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Université de Paris-Est/Marne-la-Vallée
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Abstract—We address the detection of a low rank n⇥n matrix
X0 from the noisy observation X0+Z when n ! 1, where Z is a
complex Gaussian random matrix with independent identically
distributed Nc(0, 1

n ) entries. Thanks to large random matrix
theory results, it is now well-known that if the largest singular
value �1(X0) of X0 verifies �1(X0) > 1, then it is possible to
exhibit consistent tests. In this contribution, we prove a contrario

that under the condition �1(X0) < 1, there are no consistent
tests. Our proof is inspired by previous works devoted to the
case of rank 1 matrices X0.

Index Terms—statistical detection tests, large random matrices,
large deviation principle.

I. INTRODUCTION

The problem of testing whether an observed n

1

⇥n

2

matrix
Y is either a zero-mean independent identically distributed
Gaussian random matrix Z with variance 1

n

2

, or X
0

+ Z for
some low rank deterministic matrix X

0

, called also a spike, is a
fundamental problem arising in numerous applications such as
the detection of low-rank multivariate signals or the Gaussian
hidden clique problem. When the two dimensions n

1

, n

2

converge towards 1 in such a way that n
1

/n

2

! c > 0 (the
rank of X

0

remaining fixed), known results on the so-called
additive spiked large random matrix models have enabled
to re-consider this fundamental detection problem (see e.g.

[11], [4], [3]). It was established a long time ago (see e.g.

[1] and the references therein) that in the above asymptotic
regime, the largest singular value �

1

(Z) of Z converges almost
surely towards 1 +

p
c. More recently, under mild technical

extra assumptions, [3] proved that �
1

(X
0

+Z) still converges
towards 1 +

p
c if �

1

(X
0

) converges towards a limit strictly
less than c

1/4. On the contrary, if the limit of �

1

(X
0

) is
strictly greater than c

1/4, then �

1

(X
0

+Z) converges towards
a limit strictly greater than 1 +

p
c. This result implies that

the Generalized Likelihood Ratio Test (GLRT) is consistent
(i.e. both the probability of false alarm and the probability of
missed detection converge towards 0 in the above asymptotic
regime) if and only if �

1

(X
0

) is above the threshold c

1/4. In
order to simplify the exposition, we assume from now on that
n

1

= n

2

= n, so that ratio c reduces to 1.
While the detection problem was extensively addressed

in the zone �

1

(X
0

) > 1, the case where �

1

(X
0

) < 1

was much less studied. Montanari et al. [10] consider the
zone �

1

(X
0

) < 1 when X
0

is a rank 1 matrix. Thanks to
information geometry tools, [10] prove that, in this region, it

is impossible to find a consistent test for the detection of the
spike. Irrespective of the standard random matrix tools, this
approach is extended in [10] to the more general case when
X

0

and Z are tensors of order d � 3; namely, if the Frobenius
norm of the tensor X

0

is stricly less than a threshold depending
in d, then the probability distributions of the observation under
the two hypotheses are asymptotically undistinguishable, so
that any detection test cannot behave better than a random
guess. This property, which is stronger than the non-existence
of a consistent test, does not hold in the matrix case d = 2:
see for instance [12] where a non-consistent test is exhibited
that has a better performance than a random guess.

In this paper, we focus on the case where X
0

has general
rank r. Our contribution is to prove that under �

1

(X
0

) < 1,

the consistent detection is impossible. While this theoretical
result is not unexpected, we believe that it provides a better
understanding of the above fundamental detection problem in
large dimensions without resorting to the machinery of large
random matrices.

