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Time-Varying Space-Only Code: A New Paradigm

for Coded MIMO Communication
Dieter Duyck, Sheng Yang, Fambirai Takawira, Joseph J. Boutros, and Marc Moeneclaey

Abstract—Multiple antennas are used to increase reliability
and bit rate for a given bandwidth. For a fixed transmission rate,
discrete input alphabets and without channel state information
at the transmitter, optimal space-time codes (STCs) achieving
both gains (full rate and full diversity) are well known. However,
the complexity of maximum likelihood decoding increases expo-
nentially with the number of space and time dimensions of the
STC. Previous work reducing the complexity of decoding STCs
has focused on the decoding algorithm, because the dimensions
of the STC cannot be reduced without losing rate or diversity
for uncoded communication. However, for coded communication
(assuming the presence of an outer code), the dimensions of
the STC may be reduced. We propose a new full-rate and full-
diversity suboptimal time-varying space-only code, adding a new
dimension to the work on complexity reduction. Full diversity is
proved in terms of the outage probability.

I. INTRODUCTION

Channels with multiple antenna at in- and output (MIMO)

have more degrees of freedom which can be used to increase

spectral efficiency (through spatial multiplexing) and reliabil-

ity (through diversity). When the spectral efficiency is taken

constant, both diversity and multiplexing gains can be fully

achieved simultaneously, through full-rate full-diversity space-

time codes (STCs). STCs for uncoded communication, i.e.,

without outer code, have been designed by minimizing the

pairwise error probability under maximum likelihood (ML)

decoding (e.g. [1], [8], [12], [15]). For coded communication,

STCs have been designed assuming a genie (e.g. [7]). An STC

taking into account both criteria was proposed in [4].

In the worst case, without sphere decoding [18], the com-

plexity of exhaustive ML decoding of an u × v STC (repre-

sented in matrix form) at the receiver of a MIMO channel

scales as O(Muv), where M is the modulation size. The

optimal STCs, achieving full transmit diversity by coding over

n space dimensions and n time dimensions, are of dimension

n × n, where n is the number of transmit antennas. The

decoding complexity may be too high, e.g. O(1616) when

16−QAM and n = 4 transmit antennas are used. Orthogonal

STCs [15] have much lower complexity, but in general at the

expense of a significantly reduced bit rate. Significant effort

has been put in reducing the decoding complexity of non-

orthogonal STCs (e.g. see [10], [14] and references therein).
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For example, in [10], [14], the complexity of decoding squared

2×2 STCs for the 2×2MIMO channel was said to be reduced

to O(M2.5). However, the achieved reductions are not valid

for all STCs and all MIMO channels.

We add a new dimension to the quest for low-complexity

STCs, by reducing the dimensions of the STC itself, without

compromising on rate or diversity. In the context of coded

communication, i.e., assuming an error-correcting code with

coding rate Rc < 1, we prove that the outage probability1

of a 2 × 2 MIMO channel can have full transmit diversity

using 2 × 1 (i.e. space-only) STCs2, limiting its dimension

by a factor of two with respect to optimal STCs. This idea

is inspired by [19], where the DMT has been analysed for

Gaussian alphabets in a multihop scenario.

Notation: we write scalars, vectors and matrices as x, x

and X . The Landau symbols f(n) = O(g(n)) and f(n) =
Ω(g(n)) mean f(n) ≤ kg(n) and f(n) ≥ kg(n) for some

positive k. The equation sign f(γ)
.
= g(γ), introduced in

[16], means that limγ→∞
log f(γ)
log γ = limγ→∞

log g(γ)
log γ . Similar

meanings hold for ≤̇ and ≥̇.

