
HAL Id: hal-01798554
https://hal.science/hal-01798554

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Matching for Separable Permutations
Both Emerite Neou, Romeo Rizzi, Stéphane Vialette

To cite this version:
Both Emerite Neou, Romeo Rizzi, Stéphane Vialette. Pattern Matching for Separable Permutations.
SPIRE 2016, Oct 2016, Beppu, Japan. pp.260-272, �10.1007/978-3-319-46049-9_25�. �hal-01798554�

https://hal.science/hal-01798554
https://hal.archives-ouvertes.fr

Pattern Matching for Separable Permutations

Both Emerite Neou?1 Romeo Rizzi2 and Stéphane Vialette1

1 Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC,
F-77454, Marne-la-Valle, France
{neou,vialette}@univ-mlv.fr

2 Department of Computer Science, Universit degli Studi di Verona, Italy
romeo.rizzi@univr.it

Abstract. Given a permutation π (called the text) of size n and an-
other permutation σ (called the pattern) of size k, the NP-complete
pattern containment problem asks whether σ is contained in π as an
order-isomorphic subsequence. In this paper, we focus on separable per-
mutations (those permutations that avoid both 2413 and 3142, or, equiv-
alently, that admit a separating tree). The main contributions presented
in this paper are as follows.

– We simplify the algorithm of Ibarra to detect an occurrence of a
separable permutation in a permutation and show how to reduce
the space complexity from O(n3k) to O(n3 log k).

– In case both the text and the pattern are separable permutations,
we give a more practicable alternative O(n2k) time and O(nk) space
algorithm. Furtheremore, we show how to use this approach to decide
in O(nk3`2) time whether a separable permutation is a disjoint union
of two given permutations of size k and `

– We give a O(n6k) time and O(n4 log k) space algorithm to compute
the longest common pattern of two permutations of size at most n
(provided that at least one of these permutations is separable). This
improves upon the existing O(n8) time algorithm.

– Finally, we give a O(n6k) time and O(kn4) space algorithm to de-
tect an occurrence of a bivincular separable permutation in a per-
mutation. (Bivincular patterns generalize classical permutations by
requiring that positions and values involved in an occurrence may
be forced to be adjacent).

1 Introduction

A permutation π is said to contain another permutation σ, in symbols σ � π, if
there exists a subsequence of entries of π that has the same relative order as σ,
and in this case σ is said to be a pattern of π. Otherwise, π is said to avoid the
permutation σ. During the last decade, the study of the pattern containment on

? On a Co-tutelle Agreement with the Department of Mathematics of the University
of Trento

2

permutations has become a very active area of research and an annual confer-
ence (Permutation Pattern) is devoted to this subject and a database1 of
permutation pattern avoidance is maintained by Bridget Tenner.

We consider here the so-called pattern containment problem (also sometimes
referred to as the pattern involvement problem): Given two permutations σ and
π, this problem is to decide whether σ � π (the problem is ascribed to Wilf in
[5]). The permutation containment problem is NP-hard [5]. It is, however, poly-
nomial time solvable by brute-force enumeration if σ has bounded size. Improve-
ments to this algorithm were presented in [2] and [1], the latter describing a nice
O(|π|0.47k+o(|σ|)) time algorithm. Bruner and Lackner [7] gave a fixed-parameter
algorithm solving the pattern containment problem with an exponential worst-
case runtime of O(1.79run(π)), where run(π) denotes the number of alternating
runs of π. Of particular importance, it has been proved in [10] that the pattern
containment problem is fixed-parameter tractable for parameter |σ|.

A few particular cases of the pattern containment problem have been at-
tacked successfully. Of particular interest in our context, the pattern contain-
ment problem is solvable in polynomial time for separable patterns. Separable
permutations are those permutations that contain neither 2413 nor 3142, and
they are enumerated by the Schröder numbers (sequence A006318 in OEIS).
The pattern containment problem is solvable in O(kn4) time and O(kn3) space
for separable patterns [11] (see also [5]), where k is the length of the pattern
and n is the length of the target permutation. Notice that there are numerous
characterizations of separable permutations. To mention just a few examples,
they are the permutations whose permutation graphs are cographs (i.e. P4-free
graphs); equivalently, a separable permutation is a permutation that can be ob-
tained from the trivial permutation 1 by direct sums and skew sums [15]. While
the term separable permutation dates only to the work of Bose, Buss, and Lubiw
[5], these permutations first arose in Avis and Newborns work on pop stacks [3].

There exist many generalisations of patterns that are worth considering in the
context of algorithmic issues in pattern involvement (see [13] for an up-to-date
survey). Vincular patterns, also called generalized patterns, resemble (classical)
patterns, with the constraint that some of the letters in an occurrence must
be consecutive. Of particular importance in our context, Bruner and Lackner
[7] proved that deciding whether a vincular pattern σ of length k occurs in a
permutation π of length n is W [1]-complete for parameter k. Bivincular pat-
terns generalize classical patterns even further than vincular patterns. Indeed,
in bivincular patterns, not only positions but also values of elements involved in
a occurrence may be forced to be adjacent

The paper is organised as follows. Section 2 is devoted to presenting the
needed material. In Section 3, we revisit the polynomial-time algorithm of Ibarra
[11] and we propose a simpler dynamic programming approach, and in Section 4
we focus on the case where both the pattern and the target permutation are
separable. Section 5 is concerned with presenting an algorithm to test whether
a separable permutation is the disjoint union of two given (necessarily separa-

1 http://math.depaul.edu/bridget/patterns.html

3

ble) permutations. In Section 6, we revisit the classical problem of computing a
longest common separable pattern as introduced by Rossin and Bouvel [14] and
propose a slightly faster - yet still not practicable - algorithm. Finally, in Sec-
tion 7, we prove that the pattern matching problem is polynomial-time solvable
for vincular separable patterns. To the best of our knowledge, this is the first
time the pattern matching problem is proved to be tractable for a generalization
of separable patterns.

2 Definitions

A permutation of length n is a one-to-one function from an n-element set to itself.
We write permutations as words π = π1 π2 . . . πn, whose letters are distinct and
usually consist of the integers 1 2 . . . n. We also designate its i-th element by π[i].
We let Sn denote the set of all permutations of length n. We shall also represent
a permutation π by its diagram consisting in the set of points at coordinates
(i, π[i]) drawn in the plane. According to this representation, we say that an
element π[i] is on the left (resp. right) of another element π[j] if i < j (resp.
i > j). Furthermore, we say that an element π[i] is above (resp. below) another
element π[j] if π[j] < π[i] (resp. π[i] < π[j]).

The reduced form of a permutation π on a set {j1, j2, . . . , jk} where j1 <
j2 < . . . < jk, is the permutation π′ obtained by renaming the letters of π so
that ji is renamed i for all 1 ≤ i ≤ k. We let red(π) denote the reduced form of
π. For example red(5826) = 2413. If red(u) = red(w), we say that u and w are
order-isomorphic.

If π = π1π2 . . . πn is a permutation of Sn, for any i, j ∈ [n] with i ≤ j, we
let π[i, j] stand for the sequence πiπi+1 . . . πj . A permutation σ ∈ Sk is said to
occur within a permutation π ∈ Sn, in symbols σ � π, if there is some k-tuple
1 ≤ i1 ≤ i2 ≤ . . . ≤ ik such that red(πi1πi2 . . . πik) = σ (i.e., σ has a subsequence
of length k that is order-isomorphic to π). The subsequence πi1πi2 . . . πik is called
an occurrence of σ in π. If π does not contain σ, then π is said to avoid σ. For
example, the permutation π = 391867452 contains the pattern σ = 51342 as can
be seen in the highlighted subsequence of π = 391867452, but it avoids 1234
since π contains no increasing subsequence of length four.

For two permutations π1 of size n1 and π2 of size n2, the direct sum of π1 and
π2 is defined by π1⊕π2 = π1[1]π1[2] . . . π1[n1](π2[1]+n1)(π2[2]+n1) . . . (π2[n2]+
n1) [15]. The direct sum operation consists to putting the elements of π2 on the
right and above the elements of π1. See Figure 2 for an example of a direct sum.
Similarly, we define the skew sum of π1 and π2 by π1	π2 = (π1[1] +n2)(π1[2] +
n2) . . . (π1[n1] +n2)π2[1]π2[2] . . . π2[n2] [15]. The skew sum operation consists to
putting the elements of π1 on the left and above the elements of π2. See Figure 3
for an example of a skew sum. It is easy to see whenever a permutation can be
decomposed into a direct sum (respt. a skew sum) of two permutation: In the
plot of the permutation one can draw a cross that split the permutation into
4 sections, so that the top-left and the bottom-right sections are empty (the
top-right and the bottom-left are empty).

