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On the non-detectability of spiked large random tensors

This paper addresses the detection of a low rank high-dimensional tensor corrupted by an additive complex Gaussian noise. In the asymptotic regime where all the dimensions of the tensor converge towards +1 at the same rate, existing results devoted to rank 1 tensors are extended. It is proved that if a certain parameter depending explicitly on the low rank tensor is below a threshold, then the null hypothesis and the presence of the low rank tensor are undistinguishable hypotheses in the sense that no test performs better than a random choice.

INTRODUCTION

The problem of testing whether an observed n1 ⇥ n2 matrix Y is either a zero-mean independent identically distributed Gaussian random matrix Z with variance 1 n 2 , or X0 + Z (where X0 is a low rank matrix: a useful signal, called also spike) is a fundamental problem arising in numerous applications such as the detection of low-rank multivariate signals or the Gaussian hidden clique problem. When the two dimensions n1, n2 converge towards 1 at the same rate, the rank of X0 remaining fixed, the context is this of the so-called additive spiked large random matrix models. Various results on the singular values of X0 + Z have been established; in particular it is possible to show that the Generalized Likelihood Ratio Test (GLRT) is consistent (i.e. the probability of false alarm and the probability of missed detection both converge towards 0 when n1, n2 converge towards +1 in such a way that n1/n2 ! c > 0) if and only the largest singular value of X0 is above the threshold c 1/4 (see e.g. [START_REF] Nadakuditi | Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[END_REF], [START_REF] Bianchi | Performance of statistical tests for single source detection using random matrix theory[END_REF], [START_REF] Benaych | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF]).

In a number of real life problems, the observation is not a matrix, but a tensor Y of order d 3, i.e. a d-dimensional array Y = Yi 1 ,i 2 ,...,i d where for each k = 1, . . . , d, ik 2 [1, . . . , nk]. In this context, the generalization of the above matrix hypothesis testing problem becomes: test that the observed order d 3 tensor is either a zero-mean independent identically distributed Gaussian random tensor Z, or the sum of Z and a low rank deterministic tensor

X0 = r X i=1 ix (1,i) 0 ⌦ x (2,i) 0 ⌦ . . . x (d,i) 0 ( 1 
)
where r is called the rank of X0. Here ( i)i=1,...,r are strictly positive real numbers, and for each i = 1, . . . , r and k = 1, ..., d, x (k,i) 0 is a ni ⇥ 1 unit norm vector. Recent works (see e.g. [START_REF] Hopkins | Tensor principal component analysis via sum-of-squares proofs[END_REF][START_REF] Montanari | A statistical model for tensor PCA[END_REF][START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF][START_REF] Perry | Statistical limits of spiked tensor models[END_REF] ) addressed the detection/estimation of X0 when r is reduced to 1 and when the dimensions n1, . . . , nd converge towards 1 at the same rate. We also mention that [START_REF] Hopkins | Tensor principal component analysis via sum-of-squares proofs[END_REF] and [START_REF] Perry | Statistical limits of spiked tensor models[END_REF] only considered the case where the rank 1 tensor X0 is symmetric, that is: n1 = n2 = We are grateful to Lenka Zdeborová for bringing to our knowledge important bibliographical references.

. . . = nd and the d vectors (x (k,i) 0 )i=1,...,d are equal. Since the concept of singular value decomposition cannot be extended to tensors, ad'hoc statistical strategies have been considered to prove the (non)existence of consistent tests: [START_REF] Montanari | A statistical model for tensor PCA[END_REF] and [START_REF] Perry | Statistical limits of spiked tensor models[END_REF] (r = 1) established that if 1 is larger than a certain upper bound, then consistent detection of X0 is possible. In the other direction, [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF][14] (again, r = 1) proved that if

1 is less than a certain lower bound (which is stricly less than the above upper bound), then X0 is non-detectable in the sense that any test behaves as a random choice between the two hypotheses. This is a remarkable phenomenon because such a behaviour is not observed in the matrix case (d = 2): indeed, in this context, if the largest eigenvalue of X0 is below c 1/4 , it is proved in [START_REF] Onatski | Asymptotic power of sphericity tests for high-dimensional data[END_REF] (r = 1) that there exist statistical tests having a better performance than a random choice -a result that [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF] [START_REF] Perry | Statistical limits of spiked tensor models[END_REF] obtained a different way.

