ(C) · tω ∈ I[ρ](K). Therefore, we fix an arbitrary
universal UPol(C)-cover K for the proof. By definition, we have to exhibit K ∈ K such that
sω · ρ(C) · tω ≤ ρ(K). We start with a few definitions that we need to describe K.

Since C and K are finite and UPol(C) is a quotienting Boolean algebra of regular languages,
we have the following fact.

I Fact 15. There exists a finite quotienting Boolean algebra D such that C ⊆ D ⊆ UPol(C)
and any K ∈ K belongs to D.

Proof. We simply define D as the smallest quotienting Boolean algebra which contains all
languages in K and C. Clearly, C ⊆ D ⊆ UPol(C) since UPol(C) is a quotienting Boolean
algebra by Theorem 3 and all K ∈ K ∪ C belong to UPol(C). Moreover, any K ∈ K belongs
to D by definition. Therefore, it suffices to show that D is finite. It is simple to verify that
Boolean operations commute with quotients. Thus, we get by definition that any language in
D is a Boolean combination of languages of the form w−1K or Kw−1 where K ∈ K ∪ C and
w ∈ A∗. Thus, since any language in K ∪ C has finitely many quotients (by Myhill-Nerode
theorem, this holds for any regular language), we obtain that D is a finite quotienting Boolean
algebra. J

Recall that we write ∼D for the canonical equivalence on A∗ associated to D (it compares
words belonging to the same languages in D). Since D is closed under quotients we known
that ∼D is a congruence for word concatenation by Lemma 12. Moreover, by definition of
∼D and Proposition 13, we have the following lemma.

I Lemma 16. There exists h ∈ N such that for any ` ≥ h and u1, u2, v, v′, z ∈ A∗ satisfying
v ∼C v′, vz ∼C v′z ∼C u1 and zv ∼C zv′ ∼C u2, we have,

(u1)`v(u2)` ∼D (u1)`v′(u2)`

Proof. Proposition 13 yields that for any language L ∈ D ⊆ UPol(C), there exists hL ∈ N
such that for any ` ≥ h and u1, u2, v, v′, z ∈ A∗ satisfying v ∼C v′, vz ∼C v′z ∼C u1 and
zv ∼C zv′ ∼C u2, we have,

(u1)`v(u2)` ∈ L if and only if (u1)`v′(u2)` ∈ L

We simply choose h as the maximum of all numbers hL for L ∈ D (recall that D is finite). It
then follows, that for any ` ≥ h and u1, u2, v, v′, z ∈ A∗ satisfying v ∼C v′, vz ∼C v′z ∼C u1
and zv ∼C zv′ ∼C u2, we have,

(u1)`v(u2)` ∈ L if and only if (u1)`v′(u2)` ∈ L for any L ∈ D

By definition, this exactly says that (u1)`v(u2)` ∼D (u1)`v′(u2)`. J
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We may now come back to the main argument. Recall that we have two ∼C-classes C, D

and s, t ∈ IUPol(C)[ρ] such that s ≤ ρ(C • D), t ≤ ρ(D • C), s 6= 0R and t 6= 0R. Moreover, we
have a universal UPol(C)-cover K and we want to find K ∈ K such that sω ·ρ(C) · tω ≤ ρ(K).
We construct K.

Let H be the partition of A∗ into ∼D-classes. Clearly, H is a universal D-cover and
therefore a universal UPol(C)-cover as well since we have D ⊆ LDet(C) by definition.
Therefore, since s, t ∈ IUPol(C)[ρ], we have s, t ∈ I[ρ](H) and by definition, we get two
∼D-classes Hs, Ht ∈ H such that, s ≤ ρ(Hs) and t ≤ ρ(Ht). Consider the natural number
h ∈ N given by Lemma 16. We define,

G = (Hs)hω · C · (Ht)hω

Note that since Hs, Ht ∈ H are ∼D-classes and C is a ∼C-class, G is non-empty. The
argument is now based on the following lemma which we use to build the desired language
K ∈ K such that sω · ρ(C) · tω ≤ ρ(K).

I Lemma 17. The language G is included in a ∼D-class.