II. MODEL, NOTATION, ASUMPTION

The set of complex-valued matrices Cn⇥n is a com-
plex vector-space endowed with the standard scalar product
hX,Yi = Tr(XY⇤

) and the Frobenius norm kXk
F

=

phX,Xi. The spectral norm of a matrix X is denoted by
kXk

2

. The spike (“the signal”) is assumed to be a matrix of
fixed rank r and hence admits a SVD such as

X
0

=

r

X

j=1

�

j

u
j

v⇤
j

= U⇤V⇤ (1)

where �

i

= �

i

(X
0

) are the singular values of X
0

sorted in
descending order and where ⇤ is the diagonal matrix gathering
the (�

j

)

j=1,...,r

in the descending order. As X
0

has to be
defined for any n, we impose a non-erratic behavior of X

0

,
namely that all its singular values (�

j

)

j=1,...,r

do not depend
on n for n large enough. This hypothesis could be replaced
by the condition that (�

j

)

j=1,...,r

all converge towards a finite
limit at an ad’hoc rate. However, this would introduce purely
technical difficulties.

The noise matrix Z is assumed to have i.i.d. entries dis-
tributed as N

c

(0, 1/n). We consider the alternative H
0

: Y =

Z versus H
1

: Y = X
0

+ Z. We denote by p

1,n

(y) the
probability probability density of Y under H

1

and p

0,n

(y)
the density of Y under H

0

. L(Y) =

p

1,n(Y)

p

0,n(Y)

is the likelihood



ratio and we denote by E
0

the expectation under H
0

. We now
recall the fundamental information geometry results used in
[10] in order to address the detection problem.The following
properties are well known (see also [2] section 3):

• (i) If E
0

⇥L(Y)

2

⇤

is bounded, then no consistent detection
test exists.

• (ii) If moroever E
0

⇥L(Y)

2

⇤

= 1+o(1), the total variation
distance between p

0,n

and p

1,n

converges towards 0, and
no test performs better than a decision at random.

We however mention that (i) and (ii) are only sufficient
conditions. In particular, E

0

⇥L(Y)

2

⇤

unbounded does not
imply the existence of consistent tests.

III. PRIOR ON THE SPIKE. EXPRESSION OF THE
SECOND-ORDER MOMENT.

The density of Z, seen as a collection of n2 complex-valued
random variables, is obviously p

0,n

(z) = 

n

exp

⇣

�n kzk2
F

⌘

where 

n

=

�

n

⇡

�

n

2

. On the one hand, we notice that the study
of the second-order moment of the likelihood ratio is not suited
to the deterministic model of the spike as presented previously.
Indeed, in this case E

0

⇥L(Y)

2

⇤

has the simple expression
exp

⇣

2n kX
0

k2
F

⌘

and always diverges. On the other hand,
the noise matrix shows an invariance property: if ⇥

1

,⇥
2

are
unitary n⇥n matrices , then the density of⇥

1

Z⇥
2

equals this
of Z. We hence modify the data according to the procedure: we
pick two independent unitary ⇥

1

,⇥
2

according to the Haar
measure (which corresponds to the uniform distribution on the
set of all unitary n⇥ n matrices), and change the data tensor
Y according to ⇥

1

Y⇥
2

. As said above, this does not affect
the distribution of the noise, but this amounts to assume a
certain prior on the spike. Indeed, this amounts to replace u

i

by ⇥
1

u
i

and v
i

by ⇥⇤
2

v
i

. In the following, the data and the
noise tensors after this procedure are still denoted respectively
by Y and Z.

We are now in position to give a closed-form expression
of the second-order moment of L(Y) . We have p

1,n

(Y) =

E
X

[p

0,n

(Y �X)] where E
X

is the mathematical expectation
over the prior distribution of the spike, or equivalently over
the Haar matrices ⇥

1

,⇥
2

. It holds that E
0

⇥L(Y)

2

⇤

=

E [exp (2nR hX,X0i)] where the expectation is over indepen-
dent copies X,X0 of the spike (R stands for the real part);
X and X0 being respectively associated with (⇥

1

,⇥
2

) and
(⇥0

1

,⇥0
2

), E
0

⇥L(Y)

2

⇤

has the expression

E
h

exp

⇣

2nRTr
⇣

⇥
1

X
0

⇥
2

�

⇥0
2

�⇤
X⇤

0

�

⇥0
1

�⇤
⌘⌘i

.

