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An empirical investigation of how local harmonic structures (e.g., chord progressions)

contribute to the experience and enjoyment of uplifting trance (UT) music is presented.

The connection between rhythmic and percussive elements and resulting trance-like

states has been highlighted by musicologists, but no research, to our knowledge,

has explored whether repeated harmonic elements influence affective responses in

listeners of trance music. Two alternative hypotheses are discussed, the first highlighting

the direct relationship between repetition/complexity and enjoyment, and the second

based on the theoretical inverted-U relationship described by the Wundt curve. We

investigate the connection between harmonic structure and subjective enjoyment

through interdisciplinary behavioral and computational methods: First we discuss an

experiment in which listeners provided enjoyment ratings for computer-generated UT

anthems with varying levels of harmonic repetition and complexity. The anthems were

generated using a statistical model trained on a corpus of 100 uplifting trance anthems

created for this purpose, and harmonic structure was constrained by imposing particular

repetition structures (semiotic patterns defining the order of chords in the sequence) on a

professional UT music production template. Second, the relationship between harmonic

structure and enjoyment is further explored using two computational approaches, one

based on average Information Content, and another that measures average tonal

tension between chords. The results of the listening experiment indicate that harmonic

repetition does in fact contribute to the enjoyment of uplifting trance music. More

compelling evidence was found for the second hypothesis discussed above, however

some maximally repetitive structures were also preferred. Both computational models

provide evidence for a Wundt-type relationship between complexity and enjoyment. By

systematically manipulating the structure of chord progressions, we have discovered

specific harmonic contexts in which repetitive or complex structure contribute to the

enjoyment of uplifting trance music.

Keywords: music cognition, enjoyment, repetition, complexity, Wundt curve, computational creativity, uplifting
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1. INTRODUCTION

The interplay between repetition and variation is a fundamental
element of music. Music cognition researchers and musicologists
alike have long cited the importance of patterns, implications,
and expectations, as well as violations of all of these, in
creating emotional responses during music listening (Meyer,
1957; Narmour, 1990; Huron, 2006). As musical elements are
repeated or varied, there is a corresponding impact on the
internal prediction mechanisms responsible for the expectations
(and surprise) thought to underlie affective responses in listeners
(Huron, 2006). Although researchers have used a diverse set of
methods to capture how elements of musical structure impact
emotion, many approaches focus on quantifying the complexity
of the music.

As discussed by Gaver and Mandler (1987), “the levels of
structure involved [in the music] and the degree of change
within and between levels, determine the complexity of the piece.
This complexity can be described in terms of the information
content of the music, using the term ‘information’ as it is used
in information theory.” Indeed, the use of information theory
to quantify the complexity of musical stimuli has been used for
decades (see for example, Vitz, 1966; Werbik, 1971; Abdallah and
Plumbley, 2009). Gaver and Mandler (1987) refer to information
as redundancy, stating that, “If the next note in a piece of music
is relatively determined by that which has gone before, it conveys
little new information about the piece. A work with complicated
changes... can be said to contain more information than a piece
that is relatively repetitive...” To examine how the structure
of music impacts listeners’ affective responses, researchers have
assessed how repetitive or complex particular aspects of themusic
are, and test musical stimuli that vary from repetitive, on one end
of the spectrum, to complex, on the other end of the spectrum.

1.1. Repetition, Complexity, and the Wundt
Curve
Previous studies have shown that humans typically display
a subjective preference for a certain amount of variation or
complexity in auditory or visual stimuli (described by Heyduk,
1975 as “optimum complexity”). Stimuli that are less or more
complex than the individual’s subjective optimum are less
preferred, thus forming a bell-shaped preference distribution
known in the literature as the Wundt curve. As described by
Berlyne (1970), this inverted-U curve indicates that a novel
and complex stimulus is likely to be judged as unpleasant, and
“repetition should make it progressively less unpleasant and
finally more and more pleasant until, after reaching a peak
of pleasantness, it should become indifferent.” The inverted-
U relationship between pleasure (or liking or enjoyment) and
complexity has been demonstrated for several musical genres,
and with differing approaches to the experimental manipulation
of complexity or repetition of stimuli (Vitz, 1966; Heyduk,
1975; North and Hargreaves, 1995; Huron, 2006; Temperley,
2014; Witek et al., 2014). For example, Moles (1966) applied
this principle to information theory, using information theoretic
measures to define complexity on the Wundt curve, suggesting
that too little complexity produces boredom, while too much

complexity is difficult and unpleasant to process. Similarly,
Simonton (2001) observed an inverted-U relationship between
melodic originality and enjoyment such that maximal musical
enjoyment is elicited when melodies occur in the middle of the
range of melodic originality. In the current research, we consider
the Wundt curve to reflect a range of enjoyment (rather than
associated constructs such as boredom), and we elicit enjoyment
ratings from participants.

In addition to using information content to measure the
complexity of a piece, harmonic complexity may also be defined
in terms of movement between chords in tonal space. Using
computational modeling, this can be captured as the Euclidean
distance between the geometrical centers of two subsequent
chords in tonal space (Chew, 2013), as described in the spiral
array model of tonal tension (Herremans and Chew, 2016a). The
concept of tension has been studied extensively in the context
of expectations (Lerdahl, 2004; Margulis, 2005; Huron, 2006;
Farbood, 2012), and we hypothesized that a similar inverted U-
shaped curve describes the relationship between tonal tension
and enjoyment.

1.2. Repetition and Trance Music
In contrast to the inverted-U relationship between complexity
and enjoyment discussed above, some musical genres appear
to limit variation and complexity, with the aim of producing
aesthetic responses (and even changes in phenomenological
states) based on long stretches of highly repetitive music. For
example, the repetition inherent in various forms of trance music
is thought to be crucial for evoking alternative listening states
(see Walsh, 1989), such as heightened enjoyment, prolonged
periods of pleasure, and a sense of becoming “lost in the music”
(Garcia, 2005; Sacks, 2006). Some neurophysiological evidence
supports these phenomenological reports of trance music
listening: Intense activation or repetitive hyper-stimulation of
the temporal lobe, hippocampus, and amygdala can induce
altered states of consciousness (Joseph, 1992), and repetitive
rhythmic elements can prompt brain networks to be dynamically
reconfigured, potentially underlying trance states (Hove et al.,
2016). That is, repetition seems to play a particularly important
role in underlying the phenomenological experiences that likely
contribute to listeners’ motivation for listening to this genre, and
that drive enjoyment of trance music. This begs the question
of whether all aspects of trance music are most effective (for
reaching heightened enjoyment) when they are very repetitive,
or whether some musical elements still adhere to the balance
between repetition and variation described by Wundt and
Berlyne.

