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THE p-ADIC VARIATION OF THE GROSS-KOHNEN-ZAGIER THEOREM

MATTEO LONGO, MARC-HUBERT NICOLE

ABSTRACT. We relate p-adic families of Jacobi forms to Big Heegner points constructed by
B. Howard, in the spirit of the Gross-Kohnen-Zagier theorem. We view this as a GL(2)
instance of a p-adic Kudla program.

1. INTRODUCTION

In their seminal paper [GKZ87], Gross, Kohnen and Zagier showed that Heegner points are
generating series of a Jacobi form arising from as a theta lift. Suppose that F/Q is an elliptic
curve of conductor M. We assume that the sign of the functional equation of L(E/Q,s) at
s = 1is —1. Then it is well known ([GZ86], [Kol88a], [Kol88b]) that if the value L'(E/Q, $)s=1
of the first derivative of L(E/Q, s) at s = 1 is non-zero, then the Q-vector space E(Q) ®z Q
is one-dimensional. Moreover, one can show that this vector space is generated by a Heegner
point Pk attached to a quadratic imaginary field K in which all primes ¢ | N are split and
such that L'(E/Kp, s)s=1 # 0. As the imaginary quadratic field K varies, it is then a natural
question to investigate the relative positions of the points Px on this one-dimensional line.
The theorem of Gross-Kohnen-Zagier answers this question. For each discriminant D and
each residue class r mod 2N subject to the condition that D = 72 mod 4N, one defines a
Heegner point Pp, (so the point Pk considered above corresponds to one of these points,
for a suitable choice of the pair (D,r)). Then [GKZ87, Thm. C] shows that the relative
positions of the points Pp,, at least under the condition that (M, D) = 1, are encoded
by the (D, r)-th Fourier coefficient of the Jacobi form ¢y, coming from the theta lifting of
fE, where fgp is the weight 2 newform of level I'o(M) associated with E by modularity;
one may express briefly this relation by saying that Heegner points are generating series for
Jacobi forms, and actually [GKZ87] formulates an ideal statement in which the above relation
is conjecturally extended to all coefficients of ¢y, including therefore those D such that
(D, M) # 1. Several generalizations are available in the literature, especially by Borcherds
[Bor99], using singular theta liftings, and Yuan-Zhang-Zhang [YZZ09] using a multiplicity
one theorem for automorphic representations. In particular, these works complete [GKZ87]
by essentially proving the ideal statement alluded to above.

The purpose of this paper is to investigate a variant in families of the GKZ theorem, in
which all objects are made to vary via p-adic interpolation. Note that the GKZ theorem (and
the closely related famous Hirzebruch-Zagier theorem) can be seen as the historical starting
point of the conjectural generalization by Kudla involving higher dimensional varieties, called
the Kudla program for brief, relating for example algebraic cycles on Shimura varieties and
Fourier coefficients of modular forms. We hope that our p-adic GKZ theorem will trigger
higher dimensional generalizations, giving rise to a p-adic analogue of the Kudla program.

We begin by briefly explaining some of the questions motivating this work. Given a prim-
itive branch R of a Hida family, Howard in [How07b] introduced certain cohomology classes
in the Selmer group of Hida’s Big ordinary representation attached to a Hida family, that he
called Big Heegner points (we refer to [How07b] for the terminology which is not explicitly
introduced here). Following Hida’s strategy to construct Big Galois representations, these Big
Heegner points are constructed as limits of classical Heegner points on modular curves. Their

specialisations at arithmetic points of R of weight bigger than 2 are known, thanks to works
1
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of Howard [How07b], Castella [Cas13], [Cas19] and, more recently, Disegni [Dis], to interpo-
late classical Heegner cycles ([Nek95], [Zha97a]). Moreover, under suitable assumptions, the
Selmer group of the Hida Big Galois representation is a R-module of rank 1, and Big Heegner
points are non-torsion elements in this Selmer group ([How07a], [How07b]). Thus, extending
scalars to the fraction field L = Frac(R) of R, we obtain a IC-vector space of dimension 1,
and all Heegner points become proportional to a fixed generator. As in the paper [GKZ87],
one may thus consider the proportionality coefficients which are elements of K.

On the other hand, the theta correspondence can be applied to each arithmetic point in
the given Hida family, and in [LN18] is shown, using methods from [Ste94], the existence of
a p-adic family of Jacobi forms whose specialisation at arithmetic points of the metaplectic
covering of R gives a Jacobi form coming from a theta lift of an arithmetic point in the Hida
family. In other words, [LN18] constructs a p-adic family of Jacobi forms S interpolating
classical theta lifts of arithmetic points in the given Hida family; here the coefficients of this
p-adic family of Jacobi forms S are elements in K. We refer to Section 5.2 below or [LN18]
for details.

It seems then natural to formulate a conjecture which relates the coefficients of the p-adic
family of Jacobi forms S and the proportionality coefficients associated to Big Heegner points,
in a way similar to the original GKZ. We can thus make the following

Conjecture 1.1. Let R be a primitive branch of a Hida family. There exists a Zariski open
subset in Spec(R) where the proportionality coefficients relating Big Heegner points are equal
to the Jacobi-Fourier coeflicients of the theta lift S of the Hida family.

A more precise form of this conjecture is presented below, under some technical assump-
tions, as Conjecture 5.3, to which the reader is referred for details.

In this paper we do not attack Conjecture 1.1 directly (see Remark 5.4 for a possible strategy
to attach this conjecture). Instead, we present evidence in favour of this conjecture of a more
local nature, in which both Big Heegner points and Jacobi-Fourier coefficients of theta lifts of
classical forms of trivial character in the Hida family are related (up to explicit Euler factors)
to certain p-adic L-functions constructed in [BDO07]; as a consequence, Big Heegner points and
Jacobi-Fourier coefficients of Jacobi forms are indeed related, at least locally, as predicted by
Conjecture 1.1, and are both seen as manifestation of the arithmetic of p-adic L-functions.

We now state our results in a more precise way. Pick a positive even integer 2kg, and an
ordinary p-stabilized newform for, of level I'g(Np), trivial character and weight 2k, where
N > 1is an odd integer and p { N a prime number bigger or equal to 5. Let X be the group
of continuous endomorphisms of Z; we view Z inside X' via the map k — [z 7872, Let

Jro(i) = 3 an(w)g”

n>1

be the Hida family passing through far,, where x — a,, () are p-adic analytic functions defined
in a neighborhood U of 2k in X; if we denote by Asg, the subring of Q,[X] consisting of
power series converging in a neighborhood of 2kg, then a, € As,. For each even integer
2k € U, let for, be the weight 2k modular form with trivial character appearing in the Hida
family. The form fy is then an ordinary p-stabilized form of weight 2k and level I'y(Np), and
fok, is the form we started with above, justifying the slight abuse of notation. If fo is not a
newform (which is always the case if k& > 1), then we write fgk for the ordinary newform of

weight 2k and level T'o(N) whose p-stabilization is for. For each of the forms fzﬁk we have an
associated Jacobi form