II. SYSTEM MODEL

We consider a point-to-point MIMO channel H = [hi,j ] ∈
Cr×n with n transmit antennas and r receive antennas, where

hi,j , hi,j ∼ CN (0, 1) is the complex path gain from transmit

antenna j to receive antenna i. We assume that all path gains

are independent. The channel state information is perfectly

known at the receiver side, but unknown at the transmitter

side. The channel is assumed to vary slowly, so that it remains

constant during the transmission of at least one codeword. At

the t-th channel use, the output of the matched filter at the

destination is

µt =
√
γ Hζt + νt, t = 1, . . . ,∞, (1)

where µt and νt are in Cr×1, ζt ∈ Cn×1 and γ is the av-

erage signal-to-noise ratio per symbol (SNR) at each transmit

antenna3.The additive white Gaussian noise vector νt has i.i.d.

entries, νb,t ∼ CN (0, 1). The components ζb,t of the transmit
vector ζt satisfy E[|ζb,t|2 = 1], ∀ b, t. The overall vector

belongs to Ωζ . The overall received signal-to-noise ratio per

information bit is denoted as Eb

N0

, so that Es

N0

= γ = REb/N0

nr ,

1The outage probability is a fundamental and achievable lower bound on
the average word error rate (WER) of coded systems [2], [13].

2The dimension of the 2 × 1 code suggests that only spatial coding is
performed. However, by using a time-varying code, also coding in time is
performed, without increasing the complexity.

3In some papers, the average signal-to-noise ratio at each receive antenna
is considered, which is nγ.
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where R = log2(|Ωζ |)Rc is the spectral efficiency and Rc is

the coding rate. The mutual information I(ζt;µt|H) depends
on Ωζ and the channel realization H .

The channel realizationH can be decomposed by a singular

value decomposition (SVD) as H = UΣV †, where U ∈ Cr×r

and V ∈ C
n×n are unitary matrices, uniformly distributed

with respect to the Haar measure [9], V † is the Hermitian

transpose of V , and Σ ∈ Rr×n is a diagonal matrix with the

non-negative singular values σb, b = 1, . . . ,min(r, n) of H on

its diagonal. Because H is known at the receiver, the following

transformation can be performed,

yt = U †µt =
√
γ ΣV †ζt +wt, t = 1, . . . ,∞ (2)

where wt follows the same distribution as νt. Denote xt =
V †ζt, where xt ∈ Ωx. Because U †µt is an invertible trans-

formation, no information is lost, i.e.,

I(xt;yt|Σ, V ) = I(ζt;µt|H). (3)

The outage probability is expressed as

Pout = Pr(Et [I(xt;yt|Σ, V )] < R), (4)

where Et [.] is the temporal mean. The SNR-exponent of the
outage probability, known as the diversity order, is

dout = lim
γ→∞

− logPout

log γ
. (5)

Traditionally, n × n STCs (containing n2 elements) are

obtained as follows. Through a linear precoder in Cn2×n2

, a

symbol vector of length n2 is transformed into another vector

of length n2. Folding this vector into n column vectors ζt,

t = 1, . . . , n, an n × n STC is obtained. Here, we propose

a new unitary linear precoder Pt ∈ Cn×n, t = 1, . . . ,∞,

so that ζt = Ptzt, where zb,t ∈ Ωz (and zt ∈ Ωz)
4,

E[|zb,t|2 = 1], ∀ b, t. Note that Pt is time-variant, so that

also Ωζ changes in time. The overall linear precoder over N

channel uses is therefore block diagonal with the matrices Pt

on its diagonal. We denote m = n log2 |Ωz|, which is the

maximal number of bits that can be conveyed per channel

use. For simplicity, we assume n = r = 2 in the remainder

of the paper. We denote our new precoder type by the EMI

code, where EMI (Ergodic Mutual Information) refers to the

temporal mean of the mutual information.

III. ACHIEVING FULL RATE AND FULL DIVERSITY WITH

TIME-VARYING SPACE-ONLY PRECODERS

We first consider a toy example, where we remove V in (2),

so that xt = ζt, and consider a fixed precoder P , so that the

time-index t can be dropped. Hence, the toy channel comprises

2 parallel standard flat fading channels and the precoder can

be used to achieve signal-space diversity (SSD) [3], [5].

Let us recall a well known result [3], [5] on SSD. In a

point-to-point flat parallel fading channel with a fixed precoder

P , full diversity is achieved for any coding rate Rc < 1,

4The constellation Ωz is considered to be the Cartesian product of Ωz :
Ωz = (Ωz)n, which means that all the components of zt have identical
marginal distributions. In the case that n = 2, it is easy to prove that under a
unitary transformation, this property is maintained, so that also Ωζ = (Ωζ)

n.

if and only if sb 6= 0, ∀ b, x′ 6= x, where sb = xb − x′
b.