Whereas previous research has focused upon the intuitive
connection between repeated rhythmic/percussive elements
and the physiological entrainment underpinning heightened
enjoyment and trance states (Neher, 1962; Becker-Blease, 2004;
Fachner, 2011; Becker, 2012; Trost et al., 2014; Hove et al., 2016),
the particular repeated elements influencing affective response in
listeners remain unclear, and, to our knowledge, no research has
hitherto explored the relative influence of harmonic repetition on
affective or physiological responses to trance music. The present
study would provide the first evidence, to the authors’ knowledge,
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that harmonic structure contributes to the enjoyment of trance
music.

To address the question of harmonic structure on enjoyment,
we focused on a sub-genre of electronic dance music called
Uplifting Trance (UT), which is characterized by the use of
repetitive tones and chord sequences within repeated rhythmic
patterns (Madrid, 2008). UT pieces include sections such as the
breakdown, the buildup, and the anthem, and each of these parts
is intended to have a particular function or impact on audience
perception and affective responses. In this study, we focused
on one of the most distinctive and fundamental elements of a
UT piece: the anthem, arguably the energetic height of the UT
listening experience. The anthem in a UT piece can be compared
to the chorus in a popular song. It generally features the majority
of instruments appearing in the piece, and is intended to be
catchy and memorable. UT anthems are typically preceded by
two consecutive sections called the “breakdown” and “buildup,”
respectively. In the former, the energy is gradually decreased,
after which there is a build up of energy that culminates in
a powerful anthem. For a more detailed description of the
functional sections of trance music, the reader is referred to
Conklin (2016). By generating excerpts of UT anthems varying
in repetitiveness and harmonic complexity, we were able to
investigate whether repetitive harmonic patterns (i.e., chord
progressions) influence the enjoyment of trance music such that
more repetitive structures lead to greater enjoyment, or harmonic
repetition in this genre has aWundt-type relationship to listeners’
enjoyment akin to other more varied genres such as classical
and jazz. Although we were limited to using only brief excerpts
(to allow time to present a range of stimuli), and caution is
therefore needed in generalizing the results to all of trance music
listening, the sequence of chords found in the anthem section
is often identical to those found in the other main sections of
a trance piece (i.e., the breakdown and the buildup), providing
some ground for generalization.

2. BEHAVIORAL EXPERIMENT:
REPETITIVE STRUCTURES AND
ENJOYMENT

To elucidate the connection between repetition of harmonic
structure and subjective enjoyment, we conducted a behavioral
experiment in which listeners provided enjoyment ratings
for UT anthems varying in harmonic repetition (specifically,
the repetitiveness of chord sequences). The chord sequences
generated for this experiment varied in terms of pre-defined
semiotic structures (e.g., patterns of chords), which allowed
us to examine how types of complexity or repetition impact
enjoyment of the sequences. In this work, semiotic patterns are
represented as patterns with variables (Angluin, 1980; Conklin,
2016), where occurrences of the same variable in a pattern must
be substituted by the same chord. For example, if a semiotic
pattern has the structure ABCD-BCDB, the chord substituted for
‘B’ must be the same for all three instances of that variable in this
pattern (note that a different chord may be substituted for ‘B’ in

a different semiotic pattern). Furthermore, no chord is permitted
to substitute for more than one variable in a pattern.

We approached this work with two alternative hypotheses:
First, that listeners display a preference for repetitive harmonic
structures such that more varied/complex patterns yield less
enjoyment, as shown in the left plot of Figure 1, and second, that
enjoyment reflects the inverse-U relationship between preference
and complexity predicted by the Wundt curve (Berlyne, 1970)
(shown in the right plot of Figure 1).

Very complex or unpredictable sequences (that should yield
very low enjoyment ratings according to the right-hand portion
of the Wundt curve) were not included in this study, because
the research aimed to maintain as much ecological validity as
possible, and because generating very complex sequences was
often not possible given the simple semiotic structures employed
(see next section for details). As a result, this research addresses
a range of stimuli from extremely repetitive to fairly complex,
approximately the portion of the Wundt hypothesis outlined
by the dashed gray box in Figure 1. In essence, the prediction
here is that stimuli with less repetitiveness or greater harmonic
complexity will generally result in greater enjoyment, although
the most complex stimuli should not result in the highest
enjoyment ratings (the most complex stimuli correspond to the
right of the apex of the Wundt curve, or the righthand side of the
dashed box in Figure 1).

We employed three approaches to quantifying the harmonic
structure of stimuli. First, we categorized the harmonic
repetitiveness of stimuli using three categorical repetition
variables (specific to our stimulus set). Each of these three
provided a value ranging from “very repetitive” to “not repetitive,”
and stimuli that were not repetitive were considered to be more
complex. Second, we used Information Content to measure the
average unpredictability and complexity of each sequence (see
Sections 2.1.4.2 and 3.1). And third, we computed complexity as
the average tonal tension measured between subsequent chords
of each stimulus (described in Section 3.2).

To test the two hypotheses above, we implemented two
strategies. As discussed in the present section, we first examined
the relationship between participants’ enjoyment ratings and
the three categorical repetition variables mentioned above (and
discussed in detail below). Then, as described in Section 3,
we used computational approaches to examine the relationship
between participants’ ratings and two continuous measures
of complexity: average information content and average tonal
tension (or Cloud Momentum, discussed in depth in Section 3).
Note that testing continuous variables allowed us to more
easily compare the fit of both linear and quadratic functions
(corresponding to hypotheses 1 and 2) in accounting for variance
in the participants’ responses.