SDo,ro (fgk) = Z Cfgk (n,m)q"¢"

D=r2—4Nn



THE p-ADIC VARIATION OF THE GROSS-KOHNEN-ZAGIER THEOREM 3

of weight k 4 1, index N having the same Hecke eigenvalues as fgk; this form depends on
the choice of a pair of integers (Dy, r9) such that Dy is a fundamental discriminant which we
assume to be prime to p and Dy = 7“(2) mod 4N. To be clear, in the above formula the sum

is over all negative discriminants D, and the coefficients ¢ K (n,r) only depend on the residue
2k

class of r mod 2N. The first observation we make is that these coefficients c,; (n,r) can be

1
interpolated, up to Euler factors, by p-adic analytic functions. We show that a?uitable linear
combination L, , € Agy, of the square root p-adic L-functions attached to genus characters of
real quadratic fields, introduced in [BD09], [BDO07] and studied extensively in [Sha08], [GSS16],

[LV14a], interpolates Fourier-Jacobi coefficients c 1 (n,7). Our first result is, corresponding
2k
to Theorem 3.1 below, is:

Theorem 1.2. For all positive even integers 2k in a sufficiently small neighbourhood of 2k,
and for all D = r? — 4nN such that p { D, we have L, ,(2k) = Cpt (n,r) where = means
2k

equality up to an explicit Euler factor and a suitable p-adic period, both independent of (n,r)
and non-vanishing.

On the other hand, as recalled above, B. Howard constructed in [How07b] an analogue of
the Heegner point Px in the setting of Hida families. To explain this, recall that attached
to fs we have a Big Galois representation TT interpolating self-dual twists of the Deligne
representation attached to for for 2k a positive even integer. If we denote (as before) by R
the branch of the Hida-Hecke algebra corresponding to fo, (which is a complete noetherian
integral domain, finite over A = Z,[1 + pZ,]), then TT is a free R-module of rank 2 equipped
with a continuous action of Gg = Gal(Q/Q) and specialization maps Tf ’]I‘L for each Kk € X,
such that when x = 2k is a positive even integer, T;k is isomorphic to the self-dual twist of the
Deligne representation attached to for. We assume throughout this paper that the residual
representation TT/mzTT (where mp is the maximal ideal of R) is absolutely irreducible and
p-distinguished. Let Sel(Q, TT) C H!(Gg, T') be the Greenberg Selmer group attached to the
Galois representation TT. We require that the generic sign of the functional equation of the L-
functions of for is —1, and that the central critical value of their first derivative is generically
non-vanishing, cf. Assumptions 4.1 and 4.2 below. Under these conditions, which might be
viewed as analogues to those in [GKZ87], the R-module Sel(Q,TT) is finitely generated of
rank 1. Howard constructs certain cohomology classes

357 € Sel(Q, T,
taking inverse limits of norm-compatible sequences of Heegner points in towers of modular

curves. Therefore it is a natural question to relate the positions of the points S%O:V in the

1-dimensional K-vector space Selx(Q,T') = Sel(Q, TT) ®% K, where K = Frac(R) is the
fraction field of R. To describe our second result, we also require that the height pairing
between Heegner cycles is positive definite, cf. Assumption 4.4 below. Define

Zyr(K) = 2up - (2D)"T - 357 ()

for D = r? —4Nn and k € X; here 2up is the number of units in Q(v/D) and, as above, all
primes dividing D = r2 — 4Nn are required to split in Kp. Suppose 2kg =2 mod p — 1. Let
Moy, be the fraction field of Agy,. There is a canonical map I — May,, and we may define
SelM%0 (Q, T?) = Selx(Q, TT) ®x May,. Our second result, under Assumptions 4.1, 4.2, 4.4
discussed above, is the following;:

Theorem 1.3. There ezists an element ®¢ SeIM2kO (Q, TT) such that in a sufficiently small

connected neighborhood of 2kq in X and for all D = r? — 4nN such that p splits in Q(v/D)
we have Z,, = Ly, - o,
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This corresponds to Theorem 5.1 below. Combining Theorems 1.2 and 1.3, we obtain a
partial evidence toward Conjecture 1.1:

Corollary 1.4. For all positive even integers 2k in a sufficiently small connected neighbour-
hood of 2kg, and for all D = r* — 4nN such that p splits in Q(/D), we have

Zn,r = Cfﬁ (na T‘) Lo

where = means equality up to simply algebraic factors independent of (n,r).

See (11) and (15) for a more precise version of this result, including all the algebraic factors
involved.

Remark 1.5. As remarked above, we may view Corollary 1.4 as a fragment of Conjecture 1.1.
However, it should be noticed that the coefficients we are considering in this work and in [LN18]
are slightly different. In this paper we consider coefficients of Jacobi forms which are lifts of
modular newforms of level prime to p and trivial character, whose ordinary p-stabilisation
belong to our Hida family; the discrepancy between newforms and their p-stabilisations is the
origin of the Euler factors (denoted &, and defined in (5) below) relating p-adic L-functions
with Heegner points and Jacobi-Fourier coefficients of Jacobi forms in a way similar to [DT08];
this should clarify the crucial role played in this paper by the p-adic L-functions from [BD07].
On the other hand, in [LN18] we consider Jacobi forms lifting the members of the Hida family
for (or more generally fy for an arithmetic point &, as in [Ste94]). The theta lifts used in the
two papers are then different, since in this paper the level of the forms is prime to p, while
in [LN18] the level is divisible by p. The Jacobi-Fourier coefficients coming from different
theta liftings can be directly related by means of Euler factors (denoted £ and defined in (13)
below). Since these Euler factors are independent of (n,r), the quotients of Jacobi-Fourier
coefficients coming from the two theta liftings, when defined, are the same, and then in this
sense our result can be seen as an evidence of Conjecture 1.1. The details are discussed in
Section 5.2.

ACKNOWLEDGMENTS

Part of this work has been done during visits of M.-H.N. at the Mathematics Department
of the University of Padova, whose great hospitality he is grateful for. The paper was finalized
during a visit of M.L. in Montréal supported by the grant of the CRM-Simons professorship
held by M.-H.N. in 2017-2018 at the Centre de recherches mathématiques (C.R.M., Montréal).
Both authors thank S. Zemel for useful email exchanges.

2. THETA LIFTS

In this section, we recall the formalism of theta liftings relating elliptic and Jacobi cusp-
forms, following [EZ85], [GKZ8T7].

Fix an odd integer N > 1 and k a positive even integer 2k. Denote Sax(I'g(V)) the complex
vector space of cuspforms of weight 2k and level I'g(N) and J; 7, the complex vector space
of Jacobi cuspforms of weight k£ + 1 and index N (see [EZ85, Ch. I, §1] for a definition). For
f € Sor(Tg(N)) and ¢ € leislp,N we write the corresponding g-expansions f(2) = 37,5, ang"
and (g, ¢)-espansions

(Zs(T? Z) = Z c(n7 T’)Q”C”‘?
r2—4Nn<0

where ¢ = €2™7 and ¢ = €?™% and the second sum is over all pairs (n,r) of integers such that
r2 —4Nn < 0.
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Definition 2.1. A level N index pair is a pair (D,r) of integers consisting of a negative
discriminant D of an integral quadratic form Q = [a, b, ¢] such that D =72 mod 4N. A level
N index pair is said to be fundamental if D is a fundamental discriminant.