4

Whenever we consider a subsequence of elements of a permutation by select-
ing the elements by bounding the elements by value and/or by position, we call
this subsequence a rectangle. On a plot of a permutation a simple way to see
all the elements of a rectangle, is to draw a rectangle where each edge is define
by one bound on the plot, every element which is in the rectangle is part of the
subsequence. To stay constant with the general definition of a rectangle, we give
rectangle as two points (A,B), where A is the bottom left corner and B is the
top right corner. Formally we represent a rectangle by two pairs of position/value
((i1, e1), (i2, e2), and the subsequence in π represented by this rectangle is the
subsequence formed by the permutation π where we ignore the elements which
are on the left of i1, on the right of i2, below e1 and above e2. For instance the
rectangle ((2, 2), (4, 4)) of the permutation 52143 is 24. The notion of rectangle
goes specially well with direct/skew sum, as the left and right permutations of
an operation can be define as rectangles and a rectangle (the geometric figure)
is a good visualization for the left and right permutations. For this reason we
often refer to the operand of a direct/skew sum as a rectangle, specially when
we only need to compare the positions of the rectangles. In the same way as we
compare two elements, we say that one rectangle is left (resp. right, below and
above) of another one if and only if all the elements of the first rectangle are on
the left (resp. right, below and above) of all the elements of the second one.

Fig. 1: the rectangle ((2, 2), (4, 4)) of the permutation 52143.

⊕ =

Fig. 2: 312⊕ 3214 = 3216547

5

	 =

Fig. 3: 312	 3214 = 7563214

Separable permutations may be characterized by the forbidden permutation
patterns 2413 and 3142. Equivalently, any separable permutations is either a per-
mutation with an unique element or is decomposable into a direct sum or a skew
sum of two others separable permutations. Note that the decomposition may
not be unique. The preceding definition exhibit a recursive structure. Thanks to
that we can represent a separable permutation by a binary tree: The tree repre-
senting the separable permutations with an unique element is the tree a with a
unique node/leaf which has for value the unique element, any others separable
permutations is represented by a binary tree: the root encode what operation
(direct sum or skew sum) the permutation is decomposed into, the left child is
the tree representing the left permutation of the operation and the right child
is the tree representing the right permutation of the operation. As a separable
permutation may have more than one decomposition, a separable permutation
may be represented by more than one tree. We call such tree a separating tree
and we denote a separating tree representing π by Tπ. This can be summarize
as follows:

π = e π = π1 ⊕ π2 π = π1 	 π2

e

−

Tπ1
Tπ2

+

Tπ1
Tπ2

Formally the definition of separating tree is given by Bose, Buss, and Lubiw
in [5]: a rooted binary tree in which the elements of the permutation appear (in
permutation order) at the leaves of the tree, and in which the descendants of
each tree node form a contiguous subset of these elements. Each interior node
of the tree is either a positive node in which all descendants of the left child
are smaller than all descendants of the right node, or a negative node in which
all descendants of the left node are greater than all descendants of the right
node. See Fig. 4 for an illustration. Each subtree of a separating tree may be
interpreted as itself representing a smaller separable permutation, whose element

6

values are determined by the shape and sign pattern of the subtree. A one-
node tree represents the trivial permutation, a tree whose root node is positive
represents the direct sum of permutations given by its two child subtrees, and
a tree whose root node is negative represents the skew sum of the permutations
given by its two child subtrees. In this way, a separating tree is equivalent to
a construction of the permutation by direct and skew sums, starting from the
trivial permutation.

Let σ ∈ Sk be a separable permutation, and Tσ be the corresponding separat-
ing tree. For every node v of Tσ, we let σ(v) stand for the sequence of elements
of σ stored at the leaves of the subtree rooted at v.

Tπ

−342561

+34256

−342

+34

33 44

22

+ 56

5 5 6 6

1 1

Fig. 4: On the left, a separating tree Tπ for the permutation π = 342561 together
with the corresponding σ(v) sequences and on the right the decomposition of
the root of this tree and of its left child: 342561 = red(34256)	 1 = (red(342)⊕
red(56))	 1.

A bivincular pattern (abbreviated BVP in the sequel) σ̃ of length k is a
permutation in Sk written in two-line notation (that is the top row is 12 . . . k and
the bottom row is a permutation σ1σ2 . . . σk). We have the following conditions
on the top and bottom rows of σ (Definition 1.4.1 in [13]):

– If the bottom line of σ̃ contains σiσi+1 . . . σj then the elements correspond-

ing to σiσi+1 . . . σj in an occurrence of σ̃ in π must be adjacent, whereas
there is no adjacency condition for non-underlined consecutive elements.
Moreover if the bottom row of σ̃ begins with xσ1 then any occurrence of σ̃
in a permutation π must begin with the leftmost element of π, and if the
bottom row of σ̃ ends with σky then any occurrence of σ̃ in a permutation
π must end with the rightmost element of π.

– If the top line of σ̃ contains i i+ 1 . . . j then the elements corresponding to
i, i+ 1, . . . , j in an occurrence of σ̃ in π must be adjacent in values, whereas

7

there is no value adjacency restriction for non-overlined elements. Moreover,
if the top row of σ̃ begins with p1 then any occurrence of σ̃ in a permutation
π must contain the smallest element of π, and if top row of σ̃ ends with
kq then any occurrence of σ̃ in a permutation π must contain the largest
element of π.

For example, let σ̃ = 123
x213y . If πiπjπ` is an occurrence of σ in π ∈ Sn, then

πiπjπk = (x + 1)x(x + 2) for some 1 ≤ x ≤ n − 2, i = 1 and ` = n. For
example 316524 contains one occurrence of σ̃ (the subsequence 324), whereas
42351 contains an occurrence of σ but not σ̃.

3 Improved algorithm to detect a separable pattern

Let π ∈ Sn and σ ∈ Sk, and assume that σ is a separable permutation. Ibarra [11]
gave a nice O(kn4) time and O(kn3) space algorithm to detect an occurrence of
σ in π. We revisit the approach of Ibarra and propose a simpler algorithm.

Since σ is a separable permutation, we can assume that we are given in
addition a separating tree Tσ for σ (constructing a separating tree of a separable
permutation is linear time and space [5]). Let S be a sequence of elements in [n]
with no repetitions. A occurrence of a node v of Tσ into S is an occurrence of
red(σ(v)) into red(S). The bottom point ↓(s) of an occurrence s of σ(v) into S
is the minimum value of the sequence s. Similarly, the upmost point ↑(s) is the
maximum value of s. In the following, since all numbers in [n] are positive, we
adopt the convention that the maximum value occurring in an empty subset of
[n] is 0.

We consider the following family of subproblems that has been first intro-
duced by Ibarra [11]: For every node v of Tσ, every two i, j ∈ [n] with i ≤ j,

and every upper bound ub ∈ [n], we have the subproblem ↓̂v,i,j [ub], where the
semantic is the following:

↓̂v,i,j [ub]
∆
= max{↓(s) : s is an occurrence of σ(v) into π[i, j] with ↑(s) ≤ ub}.

We first observe that this family of problems is already closed under induction
(we do not need to introduce the family H as in [11]). These subproblems can
be solved by the following equations:

– Base: If v is a leaf of Tσ then

↓̂v,i,j [ub] := max{π[ι] : π[ι] ≤ ub, i ≤ ι ≤ j}.

– Step: Let vL and vR be the left and right children of v.

• If v is a positive node of Tσ (i.e., all elements in the interval associated
to vR are larger than all elements in the interval associated to vL), then

↓̂v,i,j [ub] := max{↓̂vL,i,ι−1[↓̂vR,ι,j [ub]] : i < ι ≤ j}.

8

• If v is a negative node of Tσ (i.e., all elements in the interval associated
to vR are smaller than all elements in the interval associated to vL), then

↓̂v,i,j [ub] := max{↓̂vR,ι,j [↓̂vL,i,ι−1[ub]] : i < ι ≤ j}.

These relations imply a O(kn4) time and O(kn3) space algorithm for detect-
ing an occurrence of a separable permutation of length k in a permutation of
length n, as obtained by Ibarra in [11], only simplified.

Proposition 1. One can reduce the memory consumption of the algorithm above
to O(n3 log k).

Proof. Observe first that for computing all the entries ↓̂v,·,·[·] for a certain node

v with left and right children vL and vR, we only need the entries ↓̂vL,·,·[·] and

↓̂vR,·,·[·]. The policy for achieving the memory spearing is the following.