2.1. Methods
2.1.1. Participants
Email advertisements and flyers around the Queen Mary
University of London campus were used to recruit twenty
volunteers for the experiment (mean age = 28.6 years, std
= 7.9 years; 6 female and 14 male). The resulting group of
participants consisted of undergraduate and graduate students.

Frontiers in Psychology | www.frontiersin.org 3 January 2017 | Volume 7 | Article 1999

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Agres et al. Harmonic Structure and UT Enjoyment

FIGURE 1 | Depicted on the left is Hypothesis 1, that enjoyment decreases as stimuli become less repetitive and more complex. Depicted on the right is

Hypothesis 2, which displays the relationship between preference and complexity as predicted by the Wundt curve. Because no very complex stimuli were included in

this research, the study only addresses the portion of the curve outlined by the dashed gray box.

Each of these reported prior experience listening to trance
music, and compensation of £7 was given for participation in
the experiment. Participants with experience listening to trance
music were chosen to mitigate the effect of familiarity on
enjoyment, as described by Steck and Machotka (1975).

2.1.2. Stimuli
In order to vary the repetition/complexity of stimuli in
the experiment, chord generation for every UT excerpt was
constrained by an underlying semiotic pattern which governed
the repetition structure of the music. The 14 different semiotic
patterns are used in this study (as described below). Please note
that the labels A, B, C, etc., indicate the order and repetition of
chords, and do not refer to explicit chord names. Every stimulus
has a duration of 16 bars and is comprised of 8 chords (each chord
has a duration of two bars).

In order to create stimuli with adequate variation in semiotic
structure, several guidelines were followed when creating the
semiotic patterns. These guidelines addressed the degree of
repetitiveness in the first half of the stimulus, the degree of
repetitiveness in the second half of the stimulus, and finally,
the amount of similarity between both halves of the stimulus
(repetitiveness in musical form). Note that higher-level musical
repetition (such as an 8-bar pattern that is repeated several
times) was not explored in this research. Note also that a
full-factorial design was not possible, given the repetition
features themselves (see below), and in order to limit listener
fatigue (the stimuli were each 30 s in duration, and only
so many semiotic structures could be tested). Accordingly,
the semiotic patterns were constrained by the following
features:

The first half (first four chords) of the semiotic pattern
was either of the form ABCD or AABB, with the later structure
considered more repetitive and less varied than the former. In
order to maintain structure from the first half of the stimulus in
the second half (to better mirror actual pieces found in the trance
corpus), sequences beginning with AABB had to have at least two
repeated chords in the second half of the stimulus, and sequences

beginning ABCD did not have any successive repeated chords in
the second half. Given this stipulation, the number of unique (i.e.,
non-repeated) chords in the second half of the semiotic structure
ranged from 1 chord (AAAA) to 4 chords (ABCD or EFGH),
with 1 unique chord representing maximal repetitiveness, and
4 chords representing maximal chord diversity and complexity.
Note that semiotic patterns beginning with AABB could therefore
not have 4 unique chords in the second half, and semiotic
patterns beginning with ABCD could therefore not have 1 unique
chord in the second half. Then, when comparing both halves
of the semiotic structure, there are three levels of repetition in
form, when considering the particular chord and its metrical
position in half of the semiotic pattern, such that (1) the semiotic
structure of the first half is completely preserved in the second
half (as in AABB-AABB and ABCD-ABCD), (2) only some of the
semiotic structure of the first half is preserved (this may range
from 1-2 chords, as in AABB-AACC, and in ABCD-CECF, where
the repeated chords are in bold font), or (3) none of the
semiotic structure of the first half is preserved (e.g., AABB-CCDE
and ABCD-EFGH). Finally, in an effort to maintain ecological
validity with respect to the UT corpus created for this study
(as described in Section 2.1.4.1), stimuli were made to reflect
native structures (i.e., semiotic patterns occurring in the corpus
described in Section 2.1.4.1) wherever possible. The resulting
semiotic structures used in the listening experiment are shown
in Table 1.

To avoid any potential confound of the actual chords
presented (as opposed to the overarching semiotic structure),
four different stimuli were generated for each semiotic structure
listed in Table 1. Two major keys common in UT music were
selected, D and G, as well as their relative minor keys, B
minor and E minor. The first chord of each sequence was
therefore either D major, B minor, G major, or E minor. The
generation was performed using a method that allows sampling
high probability chord sequences with respect to a given semiotic
structure (Conklin, 2016) (see Section 2.1.4.2). To generate the
chord sequences, a statistical model was used to encode chord
transition probabilities from a corpus of 100 uplifting trance
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TABLE 1 | The 14 semiotic structures used in the experiment.

AABB-AAAA ABCD-ABCD

AABB-AABB ABCD-AECF

AABB-AACC ABCD-BCDB

AABB-BBAA ABCD-CECF

AABB-CCAA ABCD-DABD

AABB-CCAB ABCD-EFAB

AABB-CCDE ABCD-EFGH

chord loops compiled specifically for this study (described in
Section 2.1.4.1)1. The sequences (generated by the statistical
model) with the highest probability between successive chords
were selected, and key modulations within the sequences were
avoided as much as possible. To create the audio files used
in the listening study, the selected chord sequences were then
rendered within the Digital Audio Workstation Logic Pro X
(LPX) by starting from an existing uplifting trance template2

and applying as few as possible pitch modifications necessary
to make its harmonic structure fit with the generated chord
sequence (Bigo and Conklin, 2015). As this transformation task
leaves rhythm, instrumentation, and audio effects unchanged,
the generation results in a set of stimuli that differ primarily
by their harmonic properties. The entire generation process was
automated by using a system that interacts with LPX through a
MIDI protocol (Conklin and Bigo, 2015).