The Fourier expansion of forms ¢ € J;\7  is enumerated by level N index pairs, explaining

the terminology. Since N is fixed throughout the paper, unless otherwise stated we simply
call index pairs or fundamental index pairs the pairs (D,r) in Definition 2.1. If (D,r) is
a index pair, then we usually denote n the integer such that D? = r?2 — 4Nn. The spaces
Sor(To(N)) and Jgisi n are equipped with the action of standard Hecke operators T(m) and
T s(m) respectively, for integers m > 1. We recall the formula from [EZ85, Thm. 4.5] for the
action of Tj(m) on Jacobi cuspforms when (N,m) = 1. If D = r? — 4Nn is a fundamental
discriminant, ¢ =3, ¢(n,r)q"(" belongs to szf’N and @|T;(m) =>_, . c*(n,7r)g"(", then
we have

D nm? rm
* _ k—1
(1) C (n,T)—Zd <d>c<d2,d>
dlm
For any ring R, let P;_o(R) denotes the R-module of homogeneous polynomials in 2 vari-

ables of degree k — 2 with coefficients in R, equipped with the right action of the semigroup
Ms(R) defined by the formula

(2) (FIy)(X,Y)=F (aX +bY,cX +dY)
for v = (¢%). Let Vy_o(R) denote the R-linear dual of Py_o(R), equipped with the left
Mz (R)-action induced from that on Px_o(R).

Let f be a cuspform of integral even weight 2k and level ['o(N). To f we may associate
the modular symbol Iy € Symbr, ) (Var—2(C)) by the integration formula

I1{r — s}(P) = 2mi /S f(2)P(z,1)dz.

Here, for any congruence subgroup I' C SLy(Z) and any Z[GL2(Q)NMz(Z)]-module M, we de-
note Symbp (M) the group of I'-invariant modular symbols with values in M (cf. [GS93, (4.1)]).
The matrix (§ %) ) normalizes I'o(N) and hence induces an involution on the space of modular
symbols Symbp n)(Vak—2(C)); for each e € {£1}, we denote 1:;% the e-eigencomponents of I¢
with respect to this involution. It is known that there are complex periods Q? such that

IE

=21

f Q?‘
belong to Symbrpny(Vak—2(Fy)), where Fy is the extension of Q generated by the Fourier
coefficients of f. These periods can be chosen so that the Petersson norm (f, f) equals the

product Q? - 73 note that the Q‘; are well-defined only up to multiplication by non-zero

factors in FfX.

For each integer A, let QA be the set of integral quadratic forms

Q = [a,b,c] = azx® + bay + cy?

of discriminant A and, for any integer p, let Qn A , denote the subset of QA consisting of
integral binary quadratic forms @ = [a,b, ] of discriminant A such that b = p (mod 2N)
and a =0 mod N. Let QS)\C Ap be the subset of Qn A, consisting of forms which are I'g(N)-
primitive, i.e., those @ € Qn A, which can be written as Q = [Na,b,c] with (a,b,c) = 1.
These sets are equipped with the right action of SLa(Z) described in (2).

Fix a fundamental index pair (Dy,rg). For any index pair (D, r), let .7:1()?::3 (N) be the set
of integral binary quadratic forms @ = [a, b, ¢] modulo the right action of T'o(N) described in
(2), such that:
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e 6g = b* — 4ac = DyD;
e b= —rgr mod 2N;
e =0 mod N.

Let Q — xp,(Q) be the generalized genus character attached to Dy defined in [GKZ87,
Prop. 1]. We recall the definition for @ € Qna,. If @ = ¢- Q' for some form Q' € Q(])V,AW
then define xp,(Q) = (%) XD, (Q'), so it is enough to define it on I'y(NN)-primitive forms.
Fix Q € Q[J)V,A,p' If (a/N,b,c, Do) = 1, then pick any factorization N = m; - mg with m; > 0,
mg > 0 and any integer n coprime with Dy represented by the quadratic form [a/my, b, cma];
then put xp,(Q) = (%) If (a/N,b,c,Dg) # 1, then put xp,(Q) = 0. In the previous
notation, if @) is a representative of a class in f(D’T)(N), then @ belongs to Qs pyp,—rer- In

Do,ro

particular, we may consider the genus character QQ — xp,(Q) for all classes @ in F (D,i,’:())(N ).

Fix Q = [a,b,c] € Q. Following [GKZ87], [Ste94], we define certain geodesic lines in
H, with respect to the Poincaré metric on H, as follows. If 6g = m? (m > 0) is a perfect
square, let Cg be the geodesic line from (—b —m)/2a to (—b+ m)/2a when a # 0, while if
a =0, let Cg be the geodesic line from —c¢/b to ioco if b > 0 and from ico to —¢/b if b < 0.
If §¢ is not a perfect square, we denote by 7¢g the matrix in SLy(Z) corresponding to a unit
of the quadratic form @ and denote Cg the geodesic between zy and yg(z0), where 2 is any
point in P*(Q) (we can take zy = ico for example). We let rg and sq denote the source and
the target of the geodesic line Cp. Note that in any case sg and r¢g belong to P1(Q), and
therefore the modular symbol I {rg — sq} is well-defined.

For D = r? — 4Nn, define

(3) crmr) = > xpo(Q)I;{rg = sHQ"™)
QEFpo ) (N)
and set

SDo,m (f) = Z Cf(nv T)qngr.
r2—4Nn<0
Let S5, (I'o(4V)) be the subspace of Sa;(I'g(IV)) consisting of forms whose L-function admits a
functional equation with sign —1. The association f — Sp, r,(f) gives a C-linear map, called
theta lifting,
SDO,TO : S;k (FO(N)) — JlgislriN

which is equivariant for the action of Hecke operators on both spaces, and such that c¢(n,r)
belong to Fy for all n,r; see [EZ85, Ch. II] for details. The restriction of Sp », to newforms
of S5, (F'o(V)) is an isomorphism onto the image, and for different choices of (Dg,ro) we get
multiples of the same Jacobi form.

Remark 2.2. The definition of the geodesic line Cg is slightly different in [GKZ87], since
it is defined to be any geodesic in the upper half plane connecting a point zg € H to the
point vg(20). However, the value of the integral is independent of the choice of zp € H, and
therefore, passing to the limit, one can take zy to be any cusp as well. See also [Ste94, §2.1]
for a similar definition, keeping in mind that the convention in loc. cit. and in this paper
(which follow more closely [GKZ87]) are slightly different.