Hence, precoding parallel fading channels does not achieve

full diversity when bad precoders are used.

Definition 1: We define bad precoders Pbad as the set of

precoders that transform Ωz in Ωx so that ∃ b ∈ {1, 2},x,x′ 6=
x, satisfying xb = x′

b.

Back to Eq. (2), we see that V is a random unitary precoder

and denote Vt = V †Pt, so that xt = Vtzt. At first, consider

a unitary but fixed precoder Pt = P . Hence, Vt has the same

distribution as V . The probability of having bad precoders,

Vt ∈ Pbad, is zero. However, it is well known that this scheme

only achieves the receive diversity. Indeed, p(Vt) = p(V ), so
that the precoder P does not change the outage probability

with respect to the case without precoder. We explain the loss

of transmit diversity by defining corrupt precoders.

Definition 2: We define corrupt precoders Pc as the set of

precoders that transform Ωz in Ωx so that ∃ b,x,x′ 6= x,

satisfying |sb| ≤ γ−0.5.

Lemma 1: In a point-to-point 2 × 2 MIMO flat fading

channel with a fixed 2 × 2 precoder Pt = P , full transmit

diversity is not achieved (i.e., dout < 4) for any coding rate

Rc < 1 due to corrupt precoders Vt = V †P = V ′.

Proof: We give the proof in App. A, mainly to illustrate

the proof techniques used in the following proposition.

Interestingly, limγ→∞ − log(p(Pc))
log γ = 1, or the occurrence

probability of corrupt precoders is non-negligible with respect

to the error rate as it decreases significantly slower than 1
γ2 .

As a solution to this problem, we propose to marginalize

the effect of corrupt precoders by averaging the mutual in-

formation over all precoders during the transmission of one

codeword. Therefore, we let Pt be uniformly distributed in

the Stiefel manifold. Since V is unitary and independent of

Pt and Pt is invariant to unitary transformation, Vt = V †Pt

is also uniformly distributed in the Stiefel manifold [9].

Proposition 1: In a point-to-point 2× 2 MIMO flat fading

channel using a coding rate Rc < 1 and using 2×2 precoders
Pt, randomly generated for each channel use, following a

uniform distribution with respect to the Haar measure, full

diversity is achieved.

Proof: See Appendix B.

When Pt is changed at each channel use, we denote the code

simply by EMI code. When Pt is changed only a finite number

of times N during the transmission of a codeword, we denote

the code by EMI-N code. As expected, the performance of

the EMI-N code should converge to the performance of the

EMI-code for increasing N .

IV. NUMERICAL RESULTS

We determined the outage probability by means of Monte-

Carlo simulations. We assume a 2 × 2 MIMO channel, with

Ωz = 4−QAM, and assume a coding rate Rc = 0.9 so

that the spectral efficiency is R = 0.9 ∗ 2 ∗ 2 = 3.6 bpcu.

We compare the outage probability for different STCs (the

Aladdin-Pythagoras code and our proposed EMI code) with

the outage probability corresponding to a Gaussian input (Fig.

1). We also show that the performance of the EMI-10 code

is close to that of the EMI-code. With the current system
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Fig. 1. We compare the outage probability of several STCs for 2×2 MIMO.
We use Ωz = 4−QAM and a coding rate Rc = 0.9 so that R = 3.6 bpcu.

parameters, the performance loss of the EMI-code with respect

to Aladdin-Pythagoras code is approximately 1 dB. However,

the complexity is much lower, which becomes considerable

when using larger modulation sizes and more antennas.

V. CONCLUSION

Through a lossless transformation at the receiver, the MIMO

channel is converted into a parallel channel including a random

precoder V that depends on the channel realization. The

new channel has an identical mutual information. Using this

new channel model, we study the fundamental reason why

full diversity is not achieved without space-time coding. A

set of corrupt precoders, with a non-negligible probability

of occurrence, causes the loss in transmit diversity order.