2.1.3. Procedure
During the behavioral experiment a total of 56 UT excerpts
(4 instances per semiotic pattern, as described above in the
previous subsection), each 30 s in duration, were presented
to the participants. Every participant received a different
randomized order of the stimuli. The experiment started with
two practice trials in order to help familiarize the listener with
the experimental procedure. After listening to each stimulus, the
listener’s task was to provide an enjoyment rating on a 7-point
Likert scale, where 1 was equivalent to “Did not enjoy at all” and
7 represented “Enjoyed very much.”

Participants were seated in a quiet room and wore
headphones, set to a comfortable volume level, to listen to the
stimuli. A MacBook Pro Laptop was used for data collection,
on which a GUI was installed, which was created especially
for this experiment3. Upon completing the experimental trials,
participants completed a brief demographics questionnaire and
were debriefed regarding the aims of the study.

2.1.4. UT Stimulus Generation and Rendering

2.1.4.1. UT trance corpus
To generate chord sequences for the UT trance anthems, a small
corpus of 100 UT anthem chord loops was manually transcribed

1The Uplifting Trance Anthem Loops Corpus (UTALC), constructed specifically

for this study, may be found here: http://www.lacl.fr/~lbigo/utalc
2http://www.logic-templates.com/product/uplifting-trance-logic-pro-x-

template-by-insight
3The experiment software created for this research is available under an open

source license at:

http://dorienherremans.com/listener-experiment-software

TABLE 2 | Example of a UT trance corpus entry.

Velocity in French

Adam Ellis

Dm:1

F:1

Am:2

Dm:1

F:1

Am:1

G:1

by listening to trance mixes and identifying the chord sequence
loop occurring in the anthem section of each song. The artist and
title of every piece from which a UT anthem was extracted are
listed in Appendix A (Supplementary Material). To select the 100
pieces, a priority was given to pieces judged by the authors to be
the most representative of the Uplifting Trance style. Pieces with
an ambiguous harmonic interpretation were avoided.

A loop is represented in the corpus by a sequence of chords,
each associated with a duration in bars, where a bar corresponds
to 4 successive kicks. One instance of a loop is encoded per
song. Table 2 shows an example of a corpus entry. This entry
indicates the chord sequence that is repeated during the anthem
section of the song Velocity in French by the artist Adam Ellis.
Chord symbols are represented in the corpus by a diatonic spelled
root note {C, C♯, Db. . . B}, an additional bass note in case of
inverted chords and the chord type being systematically reduced
tominor ormajor. The corpus includes a total of 568 chords (39%
minor and 61% major), and 96% of the anthems are considered
“tonally consistent,” in that all of the constituent chords may be
considered to be in one key (diatonic or minor harmonic). Note
that since chords are associated with a duration in bars, there are
no self-self chord transitions in the corpus.

2.1.4.2. Statistical model for chord sequence generation
The method for generating stimuli is based on the work of
Conklin (2016), with extensions here to accommodate loops or
cyclic chord sequences. A first-order statistical model for triads
was trained from the corpus (Section 2.1.4.1) using the method of
viewpoints (Conklin andWitten, 1995; Conklin, 2010, 2016), and
this model was used to generate the exact chords to be used for
the sequences in the study. During the training phase, sequences
in the corpus were augmented again by their first chord, to
simulate a loop effect. After the statistical model generated
each particular chord progression (within the constraints of the
imposed semiotic pattern), the chords were then rendered as an
audio file, as described below in Section 2.1.4.3.

Viewpoints are functions that compute abstract features for
musical events in sequences. The viewpoint used here for chord
sequence modeling was a linked viewpoint of root diatonic
interval and mode shift (see Conklin, 2016 for details): for
example, the chord transition from C major to D minor has a
root movement of a major second (indicated as M2), and a mode
change frommajor (M) to minor (m), hence the linked viewpoint
value 〈M2,Mm〉. This viewpoint has the desired property of being
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invariant to diatonic root transpositions, necessary especially
when creating a statistical model from a small corpus. For
a specified length ℓ, for every possible chord sequence e =

e1, . . . , eℓ the first-order statistical model provides a probability

P(e)
∑ℓ

i=2 P(ei|ei−1). The information content of a sequence e is
I(e) = − log2 P(e).

Chord sequences that instantiate a particular semiotic pattern
were generated using a modified random walk method (Conklin,
2003) to minimize information content, which at each step filters
the possible chords for consistency with the variable substitution
assigned to previous chords.

The goal during chord sequence generation was to generate
sequences that could be looped, where the first chord has a
dependency on the last chord. Since the number of chords in the
various semiotic patterns are variable, for a chord sequence e =

e1, . . . , eℓ, we compute the average (i.e., per-chord) information
content in the infinite limit of repetitions of e, according to the
following derivation:

lim
n→∞

I(en)

ℓ × n
= lim

n→∞

nI(e)+ (n− 1)I(eℓ + e1)

ℓ × n
(1)

=
I(e)

ℓ
+

I(eℓ + e1)

ℓ

=
I(e+ e1)

ℓ

To generate chord sequences for rendering, for each pattern
of Table 1, four chord sequences were generated: two starting
with a major triad, and two with a minor triad. The four
sequences were generated using 1000 iterations of random walk.
The two sequences with the lowest cyclic information content
were selected from each semiotic pattern (and key). In instances
where the two sequences were almost identical to one another,
the next-lowest information content chord sequence was selected
instead.

2.1.4.3. Template and rendering
A professional Uplifting Trance piece from an Electronic Dance
Music (EDM) composer was used as a template to produce the
different generated chord sequences within the context of realistic

UT anthem audio sequences. The availability of the native piece4

as an editable file within the Digital Audio Workstation (DAW)
Logic Pro X (LPX) made possible the modification of the pitch of
its notes, resulting thus in the transformation of its native chord
sequence. DAW files typically consist of a set of parallel tracks
(either audio or MIDI) along a common time line. Each track
is attributed to a particular instrument (e.g., drums, bass, synth,
etc.) and can contain digital sound effects. Audio tracks were
conserved only if they did not contribute directly to the native
chords, and removed otherwise. Midi tracks were all conserved.