3. p-ADIC ANALYTIC THETA LIFTS

In this section we construct a p-adic analytic family of Jacobi forms using the p-adic vari-
ation of integrals. This family interpolates Fourier-Jacobi coefficients of newforms of level
I'o(N) whose p-stabilizations belong to a fixed Hida family (in contrast with [LN18|, where
A-adic families directly interpolate arithmetic specializations in Hida families). The results
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of this section are, as in [LN18], consequences of Stevens and Hida’s works on half-integral
weight modular forms [Ste94], [Hid95] via the formalism of theta liftings and the work of
Greenberg-Stevens [GS93] and Bertolini-Darmon [BD07] on measure-valued modular sym-
bols. Fix throughout a prime number pt N, p > 5.

We first set up the notation for Hida families. Let I' = 1 4 pZ, and A = O[I'] its Iwasawa
algebra, where O is the valuation ring of a finite field extension of Q,. We fix an isomorphism
A ~ O[X]. Let

X = Hotmeont (2, Z))

be the group of continuous group Z,-valued homomorphisms of Z;. Embed Z in & by
ks [z +— 2F72]; if we equip X with the rigid analytic topology, then Z C X is rigid Zariski
dense. We see elements a € A as functions on X' by a(k) = ¢x(a) for all kK € X, where
vr : A = O denotes the O-linear extension of x.

Recall the fixed p-stabilized form fy of trivial nebentype and weight kg and R be the
branch of the Hida family passing through fo. Then R is an integral noetherian domain,
finite over A; we denote X(R) the set of continuous homomorphisms of O-algebras R — @p,
and X (R) the subset of arithmetic points (see [How07b, Def. 2.1.1] for its definition). For
each positive even integer 2k € X', using that R/A is unramified at the point @9, we obtain
a unique arithmetic point Qo) lying over @or. Hida theory shows that there exists a formal
power series Foo = Y. o1 Ang® € R[[q]] such that for each ¢ € X¥h(R) the power series
Fp=3 51 9(An)q" is the g-expansion of a p-stabilized newform, and Fipy = Ji‘o.

Fix an even positive integer 2k and let Asgg, be the ring of power series in Q,[X] which
converge in a neighborhood of 2kg. If R, denotes the localisation of R at ¢y, , then, using
that Asgy, is Henselian, we obtain a canonical morphism oy, : Rog, — Aok, ([GS93, (2.7)]),
and therefore, using the localisation map, we have a canonical map R — Asg,. If K and
Moy, are the fraction fields of R and Ajgy,, respectively, then we obtain a map, still denoted
Yo, : K — Mag,. The domain of convergence about 2kq is the intersections of the discs of
convergence of o, (a) for a € R. We denote Usy, the domain of convergence, which we may
assume to be connected. We let

foo = ang"

n>1

be the image of Fi via tog,; S0 an = ok, (A,) are rigid analytic functions converging in
the domain of convergence about 2kg, such that for each even positive integer 2k € Uy, the
power series y < an(2k)q™ is the Fourier expansion of an ordinary p-stabilized modular form
for € Sp(To(Np)).

We now describe universal measure-valued modular symbols, following [GS93] and [BDO7].
Let D, denote the O-module of O-valued measures on Zg which are supported on the set of
primitive vectors (Zf,)/ of Zg. The O-module D, is equipped with the action induced by the
action of GL2(Z,) on Zg by (z,y) — (az + by,cz + dy) for v = (¢%) € GLy(Z,), and a
structure of O[[Z)]]-module induced by the scalar action of Z on Z2 (cf. [Ste94, §5], [BD09,
§2.2]); in particular, D, is also equipped with a structure of A-module.

Let I'o(pZy) denote the subgroup of GL2(Z,) consisting of matrices which are upper trian-
gular modulo p. The group Symbpo( N) (D,) is equipped with an action of Hecke operators,
including the Hecke operator at p, denoted U(p), and we denote

W = Symbi yy (D.)

the ordinary subspace of Symbp(y)(Ds) for the action of U(p); see [GS93, (2.2), (2.3)] for
details and definitions.
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For any integer k € X', we have a I'g(pZ,)-equivariant homomorphism p;; : D, — Vi_2(C,)
defined by the formula

(P = [ Playdate.y)
ZpXZy
which gives rise to an homomorphism, denoted by the same symbol,
pr: W — Symbp () (Vi—2(Cp)) -

We may then define W Ay = W ®a Asgk, and consider the extension of py, still denoted by
the same symbol,

Pk - WA%O — SymeO(N) (kaz(cp)) .

By [GS93, Thm. 5.13], there exists a connected neighborhood Usy, of 2kg in X and an element
bop, € W Asig such that for all positive even integers 2k € Uay, with k > 1 we have

(4) pk(q)Zko) = A(k) ’ If2k

where A(k) € FY,, , the field extension of Q) generated by the Fourier coefficients of fa,, and
Ako) = 1.

Fix a fundamental index pair (D, o) so that p{ Dy, and an index pair (D,r) with pt D.
Fix a system of representatives R})DO’:E) (N) of }'(D?:()) (N) so that each form [a, b, ¢] in R%D(;:?) (N)
satisfies p t @ and p { ¢. Such a system can easily be obtained up to multiplying quadratic forms
by matrices of the form (§1) and (3, 9), for suitable integers i. Fix a matrix Q = [a, b, ]

in RY" (N). Let A = DoD. If p is inert in K, we define Xq = (Z2)'. If p is split in Ka,
then Q(X,Y) splits into the product a - ¢1(X,Y) - ¢2(X,Y) where ¢;(X,Y) = X — aY and
@©(X,Y) = X — BY are two linear forms in Z,[X,Y]. Define the elements v; = («,1) and
vy = (8,1) and put X = Z, - v1 + Z, va. Since p { ac, then Zyvy + Zyvg = Z%. Both in the
split and inert cases, it is easy to show that Q(x,y) € Z) for all (z,y) € Xq.

Define for k € Uy, and @ € R{D) (N),

Do,ro
Lolr) = /X w0 (Q(, y)H Q. 1) T Aok, {1 — 533 9).
Q

The next result exploits the interpolation formulas of Lg(x). Put

1072
(5) E = (1 - %) if p is split in K,
’ 1_% if p is inert in Ka.
P
Then, for all even positive integers 2k € U, with k& > 1 and all quadratic forms @ in
joo::?) (N) we have
(6) ,CQ(ZI{;) = )\(k) . gp . Ifgk{TQ N SQ}.

In the inert case, (6) is [BD09, Prop. 2.4]. In the split case, a proof of this result can be found
in [Sha08, Prop. 3.3.1]; see also [GSS16, Sec. 5.1], [LV14a, Prop. 4.24], [LM18, Prop. 3.3].

Suppose that both Dy and D are fundamental discriminants. With the usual convention
that D = r? — 4nN, put

(7) Lor()= > x0o(Q) Lo(k).

D,r
QERY!) (N)

The function £, (k) is called the square-root p-adic L-function attached to the genus char-
acter xp, of the real quadratic field Ka, since its square for k = 2k an even positive integer
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in Usy,, interpolates special values L( f,z /KA, XDy, k). More precisely, setting Ly, , = L'fw, we
have for all even positive integers 2k € Ug,,,

L, (2k) = A(k)2AF1 LY8(f5 /KA, XDy, k)

where the algebraic part of the special value of the L-series of fzﬁk twisted by xp, is defined

as
(k—1)12VA
(2mi)2h=2 - ()
f2k
In the inert case, the above formula is proved in [BD09, Thm. 3.5], while in the split case the
reader may consult [Sha08, Thm. A, Rmk. 3.3.3], [GSS16, Pop. 5.5] or [LV14a, Prop.4.25].