– All problems for a same node v are solved together and their solution is
maintained in memory until the problems for the parent of v have also been
solved. At that point the memory used for node v is released.

– We use a modified DFS traversal on Tσ: for every node v which has two
children, we first process its largest child (in terms of the number of nodes
in the subtree rooted at that child), then the other child, and finally v itself.

We claim that the above procedure yields a O(n3 log k) space algorithm. We
first expand our DFS algorithm to what is known as the White-Gray-Black DFS
[8]. First, we mark all vertices white. When we call dfs(u), we mark u to be
gray. Finally, when DFS(u) returns, we mark u to be black. Provided by this
colour scheme, at each step of the modified DFS, we may partition Tσ into a
white-gray subtree (all nodes are either white or gray) and a forest of maximal
black subtrees (all nodes are black and the parent of the root - if it exists - is
either white or gray). Our space complexity claim now reduces to proving that,
at any time of the algorithm, the forest contains at most O(log k) maximal black
subtrees. Let hσ be the height of Tσ, and consider any partition of Tσ into a
white-gray subtree and an non-empty forest T b of maximal black subtrees. The
following property easily follows from the (standard) DFS colour scheme.

Property 1. For every 1 ≤ i ≤ hσ, there exist at most two maximal black subtrees
in T b whose roots are at height i in Tσ. Furthermore, if there are two maximal
black subtrees in T b whose roots are at height i in Tσ (they must have the same
parent), then T b contains no maximal black subtree whose root is at height j > i
in Tσ.

According to Property 1 and aiming at maximising |T b|, we may focus on the
case T b contains one maximal black subtree whose root is at height i, 1 ≤ i < hσ,
in Tσ (if T b contains one maximal black subtree whose root is at height 0 in Tσ
then |T b| = 1), and T b contains two maximal black subtrees whose roots are
at height hσ in Tσ (these two maximal black subtrees reduce to size-1 subtrees).
The claimed space complexity for the dynamic programming algorithm (i.e.,

9

|T b| = log(k)) now follows from the fact that we are using a modified DFS
algorithm where we branch of the largest subtree first after having marked a
vertex gray. Indeed, the maximal black subtree whose root is at height 1 in Tσ
contains at least half of the nodes of Tσ, and the same argument applies for
subsequent maximal black subtrees in the forest T b. ut

4 Both π and σ are separable permutations

4.1 Best algorithm so far.

When both π and σ are separable permutations we can strive for more efficient
solutions since we can construct in linear time the two separating trees Tπ and
Tσ. It turns out, however, that the standard (i.e. binary) separating trees are not
well-suited to handle this task. We use here the notion of compact separating tree
(also known as decomposition tree [15]). Informally, in compact separating tree,
we strive for every node to have as many children as possible. A simple linear
time post-processing can be used to produce the decomposition tree out of the
binary separating tree: As long as the separating tree contains a positive node
whose father is also positive or a negative node whose father is also negative,
we simply suppress that node and we let all of its children to be adopted from
their grandfather in proper order. We will adopt the convention that a compact
separating tree of a separating tree Tπ is denoted T̃π.

The compact tree can be understand with direct/skew sums. First note that
the direct sum is associative, indeed π1⊕(π2⊕π3) = (π1⊕π2)⊕π3 = π1⊕π2⊕π3.
So we can remove the parenthesis whenever the operator of the parenthesis is
also a direct sum. By iterating this operation until no parenthesis with a direct
sum is left, we obtain the unique and largest decomposition into direct sum of a
permutation. We can do the same for skew sum. The compact tree is equivalent
to the largest decomposition into direct/skew sum. The operation of removing
a node and give the children of this node to the father, correspond to removing
a pair of parenthesis.

One can easily visualize roughly the plot of a permutation from the com-
pact tree by transforming it into the equivalent largest decomposition with di-
rect/skew sum. The operation is as follow: If π has for largest decomposition
into direct sum π = π1 ⊕ . . .⊕ π` then the (unique) compact separating tree of
π is the tree with a positive root and with the compact separating tree of π1
as first child, the compact separating tree of πi as ith child and the compact
separating tree of π` as `th child. Same goes if π is decomposed into skew sum.
See Figure 5 and Figure 6 for an example. Note that when π is decomposed into
direct (resp. skew) sums it forms a stair up (resp. down) of rectangles.

Now, recall that the tree inclusion problem for ordered and labeled trees is
defined as follows: Given two ordered and labeled trees T and T ′, can T be obtain
from T ′ by deleting nodes? (Deleting a node v entails removing all edges incident
to v and, if v has a parent u, replacing the edge from u to v by edges from u
to the children of v; see Fig. 7.) This problem has recently been recognized as

10

Tπ

+

−

−

+

4 5

3

+

1 2

+

6 −

9 −

8 7

T̃π

+

−

+

4 5

3 +

1 2

6 −

9 8 7

Fig. 5: A separating tree Tπ for the permutation π = 453126987, the correspond-
ing separating tree T̃π and the decomposition 453126987 = red(45312)⊕red(6)⊕
red(987) = (red(45)	 red(3)	 red(12))⊕ red(6)⊕ (red(9)	 red(8)	 red(7))

an important query primitive in XML databases. The rationale for considering
compact separating trees stems from the following property.

Property 2. Let π and σ be two separable permutations. We have σ � π if and
only if the (compact separating) tree T̃σ is included into the (compact separating)
tree T̃π.

Kilpeläinen and Manilla [12] presented the first polynomial time algorithm
using quadratic time and space for the tree inclusion problem. Since then several

. . .

. . .

π1

πi

π`

+

T̃π1
. . . T̃πi

. . . T̃π`

Fig. 6: On the left the permutation a rough plot of π = π1 ⊕ . . .⊕ πi ⊕ . . .⊕ π`
and on the right its corresponding compact separating tree.

11

T

a u

b c v

e f

d

delete(T, v)

a

b e f d

Fig. 7: The effect of removing a node from a tree.

improved results have been obtained for special cases when T and T ′ have a small
number of leaves or small depth. However, in the worst case these algorithms
still use quadratic time and space. The best algorithm is by Bille and Gørtz [4]
who gave an O(nT) space and

O

min


lT ′ nT
lT ′ lT log log nT + nT
nT nT ′
lognT

+ nT log nT




time algorithm, where nT (resp. nT ′) denotes the number of node of T (resp.
T ′) and lT (resp. lT ′) denotes the number of leaves of T (resp. T ′).

However, all efficient solutions developed so far for the tree inclusion problem
result in very complicated and hard-to-implement algorithms. For example, the
main idea in the efficient algorithm presented in [4] is to construct a data struc-
ture on T supporting a small number of procedures, called the set procedures,
on subsets of nodes of T .

4.2 Our Solution.

We propose here a different solution with a running time largest than the above
algorithm.

Proposition 2. There exits an O(n2k) time and O(nk) space algorithm to find
an occurrence of a separable pattern of length k in a separable permutation of
length n.

We differentiate 4 cases in the algorithm, depending of the decompositions of
σ and π. For the 4 cases, we begin from a brute force algorithm which would try
every subsequences possible and we reduce the number of subsequences to test.
We start by giving propositions which are needed to the understanding and the
proof of the correctness of the algorithm.

The next paragraph deals with the case where σ and π are decomposed with
the same sum.

12

Property 3. Given the largest decomposition π = π1 ⊕ . . .⊕ π`π and the largest
decomposition σ1 ⊕ . . .⊕ σ`σ , no occurrence of σi can be split into two or more
rectangles of π.

Proof. If the occurrence of σi can be split into two or more rectangles of π then
σi can be decomposed into direct sum, which is not possible as σi is part of a
largest decomposition of direct sum.

From this property we know that in an occurrence of σ in π, any rectangle
πi contains no, one or more than one rectangles of σ. Given an occurrence, by
taking all the rectangles of π which contain at least one rectangle of σ, we form a
subsequence of rectangles πP1 , . . . , πPm of π1, . . . , π`π , for each of those rectangles
we associate the set of rectangles that this rectangle contains in the occurrence,
we form a sequence of pair (πi, Pi) where the permutation represented by the set
Pi occurs in πi. Note that the Pi forms an ordered partitioning of the rectangles
of σ. Reversibly, finding sequence is enough to prove that an occurrence of σ
exists in π.

Lemma 1. Given the largest decomposition π = π1 ⊕ . . . ⊕ π`π and the largest
decomposition σ = σ1 ⊕ . . . ⊕ σ`σ , if there exists a sequence (πi, Pi) such that
the permutation represented by the set Pi occurs in πi and all the Pi forms an
ordered partitioning of the rectangles of σ then σ occurs in π.