As ⇥
k

and ⇥0
k

are Haar and independent, then (⇥0
1

)

⇤⇥
1

and
⇥

2

(⇥0
2

)

⇤ are also independent, Haar distributed and it holds

E
0

⇥L(Y)

2

⇤

= E [exp (2n⌘)] , (2)

where the expectation is over the independent Haar matrices
⇥

1

,⇥
2

and ⌘ = RTr (⇥
1

X
0

⇥
2

X⇤
0

). The ultimate simplifi-
cation comes from the decomposition (1) which implies that

⌘ = RTr (⇤ 
1

⇤ 
2

) (3)

where  
1

= U⇤⇥
1

U and  
2

= V⇤⇥
2

V. It is clear that  
1

and  
2

are independent matrices that are both distributed as
the upper r ⇥ r diagonal block of a Haar unitary matrix.

IV. RESULT

The main result of our contribution is the following

Theorem 1. If �

1

(X
0

) < 1 then

lim supE
0

⇥L(Y)

2

⇤ 
✓

1

1� �

1

(X
0

)

4

◆

r

2

and it is not possible to find a consistent test.

We remind that we are looking for a condition on X
0

(due
to (2,3), this is a condition on ⇤) under which E [exp (2n⌘)]

is bounded. Evidently, the divergence may occur only when
⌘ > 0. We hence consider E

1

= E [exp (2n⌘) I
⌘>✏

] and E

2

=

E [exp (2n⌘) I
⌘✏

], and prove that, for a certain small enough
✏ > 0 to be specified later, E

1

= o(1) and that E
2

is bounded.

V. THE E

1

TERM: COMPUTATION OF THE GRF OF ⌘.

It is clear that the boundedness of the integral E
1

is achieved
when ⌘ rarely deviates from 0. As remarked in [10], the
natural machinery to consider is this of the Large Deviation
Principle (LDP). In essence, if ⌘ follows the LDP with rate
n, there can be found a certain non-negative function called
Good Rate Function (GRF) I

⌘

such that for any Borel set
A of R, 1

n

logP (⌘ 2 A) converges towards sup

x2A

�I

⌘

(x).
The existence of a GRF allows one to analyze the asymptotic
behaviour of the integral E

1

. In the next section, we thus
justify that ⌘ follows a Large Deviation Principle with rate
n, and we compute the associated GRF.

A. Computation of the GRF of ⌘

Eq. (3) and the Cauchy-Schwarz inequality imply that the
random variable ⌘ is bounded: |⌘|  ⌘

max

with ⌘

max

=

P

r

j=1

�

2

j

.

We first recall that for i = 1, 2, the random matrix  
i

follows a LDP with rate n and that its GRF at the parameter
 2 Cr⇥r, k k

2

 1, is log det (I
r

� ⇤ ) (see Theorem
3-6 in [8]). Besides, ⌘ is a function of the i.i.d. matrices
( 

i

)

i=1,2

and therefore, the contraction principle applies to
⌘ (see Theorem 4.2.1 in [7]): it ensures that ⌘ follows a LDP
with rate n and its GRF is such that, for each real |x|  ⌘

max

,
�I

⌘

(x) is the solution of the following optimization problem:

Problem 2. Maximize in Cr⇥r

log det (I� ⇤
1

 
1

) + log det (I� ⇤
2

 
2

) . (4)

under the constraints

RTr (⇤ 
1

⇤ 
2

) = x (5)
k 

i

k
2

 1, i = 1, 2 (6)



We provide a closed-form solution of Problem 2. In this
respect, we define for each k = 1, . . . , r the interval I

k

defined
by

8k = 1, ..., r � 1 : I
k

=]

k

X

i=1

�

�

2

i

� �

2

k

�

,

k+1

X

i=1

�

�

2

i

� �

2

k+1

�

]

(7)

and I
r

=]

P

r

i=1

�

�

2

i

� �

2

k

�

, ⌘

max

]. It is easy to check that
(I

k

)

k=1,...,r

are disjoint and that [r

k=1

I
k

=]0, ⌘

max

]. The
following result holds:

Theorem 3. The maximum of Problem 2 is given by

�I

⌘

(x) = 2

r

X

k=1

log

0

@

"

P

k

i=1

�

2

i

� |x|
k

#

k

1

⇧

k

i=1

�

2

i

1

A IIk(|x|)

(8)

It is easy to check that the function x 7! �I

⌘

(x) is
continuous on ]0, ⌘

max

[. The proof of Theorem 3 is provided
in the Appendix.