Lalg(fgk;/KA7XDovk) = ) L(fQﬂk/K>XD07'I€)

Theorem 3.1. Fiz a fundamental index pair (Do, ro) and let 2ko be a positive even integer.
Then for all index pair (D,r) such that p t A = DoD and for all even positive integers
2k € Uy, , we have

‘CH,T(Qk) ~ )‘(k) : Cfﬁ (n,r),
2k

Proof. This is an immediate combination of (3) and (7). O

4. B1G HEEGNER POINTS AND JACOBI FORMS

4.1. Big Heegner points. Let T denote Hida’s big Galois representation, and T its critical
twist, introduced in [How07b, Def. 2.1.3]. Recall that TT is a free R-module of rank 2 equipped
with a continuous Gg := Gal(Q/Q) action, such that for each arithmetic point ¢ € Xth(R),
the Gg-representation

Vi=T or L,
is the self-dual twist of the Deligne representation attached to the module form F; here L,
is a finite field extension of Q,,, and the tensor product is taken with respect to ¢ : R — L.
Assume that the semi-simple residual Gg-representation Tt / mzTT, where mp is the maximal

ideal of R, is absolutely irreducible and p-distinguished. The definition of Tt depends on the
choice of a critical character

0 : GQ — AX,
and that there are two possible choices (see [How07b, Def. 2.1.3 and Rem. 2.1.4]), related by
the quadratic character x — (g) of conductor p; more precisely, if we write the cyclotomic
character ecyc as the product €ame - €wild With €rame taking values in (Z/pZ)* and eyiq taking
values in 1 + pZ,, then the two possible critical characters are defined to be

2

0= (") e - [
1/2

for a = 0 or a = 1, where €, is the unique square root of eyjq taking values in 1+ pZ,,
and x +— [z] is the inclusion of group-like elements 1 + pZ, — A; here recall that kg is the
weight of our fixed form fy through which the Hida family f., passes. We fix the choice of
for a = 0 as prescribed in [Casl3, (4.1) and Rem. 4.1].

For any extension H of Q, denote by Sel(H, T') the strict Greenberg Selmer group, whose
definition by means of the ordinary filtration of T can be found in [How07b, Def. 2.4.2].

Let Kp be an imaginary quadratic field of discriminant D < 0; denote by Op its ring of
algebraic integers and Hp its Hilbert class field. Suppose that D is a square mod 2N. Fix
a residue class 7 mod 2N such that r> = D mod 4N and consider the integral Op-ideal

N = (N, ’”*5/5); then Op/M = Z/NZ. Also, take a generator wp of O /Z ~ Z so that
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the imaginary part of wp (viewed as complex number via our fixed embedding Q «— C) is
positive. Depending on these choices, B. Howard in [How07b, §2.2] constructs a point

xXpoy e HY(Hp, T')
the Big Heegner point of conductor 1 associated to the quadratic imaginary field Kp (see
[How07b, Def. 2.2.3]); the notation, slightly different from loc. cit., reflects the dependence
on D and r. Finally, define 3%?;” € H'(Kp,T") to be the image of %I[{)O;’V via the corestriction
map. Recall that all primes dividing N are split in Kp, and then by [How07b, Prop. 2.4.5]
we have 5%‘?;" € Sel(Kp, TT).
Let ¢ € X (R) and let x — L,(F,,x) denote the Mazur-Tate-Teitelbaum p-adic L-

function of Fy, viewed as a function on characters x : Z; — Qg The functional equation
satisfied by this function is

Lp(Fg,x) = —wx~ "(=N)8,(—=N) - Lp(Fp, x ' [ ),

where 6, is the composition of the chosen critical character § with ¢ and [-], is the composition
of the tautological character [] : Z; — A < R with ¢; here w = £1, and is independent of
¢ (but it depends on the choice of §) and satisfies the equation L,(Fy,0,) = —wLy(F,,0,)
(see [How07b, Prop. 2.3.6]).

In this paper we will work under the following assumption on the sign of the functional
equation of the Mazur-Tate-Teitelbaum p-adic L-function:

Assumption 4.1. w =1.

We now discuss the analytic condition that we will assume in this paper to obtain our
results. First, let ¢ : Z) — R* be the character obtained by factoring 6 through the p-
cyclotomic extension Gal(Q(pp<)/Q) (where ppo is the group of p-power roots of unity)
and identifying Gal(Q(upe)/Q) with Z,5 via the cyclotomic character xcyc; thus we have the
relation = 00 xcye. Decompose Z) ~ A xT" with I' = 1+ pZ, and A = (Z/pZ)* is identified
with the group p,—1 of p — 1-roots of unity via the Teichmiiller character, which we denote
by w as usual. The character 0 : Z; — R™ satisfies the condition

0,(07) = whoTL(8) - 2 (y) - AP

for all arithmetic morphisms ¢ of weight 2k and wild character .
Following the terminology in [How07a, Def. 2|, we say that an arithmetic morphism ¢ €
Xarith (R of weight 2 is generic for 6 if one of the following conditions hold:

(1) F, has non-trivial nebentype;
(2) F, is the p-stabilization of a newform in So(I'g(V)), and 6, is trivial;
(3) F, is a newform of level Np and 6, = w®~1/2,

For any ¢ € X (R), define the character Dy AIX(D — @; by the formula
XD,p(x) 1= by (arte(Nk , (2)));

here artq is the arithmetically normalized Artin map of class field theory, and N /g is the

norm map. For an arithmetic morphism ¢ € XN (R) which is generic for 6, we say that
(F,, XD,e) has analytic rank 1 if

ords—1 L(F,, XD,p, 5) = 1.
We will work under the following analytic condition:

Assumption 4.2. There exists a fundamental discriminant D; and a weight two prime ¢
which is generic for 6 such that (Fy, xp,,,) has analytic rank equal to one.
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Remark 4.3. Tt is a conjecture of Greenberg that if ¢ is generic for 6 then (Fy, xp,,,) has
possible analytic rank equal to 0 or 1 only. Thus, if Greenberg Conjecture holds, Assumption
4.2 is implied by Assumption 4.1. See [How07b, §3.4] and [How07a, Sec. 4] for details.

We fix such a pair (Di,p1). Also fix a residue class r; mod 2N such that D; = r?
mod 4N. As a consequence of this assumption, we see by [How07a, Cor. 5] that (Fi, xp,.»)
has analytic rank 1 for all generic arithmetic morphisms ¢, except possibly a finite number
of them, that 3%‘1"7’7{1 is non-R-torsion, and

ranksp (sel(Q,TT )) —1.