In order to adapt the template file according to a given chord
sequence (of a particular semiotic pattern), the individual notes
of the native chords (which are formed by arpeggiated patterns
and complex melodic lines) must be modified in the MIDI tracks
of the LPX template. This task was realized by: (1) exporting
the original template MIDI track; (2) updating the pitch of each
note in the chord to match the new chord, given its position
in the original chord, and (3) re-integrating the transformed
MIDI tracks in the LPX file. Task 1 can be directly performed
through the “export” function of LPX. Task 2 was performed with
an algorithm inspired by a dedicated harmonic transformation
method developed by Conklin and Bigo (2015). Finally, for task
3, a dedicated java library was developed to automate the process
of streamingmidi tracks into LPX files. The chord transformation
process is illustrated in Figure 2.

We now expand upon task 2. Substituting a chord by another
in a MIDI file requires the pitch of each note that occurs when
a chord sounds to be updated. These pitch modifications were
constrained so as to keep the pitch of the notes within their
original pitch range. The harmonic function of each note (i.e.,
whether the pitch corresponds to the root, the third or the fifth of
the chord) was also conserved during the pitch transformation.
For instance, the F of a D minor chord was transformed into an
E if the substituting chord was a C major, so that its harmonic
function (i.e., the third of the chord) would be conserved.
This method also ensured that chord inversions occurred in
the same places as they did in the template piece. Prior to

4The Logic Pro file is available at:

http://www.logic-templates.com/product/uplifting-trance-logic-pro-x-template-

by-insight

FIGURE 2 | Transformation of a LPX template file. The original MIDI tracks are extracted from the template, transformed, and then imported into their original

position in the template.
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the transformation, the template MIDI tracks were simplified
such that non-chord notes, although very rare in the template
anthem, were moved to the closest tone from the current chord.
As a consequence, every pitch could be transformed without
ambiguity.

Applying this process to each MIDI track of the native LPX
file enabled each transformed chord sequence to conserve the
native production features of the original track, such as digital
instruments, audio effects, etc. This system was used to render
each of the 56 generated UT anthems (and the two practice
stimuli) as a real UT audio file.

2.2. Results
To test the impact of repetition on enjoyment ratings, a 2× 4× 3
ANOVAwas conducted for three types of repetition constraining
the semiotic structures described above. These three repetition
variables are: (1) First Half Semiotic Structure: the structure of
the first half of the semiotic pattern (AABB or ABCD), (2) Second
Half Repetition: the number of unique chords in the second
half of the semiotic pattern (ranging from 1 to 4 chords), and
(3) Structural Overlap: the number of chords in common, and in
the same metrical position, between the first and second halves
of the sequence. This last variable was discretized into three
levels, including “All Same” (4 chords in common), “Partially
Same” (1 or 2 chords in common), or “All Different” (0 chords
in common).

There was a significant effect of Second Half Repetition,
F(3, 47) = 4.24, p < 0.01, such that greater chord diversity yields
higher enjoyment ratings (illustrated in Figure 3)5. Although
First Half Semiotic Structure and Structural Overlap did not
yield significant main effects, a significant interaction was found
between these two variables, F(2, 47) = 4.09, p < 0.05, which
is depicted in Figure 4. Here, the highest enjoyment ratings are
elicited when all of the same chords are present (and in the same
positions) in the first and second halves of the stimulus (i.e.,
AABB-AABB and ABCD-ABCD), and when none of the same chords
are present in the first and second half of the stimulus (for stimuli
beginning with ABCD only). The lowest enjoyment ratings are
elicited when the stimulus begins with AABB and the second half
of the stimulus contains only partially the same or none of the
same chords as the first half. These results are discussed further
in the Discussion. There was no significant effect of either Mode,
F(1, 46) = 0.94, p = n.s., or Key, F(3, 46) = 0.63, p = n.s., when
these factors were added to the ANOVA analysis.

Finally, Table 3 displays the semiotic structures listed from
highest to lowest average enjoyment rating.

2.3. Discussion
Several interesting findings emerge from the results of the three
discrete repetition variables. The significant effect of Second Half
Repetition indicates an overall trend of increasing enjoyment
for stimuli with less repetition (i.e., more unique chords) in the
second half of the stimulus. One must keep in mind, however,
that only stimuli beginning AABB could have 1 unique chord in

5Please note that stimuli beginning AABB could only have 1 to 3 unique chords in

the second half of the stimulus, and that stimuli beginning ABCD could only have

2 to 4 unique chords in the second half of the stimulus.

FIGURE 3 | Average enjoyment ratings for Second Half Repetition (the

number of unique chords in the second half of the stimulus). Error bars

display standard error of the mean.

FIGURE 4 | Significant interaction between First Half Semiotic

Structure (the semiotic structure of first half of the stimulus) and

Structural Overlap (chords in common between the first and second

halves of the stimulus). Error bars display standard error of the mean.

the second half, and only stimuli beginning ABCD could have 4
unique chords in the second half; therefore, the type of semiotic
structure of the first half of the stimulus may be contributing
to this result. The finding can therefore be explained in part by
the very low Enjoyment ratings elicited by stimuli of the form
AABB-AAAA (the second lowest-rated semiotic structure in the
study). This may be due to a perceived violation of the implied
stylistic form, e.g., culminating a semiotic pattern with AA when
a change of chords is expected in the third chord position of the
second half of the stimulus. The violation of implied stylistic form
may also account for the relatively low ratings of stimuli with two
unique chords in the second half, because sequences that begin
with AABB but culminate with BBAA violate the form implied
by the first half of the stimulus (in this case, the listener would
expect a chord change at the first position of the second half of
the stimulus, but instead hears a repetition of BB). Note that in
contrast to AABB-BBAA stimuli (rated the least enjoyed semiotic
structures of the study), stimuli of the semiotic form AABB-AABB

were the secondmost enjoyed stimuli of the study, despite having
similar features (including two unique chords in the second half).
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TABLE 3 | Semiotic structures ranked from highest average enjoyment

rating to lowest (standard deviations provided in parentheses).