We illustrate Theorem 3 through the following experiment.
The rank of the spike is fixed to r = 3 and the singular
values have been set to (�

1

,�

2

,�

3

) = (1 , 0.7 , 0.2). We
have computed millions of random samples of the matrices
( 

1

, 
2

). Each pair is associated with a point (x, y) defined
as x = RTr (⇤ 

1

⇤ 
2

) and y =

P

2

i=1

log det (I� ⇤
i

 
i

) .

We obtain a cloud of points, the upper envelope of which is
expected to be �I

⌘

(x). We have also plotted the graph of the
function y = �I

⌘

(x). In addition, we mention that, in the
more general context of tensors of order d, the second-order
moment of L(Y) is still given by (2) but the random variable
- call it ⌘

d

- has a more complicated form than (3), see [5]; the
asymptotics of the term E

1

can still be studied by evaluating
the GRF of ⌘

d

. This GRF is the solution of an optimization
problem that, apparently, cannot be solved in closed form for
d � 3. In [5], an upper bound of the opposite of the true GRF
is computed; this upper bound, valid for any d is given for
d = 2 by log

⇣

1� |x|
⌘

max

⌘

. We thus also represent in Figure
V-A this upper bound; clearly, it is not tight.

B. Computation of E

1

The Varadhan lemma (see Theorem 4.3.1 in [7]) states that
1

n

logE [exp (2n⌘) I
⌘>✏

] ! sup

x>✏

(2x� I

⌘

(x)) and hence
the E

1

term converges towards 0 when sup

x>✏

(2x� I

⌘

(x)) <

0. Consider any of the intervals I
k

defined in (7). The deriva-
tive of 2x�I

⌘

(x) for any x 2 I
k

is 2�2k/(�

2

1

+...+�

2

k

�x) :

it is decreasing on I
k

and the limit in the left extremity of
I
k

, i.e. (

P

k�1

j=1

�

2

j

) � (k � 1)�

2

k

, is simply 2

⇣

1� 1

�

2

k

⌘

. If
�

1

(X
0

) < 1, then for all the indices k, 1� 1

�

2

k
< 0. This shows

that 2x+ I

⌘

(x) is strictly decreasing on every I
k

. Hence, for
every x 2]0, ⌘

max

], we have 2x� I

⌘

(x) < 0� I

⌘

(0) = 0. We
have proved that E

1

= o(1).
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∑ k
lo
g(
de
t(I
−ψ

kψ
kH
)

Fig. 1. graph of �I⌘(x) seen as an upper envelope. Upper curve: the upper
bound computed in [5]

VI. THE E

2

TERM: CONCENTRATION OF ⌘.

Notice that the upper block r⇥r  of a unitary Haar matrix
⇥ has the same distribution as

G
⇣

G̃⇤G̃
⌘�1/2

where the n ⇥ r matrix ˜G has i.i.d. entries distributed as
NC(0, 1) and G is the top r ⇥ r block of ˜G. Obviously,
E[G̃⇤G̃] = nI. It is a standard result that a random variable
distributed as a �

2

(n) is concentrated around its mean. This
can be easily extended to the matrix G̃⇤G̃:

Lemma 4. For any 0 < � < 1, there exists a constant c such

that

P
✓

�

�

�

�

1

n

G̃⇤G̃� I

�

�

�

�

2

> �

◆

 c exp

✓

�n

�

2

2

◆

.