Therefore, we propose a new full-diversity full-rate space-

time code which we refer to as the EMI-code. The latter

averages the mutual information of the MIMO channel over all

random precoders V , thereby marginalizing corrupt precoders.

We prove that the new precoder achieves full diversity if

an error-correcting code with coding rate Rc < 1 is used.

The EMI-code is said to be full rate because n new symbols

are transmitted each channel use, where n is the number of

transmit antennas. The main asset of this new coding scheme

is that its complexity of decoding is significantly lower, as its

dimension is n instead of n2, at the expense of a small loss

in performance. In a future work, we shall extend this work

to general n× r MIMO channels.

APPENDIX

A. Proof of Lemma 1

The outage probability is

Pout =

∫

Pc

p(V ′)Pout|V ′dV ′ +

∫

P̄c

p(V ′)Pout|V ′dV ′ (6)

≥ Pout|V ′=Vl

∫

Pc

p(V ′)dV ′ = Pout|V ′=Vl
Pr(Pc) (7)

where P̄c is the complement of Pc and Vl = argmin
V ′∈Pc

Pout|V ′ .

First, we prove that the probability of occurrence of cor-

rupt precoders, Pr(V ′ ∈ Pc), behaves as 1
γ . Consider v =

V ′ zt−z
′

t

‖zt−z′t‖
with z′t 6= zt. V

′ being uniformly distributed in

the Stiefel manifold, it is readily shown that v is uniformly

distributed in v†v = 1 with respect to the Haar measure [9].

It implies that |vb|2 follows a uniform distribution in [0, 1],
∀ b = 1, 2. Because |sb|2 = ‖zt − z′t‖2|vb|2, and ‖zt − z′t‖2
is independent of γ, it is easy to show that Pr(V ′ ∈ Pc) =
Pr(|sb|2 ≤ 1

γ )=̇
1
γ , so that Pout≥̇ 1

γPout|V ′=Vl
.

Now, let us study Pout|V ′=Vl
. The mutual information

between discrete input and output of a parallel channel is

well known [5], [6], [17] and recalled in Eq. (9), where

d2(c,d) =
∑2

b=1 |cb − db|2. As in [6], [16], we define the

ordered normalized fading gains αb = − log σ2

b

log γ , α1 ≥ α2,

where the joint distribution p(α) is given by [16]

p(α) = (log γ)2e−γ−α1−γ−α2

γ−α1−α2(γ−α2 − γ−α1)2. (8)

The mutual information can be expressed as in Eq. (10), where

f(αb, sb, wb) = e−γ1−αb |sb|
2−2

√
γ1−αbR{wbs

∗(b)},

s(b) = (xb−x′
b) and R{.} takes the real part. The normalized

fading gains α ∈ R2, but because we only want to find the

SNR-exponent, we only consider the region that is dominant,

α ∈ R2
+ (see [6], [16]). In order to determine the diversity

order (Eq. (5)), we can apply the dominated convergence

theorem [6], so that

lim
γ→∞

Ew

[

log2

(

∑

x′∈Ωx

2
∏

b=1

f(αb, sb, wb)

)]

= Ew

[

lim
γ→∞

log2

(

∑

x′∈Ωx

2
∏

b=1

f(αb, sb, wb)

)]

(11)

For corrupt precoders5, ∀ k ∈ {1, 2}, ∃ x = xc,x
′ 6= xc,

satisfying |sk| ≤ γ−0.5. In that case, we observe that for

large γ, limγ→∞ f(αk, sk, wk) = 1 if αk > 0. Consider for
example k = 2. For large γ, the mutual information is

I (x,y|Σ) = m− 2−m
∑

x∈Ωx

Ew [log2 (1 + g(α,x))] ,

where g(α,xc) =







O
(

e−γ1−α1

)

, if α1 < 1

Ω
(

e−(
1

γ )
α1−1

)

, α1 > 1
.