Semiotic structure Average enjoyment rating

ABCD-BCDB 4.38 (0.35)

AABB-AABB 4.33 (0.40)

ABCD-EFAB 4.33 (0.13)

ABCD-ABCD 4.29 (0.27)

ABCD-EFGH 4.28 (0.10)

ABCD-AECF 4.26 (0.14)

ABCD-DABD 4.09 (0.17)

AABB-CCAB 4.09 (0.14)

ABCD-CECF 4.08 (0.29)

AABB-CCDE 4.08 (0.06)

AABB-CCAA 4.01 (0.21)

AABB-AACC 3.94 (0.13)

AABB-AAAA 3.53 (0.17)

AABB-BBAA 3.45 (0.25)

The horizontal line indicates the mean Enjoyment rating, e.g., semiotic structures eliciting

higher than average Enjoyment ratings are above the line.

Again, the semiotic structure of the first half of the stimulus
may have contributed to this result. Further, it is conceivable
that the total number of chord changes (of which there is
three in AABB-AABB and only two in AABB-BBAA) influences
enjoyment, however this measure would also be contingent on
the structure of the first half of the stimulus. A useful direction
for future research would be to carefully construct stimuli to
specifically test how the number of chord changes influences
enjoyment of trance sequences. Therefore, although the result
of Second Half Repetition lends some support for a preference
for more varied and complex structures, future research is
needed to clarify the influence of stylistic form on affective
response, and to disentangle this aspect from repetition structure
more generally.

The interaction between First Half Semiotic Structure (the
semiotic structure of first half of the stimulus) and Structural
Overlap (chords in common between the first and second halves
of the stimulus) provides further evidence that the structure of
the first half of the stimulus sets up expectations and preferences
for the second half of the stimulus that impact enjoyment.
Specifically, the results indicate that the greatest enjoyment
ratings are elicited by semiotic patterns that are either very
repetitive, namely, AABB-AABB and ABCD-ABCD, or fairly complex,
such as ABCD-EFAB and ABCD-BCDB. Sequences beginning AABB

are greatly enjoyed when the second half is identical to the first
half, but when the second half is partially or completely altered
(as in AABB-AACC, AABB-CCDE, AABB-AAAA, etc), listeners assign
low enjoyment ratings to the stimuli.

Overall, the results based on categorical repetition variables
provide limited support for both of the two hypotheses; therefore,
we speculate that listeners enjoyment reflects a combination of
the two. Although evidence was not found across all semiotic
patterns to support the first hypothesis (that greater repetition
yields greater enjoyment), some of the most enjoyed sequences in

the study were those with complete repetition between stimulus
halves (AABB-AABB and ABCD-ABCD). The second hypothesis, that
enjoyment increases as complexity increases, up to a certain
point (the climax of the Wundt curve), after which enjoyment
decreases as complexity increases, was also supported in part by
the following findings: (1) stimuli containing the least repetition
in terms of diversity of chords (AABB-AAAA) were not enjoyed, (2)
increasing chord diversity in the second half of the stimulus led
to higher enjoyment ratings (reflecting the upward slope of the
lefthand portion of the Wundt curve), (3) the semiotic structures
beginning with greater complexity (ABCD) were enjoyed more
than those with greater repetition (AABB), and (4) the most
complex (least repetitive) semiotic pattern according to the three
repetition variables, ABCD-EFGH, was not rated with the highest
enjoyment (rather, it was rated fifth overall in enjoyment out of
the 14 semiotic patterns), suggesting that this pattern was already
on the downward slope after the apex of the Wundt curve.

In sum, these results seem to provide greater support for
our second hypothesis, that the relationship between repetitive
harmonic structures and enjoyment may be described by the
Wundt curve. To clarify this somewhat complex set of results for
the categorical repetition variables, we use continuous measures
of complexity in the subsequent computational modeling section.
These measures capture aspects of repetition/complexity not
encoded in the discrete, hard-coded repetition variables, and
have the advantage of allowing us to directly test whether the
relationship between complexity and Average Enjoyment Ratings
is linear or U-shaped.

3. COMPUTATIONAL MODELING OF
BEHAVIORAL RESULTS: INFORMATION
CONTENT AND TENSION AS MEASURES
OF COMPLEXITY

We employ two computational approaches to model how
variation in harmonic structure may account for enjoyment in
listeners. The first approach uses Information Content (as defined
in Section 2.1.4.2) as a measure of predictability and complexity.
The second computes Cloud Momentum, derived from the spiral
array model of tonal tension (Herremans and Chew, 2016a) as
a measure of complexity in terms of the amount of movement
in tonal space. Tension is a composite concept that encompasses
many aspects of music, including rhythm, loudness, tonality,
and timbre (Farbood, 2006). Because most of these aspects of
tension are kept invariate in this study, we chose to employ
a model that captures the tonal component of tension6. The
tension/relaxation aspect of music is typically caused by the
violation or completion of expectation when listening to music
(Lerdahl, 2004; Livingstone et al., 2005; Margulis, 2005).

Although both tension and Information Content are related to
the perceived expectedness of themusical signal (Margulis, 2005),
these measures were selected because they capture different
aspects of complexity in music (which are therefore computed
differently), and because both information content and cognitive

6Software that calculates the tonal tension based on the model of Herremans and

Chew (2016a) is available online at http://dorienherremans.com/tension.
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tension models have been shown to account for affective
responses in listeners (Huron, 2006; Abdallah and Plumbley,
2009).

Information-theoretic measures have been used to explore
affective responses to music (Meyer, 1957; Gaver and Mandler,
1987) and, more specifically, the inverse-U relationship between
the predictability or variability of a signal (using measures
such as entropy or information content) and aesthetic value
or pleasantness (Vitz, 1966; Abdallah and Plumbley, 2009).
Information content in particular has been used in several studies
as a measure of unpredictability, or perceptual surprise (Vitz,
1966; Abdallah and Plumbley, 2009; Pearce and Wiggins, 2012).
The more complex and unpredictable the sequence, the higher
the information content.

