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Abstract. This paper presents a general approach to the transformation
of symbolic music. The method is based on viewpoints, which enable
the representation of musical surfaces by sequences of abstract features.
Along the transformation process, some of these sequences are conserved
while some others are variable and can be replaced by generated ones.
The initial piece is therefore seen as a template which is instantiated
at each transformation. The method is illustrated in the paper with the
particular case of transformations occurring at the harmonic level. New
chord sequences are generated by sampling from a statistical model in a
particular style. The pitch of the notes constituting the template piece
are then transformed according to the generated chord sequence.

Keywords: harmonic transformation, viewpoints, computer-aided com-
position, harmonic analysis, music generation, statistical models, com-
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1 Introduction

Music generation methods can be divided into two broad categories [9, 11]. On
one hand are rule-based methods that use hard coded rules and constraints for
style emulation and algorithmic composition. On the other hand are machine
learning approaches that generate musical objects by sampling from statistical
models built from large corpora of music [6]. In this paper we propose a new
approach to using statistical models for music generation, one guided by the
transformation of a template piece from which intra-opus structural features are
inherited. Generation by transformation has been investigated based on spatial
representations [4] and audio content [2]. Some harmonic transformation meth-
ods have also been investigated to assist composition in the songwriting assistant
system Liquid Notes [1]. A strong motivation of the transformational approach
to music generation is to benefit from conserved high-level structures that are
hard to generate. The generation can then be restrained to some variable mu-
sical objects, producing a transformation of the initial sequence that maintains
its particular structural aspects.

An additional motivation for transformational approaches is to provide some
tools to the composer along the creative process. A transformation system can
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indeed be used at any step of the composition process to provide some alternative
realisations of an abstract musical idea.

This work uses the symbolic music representation method of viewpoints [9, 8]
for the formal representation of the conserved and variable aspects of a template
piece. The general method is illustrated with the particular case of transforma-
tions occurring at the chord level. Pitches of notes are considered to be variable
and are modified in order to fit with a generated chord sequence. Other aspects
of the musical surface (rhythm, orchestration, etc.) are conserved and are left
unchanged. The method presented here is used for the transformation of tonal
sequences, and therefore requires a chordal analysis and key detection step.

The transformation algorithm can be summarized by three main steps. First,
a harmonic analysis is performed on the template piece. Second, a new chord se-
quence is generated by random walk from a statistical model built from a corpus
of chord sequences of a particular style. Finally, a new musical surface is pro-
duced by changing the pitch of every event of the template piece, constrained
by the generated chords. Pitches are modified such that their harmonic func-
tion (e.g., chord note, passing note, etc.) and similarity with the template pitch
sequence are conserved. The method therefore ensures that the register and the
global melodic shape of the original piece are conserved.

This paper is structured as follows. The representation method of viewpoints
is reviewed, with particular attention to harmonic viewpoints that are used in
the steps of chord generation and pitch modification. Following this, the ma-
chine learning method for developing a statistical model of chord sequences is
described, and the process for changing the notes of a piece is presented. Some
transformation examples are illustrated using as a template an extract of Erik
Satie’s Gymnopédie No. 1 (1888).

2 A Viewpoint-based Method to Transform Musical
Sequences

This section describes a general method for music transformation. A formaliza-
tion of transformations based on viewpoint representations is introduced. The
method is illustrated with the specific case of transformations occurring at the
harmonic level which involves harmony-based viewpoints and generation of chord
sequences in a particular style. Finally, a method to transform the template se-
quence according to a generated chord sequence is presented.

2.1 Viewpoint Representation for Transformations

The method of viewpoints is used to represent musical sequences. This repre-
sentation method has already proven to be efficient in several fields like music
prediction [9], music classification [8] and pattern discovery [7].

Musical sequences are represented at the surface level as sequences of events
that have basic features including duration, onset time and additional values
depending on the nature of the events (for example, note events include a pitch,
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chord events include a chord symbol, etc.). A viewpoint is a function mapping
events to more abstract derived features. The function is partial, therefore it
may be undefined (⊥) for some events. An event e is abstracted by application
of a viewpoint τ to produce the abstract feature τ(e).