In the event that α ∈ Bǫ, the mutual information is m −
Ω
(

e−γ−ǫ
)

, where Bǫ = {α : α1 ≥ α2 > 0 : α1 ≥ 1 + ǫ}.
Hence, there exists a coding rate so that the spectral efficiency

mRc is larger then or equal to the mutual information. For this

coding rate, the outage probability is

Pout|V ′=Vl
≥
∫

Bǫ

p(α)dα. (12)

Noting that Pout≥̇ 1
γPout|V ′=Vl

and following the same lines as

in [16] (see also [5], [11]) to obtain the SNR-exponent from

5The definition of corrupt precoders involves only that |s
(1)
k

| ≤ γ−0.5 for

one particular combination of x(1) = (x1,c, x2,c),x′(1) = (x′

1, x
′

2) 6= x

and k ∈ {1, 2}. Without loss of generality, assume k = 1. Because the

components of x have identical marginal distributions, the points x
(2) =

(x2,c, x1,c) and x
′(2) = (x′

2, x
′

1) are also in Ωx, so that |s
(2)
2 | ≤ γ−0.5,

where s
(2) = x

(2) − x
′(2).



4

I (x,y|Σ, V ′) = m− 2−m
∑

x∈Ωx

Ey|x

[

log2

(

∑

x′∈Ωx

exp
[(

d2(y,
√
γΣx)− d2(y,

√
γΣx′)

)]

)]

(9)

I (x,y|Σ, V ′) = m− 2−m
∑

x∈Ωx

Ew

[

log2

(

∑

x′∈Ωx

2
∏

b=1

f(αb, sb, wb)

)]

, (10)

(12), we obtain that

dout ≤ dout(ǫ) = 1 + inf
α∈Bǫ

2
∑

b=1

(2b− 1)αb. (13)

It is clear that the infinum is 1 + ǫ, which is achieved when

α2 = 0 and α1 = 1 + ǫ. This holds for each ǫ > 0, and
the bound in Eq. (13) can be made tight taking the infinum

infǫ dout(ǫ) (see e.g. [5], [11]), so that we obtain that dout ≤ 2.

B. Proof of Prop. 1

From Eq. (4), the outage probability can be upper bounded

Pout = Pr(Et [I(Vt)] ≤ R) ≤ Pr(Iin ≤ R), (14)

where Iin ≤ Et [I(Vt)], where I(Vt) denotes I(xt;yt|Σ, Vt).
Similarly to Pc, we define a larger set Sc, which is the set

of precoders that transform Ωz in Ωx so that ∃ b,x,x′ 6= x,

satisfying |sb| ≤ (log γ)−p, for any p > 0 (note that Pr(Sc) →
0 for large γ). We can now write Et [I(Vt)] as

Et [I(Vt)] =

∫

Sc

p(Vt)I(Vt)dVt +

∫

S̄c

p(Vt)I(Vt)dVt. (15)

A lower bound Iin is

Iin = I(Vl)

∫

Vt∈S̄c

p(Vt)dVt = I(Vl)(1 − Pr(Sc)), (16)

where Vl = argmin
Vt∈S̄c

I(Vt) (worst case). By definition of S̄c,

|sb| > (log γ)−p, so that for large γ,

f(αb, sb, wb) =







Ω
(

e−(
1

γ )
αb−1

)

, αb > 1

O
(

e−γ1−αb

)

, αb < 1.
(17)

Hence, if
∑2

b=1 1{αb < 1} ≥ 1, then I(Vl) → m for large γ.

More specifically, consider

Aǫ = {α :

2
∑

b=1

1{αb < 1− ǫ} ≥ 1}, ǫ > 0

so that I(Vl|α ∈ Aǫ) = m− O
(

e−γǫ)

. Note that for large γ

and Rc = 1− ǫ2, ǫ2 > 0,

lim
γ→∞

Pr(I(Vl|α ∈ Aǫ)(1− Pr(Sc) ≤ Rcm) = 0.

Hence, for large γ and any ǫ, ǫ2 > 0, the outage probability

is upper bounded, i.e., Pout ≤ Pr(Āǫ), where Āǫ = {α :
∑2

b=1 1{αb ≥ 1 − ǫ} = 2}. Following the same lines as in

App. A,

dout ≥ sup
ǫ

inf
α∈Āǫ

2
∑

b=1

(2b− 1)αb (18)

By letting ǫ2 → 0+, we obtain that dout = 4 for any Rc < 1.
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