The replica method has been successfully considered [4][9]. In these contributions, the model does not match exactly ours since 1) the spike is assumed symmetric, i.e. X0 = P

r i=1 i ⇣ x (i) 0 ⌘ ⌦d and 
2) the rows of the matrix

⇣

x (1) 0 , ..., x (r) 0 ⌘ are random i.i.d. with a known distribution (the prior). When r = 1, and the prior is of the Rademacher type, the observed tensor follows the pure p-spin model [START_REF] Talagrand | Mean Field Models for Spin Glasses Book Subtitle. Volume I: Basic Examples[END_REF]: in an illuminating contribution [START_REF] Chen | Phase transition in the spiked random tensor with rademacher prior[END_REF], a tight threshold when d 3 is provided (above which consistent detection is possible and under which any detector performs as a random guess). The case r 1 with a general prior is addressed in [START_REF] Lesieur | Statistical and computational phase transitions in spiked tensor estimation[END_REF]: there, the estimation of the spike is considered rather than the detection; specifically, the asymptotic performance of the MMSE is computed and an estimation threshold is deduced. This latter is rigorously proved when r = 1. The threshold is not explicit and intrinsically depends on the prior.

In the present contribution, we follow the methodolodgy of [START_REF] Montanari | A statistical model for tensor PCA[END_REF] [10] [START_REF] Perry | Statistical limits of spiked tensor models[END_REF] and extend it to the general case r 1: though suboptimal (the thresholds provided are not tight in general), the machinery is much lighter than this of the replica method, it provides explicit bounds for the non-detectability and lastly allows one to deal with deterministic spikes. Precisely, we find out a simple sufficient condition on the spike X0 under which X0 is non-detectable. The problem of finding conditions under which the existence of a consistent detection is guaranteed is not addressed here.

MODEL, NOTATION, AND BACKGROUND

The order-d tensors are complex-valued, and it is assumed that n1 = n2 = ... = n in order to simplify the notations. The set ✏ d C n is a complex vector-space endowed with the standard scalar product The spike ("the signal") is assumed to be a tensor of fixed rank r following [START_REF] Banks | Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization[END_REF]. Along this contribution, n is large or, mathematically, n ! 1. We hence have for each n a set of n ⇥ 1 vectors ). We impose a non-erratic asymptotic behavior of the spike, and specifically, as all the vectors x (k,i) 0 2 C n⇥1 have unit norm, we suppose that for all i, j,

8 X, Y 2 ✏ d C n hX, Yi = X i 1 ,
D x (k,i) 0 , x (k,j) 0 E = ( (k)⇤ 0 (k) 0 )i,j converges as n ! 1.
The rate of convergence is a technical aspect that is out of the scope of this contribution: we will simply assume that the matrices

( (k)⇤ 0 (k) 0 ) k=1,...,d do not depend on n. We define the SVD of (k) 0 as Uk ✓ ⌃ k 0 ◆ V ⇤ k for
Uk and Vk unitary matrices respectively of size n ⇥ n and r ⇥ r and ⌃ k a diagonal matrix with non-negative entries on the diagonal.

V k and ⌃ k do no depend on n because (k)⇤ 0 (k) 0 = V k ⌃ 2 k V ⇤ k .
We denote by Z the noise tensor, and assume that its entries are NC(0, 1/n) independent identically distributed complex circular Gaussian random variables.

In the following, we consider the alternative H0 : Y = Z versus H1 : Y = X0 + Z. We denote by p1,n(y) the probability probability density of Y under H1 and p0,n(y) the density of Y under H0.

⇤(Y) = p 1 (Y) p 0 (Y)
is the likelihood ratio and we denote by E0 the expectation under H0. We now recall the fundamental information geometry results used in [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF] in order to address the detection problem.The following properties are well known (see also [START_REF] Banks | Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization[END_REF] section 3):

• (i) If E0 ⇥ ⇤(Y) 2 ⇤ is bounded, then no consistent detection test exists. • (ii) If moreover E0 ⇥ ⇤(Y) 2 ⇤ = 1 + o(1)
, then the total variation distance between p0,n and p1,n converges towards 0, and no test performs better than a decision at random. Therefore, the computation of the second order moment of ⇤(Y) under p0,n may provide insights on the detection. We however notice that conditions (i) and (ii) are only sufficient. In particular, if

lim sup n E0 ⇥ ⇤(Y) 2 ⇤ = +1
, nothing can be inferred on the behaviour of the detection problem when n ! +1.