Proof. Suppose that such sequence does not yield an occurrence, so there exists
at least two elements σ[i] and σ[j] such that their matching do not have the same
order as σ[i] and σ[j]. Without lost of generality, we can suppose that i < j.
Suppose that σ[i] and σ[j] are contain in a rectangle/two rectangles which is/are
contain in Pi, by definition of the sequence, the permutations represented by Pi
occurs in πi, so this case cannot happen. We are left with the case where σ[i] and
σ[j] are contain in rectangles which are contain in Pi and Pj , as the elements are
contains in different sets, we deduce that they are in different rectangle moreover
σ is decomposed direct sum so Pi is on the left and below Pj thus σ[i] < σ[j].
From the hypothesis their matchings are not in the same order as σ[i] and σ[j],
but their matching are contains in πi and πj and πi is on the left and below
πj as π is decomposed in direct sum, so their matching cannot have different
order, which prove that the hypothesis does not hold. So such sequence yield an
occurrence. ut

We give an algorithm that construct such sequence, which can be used to
decide whether σ occurs in π.

13

Algorithm 1:

Data: The sequence of rectangles π1, . . . , π`π of the largest decomposition
of π.

Data: The sequence of rectangles σ1, . . . , σ`σ of the largest decomposition
of σ.

Result: A sequence as describe above.
start with an empty ordered partition and an empty subsequence ;
Initialize s with s = σ1, . . . , σ`σ ;
for every rectangle in π1, . . . , π`π do

p = the largest sequence of rectangles of s strating from the first one
such that this sequence occurs in the current rectangle;
if p is not empty then

add p to the ordered partition ;
add the current rectangle to the subsequence ;
remove p from the s ;

if s is empty then
return the solution

else
return that no solution exists

Note that durinf the ”for”, the current rectangle is decomposed in skew sum
as we are working with the largest decomposition, there are three cases possible,
either p is empty, contain a rectangle or contain rectangles. In the second case
the rectangle is also decomposed in skew sum, which means that we want to
decide whether a largest decomposition in skew sum occurs in another largest
decomposition in skew sum, which is solve symmetrically as the current case.
For the third case the rectangles are decomposed in largest decomposition direct
sum, which means that we want to decide whether a largest decomposition in
direct sum occurs in a largest decomposition in skew sum, which we will solve
later.

As see above, the algorithm computes a sequence, so if the algorithm give a
solution, it means that σ occurs in π. To show that our algorithm find a solution
if and only if a σ occurs in π, we still need to prove that if the algorithm does
not find a solution then no solution exists. We prove the contraposition. Suppose
that a sequence (πi, Pi) solution exists and that our algorithm does not compute
a solution. Note that the rectangles of the solution are all contains in π and as the
algorithm over π does not compute sequence, it does not find a correct sequence
over the rectangles of the solution, we prove that this assertion is not true. We
can always suppose that the algorithm start to compute the same sequence as
the solution but start to differ for the rectangle πi. There is only three differences
possible: the algorithm find no rectangle or it find a set which is contain in Pi
or it find a set that contain Pi. The first case is not possible because it implies
that there is nothing that occurs in πi but by hypothesis at least Pi occurs in
πi. The second case implies that the algorithm did not compute the largest set
of rectangles which is not possible. Suppose that the third case happen, we can

14

create a new solution which is closer to the sequence that the algorithm compute:
as the set Pi′ computed by the algorithm contains the set Pi, we replace the pair
(πi, Pi) by the pair (πi, Pi′) in the solution, as Pi′ contains more rectangles
than Pi, we remove from the next sets Pj the rectangles that appears in Pi′

but not in Pi. We obtain a sequence where there is no difference between the
sequence computed by the algorithm or where the difference starts after the pair
corresponding to pi. By iterating this process we can create a solution which have
no difference between the sequence computed by the algorithm, so the algorithm
compute a solution, which is a contradiction.

The next paragraph deals with the case where σ and π are decomposed with
different sum. We focus on the case where π is decomposed in skew sum and σ
is decomposed in direct sum. The other case can be dealt with symmetry.

Proposition 3. Given the largest decomposition π = π1 	 . . . 	 π`π and the
largest decomposition σ1⊕ . . .⊕σ`σ = σ, σ occurs in π if and only if there exists
πi such that σ occurs in πi.

This proposition claims that σ can only occur in a rectangle of π. This can
be easily explained visually, σ forms a ”stair up”, if it is contain in more than
one rectangle of π, as the rectangles of π form a ”stair down”, the ”stair up” of
σ would be cut.

Proof. For the backward implication, πi occurs in π and σ occurs in πi so σ
occurs in π. For the forward implication, suppose that the left most element of
σ is matched to an element of πα and the right most element of σ is a matched
to an element of πβ . The left most element of σ is below the right most element
of σ as σ is formed by an increasing sequence of rectangles but every element
of πα is above every element of πβ as π is formed by a decreasing sequence of
rectangles, So such occurrence is not possible. ut

The proposition directly leads to the following algorithm to decide whether
σ occurs in π.

Algorithm 2:

Data: The sequence of rectangles π = π1, . . . , π`π of the largest
decomposition of π

Data: σ
Result: Whether σ occurs in π
for every rectangle in π1, . . . , π`π do

if σ occurs in the current rectangle then
return that σ occurs π ;

return that σ does not occur in π ;

Note that to decide whether σ occurs in the current rectangle, this algorithm
uses the above algorithm and the above algorithm use this algorithm.

We modify this algorithm for the purpose of computing p require for the first
algorithm: instead of computing whether σ occurs in π, the algorithm compute

15

the rightmost rectangle such that the σ1, . . . , σi occurs in π. Remark that if this
rectangle is σ`σ then we can conclude that σ occurs in π.

Algorithm 3:

Data: The sequence of rectangles π = π1, . . . , π`π of the largest
decomposition of π

Data: The sequence of rectangles σ1, . . . , σ`σ of the largest decomposition
of σ

Result: The rightmost σi such that σ1, . . . , σi occurs in π
initialize r with nothing ;
for every rectangle in π1, . . . , π`π do

tmp = The rightmost σi such that σ1, . . . , σi occurs in the current
rectangle ;
if tmp is at the right of r then

r = tmp ;

return r ;

Note that we also need to modify the first algorithm to compute tmp, but
the modification is small: instead of returning the solution or that no solution
exists, the algorithm return the last rectangle added in p.

We have describe two algorithms which can be used to compute every case
possible, so we have an algorithm to decide whether σ occurs in π. We still need
to prove the complexity claim. To do so, we introduce a closed set of entries for
the algorithms and by using dynamic programming, we can ensure that each
algorithm is only called once for each element of the closed set. This gives us a
bound to the numbers of time that each algorithm is called. The first algorithm
is called to compute tmp for the third algorithm or to decide whether σ occurs
in π, in both case it only requires two rectangles: σi and πj . The third algorithm
is called to compute p for the first algorithm or to decide whether σ occurs
in π, for the second case it requires two rectangles σ and π but for the first
case it requires a πi and a sequence of rectangles especially s = σi, . . . , σ`σ but
remark that the last rectangle of the sequence is always the rightmost rectangle
of the decomposition. We use a good structure to represent the rectangles so
that we can represent the sequence with only one rectangle. A good structure to
represent the rectangles is the compact separable tree. Indeed, remember that
in the tree representation a node represent a rectangle and the decomposition
of a rectangle is represented by the children of the node, then is means that
the node representing σi, . . . , σ`σ have the same father and thus from the node
representing σi, the node representing σ`σ is its rightmost brother. To resume,
each algorithm only need to take one node from the compact tree of σ and
one node from the compact tree of π. As there is O(n) nodes for the tree of π
and O(k) nodes for the tree of σ, each there are O(n.k) entries possible for the
algorithms. Finally each algorithm is computed in O(n) times, as they are only
doing a iteration over the rectangles of π, then the algorithm run in O(k.n2)
time and O(k.n) space.

16

5 Deciding the union of a separable permutations

This subsection is devoted to shuffling permutations. Given three permutations
π, σ and τ , the problem is to decide whether π is the disjoint union of two
patterns that are order-isomorphic to σ and τ , respectively in notation π ∈ σ�τ .
For example 937654812 is the disjoint union of two patterns that are order-
isomorphic to 2431 and 53241, as can be seen in the highlighted form 937654812.
This problem is of interest since it is strongly related to two others problems
that naturally arise in the context of pattern matching for permutations. The
first one is to decide whether the pattern containment problem for parameter
n− k is fixed-parameter tractable (FPT). (Recall that the pattern containment
problem for parameter k is fixed-parameter tractable [10].) The second one is to
decide whether a permutation is a square: Given a permutation π, does there
exists a permutation σ such that π is the disjoint union of two patterns that
are both order-isomorphic to σ? This problem has recently been proved to be
NP-complete [9] for general permutations.