Further, if we denote by 3%‘1’711(90) the image via localization map T — VJ of 3%‘;‘7’;’"1 in the

Nekovéi’s extended Bloch-Kato Selmer group ﬁ}(@, VJ ) attached to the representation VJ

(introduced in [Nek06]), we see that 3%‘;‘2{1(@) is non-zero for all arithmetic morphisms ¢,
except possibly a finite number of them; also, it follows from the discussion in [How07b, §2.4]

and [Nek06, §9] that, for all except a finite number of arithmetic primes, 3%?‘7’11(@ belongs
to the Bloch-Kato Selmer group H}(Q, VJ ), which, again for all arithmetic primes except a

finite number of them, is equal to the strict Greenberg Selmer group Sel(Q, VJ ) of Vs;r (see
[BK90] and [Gre91] for details on the definitions of these Selmer groups, or [How07b, §2.4]).

4.2. The GKZ Theorem for Heegner cycles. The aim of this Section is to review re-
sults of Hui Xue [Xuel0] extending the Gross-Kohnen-Zagier Theorem [GKZ87, Thm. C] to
modular forms of higher weight.

Fix in this section a newform f of even weight 2k and level I'o(N) with p { N. Let Kp
be a quadratic imaginary field, of discriminant D, with ring of algebraic integers Ok, and
assume all primes dividing Np are split in K. Finally, assume that w = 1, where w is the
sign of the functional equation of L(f, s).

Fix a residue class r mod 2N such that 72 = D mod 4N. Let zp, be the solution in
the upper half plane H of the equation az? + bz + ¢ = 0, where Q = [a,b,c] € ON, D,
Then zp, = [zp,] is a Heegner point of conductor 1 in Xo(N), namely, it represents an
isogeny of elliptic curves with complex multiplication by O, and cyclic kernel of order N.
If Hp denotes as above the Hilbert class field of Kp, there are hp = [Hp : Kp] such points,
permuted transitively by Gp = Gal(Hp/Kp). To zp, we may attach a codimension £ in
the Chow group of the (2k — 1)-dimensional Kuga-Sato variety Woy_o, which is rational over
Hp, as described in [Nek92, Sec. 5]. Briefly, one starts by considering the elliptic curve
Eyp,, equipped with a cyclic subgroup of order N, corresponding to xp, via the moduli

interpretation, and let T' be the graph of of the multiplication by D on E x E; we then
consider the cycle

Z(xzp,) =T —Ex {0} —D({0} x E)
in F x E and define
Wep,) = > senlolg (Z(ep,)*")
g€Yak—2

where the action of the symmetric group Yop_o on 2k — 2 letters on E?72 is via permu-
tation. Thanks to the canonical desingularization, this defines a cycle, denoted by Wgefg,
of codimension k in the Chow group of the (2k — 1)-dimensional Kuga-Sato variety Wg;;,g,
which is rational over Hp. Adopting a standard notation for Chow groups, we write Xp , €

CH*(Waj—2)o(Hp). We finally define Xp°% = 3,
tation, we write Xgefg € CHF(War_9)o(Kp). The Heegner cycle considered in [Zha97a,

H o
Wpo® and, again in a standard no-
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. Heeg . . Heeg
62.4] and [XuelO, §2], which we denote by S},"°, is the multiple of X" * such that the

self-intersection of SHeeg is (—1)*=1. Then

Spo € CHF (War—2)o(Kp) ®g R
and, since the self-intersection of Z(xp,) 1s —2D (see for example [Nek95, §(3.1)]) in this

vector space we have SHeeg Xp Heeg ® |2D|” 2, where we make the choice of square root of

|2D| in R to be the posn',lve one.
Let  — T denote the action of the non-trivial element 7p of Gal(Kp/Q) on the Chow
group of K p-rational cycles, and define

Heeg * . qHeeg Heeg
(S3r) o= Spees + S

Denote by Heegy(Xo(N)) the Z-submodule of CH*(Wo,_2)o(Kp) ®g R generated by the
elements (Sg?fg> as D varies. Let Ty be the standard Hecke algebra (over Z) of level

I'g(N), and for any Ty ®z Q-module M let My denote its f-isotypical component. Let finally
(855%) | € Heem (Xo());

be the f-isotypical components of (Sgefg> . The assumption w = 1 implies then that the

image S5 of Sp® in (CH"(Wag—2)o(Kp) ®2R) , belongs to (CH*(Wat_2)o(Q) ®z R) ,
and therefore (Sg?fg>f =2- Sgefgf
Let
op(r.2) = Y cp(nr)g"¢

r2<4Nn

be the Jacobi form corresponding to f under the Skoruppa-Zagier correspondence [SZ88],
where as usual ¢ = €?™7 and ( = 2™,
Let

(8) (, )r : Heeg),(Xo(N)) ®z R x Heeg,(Xo(N)) @z R — R

be the restriction to Heegy, (Xo(N)) ®z R of the height pairing defined via arithmetic intersec-
tion theory by Gillet-Soulé [GS90]. Choose s} € (Heegy,(Xo(N)(Q)) ®z R); such that

. 2k — 2)INF-1 %
(57 = g T~ ' DTy Pt UoF)

where || ¢¢ || is the norm of ¢; in the space of Jacobi forms equipped with the Petersson
scalar product. For the next theorem we need the following

Assumption 4.4. The height pairing (, )g in (8) is positive definite, for each even integer
k> 2.

Theorem 4.5 (Xue). Assume the height pairing (, )r in (8) is positive definite. For all
fundamental discriminants D which are coprime with 2N we have

2
Lk Heeg\ © r*—D *
(D)= - (SDﬂ“g)f:Cf < AN ’T> s
Remark 4.6. The validity of Assumption 4.4 is a consequence of the Bloch-Beilinson conjec-
tures: see [Blo84], [BI87], [GS93], and [Zha97b, Conj. 1.1.1 and 1.3.1]. It could be possible to

remove this assumption, as suggested in [Xuel0], using Borcherds’s approach [Bor99], [Bor9§]
to the GKZ Theorem via singular Theta liftings. Actually, Zemel [Zem15] proved such an
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analogue of Borcherd’s results for higher weight modular forms, and therefore it seems rea-
sonable to establish Theorem 4.5 unconditionally using [Zem15]. It would be very interesting
to obtain such a result, which however does not seem to be an immediate consequence of the
methods developed in [Zem15]. Indeed, [Zem15, Thm. 4.6] proves that the generating series of
Heegner cycles is a modular form of half-integral weight with values in Heeg;.(Xo(N)) ®z Q.
Using a suitable version of Eichler-Zagier isomorphism between vector-valued half-integral
weight and Jacobi forms, and projecting to the f-eigencomponent, this result shows that the
generating series of Heegner cycles in [Zem15, Thm. 4.6] gives rise to a Heegy (Xo(N)) f ®z Q-
valued Jacobi form. However, to the best knowledge of the authors, the 1-dimensionality
of Heegy,(Xo(N)) s ®z Q does not follow directly from the work of Zemel, and therefore any
comparison with Xue’s result would probably require some new idea.

