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1 Introduction

Music generation methods can be broadly divided into two categories: rule-based
methods use specified rules and constraints for style emulation and algorithmic
composition; machine learning approaches generate musical objects by sampling
from statistical models built from large corpora of music. In this paper we apply
a mixed approach, generation by transformation, which conserves structural fea-
tures of an existing piece while generating variable parts with a statistical model
(Bigo and Conklin, 2015; Goienetxea and Conklin, 2015).

In recent years several music informatics studies have started to explore
electronic dance music (EDM) using audio analysis (Diakopoulos et al., 2009;
Collins, 2012; Rocha et al., 2013; Yadati et al., 2014; Panteli et al., 2014). The
symbolic generation of EDM is a new problem that has been explored in the
work of Eigenfeldt and Pasquier (2013), who use a corpus of 100 EDM songs
for the extraction of low order statistics. In our approach to EDM generation,
a single template piece in Logic Pro X (LPX) format is transformed using a
statistical model. As in most digital audio workstation formats, an LPX project
contains e↵ects, instrumentation, and orchestration, which can all be inherited
by a transformed piece.

2 Methods

In this work we focus on generation of the EDM subgenre of trance. The
approach to trance generation follows three steps: chord sequence extraction
and transformation; chord voicing; and LPX streaming.

For chord sequence extraction, the MIDI tracks having pitch content are
extracted from the original LPX template. A chord sequence (all chords with
duration and onset information) and key region segmentation are inferred from
the set of pitch tracks using automated harmonic analysis. A new chord sequence
is then generated using iterative random walk (Whorley and Conklin, 2015) on
a learned statistical model of chord sequences. The chord generation method
conserves semiotic patterns (sequences of chord variables) during the statistical
generation process (Conklin, 2015).

Following chord sequence transformation, the chord sequence is voiced in a
way that transforms the original pitches respecting their original harmonic func-
tion in the template and attempting to minimize their distance to the template
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pitches. Various di↵erent search strategies for chord voicing have been imple-
mented (Bigo and Conklin, 2015).
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After transformation, the pitch content of the template piece is streamed back
into LPX using the MIDI communication protocol to record transformed gener-
ated events into the variable tracks of the sequencer while leaving invariant tracks
(e.g. percussion, audio e↵ects: colored red in the figure above) and track e↵ects
unmodified. The figure shows this process where the lower sequence, cleared of
variable tracks, has been filled again with transformations of the original LPX
template (tracks colored in blue or green).

3 Results and discussion

Two professional trance templates (Uplifting Trance Logic Pro X Template by

Insight, and Uplifting Trance Logic Pro X Template by CJ Stone, Daw Templates,
Germany) were used to test the trance generation method. For example, the first
template has the chord structure:

(f,D[,f,c){2} + (f,D[,A[,E[){11} + (f,D[,f,c){4} + f

where {n} refers to n repetitions of the sequence in (). To transform this piece,
several possible semiotic patterns can be used, for example:

!(ABAC) + !(ABDE) + !(ABAC) + A
!(ABCD) + !(XXXX) + !(ABCD) + A
!(AXXX) + !(AXXX) + !(AXXX) + A

where the labels represent variables that map to chords, and ! indicates a cyclic
pattern that is repeated an indefinite number of times (see Conklin, 2015). The
first pattern thus represents a direct abstraction of the template piece; the second
preserves repetition of the first and third loop chord sequences; the third only
enforces that the first chord (the assumed tonic) is coherent throughout the
piece.

The evaluation of music generated by statistical models is always a fascinating
issue and naturally any final determination must be made by human listeners.
The approach described herein has also been used to generate experimental
stimuli for trance loop evaluation (Agres et al., 2015), using a model trained on
a small corpus of trance anthem loops, with many of the sequences being rated
highly by listeners.
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