Proposition 4. Given three separable permutations π of length n, σ of length k
and τ of length `, there exists a O(nk3`2) time and O(nk2`2) space algorithm to
decide whether π is the disjoint union of two patterns that are order-isomorphic
to σ and τ , respectively.

Proposition 4 gains in interest if we observe that the complexity of the prob-
lem is still open if we do not restrict the input permutations to be separable
[9].

First remark that if π is separable, and π ∈ σ � τ then σ and τ are also
separable. In other words the case where σ or/and τ is/are not separable is
always false. Thus we consider the non trivial case where σ and τ are separable.

In the following, given π a separable permutation we denote π`π as the right
most rectangle of its largest decomposition especially π = π1⊕. . .⊕π`π . Moreover
we let π(i, j) be πi ⊕ . . .⊕ πj .

Consider the following family of subproblems : Given a separable permutation
π and a sequence of its largest decomposition π(iπ, jπ), a separable permutation
σ and a sequence of its largest decomposition σ(iσ, jσ) and a separable per-
mutation τ and a sequence of its largest decomposition τ(iτ , jτ), we want to
know whether π(iπ, jπ) is the shuffle of σ(iσ, jσ) and τ(iτ , jτ). Which we write
in notation

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ)) =

{
True if π(iπ, jπ) ∈ σ(iσ, jσ)� τ(iτ , jτ)

False otherwise.

By definition π ∈ σ� τ if and only if S(π(1, `π), σ(1, `σ), τ(1, `τ)) is true.
Base.

The base cases are when σ = 1 or (exclusive or) τ = 1. Then if π is also a leaf
then the problem is true, otherwise the problem is false, as elements will be left
unmatched in π.

17

– If π and σ are leaves and τ has no element then S(π(1, 1), σ(1, 1), ∅) = True
– if π and τ are leaves and σ has no element then S(π(1, 1), ∅, τ(1, 1)) = True
– If π is not a leaf, σ is a leaf and τ has no element then S(π(iπ, jπ), σ(1, 1), ∅) =
False

– If π is not a leaf, τ is a leaf and σ has no element then S(π(iπ, jπ), ∅, τ(1, 1)) =
False

Reduction.
Two instances of the problems can represent the same problem. Especially when
one of the arguments represents an unique node, we replace this node by all of
its children. This happens only when i∗ = j∗, where ∗ ∈ {π, σ, τ}.

– If iπ = jπ then

S(π(iπ, iπ), σ(iσ, jσ), τ(iτ , jτ)) = S(πiπ (1, `πiπ), σ(iσ, jσ), τ(iτ , jτ))

– If iσ = jσ then

S(π(iπ, jπ), σ(iσ, iσ), τ(iτ , jτ)) = S(π(iπ, jπ), σiσ (1, `σiσ), τ(iτ , jτ))

– If iτ = jτ then

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , iτ)) = S(π(iπ, jπ), σ(iσ, jσ), τiτ (1, `τiτ))

Recurrence
The idea of the recursion is to splits σ(iσ, jσ) and τ(iτ , jτ), in every way possible
in π(iπ, jπ). For each splitting the obtain two different instances of the problem.
We can sort the splitting depending of the pair of instances obtain. The first
class can be characterized by the fact that in one of the instance in the pair σ or
τ is empty, this is the best case as this correspond to decide whether a separable
permutation occurs in another separable permutation without element left. The
second class is when the above case does not happen. Note that, in any case,
the both instances are smaller in size, especially we reduce the size of the text
permutation and the size of either the first or the second pattern. The recursion
use the property 3 and the lemma 1 to make ”smart” splitting.

– Case where π(iπ, jπ) represents a direct sum decomposition, σ(iσ, jσ) rep-
resents a direct sum decomposition and τ(iτ , jτ) represent a skew sum de-
composition: Note that by property 3, if τ(iτ , jτ)) occurs in π(iπ, jπ) then
it occurs in a unique rectangle, especially we can consider the first rectangle
of π(iπ, jπ) for the occurrence of τ(iτ , jτ) and handle the case accordingly.
So πiπ can contain:
• An occurrence of τ(iτ , jτ)) and some part of an occurrence of σ(iσ, jσ).
• An occurrence of τ(iτ , jτ)) and no occurrence of σ(iσ, jσ).
• Nothing of τ(iτ , jτ)) and some part of an occurrence of σ(iσ, jσ).

The case where πiπ contains nothing cannot happen has we want every
element of π to be used in an occurrence. In those three cases, what is left of
σ and τ has to occur in π(iπ + 1, jπ). Which give us the following solution:

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ))

18

=⋃
j′σ<jσ

(S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , jτ)) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), ∅))

OR

(S(π(iπ, iπ), ∅, τ(iτ , jτ)) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), ∅))

OR⋃
j′σ<jσ

(S(π(iπ, iπ), σ(iσ, j
′
σ), ∅) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), τ(iτ , jτ)))

– Case where π(iπ, jπ) represents a direct sum decomposition, σ(iσ, jσ) rep-
resents a skew sum decomposition and τ(iτ , jτ) represent a skew sum de-
composition: By property 3, σ(iσ, jσ) occurs in a unique child of π(iπ, jπ)
τ(iτ , jτ) occurs in a unique child of π(iπ, jπ). Moreover, as every element
must be used in a occurrence π(iπ, jπ) cannot have more than two rect-
angles. In other words if π(iπ, jπ) has more than two rectangles than this
instance is false and if π(iπ, jπ) has two rectangle σ(iσ, jσ) occurs πiπ and
τ(iτ , jτ) occurs πjπ or σ(iσ, jσ) occurs πjπ and τ(iτ , jτ) occurs πiπ :

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ))

=

S(π(iπ, iπ), σ(iσ, jσ), ∅) ∧ S(π(jπ, jπ), ∅, τ(iτ , jτ))

OR

S(π(iπ, iπ), ∅, τ(iτ , jτ)) ∧ S(π(jπ, jπ), σ(iσ, jσ), ∅)

– If π(iπ, jπ), σ(iσ, jσ) and τ(iτ , jτ) represent direct sum decompositions then
by lemma 1, πiπ contains:
• Some part of the occurrence of τ(iτ , iτ) and some part of the occurrence

of σ(iσ, jσ).
• Some part of the occurrence of τ(iτ , iτ) and nothing of the occurrence

of σ(iσ, jσ).
• Nothing of the occurrence of τ(iτ , iτ) and some part of the occurrence

of σ(iσ, jσ).
• The occurrence of τ(iτ , iτ) and some part of the occurrence of σ(iσ, jσ).
• The occurrence of τ(iτ , iτ) and nothing of the occurrence of σ(iσ, jσ).
• Some part of the occurrence of τ(iτ , iτ) and the occurrence of σ(iσ, jσ).
• Nothing of the occurrence of τ(iτ , iτ) and the occurrence of σ(iσ, jσ).

In all those cases, what is left occurs in π(iπ + 1, jπ).

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ))

=

19⋃
j′σ<jσ
j′τ<jτ

S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , j

′
τ))∧S(π(iπ+1, jπ), σ(j′σ+1, jσ), τ(j′τ+1, jτ))

OR⋃
j′σ<jσ

S(π(iπ, iπ), σ(iσ, j
′
σ), ∅) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), τ(iτ , jτ))

OR⋃
j′τ<jτ

S(π(iπ, iπ), ∅, τ(iτ , j
′
τ)) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), τ(j′τ + 1, jτ))

OR⋃
j′τ<jτ

S(π(iπ, iπ), σ(iσ, jσ), τ(iτ , j
′
τ)) ∧ S(π(iπ + 1, jπ), ∅, τ(j′τ + 1, jτ))

OR

S(π(iπ, iπ), σ(iσ, jσ), ∅) ∧ S(π(iπ + 1, jπ), ∅, τ(iτ , jτ))

OR⋃
j′σ<jσ

S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , jτ)) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), ∅)

OR

S(π(iπ, iπ), ∅, τ(iτ , jτ)) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), ∅)

– The others cases can be dealt with symmetry.