The application of k viewpoints τ1, . . . , τk to an event sequence e1, . . . , en
may be represented as a k×n solution array where location (i, j) holds the value
τi(ej). The upper table of Figure 1 illustrates such an array for a melody fragment
extracted from the Gymnopdie No. 1 of E. Satie. For better readability, only
the notes of the melody part of the fragment (labeled by the events e1, . . . , e10
on the upper staff) are represented with viewpoints. Values int(ei) and pc(ei)
respectively correspond to the incoming pitch interval pitch(ei) − pitch(ei−1)
and to the pitch class of the event pitch(ei) mod 12. Though not represented
by viewpoints, the accompaniment (lower staff) is kept on the figure to provide
the reader the harmonic context, which is necessary to compute harmonic based
viewpoints introduced below.

Transformations As previously mentioned, the notion of transformation re-
quires a distinction between conserved and variable parts of an existing sequence.
The process of transforming a sequence can then be seen as the task of modi-
fying some of its describing viewpoint sequences while conserving some others.
The choice of conserved and transformed viewpoints will be constrained by the
dependencies between viewpoints. For example, modifying the pitch class of a
note event will necessarily imply a modification of its pitch.

A strong advantage of this method, and also a major motivation of this
work, is to enable the transformation of a musical sequence to be specified on
higher musical levels (e.g., chords) than basic surface features (e.g., pitches). The
process of transforming a musical sequence S can be described in 3 main steps
(see Figure 2):

– represent S by a set of viewpoint sequences V ;
– produce an alternative set of viewpoint sequences V ′ by modifying some

viewpoint sequences of V while conserving some others;
– generate a sequence of basic features S′ that can be abstracted by the set of

viewpoint sequences V ′.

Note that because some viewpoint sequences in V are conserved, the transformed
sequence S′ has the same number of events as S. This general transformational
approach is illustrated in the following with the specific case of transformation
occurring at the harmonic level.

2.2 Harmony-based Viewpoints

This section introduces harmony-based viewpoints necessary to process harmonic
transformations. In order to be computed, harmonic viewpoints require a pre-
liminary harmonic analysis to be processed on the musical sequence.
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Piano

Flute

Note viewpoint e1 e2 e3 e4 e4 e6 e7 e8 e9 e10

pitch 78 81 79 78 73 71 73 74 69 66
onset 1 2 3 4 5 6 7 8 9 12
duration 1 1 1 1 1 1 1 1 3 3

int ⊥ +3 −2 −1 −5 −2 +2 +1 −5 −3
pc 6 9 7 6 1 11 1 2 9 6
key D D D D D D D D D D
chord G:M7 G:M7 D:M7 D:M7 D:M7 G:M7 G:M7 G:M7 D:M7 G:M7
hlab c k k c c c k c c c

Chord viewpoint c1 c2 c3 c4 c5

chord G:M7 D:M7 G:M7 D:M7 G:M7
onset 0 3 6 9 12
duration 3 3 3 3 3

root G D G D G
mode maj maj maj maj maj
crm ⊥ P5 P4 P5 P4
cmm ⊥ maj→ maj maj→ maj maj→ maj maj→ maj
crm⊗ cmm ⊥ 〈P5,maj→ maj〉 〈P4,maj→ maj〉 〈P5,maj→ maj〉 〈P4,maj→ maj〉

Fig. 1. Five measures extracted from the Gymnopédie No. 1 of E. Satie. A harmonic
segmentation of the excerpt is provided above the score. The two tables below the
score provide a viewpoint representation of the sequence of 10 events constituting the
melodic fragment, and its associated sequence of five chords provided by the harmonic
analysis. The top part of each table shows the basic viewpoints, the bottom the derived
viewpoints used in this paper.
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V V ′

S S′

Fig. 2. An illustration of the transformation process applied on a musical sequence S
abstracted by a set of viewpoint sequences V . V ′ is a transformation of V . A trans-
formed musical sequence S′ consists of any sequence that can be abstracted by V ′.
The dotted line between S and S′ illustrates the transformation that is made indi-
rectly through V and V ′.