We take ˜G
1

and ˜G
2

independent, distributed as ˜G and
consider the upper r ⇥ r blocks G

1

and G
2

of ˜G
1

and ˜G
2

. It follows that ⌘ has the same distribution as

2RTr
✓

⇤G
1

⇣

G̃⇤
1

G̃
1

⌘�1/2

⇤G
2

⇣

G̃⇤
2

G̃
2

⌘�1/2

◆

. Take now

any � < 1. We may split the integral E
2

in two parts:

E
⇥

exp (2n⌘) I{⌘✏}\Bc
1

\Bc
2

⇤

| {z }

E

0
2

+E
⇥

exp (2n⌘) I{⌘✏}\(B
1

[B
2

)

⇤

| {z }

E

00
2

.

where we have defined the events B
i

=

n

�

�

�

1

n

G̃⇤
i

G̃
i

� I

�

�

�

2

> �

o

. Thanks to the above concentration
result, we have

E

00
2

 exp(2n✏) (P(B
1

) + P(B
2

))

 exp(2n✏)2c exp

��n�

2

/2

�

As it is always possible to choose � and ✏ such that �2�4✏ >

0 and � < 1 it follows that E00
2

= o(1).

Let us now inspect the term E

0
2

. Since we have, for i = 1, 2,
�

�

�

1

n

G̃⇤
i

G̃
i

� I

�

�

�

2

 �, then there exist�
i

for i = 1, 2 such that



⇣

G̃⇤
i

G̃
i

⌘�1/2

=

1p
n

(I+�
i

)with k�
i

k
2

 �/2. We hence
have

E

0
2

 E [exp (2RTr (⇤G
1

(I+�
1

)⇤G
2

(I+�
2

))] .

We expand 2RTr (⇤G
1

(I+�
1

)⇤G
2

(I+�
2

)) as the sum
of four terms. Take for instance

T

2

= 2RTr (⇤G
1

�
1

⇤G
2

)

Thanks to von Neumann’s lemma [9], we have

T

2

 2

r

X

k=1

�

k

(�
1

)�

k

(⇤G
2

⇤G
1

)

 2 k�
1

k
r

X

k=1

�

k

(⇤G
2

⇤G
1

)

As
P

r

k=1

�

k

(⇤G
2

⇤G
1

)  p
r

p

P

r

k=1

�

2

k

(⇤G
2

⇤G
1

), it
yields

T

2

 2 k�
1

kpr

q

Tr (⇤G
2

⇤G
1

G⇤
1

⇤G⇤
2

⇤).

Invoking the von Neumann’s lemma three times, it holds
that

T

2

 2 k�
1

kpr

�

�⇤2

�

�

q

Tr (G
1

G⇤
1

)Tr (G
2

G⇤
2

)

 p
r k�

1

k ��⇤2

�

�

(Tr (G
1

G⇤
1

) + Tr (G
2

G⇤
2

))

Similar manipulations can be done on the other terms of the
expansion. so that E0

2

is less than

E [exp (2RTr (⇤G
1

⇤G
2

) + �Tr ((G
1

G⇤
1

) + Tr (G
2

G⇤
2

)))]

with � =

p
r

2

�(2 + �) k⇤k2 . The above expectation is to be
understood as the expectation over (G

1

,G
2

). As G
1

and G
2

are independent, we consider first the expectation over G
1

.
This gives, up to the factor exp (�Tr (G

2

G⇤
2

))

⇡

�r

2

Z

exp (2RTr (g
1

E) + (� � 1)Tr (g⇤
1

g
1

) ) dg
1

with E = ⇤G
2

⇤. It is always possible to choose � such that
� < 1. With such a �, the above integral is

(1� �)

�r

2

exp

 

1

4

✓

2p
1� �

◆

2

Tr (EE⇤
)

!

As Tr (EE⇤
)  k⇤k4

2

Tr (G
2

G⇤
2

) we finally obtain after
multiplying by exp (�Tr (G

2

G⇤
2

)) and taking the expectation
over G

2

:

E

0
2

 (1� �)

�r

2

⇡

r

2

Z

exp

 

� (1� �)

2 � k⇤k4
2

1� �

Tr (g⇤
2

g
2

)

!

dg
2

.

If k⇤k2
2

< 1, it is always possible to adjust � such that the
above integral converges. In this condition, we have

E

0
2


 

1

(1� �)

2 � k⇤k4
2

!

r

2

.

This must be true for all � arbitrarily small, hence the result.