Before we prove Lemma 17, let us use it to conclude the argument. Since G is non-empty
and K is a universal cover, there exists some K ∈ K such that K ∩ G 6= ∅. Let w ∈ K ∩ G.
By Lemma 17 any word in G is ∼D-equivalent to w. Therefore, since K ∈ D by definition of
D and w ∈ K, it follows that G ⊆ K. Consequently, we have,

(ρ(Hs))ω · ρ(C) · (ρ(Ht))ω = ρ(G) ≤ ρ(K)

Since s ≤ ρ(Hs) and t ≤ ρ(Ht) by definition of Hs and Ht, we get as desired that sω ·ρ(C)·tω ≤
ρ(K) which concludes the proof.

It remains to prove Lemma 17. We show that G is included in a ∼D-class. We start by
proving a property of the languages Hs and Ht. This is where we use the hypothesis that ρ

is C-compatible (in fact, this is the only place in the whole proof of Theorem 14 where we
use this hypothesis).

I Fact 18. We have Hs ⊆ C • D and Ht ⊆ D • C.

Proof. We present a proof for Hs, the argument is identical for Ht. By definition, Hs is
included in a ∼D-class. Moreover, we know that D includes C (by definition in Fact 15).
Thus, Hs is included in some ∼C-class U . It now suffices to show that U = C • D.

Since Hs ⊆ U , we have ρ(Hs) ≤ ρ(U). Moreover, s ≤ ρ(Hs) by definition of Hs. Thus,
s ≤ ρ(U). Finally, we also have s 6= 0R and s ≤ ρ(C • D) by definition of s. Since ρ is
C-compatible, this implies that U = C • D. J

We now consider some words u1 ∈ Hs and u2 ∈ Ht. It is immediate from Fact 18
that u1 ∈ C • D and u2 ∈ D • C. Moreover, let v ∈ C. We prove that any word in G is
∼D-equivalent to the word w = (u1)hωv(u2)hω. This concludes the proof: we obtain as
desired that G is included in the ∼D-class of w.

Consider a word x ∈ K. By definition of G, x is of the form x = u′
1v′u′

2 with u′
1 ∈ (Hs)hω,

u′
2 ∈ (Ht)hω and v′ ∈ C. We prove independently that the following two properties hold:

x = u′
1v′u′

2 ∼D (u1)hωv′(u2)hω and (u1)hωv′(u2)hω ∼D (u1)hωv(u2)hω = w

By transitivity, it will then be immediate that x ∼D w, concluding the soundness proof.
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We start with the left equivalence. Recall that by hypothesis, Hs is included in a ∼D-class.
Therefore, all words in Hs are ∼D-equivalent to u1 ∈ Hs. Hence, since u′

1 ∈ (Hs)hω and
∼D is a congruence, we obtain that u′

1 ∼D (u1)hω. Symmetrically, one may verify that
u′

2 ∼D (u2)hω. Finally, using again the fact that ∼D is a congruence again, we obtain the
desired property:

x = u′
1v′u′

2 ∼D (u1)hωv′(u2)hω

Finally, the right equivalence is immediate from Lemma 16. Indeed, we have h ≤ hω.
Moreover, let z ∈ C. Since v, v′ ∈ C, u1 ∈ C • D and u2 ∈ D • C, we have v ∼C v′,
vz ∼C v′z ∼C u1 and zv ∼C zv′ ∼C u2. Therefore, Lemma 16 yields that,

(u1)hωv′(u2)hω ∼D (u1)hωv(u2)hω

This concludes the soundness proof.

E.2 Completeness
e turn to completeness in Theorem 14. Recall that we have a C-compatible multiplicative
rating map ρ : 2A∗ → R. Consider a subset S ⊆ R which is UPol(C)-saturated. Our objective
is to prove that IUPol(C)[ρ] ⊆ S. We rely on the usual approach and construct a universal
UPol(C)-cover K such that I[ρ](K) ⊆ S. By definition of IUPol(C)[ρ], it will then follow that,

IUPol(C)[ρ] ⊆ I[ρ](K) ⊆ S

I Remark. Since we already showed that IUPol(C)[ρ] itself is UPol(C)-saturated, one may
apply the construction when S = IUPol(C)[ρ]. We get a universal UPol(C)-cover K such that
IUPol(C)[ρ] ⊆ I[ρ](K) ⊆ IUPol(C)[ρ]. In other words, this builds an optimal UPol(C)-cover.
I Remark. We do not use the fact that ρ is C-compatible. This was only needed for the
soundness proof.