EXPRESSION OF THE SECOND-ORDER MOMENT.

The density of Z, seen as a collection of n d complex-valued random variables, is obviously p0,n(z) = n exp n kzk 2 F where n = n ⇡ n d . On the one hand, we notice that the second-order moment approach is not suited to the deterministic model of the spike as presented previously. Indeed, in this case E0 ⇥ ⇤(Y) 2 ⇤ has the simple expression exp 2n kX0k 2 

((⇥1 ⌦ ⇥2... ⌦ ⇥ d ) Z) i 1 ,...,i d is X `1,...,`d (⇥1) i 1 ,`1 (⇥2) i 2 ,`2 ... (⇥ d ) i d ,`d Z `1,...,`d .
We hence modify the data according to the procedure: we pick i.i.d. complex Haar samples ⇥1, ..., ⇥ d and consider the "new" data tensor defined as (⇥1 ⌦ ⇥2... ⌦ ⇥ d ) Y. This does not affect the distribution of the noise, but this amounts to assume an artificial prior on the spike. Indeed, the vectors x (k,i) 0 are replaced by ⇥kx (k,i) 0 . They are all uniformly distributed on the unit sphere of C n and for

k 6 = l, vectors ⇥ k x (k,i) 0
and ⇥ l x (l,j) 0 are independent for each i, j. However, vectors (⇥ k x (k,i) 0 )i=1,...,r are not independent. In the following, the data and the noise tensors after this procedure are still denoted respectively by Y and Z. This transformation of the spike is an extension of a trick used in Section III.C of [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF].

We are now in position to give a closed-form expression of the second-order moment of ⇤(Y) . We have p1,n(Y) = EX [p0,n(Y X)] where EX is the mathematical expectation over the distribution of the spike, or equivalently over the Haar matrices

(⇥ k ) k=1,...,d . It holds that E0 ⇥ ⇤(Y) 2 ⇤ = E X,X 0 ⇥ exp 2nR ⌦ X, X 0 ↵ ⇤ = E X,X 0 " exp 2nR r X i,j=1 i j d Y k=1 D ⇥ 0 k ⇤ ⇥kx (k,i) 0 , x (k,j) 0 E !#
where E X,X 0 is over independent copies X, X 0 of the spike associated respectively with (⇥ k ) k=1,...,d and (⇥ 0 k ) k=1,...,d . R stands for the real part. As ⇥ k and ⇥ 0 k are Haar and independent, then

(⇥ 0 k ) ⇤ ⇥ k is also Haar distributed and E0 ⇥ ⇤(Y) 2 ⇤ = E [exp (2n⌘)],
where the expectation is over the i.i.d. Haar matrices ⇥1, ⇥2, ..., ⇥d and

⌘ = R r X i,j=1 i j d Y k=1 D ⇥ k x (k,i) 0 , x (k,j) 0 E | {z } ⇠ (i,j) k . (2) 
⌘ may be factored as

⌘ = R h T ⇣ ✓ d k=1 ⇣ (k)⇤ 0 ⇥ k (k) 0 ⌘⌘ i
. In the latter equation, ✓ stands for the Hadamard product of matrices. The ultimate simplification comes from the SVD of (k) 0 :

(k)⇤ 0 ⇥ k (k) 0 = V k ⌃ k 0 U ⇤ k ⇥ k U k ✓ ⌃ k 0 ◆ ⌃ k V ⇤ k .
Firstly, U ⇤ k ⇥ k U k has the same distribution as ⇥ k ; secondly, we may associate with any ⇥ k its upper r ⇥ r block, that we will denote k . As a conclusion, we may express ⌘ as

⌘ = R h T ⇣ ✓ d k=1 (V k ⌃ k k ⌃V ⇤ k ) ⌘ i . (3) 

EXTENDING KNOWN RESULTS

When r = 1, Montanari et al. [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF] found a bound on the parameter

1 ensuring that E0 ⇥ ⇤(Y) 2 ⇤ is bounded. In this case, ⌘ has a simple expression since ⌘ = 2 R Q d k=1
⇠k where the (⇠k)k=1,...,d are i.i.d. distributed as the first component of a uniform vector of the unit sphere of C n . As in [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF], we introduce

2nd d = s min u2[0,1] 1 u d log(1 u 2 ). (4) 
Adapting the result of the aforementioned article to the complexcircular context is straight-forward:

Theorem 1 (case r=1 (Montanari et al.)). Let ⇠1, ..., ⇠d be i.i.d. distributed as the first component of a vector uniformly distributed on the unit sphere of C n .