We are left with proving the complexity claim. As before we use a dynamic
programming strategy so that we only need to compute each instance of the
problem once, so we only need to enumerate the number of different entry pos-
sible for the problem to find the complexity of the problem. For this paragraph
let ` be the size of τ . Without lost of generality we can suppose that ` < k. At
first it seems that the problem have n2.k2.`2 cases: for every permutation we
associate two rectangles of its decomposition.

But in those three pairs, one pair has a redundant information: the size of
π(iπ, jπ) must be equal to the size of σ(iσ, jσ) plus the size of τ(iτ , jτ), so given
σ(iσ, jσ), τ(iτ , jτ), π and iπ, we can deduce jπ. Note that jπ may not exists as
the size of σ(iσ, jσ) plus the size of τ(iτ , jτ) may not exactly equal to the size of
a π(iπ, jπ), but in that case we can immediately say that π is not a shuffle. So we
have O(n.k2.`2) different cases to compute. Note that this strategy implies that
for every permutation, we have to compute the size of every π(iπ, jπ) possible,
which can be pre-computed in O(n2) time and will take O(n2) space in the
memory.

The worst case scenario to compute a problem is when π, σ and τ are of the
same decomposition and some part of the occurrence of τ(iτ , iτ)) and some part

20

of the occurrence of σ(iσ, jσ). In this case we must iterate every j′σ, iσ ≤ j′σ ≤ jσ
and every j′τ , iτ ≤ j′τ ≤ jτ possible. But remark that (same as above) from
π(iπ, iπ), τ(iτ , j

′
τ), σ and iσ we can deduce j′σ. So we only need to iterate every

j′τ , iτ ≤ j′τ ≤ jτ possible. Finally each recursive problem is solved in constant
time by dynamic programming. So to compute one case, we take at most O(`)
time. This gives us an O(n.k2.`3) time and O(n.k2.`2) space algorithm.

6 Finding a maximum size separable subpermutation

The longest common pattern problem for permutations is to find the largest
permutation that occur in each input permutation. The problem is intended
to be the natural counterpart to the classical longest common the subsequence
problem. Rossin and Bouvel [14] gave an O(n8) time algorithm for computing
the largest common separable pattern that occurs in two permutations of size
(at most) n, one of these two permutation being separable. This problem was
further generalised in [6] where it is shown that that the problem of computing
the largest separable pattern that occurs in k permutations of size (at most) n
is solvable in O(n6k+1) time and O(n4k+1) space. Notice that this later problem
is NP-complete for unbounded k, even if all input permutations are actually
separable.

The following proposition improves upon the algorithm of Rossin and Bouvel
[14].

Proposition 5. Given a permutation of size n and a separable permutation of
size k, one can compute in O(kn6) time and O(n4 log k) space the largest common
separable pattern that occurs in two input permutations.

For clarity of exposition, we begin by considering the problem of computing
the largest separable pattern that occurs in a single permutation π. We consider
the following family of subproblems: For every two i, j ∈ [n] with i ≤ j, and
every lower and upper bound lb,ub ∈ [n] with lb ≤ ub, we have the subproblem
Pi,j,lb,ub, where the semantic is the following:

Pi,j,lb,ub
∆
= max{|s| : s is a subsequence of π[i, j], red(s) is separable, and

every element in s is in the interval [lb,up]}.

We show that this family of problems is closed under induction.

– Base: We have two base cases.
• If i = j, then

Pi,i,lb,ub :=

{
1 if lb ≤ π[i] ≤ ub,

0 otherwise.

• If lb = up, then

Pi,j,b,b :=

{
1 if there exists ι ∈ [i, j] such that π[ι] = b,

0 otherwise.

21

– Step: Here i < j, lb < ub, and we must decide whether the optimum Pi,i,lb,ub
is achieved with a positive or negative root node. Thus

Pi,j,lb,ub = max
{
P+
i,j,lb,ub, P

−
i,j,lb,ub

}
,

where
• (Hypothesis of a positive node)

P+
i,j,lb,ub := max{Pi,ι−1,lb,b−1 + Pι,j,b,ub : i < ι ≤ j and lb < b ≤ ub}.

• (Hypothesis of a negative node)

P−i,j,lb,ub := max{Pi,ι−1,b−1,ub + Pι,j,lb,b : i < ι ≤ j and lb < b ≤ ub}.

This implies an O(n6) time and O(n4) space algorithm for finding the largest
separable pattern that occurs in a permutation of size n.

The next step is to consider the problem of finding a longest separable pattern
that occurs in two given permutations (that may not be separable themselves)
[14]. Note that this problem contains as a special case the pattern containment
problem for separable patterns. Let π be a permutation of size n. For every
i, j ∈ [n] with i ≤ j and every ub, lb ∈ [n] with lb] ≤ up, we let π[i, j, lb,up]
stand for the subsequence obtained from π[i, j] by trimming away all elements
above lb or below up. Now, let π1 and π2 be two permutations of Sn. We consider
the following family of subproblems: For every i1, j1, lb1,ub1 ∈ [n] with i1 ≤ j1
and lb1 ≤ ub1, and every i2, j2, lb2,ub2 ∈ [n] with i2 ≤ j2 and lb2 ≤ ub2, we
have the subproblem Pi1,j1,lb1,ub1,i2,j2,lb2,ub2

where the semantic is as follows:

Pi1,j1,lb1,ub1,i2,j2,lb2,ub2

∆
= max{|s| : s is a pattern occuring both in

π1[i1, j1, lb1,ub1] and in π2[i2, j2, lb2,ub2]}

It is easy to see that this family of subproblems is closed under induction and
yields a O(n12) time and O(n8) space algorithm for finding the size of largest
separable pattern that occurs in two permutation of size (at most) n. This is
a slight improvement compared to [6] where an O(n13) time and O(n9) space
algorithm is proposed.

The outlined approach can be extended to a polynomial-time algorithm for
a fixed number of input permutations (as shown in [6]). However, in practice the
complexity of this solution is already prohibitive for just two sequences. There-
fore, rather than further extending this approach we focus on underlining how it
encompasses other natural problems. Indeed, following Bouvel and Rossin [14],
we consider the problem of computing a longest separable pattern that occurs in
two input permutations of length at most n, one of these two permutation being
separable. For this precise problem Bouvel and Rossin gave an O(n8) algorithm.
We consider the following family of subproblems: For every node v of Tσ, every
two i, j ∈ [n] with i ≤ j, and every lower and upper bounds lb,ub ∈ [n] with
lb ≤ up, we have the subproblem Pv,i,j,lb,ub, where the semantic is the following.

Pv,i,j,lb,ub
∆
= max{|s| :s is a common subsequence of v and π[i, j]

with all values in the interval [lb,ub].

22

We show that this family of problems is closed under induction.

– Bases: We have three base cases:
• If i = j] then

Pv,i,i,lb,ub :=

{
1 if lb ≤ π[i] ≤ ub,

0 otherwise.

• If lb = ub] then

Pv,i,j,b,b :=

{
1 if there exists ι ∈ [i, j] such that π[ι] = b,

0 otherwise.

• If v is a leaf then

Pv,i,j,lb,ub :=

{
1 if there exists ι ∈ [i, j] such that lb ≤ π[ι] ≤ ub,

0 otherwise.

– Step: Here i < j, lb < ub, and we let vL and vR stand for the left and right
children of v, respectively.
• If v is a positive node then

Pv,i,j,lb,ub := max
i<ι≤j

max
lb<b≤ub

PvL,i,ι−1,lb,b−1 + PvR,ι,j,b,ub.

• If v is a negative node then

Pv,i,j,lb,ub := max
i<ι≤j

max
lb<b≤ub

PvL,i,ι−1,b−1,ub + PvR,ι,j,lb,b.

The above description implies an O(kn6) time O(kn4) space algorithm for
computing the largest common separable pattern that occurs in two permuta-
tions of size (at most) n, one of these two permutation being separable, thereby
improving on Rossin and Bouvel [14]. The memory can be reduced to O(n4 log k)
with the approach detailed Section 3.

7 Vincular and bivincular separable patterns

This subsection is devoted to vincular and bivincular separable patterns. The
problem is W [1]-complete for parameter the size of the pattern. As for regular
pattern adding constraints can reduce the complexity of the problem. We prove
that detecting a vincular or a bivincular separable pattern in a permutation is
polynomial time solvable. To the best of our knowledge, this is the first time
the pattern matching problem is proved to be tractable for a generalization of
separable patterns. Since a vincular pattern is a bivincular pattern, we focus on
bivincular patterns.