The aspect of tension captured by Cloud Momentum reflects
the movement in tonal space, as defined by the spiral array
three-dimensional model for tonality (Chew, 2013). It is related
to the feature ‘distance between chords’ as defined in the
model by Lerdahl and Krumhansl (2007). We have included
it in this study to capture complexity in terms of tension
through movement in tonality between the chords within each
stimulus (rather than the average complexity of the sequence
as measured by information content). The research of Huron
(2006) confirms the relationship between tension and emotions.
Krumhansl (2002) also observed that increasing tension is
strongly correlated with three basic emotions (happiness, sadness
and fear). However, Livingstone et al. (2005) points to the fact
that “too much tension can be a bad thing.” In the current
modeling of tonal tension, we predict an inverse-U relationship
between tension and enjoyment, whereby the optimal value in the
required tension for obtaining maximal enjoyment is somewhere
in the middle of the range.

Because these measures are continuous, we are able to
formally test whether complexity has a negative correlation or
inverted-U relationship with participants’ enjoyment ratings.
This will give us insight into how stimuli that fall in different
places on the repetitiveness-complexity spectrum tend to be
enjoyed by listeners.

3.1. Information Content Model
The model employed here to quantify information content is
the same as that described above in Section 2.1.4.2. The average
information content of a sequence is computed as presented in
Equation (1).

3.1.1. Information Content Results
The results of the linear and quadratic regression analyses,
corresponding to hypotheses 1 and 2, respectively, are reported
below.

The linear regression indicates that Average Information
Content explains a significant proportion of the variance in
Average Enjoyment Ratings [R2 = 0.39, F(1, 54) = 34.77, p <

0.001]. In this analysis, Average Information Content significantly
predicts Enjoyment Ratings [β = 0.62, t(54) = 5.90, p < 0.001],
however, the R2 is lower than that of the quadratic regression
reported below.

The results of the quadratic regression indicate that Average
Information Content explains a significant proportion of the
variance in Average Enjoyment Ratings [R2 = 0.44, F(2, 53) =

20.62, p < 0.001], where Average Information Content
significantly predicts Enjoyment Ratings [β = 0.57, t(53) =

5.31, p < 0.001], as does (Average Information Content)2 [β =

−0.22, t(53) = −2.08, p < 00.05]. Because the quadratic
regression accounts for more variance in Enjoyment Ratings
compared with the linear model (note the higher R2), our results
indicate that the quadraticmodel better describes the relationship
between Average Information Content and Enjoyment Ratings.

Figure 5 displays the quadratic regression function that maps
Average Information Content to Average Enjoyment Rating. The
graph shows the statistically significant inverse-U relationship
between Average Information Content and enjoyment, which
supports our second hypothesis.

3.2. Spiral Array Tension Model
Increasing tension perceived through music is described
by Farbood (2012) as “a feeling of rising intensity or impending
climax, while decreasing tension can be described as a feeling
of relaxation or resolution.” Because the focus of this research
is primarily on the structure of chord transitions, we employ a
computational model to assess the effect of tonal tension caused
by chord changes.

Herremans and Chew (2016a) developed a model that
captures tonal tension based on the spiral array, a three-
dimensional model for tonality (Chew, 2013). The spiral array
is formed by three helices, which represent pitch classes, chords,
and keys. The helix that embeds pitch classes is displayed in
Figure 6. The spacial arrangement of the array causes close
tonal relationships to be reflected by geometrical proximity, e.g.,
pitch classes next to each other form a perfect fifth, and those
above each other a major third. The geometrical representation
of pitches, chords and keys in the spiral array is inspired by
earlier work on pitch spaces (such as that of Shepard, 1962;
Krumhansl, 1979; Cohn, 1997). Chew (2013)’s model has been

FIGURE 5 | Quadratic relation between IC and enjoyment.
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FIGURE 6 | C major (dark blue) and C♯ major (royal blue) triads

together with their ce (small green dots) in the spiral array. Other pitch

classes are represented in light blue.

used for many applications, including key detection (Chuan
and Chew, 2005), tonal segmentation (Chew, 2005), similarity
assessment (Mardirossian and Chew, 2006), music generation
(Herremans and Chew, 2016b), and pitch spelling (Chew and
Chen, 2005).

When applying the model of Herremans and Chew (2016a),
each chord of the UT anthem is represented as a cloud of points
(each point in the array represents a note in the chord, and the
points of a chord form a cloud) in the spiral array. Based on
these clouds, three characteristics that capture different aspects of
tonal tension may be calculated: Cloud Diameter, Tensile Strain,
and Cloud Momentum. Cloud Diameter captures the largest
tonal distance within a cloud (i.e., a chord). Because we only
use major and minor triads in this study, this measure does
not vary between the stimuli and has therefore been omitted.
Tensile strain captures the tonal distance between a cloud and
the global key. During stimulus generation in the present study,
chords belonging to the global key of the anthem were chosen
whenever possible. The impact of Tensile Strain on enjoyment
is therefore minimal, and consequently not explored in this
study. The present work focuses on the Cloud Momentum
characteristic, which characterizes movement between chords
in tonal space. In order to capture Cloud Momentum, we look
at the “center of effect,” or ce, of each cloud, a feature which
condenses the musical information of a cloud. The ce is the
geometrical center of a cloud in the spiral array. Bymeasuring the
distance between the ces of two subsequent clouds, we capture
the movement (a proxy for perceived tension) in tonal space.
A large shift between ces reflects a change in tonality between
two chords. In Figure 6, the movement between a C major and
a C♯ major triad is represented in the array. The ce of both

FIGURE 7 | Quadratic relationship between Cloud Momentum and

enjoyment ratings.

chords are marked as green points in tonal space. Because C
and C♯ major chords are not tonally proximal, the distance
between their center of effects in the helix is quite large (as
displayed via the green line connecting the two points). In the
current study, a triad representation of each chord was used
in order to calculate the average Cloud Momentum for every
sequence.

3.2.1. Cloud Momentum Results
As for Average Information Content, the results for Cloud
Momentum are provided via a comparison of linear and
quadratic regression analyses, corresponding to hypotheses 1
and 2.