As expected, we build our universal UPol(C)-cover K by induction. To present this
construction, we need a new notion called C-guarded pair which we present now.

C-guarded pairs. A C-guarded pair is an element (s, D) ∈ S × (A∗/∼C) (i.e. s ∈ S and
D is a ∼C-class) such that s ≤ ρ(D). We shall write P ⊆ S × (A∗/∼C) for the set of all
C-guarded pairs. We have the following useful fact which states that P is a monoid for the
component-wise multiplication.

I Fact 19. The set P of C-guarded pairs is a monoid for the component-wise multiplication.
More precisely, given two C-guarded pairs (s, D), (t, E) ∈ P , the pair (st, D•E) is C-guarded as
well. Moreover, the pair (1R, [ε]C) belongs to P and is a neutral element for this multiplication.

Proof. We first show closure under multiplication. Let (s, D), (t, E) ∈ P , we show that
(st, D • E) ∈ P . Since s, t ∈ S and S is closed under multiplication (it is UPol(C)-saturated)
we have st ∈ S. Thus, it suffices to verify that st ≤ ρ(D • E). We know that s ≤ ρ(D)
and t ≤ ρ(E) by definition. Thus, st ≤ ρ(DE). Finally, DE ⊆ D • E which yields
st ≤ ρ(D • E). It remains to show that (1R, [ε]C) ∈ P . By definition, 1R ≤ ρ(ε) which means
that 1R ∈ Itriv[ρ]. Therefore, 1R ∈ S since S is UPol(C)-saturated. Moreover, since ε ∈ [ε]C ,
we have 1R ≤ ρ(ε) ≤ ρ([ε]C). Altogether, we get that (1R, [ε]C) ∈ P . J

In view of Fact 19, we shall write “·” for the multiplication of P . given (s, D), (t, E) ∈ P ,
we write (s, D) · (t, E) for (st, D • E) ∈ P .
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Main argument. We may now start building our universal UPol(C)-cover K such that
I[ρ](K) ⊆ S. The construction is based on the following proposition which we prove by
induction. Recall that a cover H of some language L is tight when H ⊆ L for all H ∈ H (in
other words, L =

⋃
H∈H H).

I Proposition 20. Let C be a ∼C-class and (s1, D1), (s2, D2) ∈ P . There exists a tight
UPol(C)-cover H of C such that,

For all H ∈ H, s1 · ρ(H) · s2 ∈ S (1)

Before we prove Proposition 20, we use it to build our universal UPol(C)-cover K and finish
the completeness proof. We know from Fact 19 that (1R, [ε]C) ∈ P . Hence, given any ∼C-class
C, we may apply Proposition 20 in the special case when (s1, D1) = (s2, D2) = (1R, [ε]C).
This yields a UPol(C)-cover KC of C such that ρ(K) ∈ S for all K ∈ KC . We now define K
as the union,

K =
⋃

C∈(A∗/∼C)

KC

Since the union of all ∼C-classes is A∗, K is clearly a universal UPol(C)-cover. We have to
verify that I[ρ](K) ⊆ S. Consider r ∈ I[ρ](K). By definition, there exists K ∈ K such that
r ≤ ρ(K). By definition of K, we have ρ(K) ∈ S. Moreover, S is closed under downset
(it is UPol(C)-saturated) which yields r ∈ S. This concludes the completeness proof for
Theorem 14.

It remains to prove Proposition 20. We devote the remainder of the section to this proof.
Let C ∈ A∗/∼C be a ∼C-class and (s1, D1), (s2, D2) ∈ P be two C-guarded pairs. We have
to build a tight UPol(C)-cover H of C satisfying (1). The construction is an induction on
three parameters that we define now.

Since the set A∗/∼C of ∼C-classes is a monoid, we may consider its Green relations. We
define the rank of some ∼C-class F as the number of ∼C-classes U which are larger than F

for 6J (i.e. F 6J U). Our first parameter is the rank of D1 • C • D2.
Similarly, since P is a monoid by Fact 19, we may consider its Green relations as well.