Recall that bivincular patterns generalize classical pattern even further than
vincular patterns. Indeed, in bivincular pattern, not only positions but also val-
ues of elements involved in an occurrence may be forced to be adjacent (see

23

Fig. 8: From left to right, the bivincular pattern σ = 1234q
x2143 , An occurrence of

σ in 3216745, An occurrence of 2143 in 3216745 but not an occurrence of σ in
3216745 because the point (1, 3) and (5, 7) are in the forbidden area.

+ −

Fig. 9: From left to right the permutation 342561 (see fig 4) and the minimal
rectangles of the nodes 342 and 56, the rectangles of the children of a negative
node, the rectangles of the children of a positive node.

Section 2). Let σ̃ = (σ,X, Y) be a separable bivincular pattern2 of length k and
π ∈ Sn. We represent bivincular patterns (as well as occurrences of bivincular
patterns in permutations) by diagrams. Such a diagram consists in the set of
points at coordinates (i, σ[i]) drawn in the plane together with forbidden regions
denoting adjacency constraints. A vertical forbidden region between two points
denotes the fact that the occurrences of these two points must be consecutive
in positions. In a similar approach, an horizontal forbidden region between two
points denotes the fact that the occurrences of these two points must be con-
secutive in value. Now given a permutation π and a bivincular pattern σ, The
rational for introducing these augmented diagrams stems from the following fact:
π contains an occurrence of a bivincular pattern σ̃ if there exists a set of points
in the diagram of π that is order-isomorphic to σ and if the forbidden region do
not contain any point (see Figure 8).

The algorithm of section 3 cannot be used to find an occurrence of a bivin-
cular pattern as we do not have any control on the position and the value of
matching element.

Proposition 6. Given a permutation π of length n and a bivincular separable
pattern σ of length k, there exists an O(kn6) time and O(kn4) space algorithm
to decide whether σ occurs in π.

2 This is a shortcut for σ being separable and (σ,X, Y) being bivincular.

24

Given a bivincular separable permutation pattern σ̃, and a subsequence σ′,
we define the bivincular permutation σ̃′ has the binvincular permutation with
the element of σ′, with top line the top line of σ̃ where we remove the elements
not in σ′ and with bottom line the elements of the node where m and m+ 1 are
underlined if and only if m and m + 1 are element of σ′ and m and m + 1 are
underlined in σ̃, moreover:

– if σ[i] is the bottommost element of σ′ and σ[i− 1]σ[i] or xσ[i] then we add
the bottom left corner.

– if σ[i] is the toptommost element of σ′ and σ[i]σ[i+ 1] or σ[i]y then we add
the bottom right corner.

– if σ[i] is the leftmost element of σ′ and σ[i− 1]σ[i] or pσ[i] then we add the
top left corner.

– if σ[i] is the leftmost element of σ′ and σ[i− 1]σ[i] or σ[i]q then we add the
top right corner.

Especially (remember that σ(v) represent the subsequence embedded in the node
v) we represent by σ̃(v) the bivincular pattern formed by the subsequence σ(v).

The idea of the algorithm is to use the separable tree of σ to find an occur-
rence and a second trick: to find an occurrence of σ̃, we need to find an occurrence
for the (permutation embedded in) its left child and the (permutation embedded
in) its right child, such that those two permutations are compatible which each
other. More precisely, the occurrences must be contain in rectangles such that
the rectangle of the occurrence of left child is on the left of the rectangle of
the occurrence of the right child, and one has to be above the other depending
whether σ is decomposed in direct or skew sum. Note that this is enough to find
a occurrence for σ, but not σ̃. Indeed the constraints on values and positions are
not respected.

This is where the second trick comes handy: remark that given that σ̃ =
σ̃α ⊕ σ̃β , if the topmost, bottommost, leftmost and rightmost elements of σ̃α
(resp. σ̃β) are respectively in the top, bottom, left and right edges of the rectangle
of the occurrence of σ̃α (resp. σ̃β) and if the two rectangle are consecutive in
the x-coordinate (the first minimal rectangle end at x and the second minimal
rectangle start at x+ 1), then the matching of the right most element of σ̃α and
the matching of the left most element of σ̃β are consecutive in index. In the same
fashion, if the rectangles are consecutive in the y-coordinate (the first minimal
rectangle end at y and the second minimal rectangle start at y + 1), then the
matching of the top most element of σ̃α and the matching of the bottom most
element of σ̃β are consecutive in value.

The above remark allow us to take care of the constraint value between the
bottommost element of σ̃β and the topmost element of σ̃α and the constraint
position between the leftmost element of σ̃β and the rightmost element of σ̃α.

Moreover remark that an occurrence of σ̃α (resp. σ̃β) take care of all con-
straint on value and position of the elements in σα (resp.σβ) except for it topmost
and rightmost (resp. bottommost and leftmost) elements. So the only constraint
left are on those elements, be we can take care of them by positioning the rect-
angle correctly.

25

In the following, if u is a leaf such that σ[i] = σ(u) then we write σ(u + 1)
to represent σ[i+ 1] and σ(u− 1) to represent σ[i− 1].

The pattern matching problem with bivincular permutation can be solved
by the following family of subproblems : For every node v of Tσ, for every two
i, j ∈ [n] with i ≤ j, for every lower and upper bound lb,ub ∈ [n] with lb ≤ ub,
which form a rectangle with left bottom corner (i, lb) and with right top corner
(j,ub), we want to decide whether the rectangle contains an occurrence of σ̃(v),
which give us the notation

PMBv,i,j,lb,ub =


True if there exists an occurence of the bivincular pattern

σ̃(v) in π where every element are contains

in the rectangle ((i, lb), (j,ub)).

False otherwise

By abuse of language, we say that σ̃(v) occurs in ((i, lb), (j,ub)). This problem
can be solve by the following induction:

Base: If v is a leaf then :

PMBv,i,j,lb,ub =



True If ∃ι ∈ [i, j] and π[ι] ∈ [lb, ub]

and if σ(v)(σ(v) + 1) then π[ι] = ub

and if σ(v)
q

then π[ι] = ub = n

and if (σ(v)− 1)σ(v) then π[ι] = lb

and if pσ(v) then π[ι] = lb = 1

and if σ(v)σ(v + 1) then ι = j

and if σ(v)y then ι = j = n

and if σ(v − 1)σ(v) then ι = i

and if xσ(v) then ι = i = 1

False otherwise

A leaf occurs in ((i, lb), (j,ub)) if and only if the rectangle is not empty. This
is what the first condition is testing. The fourth next conditions assure that the
matched element is on an edge of ((i, lb), (j,ub)). For example if σ(v)σ(v + 1)
then the matched element must be on the right edge, and intuitively σ(v + 1)
will be on the left edge of the ”next” rectangle.

Step. Here i < j and lb < ub and we let vL and vR stands for the left and
right child of v respectively.

Suppose that σ(v) occurs in ((i, lb), (j,ub)), and that v is a positive node.
So σ(v) = σ(vL)⊕ σ(vR), in other words σ(v) forms a stair up of two rectangles
and so must the occurrence of σ(v). So an occurrence of σ(v) is composed by a
left rectangle that contains the occurrence of σ(vL) and a right rectangle that
contains the occurrence of σ(vR).

To find whether σ(v) occurs in ((i, lb), (j,ub)) we just have to find whether
such occurrence of σ(vL) and σ(vR) exists. We can do so by trying every pair
of such rectangle, but to reduce the number of pair to test and to control the

26

i ι j
lb

b

ub

Fig. 10: What the pair of rectangle looks like.

position and value of the elements of the occurrence we require that the left
rectangle share the same bottom edge and the same left edge as the rectangle
((i, lb), (j,ub)) ie the left rectangle is ((i, lb), (∗, ∗)), the right rectangle share
the same top edge and the same right edge as rectangle ((i, lb), (j,ub)) ie the
right rectangle is ((∗, ∗), (j,ub)) and that the left rectangle is consecutive in x
and y coordinate to the right rectangle. In other words, we will try to find an
occurrence of σ(vL) and σ(vR) in every pair of rectangle ((i, ι−1), (lb, b−1) and
((ι, j), (b,ub)), see Figure 10. In notation this gives us:

PMBv,i,j,lb,ub =
∨

ι∈(i,j]
b∈(lb,ub]

PMBvL,i,ι−1,lb,b−1 ∧PMBvR,ι,j,b,ub

The case where v is a negative node can be dealt with symmetry:

PMBv,i,j,lb,ub =
∨

ι∈(i,j]
b∈(lb,ub]

PMBvL,i,ι−1,b−1,ub ∧PMBvR,ι,j,lb,b

If there is no condition on position nor on value, this algorithm solves the
pattern matching problem: If σ = σα ⊕ σβ , then every element of σα is left
and below every element of σβ . Moreover if there is an occurrence of σα and an
occurrence of σβ such that the elements of the occurrence of σα are left below
the elements of the occurrence of σβ then there exists an occurrence of σ in π.
More formally we have to check every case possible, and to whether or not the
element really occur on the edges.