Harmonic Segmentation Harmonic analysis includes as a first step the la-
belling of the sequence by chord and key segments. More specifically, a chord
segmentation is a sequence of non-overlapping chord symbols, each labeled by
a duration, that cover the time-line of a musical sequence. Additionally, a key
segmentation is a sequence of keys, each labeled by a duration, covering the piece
in the same way. The harmonic segmentation of a piece refers to the chord seg-
mentation and the key segmentation resulting from the harmonic analysis of the
piece. An harmonic segmentation is illustrated at the top of Figure 1. Though
the harmony of the musical excerpt of Figure 1 is not ambiguous, in general
there are no unique and exact methods for harmonic segmentation, in particu-
lar when inputs are MIDI files that do not include pitch spelling. These tasks
are largely discussed within the music community and even when manually per-
formed, they can produce different output depending on the analyst. Different
methods trying to model this human cognitive ability have been investigated.
These methods include an algorithm based on the spiral array [5], a dynamic
programming approach [16] that processes chord and key segmentation based on
Lerdahl’s tonal distance [13] and the Melisma system [17].

The transformation method presented in this paper requires a chord/key
segmentation of the input sequence to compute harmony based viewpoints. This
segmentation constitutes an additional input to the transformation. Whether it
is manually performed or automatically computed by one of the previous systems
does not impact the functioning of the transformation method. To generate the
transformations discussed in Section 3, both the algorithm described in [16] and
some manual harmonic segmentation were used.

Chord and Key Viewpoints A chord segmentation induces a viewpoint chord
that returns for any note event e, the chord symbol of the chord segment in which
e is included. The note viewpoint table of Figure 1 represents the chord viewpoint
sequence (chord) associated with the melodic extract, which in that case includes
values G:M7 and D:M7. Note that a more accurate harmonic analysis would
typically depict the degrees of these chords as IV and I respectively, showing
thus the Lydian quality of the sequence. Although it is not the case in the
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harmonic transformations illustrated in this paper, the chord degrees could be
conserved along the transformation by adding a chord degree viewpoint sequence
to the conserved features of the transformation.

In this work, a note event is considered to be included within a segment if its
onset is included in the segment. As a consequence, a note event that overlaps
different segments will be systematically associated to the segment in which the
event starts. Alternative segmentation strategies could be considered without
affecting the functioning of the transformation method. In the same manner as
chord segmentation, a key segmentation induces a viewpoint (key) that returns
the key of the key segment that includes the event.

For an event e, the function chordpc returns the pitch class set associated with
the chord symbol chord(e). Additionally, keypc(e) corresponds to the set of pitch
classes that gathers all pitch classes composing the key key(e). For example, in
Figure 1, we have chordpc(e6) = {0, 4, 7, 10} and keypc(e3) = {0, 2, 4, 5, 7, 9, 10},
respectively associated with the chord C:7 and the key F:maj.

Harmonic Label Viewpoint A contribution of the paper is the introduction
of the viewpoint hlab that attributes a harmonic label to every note event of
the template piece. For any event e, hlab(e) is computed from the values pc(e),
chordpc(e) and keypc(e).

Though the notion of harmonic label can be defined in different ways, in
particular depending on the musical style, a simple specification is proposed to
illustrate the method. Three possible harmonic labels can be attributed to an
event, depending on if its pitch belongs to its relating chord and key regarding
the harmonic segmentation. More formally, we propose the set of harmonic labels
{c, k , o} (c for “chord”, k for “key” and o for “other”) with:

hlab(ei) =

 c if pc(ei) ∈ chordpc(ei)
k if pc(ei) /∈ chordpc(ei) and pc(ei) ∈ keypc(ei)
o if pc(ei) /∈ chordpc(ei) and pc(ei) /∈ keypc(ei)