The linear regression indicates that Cloud Momentum
explains a significant proportion of the variance in Average
Enjoyment Ratings [R2 = 0.27, F(1, 54) = 20.12, p < 0.001]. In
this analysis, Cloud Momentum significantly predicts Enjoyment
Ratings [β = 0.52, t(54) = 4.49, p < 0.001], however, as with
Information Content, the linear R2 is lower than that of the
quadratic regression reported below.

The results of the quadratic regression indicate that Cloud
Momentum explains a significant proportion of the variance
in Average Enjoyment Ratings [R2 = 0.38, F(2, 53) =

16.03, p < 0.001], where Cloud Momentum significantly
predicts Enjoyment Ratings [β = 0.47, t(53) = 4.28, p <

0.001], as does (Cloud Momentum)2 [β = −0.32, t(53) =

−3.00, p < 0.01]. Because this regression analysis accounts
for more variability in Enjoyment Ratings (according to
the linear and quadratic R2 values), the findings indicate
that Cloud Momentum has an inverted-U relationship with
Enjoyment.

Figure 7 displays the significant inverse-U relationship
betweenCloudMomentum andAverage Enjoyment Rating which
again lends support for the Wundt curve hypothesis described
above.
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3.3. Discussion
Both measures of complexity modeled above yield a significant
quadratic regression, and account for more variance in the data
than their corresponding linear regression. Therefore, the results
from modeling Information Content and Cloud Momentum
provide support for the second hypothesis, that Enjoyment has
an inverted-U relationship with repetitiveness/complexity (for
the present research, more repetitive sequences are considered to
be less complex). In both cases, increasing complexity leads to
greater enjoyment, up to a certain point (the apex of the Wundt
curve), after which enjoyment ratings begin to decrease.

4. GENERAL DISCUSSION

Taken together, the empirical and computational results indicate
that the complexity of the underlying harmonic structure does
have a measurable influence on the enjoyment of Uplifting
Trance music. Overall the results provide greater support for
the inverted-U relationship between complexity and enjoyment
(hypothesis 2) than a direct linear relationship (hypothesis
1). Interestingly, however, there was an exception to this
finding: Very repetitive stimuli (AABB-AABB) also elicit very high
enjoyment ratings. An overview of the mechanisms driving
enjoyment are discussed in detail below.

By systematically investigating the repetitiveness of semiotic
structures, we have discovered specific contexts in which chord
repetitions influence the enjoyment of UT music. At a general
level, we found varied evidence that the semiotic structure of the
first half of the stimulus sets up preferences for the remainder
of the stimulus. For example, although listeners indicated greater
enjoyment overall of anthems beginning with ABCD rather than
AABB (that is, greater preference for more complex patterns),
when stimuli began with the more repetitive semiotic structure
of AABB, listeners preferred exact repetition more than chord
variety. This may indicate that the initial harmonic structure
sets up expectations and preferences for the later part of the
semiotic structure. In other words, repetitive chords establish the
expectation (and indeed, preference for) even more repetition
of the semiotic pattern, whereas a more complex initial set of
chords creates weaker expectations, allowing for a greater variety
of harmonic instantiations to generate enjoyment. This result
may be of interest to both trance music DJs and researchers in
the area of computational creativity and music generation.

We also found that listeners prefer harmonic repetition
within stylistically standard semiotic structures compared with
structures that violate the implied form. For example, although
the overall second-highest rated stimuli in the study were of the
semiotic structure AABB-AABB, the lowest rated stimuli were of
the structure AABB-BBAA, which contains the same chords, but
the order of which violates expected harmonic progression. We
believe that this connection between violation of form and dislike
also contributes to the finding that listeners preferred stimuli
with less chord repetition in the second half of the stimulus:
The overall dislike of AABB-BBAA (as well as, to some extent,
AABB-CCAA and AABB-AACC, where it could be argued that AA is
not as expected as non-A chords) pulls down the average rating

for structures with “2 unique chords in the second half.” Further,
the second-lowest pattern, AABB-AAAA, violates the expectation
for a change at the 7th chord position (and note that this is the
only semiotic pattern which contains only “1 unique chord in the
second half.” Further research is needed to fully tease apart how
affective responses are linked to expected form and repetitiveness.
In general, however, more evidence was found for the hypothesis
2, that a moderate level of complexity is desired.

Computational modeling of two measures of sequence
complexity, Average Information Content and Cloud Momentum
(average tonal tension of the sequence), provided support for
an inverted-U relationship between complexity of harmonic
structure and enjoyment. The full right-hand tail of the
Wundt curve was not discovered because, as noted in the
Section 2.1.4.2, only low information content sequences were
included (sequences with high Information Content are low
probability with respect to the statistical model used in
generation, and were therefore non-stylistic, and often non-
tonal, which warranted their exclusion from the present study).
Nevertheless, the results indicate that increasing complexity
generally yields higher Average Enjoyment Ratings, but that
the most complex sequences (e.g., ABCD-EFGH) receive more
modest ratings than the sequences with onlymoderately-complex
structure (e.g., ABCD-BCDB).

The important message here, in the authors estimation, is
that enjoyment of uplifting trance music, as measured via this
experimental procedure, generally follows theWundt curve, with
the caveat that exact repetitions of semiotic structures (such
as AABB-AABB) are also highly enjoyed. Familiarity and stylistic
expectations of form also contribute to liking. We posit that
experiences such as enjoyment (and resultant states of audience
“flow”) in trance music may reflect a dynamic interplay between
repetition and complexity.

Future work will explore the connection between repetitive
harmonic elements and altered listening states signifying
heightened enjoyment, such as audience “flow” and a heightened
sense of group cohesion. To investigate this connection, future
work will aim to contextualize this line of research within an
appropriate setting; while the present study employs a controlled
experimental design, which is necessary for systematically testing
elements of trance harmonic structure, it does not reflect
ecological listening conditions. Performing longer excerpts (with
multiple loops of semiotic patterns) in a music venue, for
example, would allow for greater ecological validity, and enable
the exploration of resulting group listening behaviors. Presenting
longer excerpts would also offer a closer approximation to
the full trance listening experience (which is full of repetitive
loops), and would therefore provide listeners with a more robust,
phenomenological experience of Uplifting Trance music.
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