APPENDIX

We prove Theorem 3 when x > 0. As the function to
be maximized converges towards �1 if k 

1

k ! 1 or
k 

2

k ! 1, any argument ( 
1

, 
2

) of the maximization
problem satisfies k 

i

k < 1, i = 1, 2. Therefore, the
Karush-Kuhn-Tucker (KKT) conditions imply the existence
of a scalar Lagrange multiplier µ � 0 such that ( 

1

, 
2

)

is a stationary point of the Lagrangian `( 
1

, 
2

, µ) defined
by
P

2

i=1

log det (I
r

� ⇤
i

 
i

) + µ RTr (⇤ 
1

⇤ 
2

) . As ` is
a real valued function, a stationary point is computedwhen
setting the differential w.r.t. the entries of  

1

and  
2

to zero.
It can be checked that ( 

1

, 
2

) is a stationary point of ` when

µ⇤ 
2

⇤ =  ⇤
1

(I� 
1

 ⇤
1

)

�1

µ⇤ 
1

⇤ =  ⇤
2

(I� 
2

 ⇤
2

)

�1

In a first step, these equations can be shown to be satisfied
only if  

1

and  
2

are diagonal up to permutations of the
columns. Then, is can be deduced that there exists a diagonal
matrix 0  P  I and a matrix of permutation ⇧ such that
log det (I

r

� ⇤
1

 
1

) + log det (I
r

� ⇤
2

 
2

) = 2 log det(I �
P)and RTr (⇤ 

1

⇤ 
2

) = Tr(⇤⇧⇤⇤⇧P). This invites us
to consider the following

Problem 5. Maximize

log det(I�P) (9)

jointly over all the r! permutations ⇧ and over diagonal
matrices P verifying 0  P  I and the constraint

Tr(⇤⇧⇤⇤⇧P) = x. (10)

In a first step, we set ⇧ = I in the above problem and
consider the

Problem 6. Maximize
r

X

i=1

log(1� p

i

) (11)

under the constraints that 0  p

i

 1 for each i = 1, . . . , r

and
r

X

i=1

�

2

i

p

i

= x. (12)

The maximum is denoted by J

⇤

(x).

This is a variant of the celebrated water-filling problem (see
e.g. [13] and Chap. 9 of [6]) that was solved to evaluate the
capacity of a frequency selective Gaussian channel, the differ-
ence being that in the latter problem, log(1�p

i

) is replaced by
log(1+p

i

).In order to solve Problem 6, we assume that the non
zero singular values (�

i

)

i=1,...,r

are distinct. If this is not the
case, a standard perturbation argument can be used in order to
address the general case. As the function to be maximized is
strictly concave on the set defined by the constraints, the max-
imum is reached at a unique point p⇤ verifying p

i,⇤ < 1 for
each i. We consider the Lagrangian corresponding to Problem
(6) given by

P

r

i=1

log(1� p

i

) + µ

�

P

r

i=1

�

2

i

p

i

�

+

P

r

i=1

�

i

p

i



where µ � 0 and �

i

� 0 for i = 1, . . . , r. The partial
derivatives w.r.t. parameters (p

i

)

i=1,...,r

are zero at p⇤. This
leads to

for i = 1, . . . , r :

1

1� p

i,⇤
= µ⇤�

2

i

+ �

i,⇤ (13)

The first remark is that necessarily, these equations imply that
the numbers p

i,⇤ are sorted in decreasing order. To verify this
claim, we assume that i < j and that p

i,⇤ = 0 and p

j,⇤ > 0.
Then, it holds that µ⇤�

2

i

+�

i,⇤ = 1 and that µ⇤�
2

j

=

1

1�pj,⇤
> 1

because p
j,⇤ > 0 implies �

j,⇤ = 0. Therefore, �2

i

 1

µ⇤
< �

2

j

, a
contradiction because �

2

i

� �

2

j

. We denote by s(x) the number
of non-zero entries of p⇤. Hence, the first s(x) entries of p⇤
are non zero. Morever, the equations µ⇤�

2

i

=

1

1�pi,⇤
for i =

1, . . . , s(x) imply that p
1,⇤ � . . . � p

s(x),⇤ > 0 = p

s(x)+1,⇤ =

. . . = p

r,⇤.
We now analytically characterize s(x). On the one hand,

(13) computed at for i = s(x) and for i = s(x) + 1 both
imply

�

2

s(x)+1

 1

µ⇤
< �

2

s(x)

(14)

On the other hand, the constraint (12) imposes that 1/µ⇤
verifies

1

µ⇤
=

P

s(x)

i=1

�

2

i

� x

s(x)

.