Given p ∈ P , we define the right index of p as number of C-guarded pairs q ∈ P which are
smaller than p for 6R (i.e. q 6R p). Symmetrically, the left index of p is the number of
C-guarded pairs q ∈ P which are smaller than p for 6L (i.e. q 6L p). We build our tight
UPol(C)-cover H of C satisfying (1) by induction on the three following parameters listed by
importance:

1. The rank of D1 • C • D2.
2. The right index of (s1, D1).
3. The left index of (s2, D2).

I Remark. It is crucial that the rank of D1 • C • D2 is a more important induction parameter
than the other two. Indeed, it may happen that the second and third parameters increase
when we use induction on the rank of D1 • C • D2. On the other hand, the order between the
other two parameters is arbitrary.

We may now begin the proof and construct H. We distinguish three cases depending on
the following properties of C, (s1, D1) and (s2, D2).

We say that C is smooth when C J D1 • C • D2.
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We say that (s1, D1) is right stable when there exists (t, E) ∈ P such that E R C and
(s1, D1) · (t, E) R (s1, D1).
We say that (s2, D2) is left stable when there exists (t, E) ∈ P such that E L C and
(t, E) · (s2, D2) L (s2, D2).

In the base case, we assume that the three above properties hold and use them to build H
directly. Otherwise, we consider two inductive cases. First, we consider the case when C is
not smooth which we handle by induction on our first parameter (the rank of D1 • C • D2).
Finally, we treat the case when either (s1, D1) is not right stable or (s2, D2) is not left stable
using induction on all parameters.

E.2.1 Base case in Proposition 20
We assume that C is smooth, (s1, D1) is right stable and (s2, D2) is left stable. In this
case, we simply define H = {C}. Clearly, this is a tight cover of C. Moreover, since C is a
∼C-class, we have C ∈ C ⊆ UPol(C). Thus, H is a tight UPol(C)-cover of C as desired. It
now remains to prove that (1) holds. Since H contains only the language C, this amounts to
showing that,

s1 · ρ(C) · s2 ∈ S

Let us first use our hypothesis to define objects that we shall need to prove this property.

Since the pair (s1, D1) is right stable, there exists (t1, E1) ∈ P such that E1 R C and
(s1, D1) · (t1, E1) R (s1, D1). In particular, the second property yields another pair
(x1, F1) ∈ P such that,

(s1, D1) = (s1, D1) · (t1x1, E1 • F1)

Since the pair (s2, D2) is left stable, there exists (t2, E2) ∈ P such that E2 L C and
(t2, E2) · (s2, D2) L (s2, D2). In particular, the second property yields another pair
(x2, F2) ∈ P such that,

(s2, D2) = (x2t2, F2 • E2) · (s2, D2)

The argument is now based on the following lemma (which is proved using the hypothesis
that C is smooth).

I Lemma 21. There exists some ∼C-class U such that E1 • F1 = C • U and F2 • E2 = U • C.

Before we prove the lemma, let us use it to finish the proof of the base case. We show
that s1 · ρ(C) · s2 ∈ S. By definition, we have (t1x1, E1 • F1) ∈ P and (x2t2, F2 • E2) ∈ P . In
view of Lemma 21 this yields that, (t1x1, C • U) ∈ P and (x2t2, U • C) ∈ P . Therefore, by
definition of P , we have t1x1, x2t2 ∈ S, t1x1 ≤ ρ(C • U) and x2t2 ≤ ρ(U • C). This is exactly
the situation in which UPol(C)-closure may be applied. This yields,