On the example of Figure 1, we have hlab(e2) = k because 9 /∈ {2, 6, 7, 11}
and 9 ∈ {0, 2, 4, 6, 7, 9, 11}. Figure 3 provides two additional examples of melodic
fragments and their harmonic label sequences. The first one is extracted from
the Piano Concerto No. 21 of W.A. Mozart. The harmonic segmentation of this
fragment is easily performed thanks to the accompaniment part, which is not
represented on the figure. The second one is extracted from the jazz standard
Take the “A” train. The harmonic segmentation of this fragment is taken from
the original lead sheet. The above definition of hlab consists for every event in a
mapping between the 12 pitch classes and the set of harmonic labels. A different
specification that would require octave information of the events to specify their
harmonic function would also be possible. The harmonic label attributed to each
note depends on the output of the harmonic segmentation and on the variety of
chord types and keys supported by the harmonic segmentation system.

The set of possible harmonic labels could include a larger variety of values
then the three above, as for example the notion of fundamental within a chord.
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Fig. 3. Two examples of harmonic label sequences of melodic line fragments. The
upper fragment is extracted from the second movement of the Piano Concerto No. 21
of W.A. Mozart. The lower fragment is extracted from the jazz standard Take the “A”
train from the pianist B. Strayhorn. For better readability accompaniment parts that
are used to perform key and chord segmentation are not represented.

Some harmonic labels can be specific to some musical style, for example the no-
tion of blue note in jazz. The definition of the set of harmonic labels impacts the
precision of the harmonic description of the sequence. As illustrated in Section 3,
this aspect acts as an interesting parameter in the transformation process.

2.3 Conserved Viewpoints

The harmonic transformations presented in this work consist in (1) generating
a new chords sequence and (2) transforming a musical sequence regarding the
newly generated chord sequence. Though the pitches of the original note events
are transformed, their harmonic label, onset and durations are conserved. More
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formally, an harmonic transformation of the musical sequence e1, . . . , en is a
sequence e′1, . . . , e

′
n that respects for every e′:

– onset(e′) = onset(e)
– duration(e′) = duration(e)
– hlab(e′) = hlab(e)

While the above viewpoints are conserved, the others are transformed. Sec-
tion 2.4 presents a method to generate a new chord sequence c′1, . . . , c

′
m that has

the same length than the chord segmentation c1, . . . , cm and where each chord c′i
is attributed the same onset and duration than its corresponding original chord
ci. Section 2.5 presents a method to generate an harmonic transformation of a
musical sequence regarding the new chord sequence c′1, . . . , c

′
m.

2.4 Chord Sequence Generation

The method for music generation using harmonic transformations relies centrally
on the transformation of a template chord sequence into a new sequence. The
task of chord sequence generation is stated simply as: given a statistical model
over chord sequences, sample high probability sequences from the statistical
model. This section describes the statistical modeling method used, and the
corpus used to train the models.

A statistical model trained on viewpoint sequences from a corpus is used to
generate new chord sequences. Here the method for using an abstract viewpoint
to describe a first-order Markov model over chords is reviewed [8]. This method
was also used recently to describe a statistical model for first-species counterpoint
[12].

Let τ be a first-order viewpoint (i.e., computed from an event and its pre-
ceding event), and let v = τ(ci | ci−1) be the feature assigned by τ to chord ci,
in the context of its preceding chord ci−1. The probability P (ci | ci−1) of chord
ci following chord ci−1 can be written in the form

P (ci | ci−1) = P (ci, v | ci−1) = P (v)× P (ci | ci−1, v)

with the first term P (v) estimated as c(v)/n, where n is the number of chords in
the corpus and c(v) is the number of chords in the corpus having the feature v.
To further reduce the number of parameters in the model simply to the possible
values of τ , the second term P (ci | ci−1, v) can be modelled with a uniform
distribution over events having the feature v in the context of a given event ci−1
[8].