4.3. Specialization of Big Heegner points. The aim of this Section is to review the
explicit comparison result between Howard Big Heegner points and Heegner cycles that could
be found conditionally in Castella’s thesis [Casl3], announced in Castella-Hsieh [CH17] and
proved explicitly in [Cas19] under a number of arithmetic conditions, the most prominent
being that primes p split in the imaginary quadratic field Kp.

Let ¢ € X2 (R) be an arithmetic point of trivial character and weight 2k, and let fgk be
the form whose p-stabilization is Fi,. For any field extension L/Q, we may consider the étale
Abel-Jacobi map

o, 1t CHF (Way—o)(L) — HY(L,V}).

Let Xge:’%k be the image of XDefg in (CHk(ng,g)o(KD))fu and define

A b 2k

H 5 H
3 = 0o (X005 -

Denote 3%0;’V2k = <3HOW>. The following result is originally due to Castella [Cas19, Thm
6.5] and in improved, corrected form to Ota [Otal9, Thm 1.2].
Theorem 4.7 (Castella, Ota). Let g be an arithmetic point in X (R) with trivial neben-
type and even weight 2kg = 2 mod p — 1. If p is split in Kp, then for any arithmetic point
@ of even integer 2k > 2 and trivial character, with 2k = 2ky (mod 2(p — 1)) we have

H k=1 LH
3D?7Y,VszUD(4’D|) 2 'SD?ﬁik

as elements in H'(Q,V\\), where up = |05, 1/2 and the two sides of ~ indicate an equality
up to an explicit p-adic unit depending only on p, k and ¢(A,).

Since S, eeg is equal to X Heeg ® (2D)~ 21, it follows immediately from Theorem 4.7 that
for all ¢ as in the above theorem we have

é H.
(9) 2% - 2up - 3B ~ B, 0 (SD,efg>fu
2k

as elements in the Q,-vector space H'(Q, VfTIi ) ®g Qp, where we fix an embedding Q — Q,
2k

and, with a slight abuse of notation, we write ®¢t for the Q,-linear extension of ®¢t ;

War—2,Q P " Wag—2,Q
here we use the fact that the element Sgefg belongs to CH¥ (Wa,_2)0(Q) ®2 Q and not merely
in CH’%WQ}C,Q)O(Q) ®7z R.

Remark 4.8. The referee of this paper suggested that the case of primes p which are inert
in Q(v/D) could be addressed using a recent result of Daniel Disegni [Dis]. The relation
between the specialization of Big Heegner points and Heegner cycles is the content of [Dis,
Thm. C (2)], which is proved at the end of §6.4. The proof of this nice result is based on [Dis,
Prop. 6.3.6] and [Dis, Prop. 3.1.2], which can be seem as a sort of Hida’s Control Theorem.
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However, since the Control Theorem in question is a comparison between two 1-dimensional
vector spaces, it does not seem enough to prove a relation

k-1 H
(10) 3%?:,V2k ~ up(4|D]) 2 ‘BD?:Ek
which we conjecture to be true in the inert setting, in analogy with the split case (on the right
hand side, Sgef%k denotes classical Heegner cycles, see Section 4.2, and up denotes half of the

units of Kp). It might however be very interesting to see if a strengthening of the results and
methods of [Dis] could be used to prove the conjectural formula (10).

4.4. The A-adic GKZ Theorem. Suppose from now on that Assumptions 4.1, 4.2 and 4.4
are satisfied.

Proposition 4.9. Suppose that Assumptions 4.1, 4.2 and 4.4 are satisfied. Let @y be a fized
arithmetic point with trivial character and weight 2kg = 2 mod p — 1. Choose a fundamental
index N pair (Do, ro) such that p is split in Kp,. Then for any arithmetic point ¢ of even
positive integer 2k = 2ky mod p — 1 and trivial character, and any index N pair (D,r) with
(D,Np) =1 and p split in Kp, we have

2
k-1 - r*—D 5 *
(2D) 2 -2up - 3%?r,2k ~ Cf§k (4]\[7r> ’ (I)‘e/‘t/%fz,(@ (ngk)

where Crt (n,r) for the Fourier-Jacobi coefficients of Spy r, (fgk)

Proof. As a preliminary observation, note that Assumption 4.1 ensures that the sign of the
functional equation of the L-function of fgk is —1 (this sign is the same as the sign of the
function equation of the L-function of for; see for example [How07a, Prop. 4]). If the index
pair (D, r) is fundamental, the result is an obvious consequence of Theorem 4.5 and Equation
(9), so suppose that D is not fundamental, but still (Np, D) = 1. In this case, we may argue as
in [GKZ87, p. 558]. We start with the above equation for D fundamental, and fix an integer
m prime to Np. Multiply both sides by a,,(2k), the coefficient ¢"™ in fgk Since a,,(2k) is the

eigenvalue of T(m) acting on fgk, the left-hand side is (2D)k2;1 -T(m) - 2up - 3p %, while in
the right-hand side we substitute the factor ¢ 1t (n,r) with the coefficient C;u (n,r) of ¢"¢" in
2k 2k

(SDo,ro (fgk)) IT7(m) (here as usual D = r2 —4Nn). The formula in [GKZ87, p. 508] (top of
the page) shows that

d

(D -
m(2k) - 3500, = Ty(m) - 2up - 3oy, = de 1 <d) 2up - 3%‘352 v
b d 9

dlm

and by the equation for the action of Hecke operators in Section 2, we also have

D nm2 rm
. g * g k—1 —_ R
am (k) Cpt (n,r) cfgk (n,r) Zd <d> cfgk(n,r) ( 7 > )

dlm

It follows by induction from the case of fundamental index pair that the equality in the
statement remains true if (D, r) is replaced by (Dm? rm). Now each integer R satisfying the
congruence B2 = Dm? mod 4N, also satisfies the congruence R = rm mod 2N for some
integer r with r> = D mod 4N, which implies the result. O

Remark 4.10. Tracing back the relation between Big Heegner points and Heegner cycles, one
can deduce the main result of [Xuel0] for non-fundamental discriminants as well. However,
a more direct proof can be also obtained working directly with Heegner cycles and following
the same argument using [Zha97a, Prop. 2.4.2].



THE p-ADIC VARIATION OF THE GROSS-KOHNEN-ZAGIER THEOREM 15

Remark 4.11. Observe that the product on the right hand side of Proposition 4.9 does not
depend on the choice of the fundamental index N pair (Dg, o), even if the last two factors of
this product depend on it.

5. THE p-apic GKZ THEOREM

5.1. The main result. We suppose in this section that Assumptions 4.1, 4.2 and 4.4 are
satisfied. Fix a fundamental index pair (Dg, ) such that p split in Kp, and write as above

SDO,To(fgk): Z Cfgk(n,r)qngr
r2<4Nn

for an even positive integer 2k. Fix an even positive integer 2kg = 2 mod p — 1. Recall
the domain of convergence Usy, about 2kg introduced in Section 4.4, and fix a connected
neighborhood U C Uy, in X such that A(k) # 0 for all k in Usy,. Define for x € Uy, and
D =r? —4nN,

Zor(K) = (2D) T - 2up - Goy, (3) .
Recall the notation Selx(Q, TT) = Sel(Q, Tt) ®% K and
SelekO (@7 TT) = SelK(@a TT) ' M2ko7

where for the second tensor product we use the map K — May, whose construction is recalled
in Section 3.