Therefore, it holds that

(

s(x)

X

i=1

�

2

i

)� s(x)�

2

s(x)

< x  (

s(x)

X

i=1

�

2

i

)� s(x)�

2

s(x)+1

(15)

such that s(x) coincides with the integer k for which x 2 I
k

(see (7) for the definition of these intervals). The maximum
P

s(x)

i=1

log(1� p

i,⇤) is direcly computed as

J

⇤

(x) = log

0

@

"

P

s(x)

i=1

�

2

i

� x

s(x)

#

s(x)

1

⇧

s(x)

i=1

�

2

i

1

A (16)

In order to show that the GRF of ⌘ is I

⌘

(x) = �2J

⇤

(x),

it remains to show that the solution of Problem 5 is reached
when the permutation matrix ⇧ is the identity. In this respect,
we introduce a nested problem motivated by the following
observation. We denote by ↵ and � the r–dimensional vectors
whose components are respectively the diagonal entries of ⇤2

and of ⇤⇧⇤⇤⇧ arranged in the decreasing order. Evidently,
↵ majorizes � in the sense that

for k = 1, . . . , r :

k

X

i=1

↵

i

�
k

X

i=1

�

i

(17)

We thus consider the relaxed problem

Problem 7. Maximize log det(I � P) over the diagonal
matrices 0  P  I and over vectors � = (�

1

, ...,�

r

)

satisfying �

1

� �

2

� . . .�

r

� 0, the majorization constraint
(17), and the equality constraint

r

X

i=1

�

i

p

i

= x (18)

The maximum of Problem 7 is above the maximum of
Problem 5 which is itself above the maximum J

⇤

(x) of
Problem 6. We actually show that the maximum of Problem
7 is less than J

⇤

(x), and that it is reached for a vector � that
coincides with ↵. This will imply that the optimal permutation
⇧ in Problem 5 is I and I

⌘

(x) = �2J

⇤

(x).
We give some elements for solving Problem 7. We consider

a stationary point (p⇤,�⇤) of the associated Lagrangian and
compute the KKT conditions. We suppose that this stationary
point attains the maximum. If s denotes the number of non-
zero components in p⇤, we prove that, necessarily, p

1,⇤ �
p

2,⇤ � ... � p

s,⇤ > 0 and �

1,⇤ � �

2,⇤ � ... � �

s,⇤. We
let j

1

be the first index such that
P

j

1

i=1

↵

i

>

P

j

1

i=1

�

i

(this
index exists otherwise �⇤ = ↵ and the problem is solved).
This implies that �

i,⇤ = ↵

i

for all indices i = 1, ..., j

1

� 1.
Notice this fact: if we suppose that the condition

P

j

1

+k

i=1

↵

i

>

P

j+k

i=1

�

i

is true whatever k, then it is possible to add a small
✏ > 0, and update �

j

1,⇤ as �

j

1

,⇤ + ✏ in such a way that the
majorization constraints still hold, the constraint (18) holds
and the updated p⇤ increases the function to maximize. This
is in contradiction with the definition of (p⇤,�⇤). This means
that there exists an index j

2

(we choose the smallest) such that
P

j

1

+j

2

i=1

↵

i

=

P

j

1

+j

2

i=1

�

i,⇤. It can be shown that it is necessary
that all the �

i,⇤ are equal for i = j

1

, ..., j

1

+ j

2

. After some
algebraic gymnastics, it can be shown that it in this case, all
the inequalities (17) at �⇤ are saturated hence implying that
�⇤ = ↵. The value of

P

i

log(1� p

i,⇤) equals J

⇤

(x).
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