For a chord sequence c1, . . . , cm, the cross-entropy of the sequence according
to the statistical model is the mean negative log probability of the sequence:

− log2

m∏
i=2

P (ci | ci−1)/m

To generate chord sequences an iterated random walk procedure is used [12].
The first chord is fixed to a chosen starting chord, then random walk is used to
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generate a sequence of length m. This procedure is repeated multiple times with
one of the low cross-entropy sequences retained. The random walk can be con-
strained to visit only tonal sequences that are composed by chords whose pitches
belong to a unique tonality. Another possible constraint consists in generating
sequences respecting a given structure (i.e., controlling how chords repeat along
the sequence). The idea of constraining some chords along the generation pro-
cess has also been explored by [14, 10]. The structure constraint is interesting in
our context of transformation since it enables the conservation of the harmonic
structure of the template piece. It will be illustrated in the second example of
Section 3.

The statistical model of chords is created by compiling statistics from a
chord corpus. The musical style of the corpus impacts the chord generation and
should thus be chosen carefully depending on the transformations that aim to be
processed. The Academic subsection of the 9GDB chord sequence corpus [15] has
been chosen to perform the transformations discussed in Section 3. This corpus
contains the three subsections of classical, baroque, and romantic, and includes
235 chord sequences, reaching to total of 13027 chords.

This corpus was transformed by two steps: first, all chord extensions and
slashes (chord inversion specification) were removed and chords were truncated
to major, minor, augmented, suspended and diminished triads; second, runs of
the same triad were collapsed to just one occurrence.

2.5 Template Transformation

This subsection describes a method to transform the template sequence, given
as a MIDI file, to fit with a generated chord sequence.

MIDI Transformation A MIDI file consists in a set of simultaneous tracks that
can each provide a note event sequence e1, . . . , en whose ordering corresponds to
the ordering of their respective onset events within the MIDI track. However, two
events ei and ei+1 extracted from a polyphonic MIDI track can have the same
onset time. As explained below, this property can have an important impact on
a transformation.

For each track of the template MIDI file, a new sequence of events is com-
puted with the method described below. Onsets and durations of the events
are conserved but pitches are transformed. As a consequence, the MIDI file has
the same structure before and after the transformation i.e., the same number of
tracks, and the same number of events in each of these tracks.

Event Sequence Generation A notable property of the harmonic transfor-
mations presented in this work is to conserve the harmonic label of the notes.
The transformation consists then in generating a note event sequence e′1, . . . , e

′
n

such that hlab(e′i) = hlab(ei) for every event ei.
For any original event ei, we call the event candidate set Ai the set of all

possible events having the same onset and duration as ei and having a pitch
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respecting the harmonic label hlab(ei). For every event of the original sequence,
an event candidate set is built. A transformed sequence then results from the
choice of one event in each successive candidate set.

Event Sequence Selection Different strategies can be applied to select an
event within a candidate set. To guide this selection, a score is calculated for
any transformed sequence depending on its similarity with its original sequence
regarding some arbitrary viewpoints.

Let E′ = e′1, . . . , e
′
n be the result of a transformation of a sequence E =

e1, . . . , en. The distance of the transformed sequence regarding a viewpoint τ
corresponds to the mean distance, over the whole sequence, between τ(ei) and
τ(e′i):

δτ (E′, E) =

∑n
i=1 |τ(ei)− τ(e′i)|

n

For example, selecting an event sequence close from the original one in terms
of pitches (i.e., minimizing δpitch) will tend to conserve the register of the original
pitch sequence. On the other hand, selecting a sequence similar in terms of pitch
interval (i.e., δint has a low value) will maintain the global pitch shape of the
sequence. In the case of a polyphonic MIDI track, minimizing δint will tend to
approximate both horizontal and vertical intervals of the original track.

This method only holds for numerical viewpoints. For non-numerical view-
points, a specific notion of distance between τ(ei) and τ(e′i) would have to be
defined. Note that τ should not belong to the viewpoints that are conserved
along the note transformation process, otherwise, δτ (E′, E) would be zero. In
the case of harmonic transformations presented here, it can be neither chord,
hlab, onset nor duration.