(t1x1)ω · ρ(C) · (x2t2)ω ∈ S

Moreover, by definition, we have s1 = s1t1x1 and s2 = x2t2s2. Therefore, we obtain
s1 = s1(t1x1)ω and s2 = (x2t2)ωs2. Hence,

s1 · ρ(C) · s2 = s1(t1x1)ω · ρ(C) · (x2t2)ωs2

Since we already have (t1x1)ω · ρ(C) · (x2t2)ω ∈ S and s1, s2 ∈ S (they are both part of a
C-guarded pair), closure under multiplication then yields as desired that s1 · ρ(C) · s2 ∈ S.
This concludes our argument for the base case. It remains to prove Lemma 21.
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Proof of Lemma 21. Since C is smooth, we know that D1 • C • D2 J C. In particular, this
implies that D1 • C J C and C • D2 J C. Since it is clear that D1 • C 6L C and C • D2 6R C,
Lemma 1 then yields D1 • C L C and C • D2 R C. Moreover, by definition, we have E1 R C

and E2 L C. Altogether, we get D1 • C L E2 and C • D2 R E1. This yields two ∼C-classes
G1, G2 such that,

E1 = C • D2 • G2 and E2 = G1 • D1 • C

Moreover, we also have the following equalities by hypothesis: D1 = D1 • E1 • F1 and
D2 = F2 • E2 • D2. We may now replace E1 and E2 in these expressions which yields,

D1 = D1 • C • D2 • G2 • F1
D2 = F2 • G1 • D1 • C • D2

We may now replace D1 and D2 in our expressions for E1 and E2 which yields,

E1 • F1 = C • F2 • G1 • D1 • C • D2 • G2 • F1
F2 • E2 = F2 • G1 • D1 • C • D2 • G2 • F1 • C

Finally, we define U as the following ∼C-class: U = F2 • G1 • D1 • C • D2 • G2 • F1. This
simplifies our expressions for E1 • F1 and F2 • E2 as follows,

E1 • F1 = C • U

F2 • E2 = U • C

This concludes the proof. J

E.2.2 First inductive case in Proposition 20
In this first inductive case, we assume that C is not smooth. We handle it using induction
on our first parameter: the rank of D1 • C • D2.

It is clear that we have D1 • C • D2 6J C. Moreover, since C is not smooth, we know
that C and D1 • C • D2 are not J-equivalent which means the the inequality is strict:
D1 • C • D2 <J C = [ε]C • C • [ε]C. Altogether, it follows that the rank of [ε]C • C • [ε]C is
strictly smaller than the one of D1 • C • D2. Therefore since (1R, [ε]C) ∈ P , we may apply
induction on our first parameter to get a tight UPol(C)-cover H of C such that ρ(H) ∈ S for
all H ∈ H. Finally, since s1, s2 ∈ S (they are both part of a C-guarded pair), it then follows
by closure under multiplication that s1 · ρ(H) · s2 ∈ S for all H ∈ H. Hence, H is a tight
UPol(C)-cover of C satisfying (1) and we are finished.

E.2.3 Second inductive case in Proposition 20
We now assume that either (s1, D1) is not right stable or (s2, D2) is not left stable. Thus we
have two sub-cases. Since they are symmetrical we detail the one when (s2, D2) is not left
stable and leave the other to the reader.
I Remark. Similarly to what happened when proving the algebraic characterization of
UPol(C) (i.e. Theorem 4), since we focus on the case when (s2, D2) is not left stable, we
only apply induction on our first and third parameters (the rank of D1 • C • D2 and the left
index of (s2, D2)). Moreover, we build the languages in our cover H from those obtained by
induction using right deterministic marked concatenations only. As expected, handling the
dual case ((s1, D1) is not right stable) requires using induction on our second parameter (the
right index of (s1, D1)) and left deterministic marked concatenations.
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Observe that our hypothesis yields the following weaker property which will be useful in
the construction.

I Fact 22. We have C <J [ε]C.

Proof. Clearly, we have C 6J [ε]C (the neutral element is maximal for any Green relation).
By contradiction, assume that C 6<J [ε]C which means that C J [ε]C. Since C 6L [ε]C,
this implies C L [ε]C by Lemma 1. It now follows that (1R, [ε]C) ∈ P satisfies C L [ε]C
and (1R, [ε]C) · (s2, D2) = (s2, D2) L (s2, D2). This means that (s2, D2) is left stable which
contradicts our hypothesis. J

Recall that our objective is to build a tight UPol(C)-cover H of C satisfying (1). We
first decompose C as the union of simpler languages which we shall cover independently. We
define T as the set of all triples (U, a, V ) ∈ (A∗/∼C) × A × (A∗/∼C) (i.e. U, V are ∼C-classes
and a is a letter) such that,

U • [a]C • V = C, C <J V and C J [a]C • V

It turns out that we may decompose C according to the triples in T . We prove this in the
following fact.