For the constraints on position and value, intuitively, Whenever we have
σ(v)σ(v′),and w as the deepest ancestor of v and v′, σ(v) will be matched to
the right edge of the left rectangle and σ(v′) will be matched to the left edge of
the right rectangle so that σ(v) and σ(v′) are consecutive in index. Likewise if
(σ(v))σ(v′), σ(v) will be matched to the top edge of the left rectangle and σ(v′)

will be matched to the bottom edge of the right rectangle so that σ(v) and σ(v′)
are consecutive in value. See Figure 12). More

Position Constraint. There are 3 types of position constraint added by bivincular
permutation.

27

σ(v)

σ(v′)

i ι j
lb

b

ub

Fig. 11: The matching elements of σ(v) and σ(v′) are consecutive in value if and
only if σ(v) is matched to b− 1 and σ(v′) is matched to b.

σ(v)

σ(v′)

i ι j
lb

b

ub

Fig. 12: The matching element of σ(v) and σ(v′) are consecutive in position if
and only if σ(v) is matched to π[ι− 1] and σ(v′) is matched to π[ι].

– If xσ[1] then the leftmost element of σ must be matched to the leftmost
element of π (σ[1] occurs in π[1] in an occurrence of σ in π). Remark that
the leaf v such that σ(v) = σ[1] is the leftmost ancestor of rσ. Note that
the rectangle of a left child shares the same left edge as the rectangle of his
father (by induction), plus this is solved in the base case and the base case
asks to the matched element to be on its left edge, finally note that the main
problem has x = 1 for its left edge.

– The condition σ[nσ]y follows the same idea as the condition xσ[1].
– If σ(v)σ(v′) (and thus σ(v+1) = σ(v′) and σ(v) = σ(v′−1)) then the index

of the occurrence of σ(v) and σ(v′) must be consecutive. In other words if
σ(v) occurs in π[j] then σ(v′) must occur in π[j + 1]. Let w be the first
common ancestor of v and v′ and wL be the left child of w and wR be the
right child of w. First note that v is the rightmost ancestor of wL and thus
the rectangle of v shares the same right edge as the rectangle of wL, plus v′

is the leftmost ancestor wR and thus the rectangle of v′ shares the same left
edge as the rectangle of wR. Moreover those cases are solved as base cases
and the base case asks to the element matching v to be on its right edge,
and to the element matching v′ to be on its left edge. Finally remark that
the pair of rectangles of two brothers is consecutive in the x-coodinate (by
induction).

Before diving into the value constraints, we highlight a property.

28

Fig. 13: if v occurs in the dotted rectangle then u occurs in the bold rectangle

Property 4. Given a node v and a leaf u, such that σ(u) is the maximal (respec-
tively minimal) element of σ(v) then if v occurs in ((i, lb), (j,ub)) then there
exists i ≤ ι ≤ ι′ ≤ j, and lb ≤ b ≤ ub and u occurs in ((ι, b), (ι′,ub)) (resp.
((ι, lb), (ι′, b))).

In other words if v occurs in a rectangle R and u is the leaf with the maximal
element of σ(v) then there exists an occurrence of u included in a rectangle that
shares the same top edge as R (see fig 13). Especially if PMBv,i,j,lb,ub is true
then PMBu,ι,ι′,b,ub is true.

Proof. We focus on proving the assertion in the case where σ(u) is the maximal
element of σ(v), the other case can be dealt by symmetry. Suppose that the
assertion is false. If the rectangle of u can not have the same top edge as the
rectangle of v it means that there exists a rectangle in between, in other words
there exists a value bigger than σ(u) which is not possible.

Value Constraint. There are 3 types of value constraint added by bivincular
permutation.

– If pσ(v) (and thus σ(v) = 1) then the minimal value of σ must occur in
the minimal value of π. By property 4, the rectangle of σ(v) has the same
bottom edge as the rectangle of σ(rσ), plus this is solved in the base case
and the base case asks to the matching element to be on the bottom edge,
finally the rectangle of rσ has y = 1 as its bottom edge .

– The σ(v)
q

follows the same idea as pσ(v).
– If σ(v)σ(v′) (and thus σ(v′) = σ(v) + 1) then the occurrence of σ(v) and
σ(v′) must be consecutive. In other words if σ(v) occurs in π[j] then σ(v′)
must occur in π[j] + 1. Let w be the first common ancestor of v and v′. Let
wL be the left child of w and wR be the right child of w. Suppose that w is
positive then v is a child of wL and v′ is a child of wR. First remark that
σ(v) is the the maximal element of σ(wL), otherwise σ(v) and σ(v′) would
not be consecutive. Thus by property 4, the rectangle of σ(v) has the same
top edge as the rectangle of σ(wL). Plus σ(v′) is the the minimal element of
σ(wR), otherwise σ(v) and σ(v′) would not be consecutive. Thus by property
4, the rectangle of σ(v) has the same bottom edge as the rectangle of σ(wR).
Moreover this is solved in the base case and the base case asks the element
matching σ(v) to be on its top edge and the element matching σ(v′) to be on
its bottom edge. Finally remark that the pair of rectangles of two brothers
are consecutive in the y-coordinate (by induction). We can prove the same
by symmetry if w is negative.

29

So at the end of the algorithm we can decide whether σ̃ occurs in π. Finally,
the algorithm has kn4 different cases, and each case try every pair of rectangle
in constant time (by dynamic programming), so each case takes O(n2) time to
solve. This gives us an O(kn6) time and O(kn4) space algorithm.

Acknowledgments

We thank the anonymous reviewers whose comments and suggestions helped
improve and clarify this manuscript.

References

1. S. Ahal and Y. Rabinovich, On Complexity of the Subpattern Problem, SIAM Jour-
nal on Discrete Mathematics 22 (2008), no. 2, 629–649.

2. M.H. Albert, R.E.L. Aldred, M.D. Atkinson, and D.A. Holton, Algorithms for pat-
tern involvement in permutations, Proc. International Symposium on Algorithms
and Computation (ISAAC), Lecture Notes in Computer Science, vol. 2223, 2001,
pp. 355–366.

3. D. Avis and M. Newborn, On pop-stacks in series, Utilitas Mathematica 19 (1981),
129–140.

4. P. Bille and I.L. Gørtz, The tree inclusion problem: In linear space and faster, ACM
Trans. Algorithms 7 (2011), no. 3, 38.

5. P. Bose, J.F.Buss, and A. Lubiw, Pattern matching for permutations, Information
Processing Letters 65 (1998), no. 5, 277–283.

6. M. Bouvel, D. Rossin, and S. Vialette, Longest common separable pattern between
permutations, Proc. Symposium on Combinatorial Pattern Matching (CPM), Lon-
don, Ontario, Canada (B. Ma and K. Zhang, eds.), Lecture Notes in Computer
Science, vol. 4580, 2007, pp. 316–327.

7. M.-L. Bruner and M.Lackner, A fast algorithm for permutation pattern match-
ing based on alternating runs, 13th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), Helsinki, Finland (F.V. Fomin and P. Kaski, eds.),
Springer, 2012, pp. 261–270.

8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms,
third ed., MIT Press, Cambridge, 2009.

9. S. Giraudo and S. Vialette, Unshuffling permutations, 12th Latin American Theo-
retical Informatics Symposium (LATIN), Lecture Notes in Computer Science, no.
9644, Springer, 2016, pp. 509–521.

10. S. Guillemot and D. Marx, Finding small patterns in permutations in linear time,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), Portland, Oregon, USA (C. Chekuri, ed.), SIAM, 2014, pp. 82–
101.

11. L. Ibarra, Finding pattern matchings for permutations, Information Processing Let-
ters 61 (1997), no. 6, 293–295.

12. P. Kilpeläinen and H. Manilla, Ordered and unordered tree inclusion, SIAM J. on
Comput. 24 (1995), no. 2, 340–356.

13. S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2013.
14. D. Rossin and M. Bouvel, The longest common pattern problem for two permuta-

tions, Pure Mathematics and Applications 17 (2006), 55–69.

30

15. V. Vatter, Permutation classes, Handbook of Enumerative Combinatorics
(M. Bóna, ed.), Chapman and Hall/CRC, 2015, pp. 753–818.