In the following, we propose different strategies to generate sequences giving
a low value to δτ (E′, E):

Greedy Algorithm This strategy consists in selecting for each ei a pitch in Ai that
minimizes the local distance |τ(ei)−τ(e′i)|. Though very efficient, this algorithm
provides only one solution that is not guaranteed to be optimal.

Viterbi Algorithm This strategy consists in finding the sequence that minimizes
δτ (E′, E). This task is achieved with dynamic programming [3]. If τ(ei) is a
0-order viewpoint (i.e., τ(ei) only requires ei to be computed), the Viterbi algo-
rithm will return the same sequence as the greedy algorithm. This is the case for
the viewpoint pitch(ei). However, first-order viewpoints (e.g., int(ei) takes into
account ei−1) will benefit from the Viterbi algorithm to compute the sequence
that minimizes δτ (E′, E).

Random Walk A score is attributed to every event e of a candidate set Ai. This
score is inversely proportional to the distance |τ(ei) − τ(e′i)|. An event is then
randomly sampled from the set of candidate events, according to their relative
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score. This strategy has the advantage of providing a large number of solutions
in efficient time.

3 Analysis of Transformed Sequences

This section illustrates our method by presenting and discussing different har-
monic transformations of a template sequence corresponding to the five measures
extracted from Erik Satie’s Gymnopédie No. 1 that are illustrated in Figure 1.
The chord sequences are generated from a statistical model built from the Aca-
demic subsection of the 9GDB chord sequence corpus [15] with chords truncated
to major, minor, augmented, suspended and diminished triads as explained in
Section 2.4. As a consequence, generated sequences only include these types of
chords in these transformation examples. Generating more complex chords (e.g.,
including sevenths) would be possible but would require the statistical model to
handle a more sophisticated chord representation.

Obviously these examples do not aim at producing anything comparable to
the original sequence from an aesthetic point of view. In particular, the harmonic
singularity of this piece, sometimes considered as post-tonal, did not influence
these transformations since only onsets and durations of the original chords are
conserved along the process. Furthermore, we choose to exemplify an harmonic
transformation on an extract being both well-known and rhythmically simple,
in order to illustrate more intuitively the effects of the transformations1.

3.1 The Template Sequence

Figure 1 displayed at the beginning of the paper illustrates the score of the tem-
plate sequence and the viewpoint representation of its melodic part. The events
of the accompaniment part belong to a separate track which is not represented
on the table for better readability. However, this track is transformed with the
same method.

The preliminary harmonic segmentation of this template piece is not ambigu-
ous. As shown under the score, it consists in an alternating of the chords G:M7
and D:M7 in the key of D major. The harmonic label sequence only provides
values c and k which means that the fragment does not include any note outside
the key of D major.

A less accurate harmonic analysis might have returned G:maj and D:maj for
the two chords. As a consequence, the pitch class F] of e1 would not be considered
of being part of the chord chord(e1) and hlab(e1) would then have the value k
instead of c. A transformation of the sequence would then assign to e′1 a pitch not
included in the generated chord chord(e′1). This example typically illustrates how
the harmonic analysis method impacts the transformation process. Interestingly,
it does not seem obvious that the quality of the transformation is proportional

1 The original excerpt and transformations are available at the address :
https://soundcloud.com/harmonictransformations.
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Piano

Flute

Note viewpoint e′1 e′2 e′3 e′4 e′4 e′6 e′7 e′8 e′9 e′10

pitch 78 83 78 79 71 73 74 73 69 64
pc 6 11 6 7 11 1 2 1 9 4
key D D D D D D D D D D
chord D:maj D:maj E:min E:min E:min A:maj A:maj A:maj D:maj A:maj
hlab c k k c c c k c c c

Chord viewpoint c′1 c′2 c′3 c′4 c′5

chord D:maj E:min A:maj D:maj A:maj

Fig. 4. A transformation of the extract of Figure 1.

to the accuracy of the harmonic analysis. In this example, forcing e′1 to be out
of the chord would produce a larger variety of transformed sequences, which can
be interesting from a creativity point of view.