I Fact 23. We have the following equality,

C =
⋃

(U,a,V )∈T

UaV

Proof. We start with the right to left inclusion. Let (U, a, V ) ∈ T and w ∈ UaV , we show
that w ∈ C. We have w = uav with u ∈ U and v ∈ V . Thus, [u]C = U and [v]C = V which
yields that [w]C = [uav]C = U • [a]C • V . Since U • [a]C • V = C by definition of T , we get
that [w]C = C which means that w ∈ C.

Conversely, let w ∈ C. We have to find (U, a, V ) ∈ T such that w ∈ UaV . By Fact 22, we
know that w 6= ε. Hence, w ∈ C has a smallest non-empty suffix v′ ∈ A+ such that [v′]C J C.
We let u, v ∈ A∗ and a ∈ A such that v′ = av and w = uav. Clearly, w ∈ [u]Ca · [v]C . Thus,
it suffices to verify that ([u]C , a, [v]C) ∈ T . Clearly, we have [u]C • [a]C • [v]C = [w]C = C.
Moreover, av is by definition the smallest non-empty suffix of w such that [av]C J C. Thus,
it is immediate that C J [a]C • [v]C . Finally, it also follows that when u is non-empty, we have
C <J [v]C and if u = ε, C <J [v]C follows from Fact 22. J

In view of Fact 23, it now suffices to build an individual tight UPol(C)-cover HU,a,V of
UaV satisfying (1) for each triple (U, a, V ) ∈ T . This is what we do in the following lemma
using our hypothesis that (s2, D2) is not left stable.

I Lemma 24. For any (U, a, V ) ∈ T , there exists a tight UPol(C)-cover HU,a,V of UaV

such that s1 · ρ(H) · s2 ∈ S for all H ∈ HU,a,V .

Before we prove the lemma, we use it to finish the proof of Proposition 20. We simply
define,

H =
⋃

(U,a,V )∈T

HU,a,V

Let us verify that H is indeed a tight UPol(C)-cover H of C satisfying (1). It is immediate
from Fact 23 that H is a tight UPol(C)-cover of C since each HU,a,V is a tight UPol(C)-cover
of HaV by definition in Lemma 24. Finally, given any H ∈ H we have H ∈ HU,a,V for some
(U, a, V ) ∈ T . By definition of HU,a,V in Lemma 24, this yields s1 · ρ(H) · s2 ∈ S. Thus, (1)
is satisfied which concludes the argument. We finish with the proof of Lemma 24.

ICALP 2018



XX:34 Separating without any ambiguity

Proof of Lemma 24. We fix a triple (U, a, V ) ∈ T for the proof. Our objective is to build a
tight UPol(C)-cover HU,a,V of UaV ⊆ A∗ such that s1 · ρ(H) · s2 ∈ S for all H ∈ HU,a,V .

We first use induction on our first parameter (the rank of D1 • C • D2) to build a
UPol(C)-cover KV of V . Recall that (1R, [ε]C) ∈ P . Clearly, we have D1 • C • D2 6J C.
Moreover, by definition of T , we have C <J V = [ε]C • V • [ε]C. Altogether, this means
that D1 • C • D2 <J [ε]C • V • [ε]C which implies that the rank of [ε]C • V • [ε]C is strictly
smaller than the one of D1 • C • D2. Therefore, induction on our first parameter yields a
tight UPol(C)-cover KV of V such that,

ρ(K) ∈ S for all K ∈ KV (2)

We now use our hypothesis that (s2, D2) is not left stable to build several tight UPol(C)-covers
of U , one for each K ∈ KV . We present the construction in the following fact. This is where
we use induction on the left index of (s2, D2) (i.e. our third parameter). Moreover, it is also
important here that the covers we obtain by induction are tight.