Theorem 5.1. There exists P in SelM%O(Q,T) such that, in a sufficiently small neighbor-
hood of 2ky, we have Zy, , ~ Ly, - o,

Proof. Combining Proposition 4.9 with Theorem 3.1 (in the split case) we obtain

ét *
A(K) - Zu(2K) ~ Las (28) - 00, 057 )-

The result follows by setting ®¢*(x) = ino’mg:g
n0,T0

using the density of the set of even positive integers in X. O

for any index pair with L, ,,(2ko) # 0, and

Remark 5.2. The paper [Casl9] shows that Big Heegner points are closely related to p-adic
L-functions & la Bertolini-Darmon-Prasanna, and Theorem 5.1 shows still another relation of
this nature. However, note that the proof of this result makes an essential use of the result of
Castella and Ota.

5.2. Twisted Gross-Kohnen-Zagier. In this Section we discuss the general conjecture sug-
gested by the results obtained so far.
Combining Theorems 3.1 and 5.1 proves the formula
2k—2
(2Dg)" % - 2up, ‘3%%0,21@

Cfgk (no,ro)

2k—2

(1) (2D)*7 - 2up - 3 = ey (1)
for each even positive integer 2k = 2kg = 2 mod p—1, and all discriminants D with (D, N) =
1 and p split in Kp, where we chose an index pair (Dg, ) such that Ly, ,(2ko) # 0 and p
splits in Kp,.

In [LN18] we construct a p-adic family of Jacobi forms Sp, (@) = >, , cnr($)q"¢" defined
for ¢ in the metaplectic covering X (R) of the weight space X' (R), such that the specialisation
of Spy.re(P) at arithmetic points @ lying over arithmetic points ¢ € X¥h(R) interpolates
certain theta lifts of the classical forms F,, see [LN18, Thm. 5.5] for details. In particular,
[LN18, Thm. 5.8] shows the equation

(12) Cnr (@) = MK) - o(A4y) - & - Cpt (n,r)
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where
9pk—1 2k—2
(13) fa=(1- 25 -1s).
ap(k)  ap(k)
for each arithmetic point ¢ € X(R) of trivial character and weight 2k, where ¢ is the lift of
¢ to the metaplectic covering X'(R) of X(R) having trivial character (see [LN18, Thm. 5.8]).

Combining (11) and (12), we obtain for each arithmetic morphism ¢ € X(R) of trivial
character and Weight 2k = 2ky =2 mod p — 1 with 2k > 2 (So that & # 0), the formula

(14) (2D)75 - 2up - 3B () = enr(@) - (2D0) T - 2up, - 35, (9)

where we write 3H°W( ) for the specialisation of BHOW at .
Assume now that ko is congruent to 2 modulo 4. Then there are two distinct ways to

p-adically interpolate the term (2D)2]3T_2 appearing in (14), by choosing a square root of the
critical character 6 used to define Big Heegner points. Indeed, we may define the square roots

0L/ . Z, — A* for a € {0,1} of the critical character 6 by
a  2kg—2 1/4
0. = (Z;) " €ame { W/lldi|
1/4

where €}, is the unique square root of eiv/ﬂ?d taking values in 1 + pZ,. Since kg is congruent

ko—2
to 2 modulo 4, the expression €. is without ambiguity. For each ¢ € X(R) we let 91/ >

be the composition of «9&/ 2 with the restriction of @ to A*. On the O-module A we define a
new structure of A-algebra o : A — A given by the map o(t) = t?, and we denote this new
A-algebra by A. For any ¢ € X(R) choose a(p) € {0,1} such that the restriction of ¢ to A
is equal to Gi{;)m Then, if ¢ has trivial character and weight 2k, and ¢ is the lift of ¢ with

Onlc).,(2D) = (2D) T

trivial character as above, we have . It makes then sense to define for

any ¢ € X(R), the element

Z0:(?) = bilGy.

where ¢ = 7(¢) and 7 : X(R) - X(R) is the covering map (for the choice of ¢ = wop with
trivial character and ¢ the lift of ¢ with trivial character, this coincides with the element
Z,r(2k) defined above, so the new notation is consistent with the old one). Then (14) reads
as

(15) Zpr (@) = cnr(P) - ZDoro (@)

We remark that this formula holds under the restrictive conditions that ¢ has trivial character
and weight 2k = 2kg = 2 mod p — 1, 2ky = 2 mod 4, 2k > 2, p splits in D (and D), and
¢ the lift of ¢ with trivial character. However, (15) makes sense for all arithmetic primes
¢ € X(R) and even if p is inert in D (at least under the condition that 2kg = 2 mod 4),
and it might be viewed as a fuller analogue of the GKZ Theorem over a larger portion of the
whole weight space. It is then natural to state the following

(2D) - 2up - 357 (¢)

Conjecture 5.3. Suppose that 2kg = 2 mod 4. Then for all (D,r) and all ¢ in a Zariski
open of X(R) we have

ZD,T(SE) = Cny(P) * ZDg,ro (P)-

Remark 5.4. If ¢ is a weight two arithmetic prime (with possibly non-trivial character),
Conjecture 1.1 would imply a twisted Gross-Kohnen-Zagier Theorem. More precisely, the
specialisation of Zp ,($) a weight 2 prime ¢ is a linear combination of Heegner points (see
[How07a, Sec. 3], [Casl3, Sec. 5.1], [LV14b, Sec. 3.2]), and therefore Conjecture 1.1 says
that the ratio between these specialisations is given by coefficients of Jacobi forms, which we
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interpret as a twisted GKZ theorem; recall that twisted Gross-Zagier theorems are already
available in the literature: see [How09]. Moreover, on the opposite direction, note that if
this type of twisted GKZ theorems would be known in the rather general context, similar to
that of [How09], of modular forms of level I'; (M), then Conjecture 1.1 would follow from the
Zariski density of weight 2 primes in the weight space. It would be very much interesting to
prove such a twisted Gross-Kohnen-Zagier theorems (in parallel to what was done by [How(9]
for twisted Gross-Zagier theorems), and the authors hope to come back in the future to this
problem.

Remark 5.1. Finally, we would like to indicate how our work might shed some light on the
main theorem of [BDP14, Thm. 1.4]; we thank F. Castella for pointing this out to us. There,
it is shown that the cohomology class ®*(A;) of a generalized Heegner cycle A; is equal to
mp. - VD -6(Pp), where Pp is a point independent of ¢, and mp; € Z satisfies:

2t!(2m/=D)!
m%,t = (O)2t+1 L(¢2t+1, t+ 1),

where Q(A) is some complex period, and L(1?*1 ¢ 4+ 1) a Hasse-Weil L-series attached to
a Hecke character ¢?'T!. This suggests, in line with the philosophy of the original GKZ
theorem, that the coefficients mp ; might have some relationship with Fourier coefficients of
a Jacobi form lifting a Hecke theta series.
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