If 1 < q d 2 2nd d then E0 h exp ⇣ 2n 2 1 R Q d k=1 ⇠ k ⌘i is bounded; moreover, if d > 2, the above expectation is 1+o(1).
This non-obvious result may be used in order to derive a condition ensuring that hypotheses H0 and H1 are indistinguishable when r > 1. In this respect, recall the expansion (2). Thanks to the Hölder inequality, E0 ⇥ ⇤(Y) 2 ⇤ is upper bounded by (see [START_REF] Benaych | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] for the definition of

⇠ (i,j) k ) r Y i,j=1 E 1/p i,j " exp 2npi,j i j R d Y k=1 ⇠ (i,j) k !# (5) 
for any non-negative numbers pi,j such that P i,j 1 p i,j = 1. For fixed i, j, we notice that the random variables (⇠ (i,j) k ) k=1,...,d verify the condition of Theorem 1. Any of the expectations in ( 5) are hence upper-bounded when n ! 1 provided that, for all i, j: pi,j i j <

d 2 2nd d 2 .
Choosing eventually pi,j = (

P p p ) 2 i j
, we deduce Theorem 2 (case r 1 -extension of Theorem 1 ). If P

r i=1 i < q d 2 2nd d then E0 ⇥ ⇤(Y) 2 ⇤ is bounded. If moreover d > 2, we have E0 ⇥ ⇤(Y) 2 ⇤ = 1 + o(1)
and the hypotheses H0 and H1 are indistinguishable.

Remark 3. Due to the use of the Hölder inequality, Theorem 2 is suboptimum in general. The inequality is patently an equality when 8k, i, j, x (k,i) 0 = x (k,j) 0 , i.e. the spike has rank r = 1 and amplitude P r i=1 i.

A TIGHTER BOUND

The main result of our contribution is the following Theorem 4 (case r 1). We define ⌘max as

⌘max = ⇣ ✓ d k=1 (k)⇤ 0 (k) 0 ⌘ . ( 6 
)
If p ⌘max < q d 2 2nd d then, for d > 2, E0 ⇥ ⇤(Y) 2 ⇤ = 1 + o(1).
Before providing elements of the proof of the above result, we may briefly justify why the bound in Theorem 4 is tighter than this of Theorem 2, whatever the choice of . On the one hand, indeed,

P i i 2 = T
J where J is the r ⇥ r matrix having all its entries equal to 1. On the other hand, all the vectors x (k,i) 0 are normalized and consequently, any of the diagonal entries of (k)⇤ 0 (k) 0 equals 1 and for any i 6 = j,

( (k)⇤ 0 (k) 0 )i,j  1. This proves that P i i 2 ⌘max = T ⇣ J ✓ d k=1 (k)⇤ 0 (k) 0 ⌘ 0.
We provide the key elements of the proof of Theorem 4. Remind that we are looking for a condition on the spike under which E [exp (2n⌘)] is bounded. Evidently, the divergence may occur only when ⌘ > 0. We hence consider The E1 term. It is clear that the boundedness of the integral E1 is achieved when ⌘ rarely deviates from 0. As remarked in [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF], the natural machinery to consider to understand E1 is this of the Large Deviation Principle (LDP). In essence, if ⌘ follows the LDP with rate n, there can be found a certain non-negative function called Good Rate Function (GRF) I⌘ such that for any Borel set A of R, [START_REF] Dembo | Large deviations techniques and applications[END_REF]) states that 1 n log E [exp (2n⌘) 1⌘>✏] ! sup x>✏ (2x I⌘(x)) and hence the E1 term converges towards 0 when sup x>✏ (2x I⌘(x)) < 0. We thus justify that ⌘ follows a Large Deviation Principle with rate n, and we compute a lower bound of its GRF. For this, we use that for each k, the random matrix k defined in (3) follows a LDP with rate n and that its GRF at the parameter 2 C r⇥r (we may evidently take k k 2  1) is log det (Ir ⇤ ) (see Theorem 3-6 in [START_REF] Gamboa | Operator-valued spectral measures and large deviations[END_REF]). ⌘ is a function of the i.i.d. matrices ( k ) k=1,...,d . Therefore, the contraction principle (see Theorem 4.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]) ensures that ⌘ follows a LDP with rate n and GRF I⌘ given, for each real x in the range of ⌘, as the solution of the optimization problem:

E1 = E [exp (2n⌘) 1⌘>✏] and E2 = E [exp (2n⌘) 1 ⌘✏ ],
max 8k 0↵ k 1 max 8k k k k = ↵ k ⌘( 1 , ..., d ) = x d X k=1 log det (Ir ⇤ k k ) . (7) 
When d 3, the solution of this optimization problem cannot apparently be expressed in closed form. We thus just provide a lower bound of I⌘(x). When d = 2, it is possible to evaluate I⌘(x): see [START_REF] Chevreuil | On the detection of low rank matrices in the high-dimensional regime[END_REF].

Proposition 5. For each x 2 R, it holds that I⌘(x) d log 1 ✓ |x| ⌘max ◆ 2/d ! . (8) 
where the right-hand side should be understood as +1 if |x| ⌘max.

In order to establish Proposition 5, we use the following algebraic result whose proof is omitted. Lemma 6. For any matrices (Ak)k=1,...,d 2 C r⇥r and vector 2 R r , the supremum of

T ✓ d k=1 (A k k A ⇤ k ) over r ⇥ r matrices k such that for all k: || k ||2 = ↵ k is d Y k=1 ↵ k ! T ⇣ ✓ d k=1 (A k A ⇤ k ) ⌘ .
The immediate consequence of this lemma is that the random variable ⌘ is bounded and |⌘|  ⌘max where ⌘max is given by [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Moreover, take a set of matrices

k such that k k k 2 = ↵ k 2 [0, 1]; then by Lemma 6, |⌘ ( 1 , ..., d )|  Q k ↵
k ⌘max hence the optimization [START_REF] Gamboa | Operator-valued spectral measures and large deviations[END_REF] is to be carried out only on the set of matrice

k such that Q k ↵ k |x| ⌘max .
On the other hand, one may use the generous bound log det (Ir

⇤ k k )  log 1 k k k 2 2
and finally prove that

I⌘(x)  max Q k ↵ k |x| ⌘max d X k=1 log 1 ↵ 2 k .
The supremum of the r.h.s. of this equation is achieved for balanced ↵k and we immediately obtain [START_REF] Hopkins | Tensor principal component analysis via sum-of-squares proofs[END_REF]. This completes the proof of Proposition 5.

Using Proposition 5 and setting u =

⇣ |x| ⌘max ⌘ 1/d
, we obtain immediately that for each > 0:

1 n log E1 < sup ✏u1  2u d ✓ ⌘max + d 2 1 u d log(1 u 2 ) ◆ +
for n large enough, where ✏ = (✏/⌘max) 1/d . Recalling (4) and choosing small enough, we deduce that the condition ⌘max < The E2 term. The Varadhan lemma may be invoked: but its conclusion, namely 1 n log E2 ! 0, says nothing on the boundedness of E2. We have, however A weak consequence of the LDP on ⌘ is the concentration of ⌘ around 0, namely P(⌘  ✏) = 1 P(⌘ > ✏) = 1 o(1). We recall the expanded expression for ⌘: see [START_REF] Benaych | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF]. Notice that ⌘ u implies that at least one of the r 2 terms of this expansion is at least equal to u r 2 . By the union bound, and the fact that R Q

d k=1 ⇠ (i,j) k  Q d k=1 ⇠ (i,j) k we deduce that P (⌘ u)  P r i,j=1 P ⇣ Q d k=1 ⇠ (i,j) k u r 2 i j

⌘

. Invoking again the union bound and noticing that for fixed i, j,

⇣ ⇠ (i,j) k ⌘ k=1,...,d
have the same distribution, we deduce that

P (⌘ u)  d r X i,j=1 P ⇠ (i,j) k ✓ u r 2 i j ◆ 1/d ! . Now, the density of ⇠ (i,j) k is in polar coordinates n 1 ⇡ 1 r 2 n 2 hence, choosing ✏ such that ✏  r 2 maxi,j i j : P ✓ ⇠ (i,j) k ⇣ u r 2 i j ⌘ 1/d ◆ = ✓ 1 ⇣ u r 2 i j ⌘ 2/d ◆ n 1 . For any 0  x < 1, log(1 x)  x, hence E2  d X i,j 2n Z ✏ 0 exp (n 1) ✓ u r 2 i j ◆ 2/d + 2nu ! du.
When d > 2, it is always possible to determine ✏ sufficiently small such that (n 1)