I Fact 25. For all K ∈ KV , there exists a tight UPol(C)-cover MK of U such that,

For all M ∈ MK , s1 · ρ(M) · ρ(aK) · s2 ∈ S

Proof. First observe that we have (ρ(aK), [a]C • V ) ∈ P . Indeed, ρ(K) ∈ S by (2) and since
KV is a tight cover of V , we have K ⊆ V which implies that ρ(K) ≤ ρ(V ). Therefore, we get
(ρ(K), V ) ∈ P . Moreover, we have ρ(a) ∈ Itriv[ρ] by definition which implies that ρ(a) ∈ S

since S is UPol(C)-saturated. Additionally, a ∈ [a]C which implies that ρ(a) ≤ ρ([a]C).
Therefore, (ρ(a), [a]C) ∈ P and since P is a monoid, we get (ρ(aK), [a]C • V ) ∈ P .

We use on induction our third parameter in Proposition 20 to build MK . Specifically,
we want to apply the proposition to the ∼C-class U and the C-guarded pairs, (s1, D1) ∈ P

(which remains unchanged) and (ρ(aK), [a]C • V ) · (s2, D2) ∈ P . This will yield the desired
tight UPol(C)-cover MK of V such that,

For all M ∈ MK , s1 · ρ(M) · ρ(aK) · s2 ∈ S

We now prove that it is possible to apply induction on our third parameter. We first show
that our first two parameters have not increased. Then, we show that the third one has
decreased which concludes the proof. Since (U, a, V ) ∈ T , we know that U • [a]C • V = C

which implies that D1 • U • [a]C • V • D2 = D1 • C • D2. Therefore, our first induction parameter
(the rank of D1 • C • D2) remains unchanged. Moreover, since we keep using (s1, D1) ∈ P ,
our second parameter (the right index of (s1, D1)) remains unchanged as well.

It remains to prove that the left index of (ρ(aK), [a]C • V ) · (s2, D2) is strictly smaller
than the one of (s2, D2). Since (U, a, V ) ∈ T , we know that U • [a]C • V = C (which
implies C 6L [a]C • V ) and C J [a]C • V . By Lemma 1, this yields that C L [a]C • V .
Therefore, since (ρ(aK), [a]C • V ) ∈ P and (s2, D2) is not left stable, it is immediate
that (ρ(aK), [a]C • V ) · (s2, D2) and (s2, D2) cannot be L-equivalent. Moreover, since it is
clear that we have (ρ(aK), [a]C • V ) · (s2, D2) 6L (s2, D2), it follows that this inequality is
strict: (ρ(aK), [a]C • V ) · (s2, D2) <L (s2, D2). This implies as desired that the left index
of (ρ(aK), [a]C • V ) · (s2, D2) is strictly smaller than the one of (s2, D2) by definition. This
concludes the proof. J

We may now build HU,a,V and finish the proof of Lemma 24. For all K ∈ KV , we let
MK as the tight UPol(C)-cover of U described in Fact 25. We define HU,a,V as follows,

HU,a,V =
⋃

K∈KV

{MaK | M ∈ MK}
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Let us verify that HU,a,V is a tight UPol(C)-cover of UaV such that s1 · ρ(H) · s2 ∈ S for all
H ∈ HU,a,V . First observe that HU,a,V is a tight cover of UaV by definition since KV is a
tight cover of V and all MK for K ∈ KV are tight covers of U .

We now show that any H ∈ HU,a,V belongs to UPol(C). We have H = GaK with
K ∈ KV and M ∈ MK . In particular, we have K, M ∈ UPol(C) by definition of KV

and MK . We prove that MaK is a right deterministic marked concatenation which yields
MaK ∈ UPol(C) as desired. We need to show that A∗aK ∩ K = ∅. Since KV is a tight
cover of V , we have K ⊆ V . Thus, it suffices to show that A∗aV ∩ V = ∅. This is because
(U, a, V ) ∈ T which implies that [a]C • V <J V .

Finally, we prove that s1 ·ρ(H) ·s2 ∈ S for all H ∈ HU,a,V . Let H ∈ HU,a,V , we have H =
MaK with K ∈ KV and M ∈ MK . By definition of MK , we have s1 · ρ(M) · ρ(aK) · s2 ∈ S.
This exactly says that s1 · ρ(H) · s2 = s1 · ρ(MaK) · s2 ∈ S, finishing the proof. J
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