3.2 Transformation A

Figure 4 illustrates a first harmonic transformation of the fragment. The chord
generation process has been performed with a filtration of tonal sequences, as
explained in Section 2.4. The generation returns a low entropy triadic sequence
in the key of D:maj (see bottom line of Figure 4).

As explained in Section 2.3, the viewpoint sequence hlab is conserved throw
out the transformation. The pitches of the events e′1, . . . , e

′
1 are generated by

computing the greedy solution minimizing local distance |pitch(ei) − pitch(e′i)|
tending thus to approximate the value of the pitches of the template sequence.
The same algorithm has been applied to generate the event sequence constituting
the accompaniment part. A notable property of this transformation is that some
chords in the accompaniment part of the resulting score include fewer notes than
in the template. This is the case for the chords appearing in bars 2, 3 and 5.
This is due to a side effect of the strategy consisting in approximating the pitch
value of the template notes: some simultaneous notes of the template piece have
their pitch transformed into the same new pitch, producing identical events.
This effect can be handled by approximating intervals between events rather
than pitches, as proposed in the next example.
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Piano

Flute

Note viewpoint e′1 e′2 e′3 e′4 e′4 e′6 e′7 e′8 e′9 e′10

pitch 79 81 79 77 72 72 74 76 69 67
int ⊥ +2 −2 −2 −5 0 +2 +2 −7 −2
pc 7 9 7 5 0 0 2 4 9 7
key C C C C C C C C C C
chord C:maj C:maj F:maj F:maj F:maj C:maj C:maj C:maj F:maj C:maj
hlab c k k c c c k c c c

Chord viewpoint c′1 c′2 c′3 c′4 c′5

chord C:maj F:maj C:maj F:maj C:maj

Fig. 5. A transformation of the extract of Figure 1.

Another observation on the accompaniment part of this transformation is
that the root note of the first chord D:maj is an F] which puts this chord in
an inverted position contrary to the template in which all chords are in root
position. Maintaining chord positions along transformation can be handled by
adding the notion of chord fundamental in the set of available harmonic labels
as illustrated in the next transformation example.

3.3 Transformation B

Figure 5 illustrates a second harmonic transformation of the fragment. The struc-
ture of the template chord sequence is conserved by applying a filter along the
chord generation process as mentioned in Section 2.4. As a consequence, the
generated sequence consists, as the original one, in two alternating chords. The
pitches of the events e′1, . . . , e

′
n constitute the optimal solution (computed with

the Viterbi algorithm mentioned in Section 2.5) minimizing the distance δint
approximating thus the global pitch shape of the original sequence. Unlike in
the previous transformation, simultaneous events will unlikely be transformed
into identical events (i.e., having the same pitch) with this strategy. As a re-
sult, the number of notes in the chords in the accompaniment part is conserved.
Furthermore, this transformation has been made while taking into account an
additional harmonic label in the set presented in Section 2.2. This harmonic la-
bel specifies whether the pitch class of an event corresponds to the fundamental
of its associated chord. This modification does not impact the transformation
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of the melodic part of the template because this part does not include any note
whose pitch corresponds to the fundamental of its associated chord. However,
the accompaniment part is affected and every chord is voiced in root position.

4 Conclusions

This paper presented a viewpoint approach to transform symbolic musical se-
quences. The method has been illustrated with the particular case of transfor-
mations occurring at the harmonic level and two examples of harmonic transfor-
mation have been discussed. Harmonic transformations can be controlled by a
large set of variable components including the harmonic analysis system and the
set of harmonic labels, the style and the complexity of the chords constituting
the corpus which is learned by the statistical model, and the algorithm used to
transform note event sequences.

The generic aspect of the viewpoint approach suggests a wider range of mu-
sical transformations that constitute future perspectives of this research. It is
planed to explore rhythmic transformations in which onset and duration view-
points sequences would be modified. The possibility to add or remove events
from the original sequence is also part of future work.
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