⇣ u r 2 i j ⌘ 2/d + 2nu  n 1 2 ⇣ u r 2 i j ⌘ 2/d
. This implies that, for such an ✏, we have

E2  d 2 r 2 n ✓ 2 n 1 ◆ d/2 X i,j i j Z 1 0 v d/2 1 exp( v)dv. The r.h.s. is of course o(1) since d > 2. Remark 7. The bound p ⌘max < q d 2 2nd d
guarantees the nondetectability but it is not tight in general because, in order to study the asymptotics of E1, we replaced the true GRF I⌘ by the lower bound [START_REF] Hopkins | Tensor principal component analysis via sum-of-squares proofs[END_REF]. Based on the loose inequality log det (Ir

⇤ k k )  log det 1 k k k 2 2 , ( 8 
) may not be very accurate. It is easy to check that the equality is reached in (8) when all the matrices ( (k) 0 ) k=1,...,d are rank 1, i.e. if the rank of X0 is equal to 1. Therefore, the lower bound (8) of I⌘ is all the better as all the matrices (k) 0 are close to being rank 1 matrices. This suggests that, conversely, the bound ( 8) is likely to be loose when matrices = 1 (here, µmax denotes the largest eigenvalue), then E1 converges towards 0 and E2 is bounded: see [START_REF] Chevreuil | On the detection of low rank matrices in the high-dimensional regime[END_REF].

( (k) 0 ) k=1 

CONCLUSION

In this paper, we have addressed the detection problem of a rank r high-dimensional tensor X0. We have generalized the results of [START_REF] Montanari | On the limitation of spectral methods: from the gaussian hidden clique problem to rank one perturbations of gaussian tensors[END_REF] to the case where r > 1, and established that if the parameter ⌘max defined by ( 6) is less that parameter 2nd 2 introduced in [10], the low rank tensor is undetectable. This condition is based on the lower bound (8) of the GRF I⌘ which is however not tight in general. It is thus relevant to try to improve this bound in a future work.
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  and always diverges. On the other hand, the noise tensor shows an invariance property: if ⇥1, ..., ⇥ d are unitary n ⇥ n matrices, then the density of the mode products (⇥1 ⌦ ⇥2... ⌦ ⇥ d ) Z equals this of Z. For d = 2, the notation (⇥1 ⌦ ⇥2) Z simply means ⇥1Z⇥2 and for a general d,

and prove that under the condition p ⌘max < q d 2 2ndd

 2 , for a certain small enough ✏, E1 = o(1) (for d 2) and that E2 = 1 + o(1) (for d > 2).

1 n

 1 log P (⌘ 2 A) converges towards sup x2A I⌘(x). The existence of a GRF allows one to analyze the asymptotic behaviour of integral E1. Indeed, the Varadhan lemma (see Theorem 4.3.1 in

E2 = Z 1 0P 1 P 0 P 0 P

 1100 (exp(2n⌘) t and ⌘  ✏) dt = Z 0 (⌘ u and ⌘  ✏) 2n exp(2nu)du + Z ✏ (⌘ u and ⌘  ✏) 2n exp(2nu)du  P (⌘  ✏) + Z ✏ (⌘ u) 2n exp(2nu)du.

k k k  1 .

 1 ,...,d are close to be orthogonal. As an illustration, we would like to consider experimental results. For a given configuration of the spike, we have chosen at random the matrices k with For each trial, we plot the points of coordinates x = ⌘( 1 , ..., d ) and y = P d k=1 log det (Ir ⇤ k k ) and we obtain a cloud the upper envelope of which is a representation of the true GRF of ⌘; for comparison, we have plotted the graph of the function defined by the lower bound (8). We have chosen r = 2, d = 3, and two configurations of the spike: in the first one, all the matrices k have orthogonal columns (top graph of 1), in the second one, the eigenvalues of ⇤ k k are the same for k = 1, 2 equal to 1.8 and 0.2 (bottom graph of 1).
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